Advancements in Carbon Capture, Utilization, and Storage (CCUS): A Comprehensive Review of Technologies and Prospects
Abstract
1. Introduction
2. Carbon Capture Technologies
2.1. Point Source Capture (PSC)
2.2. Direct Air Capture (DAC)
3. Carbon Capture Materials
3.1. Absorbents
3.2. Adsorbents

3.2.1. Metal-Organic Frameworks (MOFs)
3.2.2. Zeolites
3.2.3. Carbon-Based Materials
3.2.4. Metal Oxides
3.3. Hybrid Sorbents
3.3.1. Absorbent-Adsorbent
3.3.2. Adsorbent-Adsorbent
3.3.3. Hydrogel-Based Material
4. CO2 Utilization and Storage Pathways
4.1. Geological Storage of CO2
4.2. Biomineralization of CO2
4.2.1. Catalytic Role of Carbonic Anhydrase
4.2.2. Immobilization of CA Enzymes
4.2.3. Hydrogels as CA Support
4.2.4. CO2 Contained-3D Printed Hydrogels
4.2.5. Techno-Economic Outlook for CA-Immobilized Hydrogel
5. Carbon Mineralization Potential of Industrials Wastes
5.1. Mafic and Ultramafic Tailings
5.2. Serpentine Minerals
5.3. Fly Ash
5.4. Iron & Steel Slag
5.5. Red Mud/Bauxite Residue
5.6. Concrete-Cement Industry
6. Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CCUS | Carbon Capture, Utilization, and Storage |
| CO2 | Carbon Dioxide |
| CH4 | Methane |
| N2O | Nitrous Oxide |
| GHG | Greenhouse Gas |
| PSC | Point Source Capture |
| DAC | Direct Air Capture |
| IGCC | Integrated Gasification Combined Cycle |
| N2 | Nitrogen |
| H2O | Water |
| MOF | Metal-Organic Framework |
| DEA | Diethanolamine |
| MEA | Monoethanolamine |
| TEG | Triethylene Glycol |
| UIC | Underground Injection Control |
| USDW | Underground Sources of Drinking Water |
| PSL | Product Standard Level |
| API | American Petroleum Institute |
| OPC | Ordinary Portland Cement |
| CAD | Computer-Aided Design |
| STL | Stereolithography |
| HPAMAM | Hyperbranched Poly(amidoamine)s |
| PHEAA | Poly(N-2-hydroxyethylacrylamide) |
| SCCH | Sustainable Carbon Capture Hydrogels |
| PEI | Polyethylenimine |
| PVDF | Polyvinylidene Fluoride |
| CA | Carbonic Anhydrase |
| PDA | Polydopamine |
| IPNH | Interpenetrating Polymer Network Hydrogels |
| PVA | Polyvinyl Alcohol |
| CS | Chitosan |
| ZIF | Zeolitic Imidazolate Framework |
| ZSM | Zeolite Socony Mobil |
| ZIF-8 | Zeolitic Imidazolate Framework-8 |
| CSN | Core-Shell Nanoparticle |
| ZIFs | Zeolitic Imidazolate Frameworks |
| MPa | Megapascal |
| Gtpa | Gigatonnes Per Annum |
| Mt | Million Tonnes |
| Kt | Kilotonnes |
| Wt% | Weight Percent |
| MnO | Manganese Oxide |
| SiO2 | Silicon Dioxide |
| Al2O3 | Aluminum Oxide |
| Fe2O3 | Iron (III) Oxide |
| CaO | Calcium Oxide |
| MgO | Magnesium Oxide |
| Na2O | Sodium Oxide |
| K2O | Potassium Oxide |
| TiO2 | Titanium Dioxide |
| NaOH | Sodium Hydroxide |
| Na2CO3 | Sodium Carbonate |
| NaAl(OH)4 | Sodium Aluminate |
References
- U.S. Environmental Protection Agency. Overview of Greenhouse Gases. 16 January 2025. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 5 June 2025).
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Li, H.; Luijkx, I.T.; Olsen, A.; et al. Global carbon budget 2024. Earth Syst. Sci. Data Discuss. 2024, 2024, 965–1039. [Google Scholar] [CrossRef]
- Bevacqua, E.; Schleussner, C.-F.; Zscheischler, J. Nature Climate Change Brief Communication A Year above 1.5 °C Signals That Earth Is Most Probably within the 20-Year Period That Will Reach the Paris Agreement Limit. Nat. Clim. Change 2025, 15, 262–265. [Google Scholar] [CrossRef]
- Nagireddi, S.; Agarwal, J.R.; Vedapuri, D. Carbon Dioxide Capture, Utilization, and Sequestration: Current Status, Challenges, and Future Prospects for Global Decarbonization. ACS Eng. Au 2023, 4, 22–48. [Google Scholar] [CrossRef]
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon Capture, Utilization, and Storage (CCUS) Technologies: Evaluating the Effectiveness of Advanced CCUS Solutions for Reducing CO2 Emissions. Results Surf. Interfaces 2025, 18, 100381. [Google Scholar] [CrossRef]
- Kheirinik, M.; Ahmed, S.; Rahmanian, N. Comparative Techno-Economic Analysis of Carbon Capture Processes: Pre-Combustion, Post-Combustion, and Oxy-Fuel Combustion Operations. Sustainability 2021, 13, 13567. [Google Scholar] [CrossRef]
- Davidson, R. Pre-combustion capture of CO2 in IGCC plants. IEA Clean Coal Cent. 2011, 571, 572. [Google Scholar]
- Valluri, S.; Claremboux, V.; Kawatra, S. Opportunities and Challenges in CO2 Utilization. J. Environ. Sci. 2022, 113, 322–344. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Argyle, M.D.; Dellenback, P.A.; Fan, M. Progress in O2 Separation for Oxy-Fuel Combustion–A Promising Way for Cost-Effective CO2 Capture: A Review. Prog. Energy Combust. Sci. 2018, 67, 188–205. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, M.; Huang, L.; Zhang, T.; Wang, Q. Recent Progress on Direct Air Capture of Carbon Dioxide. Curr. Opin. Green. Sustain. Chem. 2023, 40, 100752. [Google Scholar] [CrossRef]
- Kotowicz, J.; Niesporek, K.; Baszczeńska, O. Advancements and Challenges in Direct Air Capture Technologies: Energy Intensity, Novel Methods, Economics, and Location Strategies. Energies 2025, 18, 496. [Google Scholar] [CrossRef]
- Blecich, P.; Wolf, I.; Senčić, T.; Bonefačić, I. Current Status of Enhanced Oil Recovery Projects Using Carbon Dioxide (EOR CO2) in Croatia. Eng. Proc. 2024, 67, 19. [Google Scholar] [CrossRef]
- Okoye-Chine, C.G.; Otun, K.; Shiba, N.; Rashama, C.; Ugwu, S.N.; Onyeaka, H.; Okeke, C.T. Conversion of Carbon Dioxide into Fuels—A Review. J. CO2 Util. 2022, 62, 102099. [Google Scholar] [CrossRef]
- Al-Mamoori, A.; Krishnamurthy, A.; Rownaghi, A.A.; Rezaei, F. Carbon Capture and Utilization Update. Energy Technol. 2017, 5, 834–849. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- IEAGHG. Effects of Impurities on Geological Storage of CO2. Technical Report 2011-04, June 2011. International Energy Agency Greenhouse Gas R&D Programme. Available online: https://ieaghg.org/publications/effects-of-impurities-on-geological-storage-of-CO2/ (accessed on 5 June 2025).
- Dell’era, A.; Mouctar, M.H.; Hassan, M.G.; Bimbo, N.; Abbas, S.Z.; Shigidi, I. Comparative Assessment and Deployment of Zeolites, MOFs, and Activated Carbons for CO2 Capture and Geological Sequestration Applications. Inventions 2025, 10, 78. [Google Scholar] [CrossRef]
- Furre, A.K.; Eiken, O.; Alnes, H.; Vevatne, J.N.; Kiær, A.F. 20 years of monitoring CO2-injection at Sleipner. Energy Procedia 2017, 114, 3916–3926. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Paulo, C.; Power, I.M.; Stubbs, A.R.; Wang, B.; Zeyen, N.; Wilson, S. Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralization. Appl. Geochem. 2021, 129, 104955. [Google Scholar] [CrossRef]
- Rochelle, G.T.; Chen, E.; Freeman, S.; Van Wagener, D.; Xu, Q.; Voice, A. Aqueous piperazine as the new standard for CO2 capture technology. Chem. Eng. J. 2011, 171, 725–733. [Google Scholar] [CrossRef]
- Chen, P.-C.; Cho, H.-H.; Jhuang, J.-H.; Ku, C.-H. Selection of Mixed Amines in the CO2 Capture Process. C 2021, 7, 25. [Google Scholar] [CrossRef]
- Sachio, S.; Ward, A.; Pini, R.; Papathanasiou, M.M. Operability-economics trade-offs in adsorption-based CO2 capture processes. Commun. Eng. 2024, 3, 94. [Google Scholar] [CrossRef]
- Sang Sefidi, V.; Luis, P. Advanced amino acid-based technologies for CO2 capture: A review. Ind. Eng. Chem. Res. 2019, 58, 20181–20194. [Google Scholar] [CrossRef]
- Custelcean, R.; Williams, N.J.; Garrabrant, K.A.; Agullo, P.; Brethomé, F.M.; Martin, H.J.; Kidder, M.K. Direct air capture of CO2 with aqueous amino acids and solid bis-iminoguanidines (BIGs). Ind. Eng. Chem. Res. 2019, 58, 23332–23341. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, Y.; Zhao, S.; Zhang, X.; Liu, Q.; Shi, X. Research progress in metal–organic frameworks (MOFs) in CO2 capture from post-combustion coal-fired flue gas: Characteristics, preparation, modification and applications. J. Mater. Chem. A 2022, 10, 5174–5211. [Google Scholar] [CrossRef]
- Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J.; Zhao, D.; AlBahily, K.; Vinu, A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020, 49, 4360–4404. [Google Scholar] [CrossRef]
- Zheng, B.; Oliveira, F.L.; Ferreira, R.N.B.; Steiner, M.; Hamann, H.; Gu, G.X.; Luan, B. Quantum informed machine-learning potentials for molecular dynamics simulations of CO2’s chemisorption and diffusion in Mg-MOF-74. ACS Nano 2023, 17, 5579–5587. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Jeevanandham, S.; Mukherjee, M.; Vo, D.V.N.; Mishra, V. Significance of Re-Engineered Zeolites in Climate Mitigation—A Review for Carbon Capture and Separation. J. Environ. Chem. Eng. 2021, 9, 105957. [Google Scholar] [CrossRef]
- Miyamoto, M.; Ono, S.; Kusukami, K.; Oumi, Y.; Uemiya, S. High water tolerance of a core–shell--structured zeolite for CO2 adsorptive separation under wet conditions. ChemSusChem 2018, 11, 1756–1760. [Google Scholar] [CrossRef] [PubMed]
- Kamran, U.; Park, S.J. Chemically Modified Carbonaceous Adsorbents for Enhanced CO2 Capture: A Review. J. Clean. Prod. 2021, 290, 125776. [Google Scholar] [CrossRef]
- Gunathilake, C.A.; Ranathunge, G.G.T.A.; Dassanayake, R.S.; Illesinghe, S.D.; Manchanda, A.S.; Kalpage, C.S.; Rajapakse, R.M.G.; Karunaratne, D.G.G.P. Emerging investigator series: Synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures. Environ. Sci. Nano 2020, 7, 1225–1239. [Google Scholar] [CrossRef]
- Florin, N.H.; Harris, A.T. Screening CaO-based sorbents for CO2 capture in biomass gasifiers. Energy Fuels 2008, 22, 2734–2742. [Google Scholar] [CrossRef]
- Mat, N.; Timmiati, S.N.; Teh, L.P. Recent Development in Metal Oxide-Based Core–Shell Material for CO2 Capture and Utilisation. Appl. Nanosci. 2023, 13, 3797–3817. [Google Scholar] [CrossRef]
- Hiremath, V.; Shavi, R.; Seo, J.G. Mesoporous magnesium oxide nanoparticles derived via complexation-combustion for enhanced performance in carbon dioxide capture. J. Colloid Interface Sci. 2017, 498, 55–63. [Google Scholar] [CrossRef]
- Gaikwad, S.; Kim, Y.; Gaikwad, R.; Han, S. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. J. Environ. Chem. Eng. 2021, 9, 105523. [Google Scholar] [CrossRef]
- Hack, J.; Maeda, N.; Meier, D.M. Review on CO2 Capture Using Amine-Functionalized Materials. ACS Omega 2022, 7, 39520–39530. [Google Scholar] [CrossRef]
- Muschi, M.; Devautour-Vinot, S.; Aureau, D.; Heymans, N.; Sene, S.; Emmerich, R.; Ploumistos, A.; Geneste, A.; Steunou, N.; Patriarche, G.; et al. Metal–organic framework/graphene oxide composites for CO2 capture by microwave swing adsorption. J. Mater. Chem. A 2021, 9, 13135–13142. [Google Scholar] [CrossRef]
- Gautam, S.; Rialach, S.; Paul, S.; Goyal, N. MOF/graphene oxide based composites in smart supercapacitors: A comprehensive review on the electrochemical evaluation and material development for advanced energy storage devices. RSC Adv. 2024, 14, 14311–14339. [Google Scholar] [CrossRef]
- White, C.; Adam, E.; Sabri, Y.; Myers, M.B.; Pejcic, B.; Wood, C.D. Amine-Infused Hydrogels with Nonaqueous Solvents: Facile Platforms to Control CO2 Capture Performance. Ind. Eng. Chem. Res. 2021, 60, 14758–14767. [Google Scholar] [CrossRef]
- Guo, Y.; Bolongaro, V.; Hatton, T.A. Scalable Biomass-Derived Hydrogels for Sustainable Carbon Dioxide Capture. Nano Lett. 2023, 23, 9697–9703. [Google Scholar] [CrossRef]
- Choi, H.; Lee, S.; Jeong, S.U.; Hong, Y.K.; Kim, S.Y. Synthesis and CO2 Capture of Porous Hydrogel Particles Consisting of Hyperbranched Poly(Amidoamine)s. Gels 2022, 8, 500. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yuan, Y.; Salmon, S. Carbonic anhydrase immobilized on textile structured packing using chitosan entrapment for CO2 capture. ACS Sustain. Chem. Eng. 2022, 10, 7772–7785. [Google Scholar] [CrossRef]
- Ma, X.; Liu, L.; Tang, K. Carbon dioxide sequestration by microbial carbonic anhydrases from submarine hydrothermal systems. Front. Mar. Sci. 2022, 9, 908818. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, J.; Zhang, P.; Schroeder, T.B.H.; Chen, J.; Carnevale, C.; Salmon, S.; Fang, X. 3D-Printed Hydrogel Filter for Biocatalytic CO2 Capture (Adv. Mater. Technol. 19/2024). Adv. Mater. Technol. 2024, 9, 2470087. [Google Scholar] [CrossRef]
- Parvin, N.; Kumar, V.; Joo, S.W.; Mandal, T.K. Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review. Materials 2024, 17, 4792. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Dubois, L.; Thomas, D. Postcombustion CO2 Capture by Chemical Absorption: Screening of Aqueous Amine(s)-Based Solvents. Energy Procedia 2013, 37, 1648–1657. [Google Scholar] [CrossRef]
- Padurean, A.; Cormos, C.C.; Agachi, P.S. Pre-Combustion Carbon Dioxide Capture by Gas–Liquid Absorption for Integrated Gasification Combined Cycle Power Plants. Int. J. Greenh. Gas Control 2012, 7, 1–11. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, Y.; Zhen, X.; Liu, Z. The Effect of Methanol Production and Application in Internal Combustion Engines on Emissions in the Context of Carbon Neutrality: A Review. Fuel 2022, 320, 123902. [Google Scholar] [CrossRef]
- Zentou, H.; Hoque, B.; Abdalla, M.A.; Saber, A.F.; Abdelaziz, O.Y.; Aliyu, M.; Alkhedhair, A.M.; Alabduly, A.J.; Abdelnaby, M.M. Recent Advances and Challenges in Solid Sorbents for CO2 Capture. Carbon Capture Sci. Technol. 2025, 15, 100386. [Google Scholar] [CrossRef]
- Zheng, L. Overview of Oxy-Fuel Combustion Technology for Carbon Dioxide (CO2) Capture. In Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture; Woodhead Publishing: Sawston, UK, 2011; pp. 1–13. [Google Scholar] [CrossRef]
- Mathieu, P. Oxyfuel Combustion Systems and Technology for Carbon Dioxide (CO2) Capture in Power Plants. In Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology; Woodhead Publishing: Sawston, UK, 2010; pp. 283–319. [Google Scholar] [CrossRef]
- Hua, W.; Sha, Y.; Zhang, X.; Cao, H. Research Progress of Carbon Capture and Storage (CCS) Technology Based on the Shipping Industry. Ocean Eng. 2023, 281, 114929. [Google Scholar] [CrossRef]
- Kim, C.; Talapaneni, S.N.; Dai, L. Porous Carbon Materials for CO2 Capture, Storage and Electrochemical Conversion. Mater. Rep. Energy 2023, 3, 100199. [Google Scholar] [CrossRef]
- Chai, S.Y.W.; Ngu, L.H.; How, B.S. Review of Carbon Capture Absorbents for CO2 Utilization. Greenh. Gases Sci. Technol. 2022, 12, 394–427. [Google Scholar] [CrossRef]
- Bao, H.; Ma, Z. Thermochemical Energy Storage. In Storing Energy: With Special Reference to Renewable Energy Sources; Elsevier: Amsterdam, The Netherlands, 2022; pp. 651–683. [Google Scholar] [CrossRef]
- Dziejarski, B.; Serafin, J.; Andersson, K.; Krzyżyńska, R. CO2 Capture Materials: A Review of Current Trends and Future Challenges. Mater. Today Sustain. 2023, 24, 100483. [Google Scholar] [CrossRef]
- Huang, K.H.; Wei, Z.; Cooks, R.G. Accelerated Reactions of Amines with Carbon Dioxide Driven by Superacid at the Microdroplet Interface. Chem. Sci. 2021, 12, 2242–2250. [Google Scholar] [CrossRef]
- Yousefzadeh, H.; Güler, C.; Erkey, C.; Uzunlar, E. CO2 Absorption into Primary and Secondary Amine Aqueous Solutions with and without Copper Ions in a Bubble Column. Turk. J. Chem. 2022, 46, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Huang, C.H.; Tan, C.S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef]
- Decoste, J.B.; Peterson, G.W.; Smith, M.W.; Stone, C.A.; Willis, C.R. Enhanced Stability of Cu-BTC MOF via Perfluorohexane Plasma-Enhanced Chemical Vapor Deposition. J. Am. Chem. Soc. 2012, 134, 1486–1489. [Google Scholar] [CrossRef]
- Hekmatmehr, H.; Esmaeili, A.; Pourmahdi, M.; Atashrouz, S.; Abedi, A.; Abuswer, M.A.; Nedeljkovic, D.; Latifi, M.; Farag, S.; Mohaddespour, A. Carbon capture technologies: A review on technology readiness level. Fuel 2024, 363, 130898. [Google Scholar] [CrossRef]
- Sharma, H.; Dhir, A. Capture of Carbon Dioxide Using Solid Carbonaceous and Non-Carbonaceous Adsorbents: A Review. Environ. Chem. Lett. 2021, 19, 851–873. [Google Scholar] [CrossRef]
- Sevilla, M.; Parra, J.B.; Fuertes, A.B. Assessment of the Role of Micropore Size and N-Doping in CO2 Capture by Porous Carbons. ACS Appl. Mater. Interfaces 2013, 5, 6360–6368. [Google Scholar] [CrossRef]
- Pardakhti, M.; Jafari, T.; Tobin, Z.; Dutta, B.; Moharreri, E.; Shemshaki, N.S.; Suib, S.; Srivastava, R. Trends in Solid Adsorbent Materials Development for CO2 Capture. ACS Appl. Mater. Interfaces 2019, 11, 34533–34559. [Google Scholar] [CrossRef]
- Alivisatos, P.; Buchanan, M. Basic Research Needs for Carbon Capture: Beyond 2020; USDOE Office of Science (SC): Washington, DC, USA, 2010. [Google Scholar]
- Farha, O.K.; Eryazici, I.; Jeong, N.C.; Hauser, B.G.; Wilmer, C.E.; Sarjeant, A.A.; Snurr, R.Q.; Nguyen, S.T.; Yazaydin, A.Ö.; Hupp, J.T. Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134, 15016–15021. [Google Scholar] [CrossRef]
- Beyond CO2 Uptake Determining the Industrial Viability of Metal-Organic Frameworks (MOFS) for Carbon Capture and Storage (CCS) Applications. 2023. Available online: https://prometheanparticles.co.uk/wp-content/uploads/2025/08/Beyond-CO2-Uptake-Factors-for-Industrially-Viable-MOFs.pdf (accessed on 10 July 2025).
- Lee, B.; Moon, D.; Park, J. Microscopic and Mesoscopic Dual Postsynthetic Modifications of Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2020, 59, 13793–13799. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Qi, T.; Li, J.; He, Y.; Yang, X. Improving Anti-Humidity Property of In2O3 Based NO2 Sensor by Fluorocarbon Plasma Treatment. Sens. Actuators B Chem. 2021, 344, 130268. [Google Scholar] [CrossRef]
- Xie, L.H.; Xu, M.M.; Liu, X.M.; Zhao, M.J.; Li, J.R. Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Adv. Sci. 2020, 7, 1901758. [Google Scholar] [CrossRef] [PubMed]
- Evans, H.A.; Mullangi, D.; Deng, Z.; Wang, Y.; Peh, S.B.; Wei, F.; Wang, J.; Brown, C.M.; Zhao, D.; Canepa, P.; et al. Aluminum Formate, Al(HCOO)3: An Earth-Abundant, Scalable, and Highly Selective Material for CO2 Capture. Sci. Adv. 2022, 8, eade1473. [Google Scholar] [CrossRef]
- Yin, Z.; Wan, S.; Yang, J.; Kurmoo, M.; Zeng, M.H. Recent Advances in Post-Synthetic Modification of Metal–Organic Frameworks: New Types and Tandem Reactions. Coord. Chem. Rev. 2019, 378, 500–512. [Google Scholar] [CrossRef]
- Mondloch, J.E.; Karagiaridi, O.; Farha, O.K.; Hupp, J.T. Activation of Metal-Organic Framework Materials. CrystEngComm 2013, 15, 9258–9264. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Wright, K.R.; Nath, K.; Matzger, A.J. Superior Metal-Organic Framework Activation with Dimethyl Ether. Angew. Chem. Int. Ed. 2022, 61, e202213190. [Google Scholar] [CrossRef]
- Liu, B.; Wong-Foy, A.G.; Matzger, A.J. Rapid and Enhanced Activation of Microporous Coordination Polymers by Flowing Supercritical CO2. Chem. Commun. 2013, 49, 1419–1421. [Google Scholar] [CrossRef]
- Lohe, M.R.; Rose, M.; Kaskel, S. Metal–Organic Framework (MOF) Aerogels with High Micro- and Macroporosity. Chem. Commun. 2009, 40, 6056–6058. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, Y.; Ye, F.; Zhou, Y.; Zhao, G. Fabrication and Application of Starch-Based Aerogel: Technical Strategies. Trends Food Sci. Technol. 2020, 99, 608–620. [Google Scholar] [CrossRef]
- Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P.L.; Furukawa, H.; Cascio, D.; Stoddart, J.F.; Yaghi, O.M. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorg. Chem. 2012, 51, 6443–6445. [Google Scholar] [CrossRef]
- Kizzie, A.C.; Wong-Foy, A.G.; Matzger, A.J. Effect of Humidity on the Performance of Microporous Coordination Polymers as Adsorbents for CO2 Capture. Langmuir 2011, 27, 6368–6373. [Google Scholar] [CrossRef]
- Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A.C.; Liu, Z.; Asahina, S.; et al. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science (1979) 2012, 336, 1018–1023. [Google Scholar] [CrossRef]
- Kim, M.; Cahill, J.F.; Fei, H.; Prather, K.A.; Cohen, S.M. Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks. J. Am. Chem. Soc. 2012, 134, 18082–18088. [Google Scholar] [CrossRef] [PubMed]
- Svante Svante Secures Commercial Supply of MOF Advanced Sorbent Materials with BASF for Carbon Capture Market-Svante. Available online: https://www.svanteinc.com/press-releases/svante-secures-commercial-supply-of-mof-advanced-sorbent-materials-with-basf-for-carbon-capture-market/ (accessed on 9 May 2025).
- Rahmah, W.; Novita, T.H.; Wenten, I.G.; Kadja, G.T.M. Perspective and Outlook into Green and Effective Approaches for Zeolitic Membrane Preparation. Mater. Today Sustain. 2023, 22, 100345. [Google Scholar] [CrossRef]
- Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P.; Gupta, R. Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Ind. Eng. Chem. Res. 2012, 51, 1438–1463. [Google Scholar] [CrossRef]
- Gao, F.; Li, Y.; Bian, Z.; Hu, J.; Liu, H. Dynamic Hydrophobic Hindrance Effect of Zeolite@zeolitic Imidazolate Framework Composites for CO2 Capture in the Presence of Water. J. Mater. Chem. A Mater. 2015, 3, 8091–8097. [Google Scholar] [CrossRef]
- Boer, D.G.; Asgar Pour, Z.; Poli, S.; Langerak, J.; Bakker, B.; Pescarmona, P.P. ZSM-5/Silicalite-1 Core-Shell Beads as CO2 Adsorbents with Increased Hydrophobicity. Mater. Today Chem. 2023, 32, 101621. [Google Scholar] [CrossRef]
- Singh, R.; Wang, L.; Ostrikov, K.; Huang, J. Designing Carbon-Based Porous Materials for Carbon Dioxide Capture. Adv. Mater. Interfaces 2024, 11, 2202290. [Google Scholar] [CrossRef]
- Gao, X.; Yang, S.; Hu, L.; Cai, S.; Wu, L.; Kawi, S. Carbonaceous Materials as Adsorbents for CO2 Capture: Synthesis and Modification. Carbon. Capture Sci. Technol. 2022, 3, 100039. [Google Scholar] [CrossRef]
- Kumar, K.V.; Preuss, K.; Lu, L.; Guo, Z.X.; Titirici, M.M. Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study. J. Phys. Chem. C 2015, 119, 22310–22321. [Google Scholar] [CrossRef]
- Gadipelli, S.; Guo, Z.X. Graphene-Based Materials: Synthesis and Gas Sorption, Storage and Separation. Prog. Mater. Sci. 2015, 69, 1–60. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Xing, W.; Xue, Q.; Yan, Z.; Zhuo, S.; Qiao, S.Z. Critical Role of Small Micropores in High CO2 Uptake. Phys. Chem. Chem. Phys. 2013, 15, 2523–2529. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R.; Kumar, N.; Singh, C. Estimation of the Generation Rate of Different Types of Plastic Wastes and Possible Revenue Recovery from Informal Recycling. Waste Manag. 2018, 79, 781–790. [Google Scholar] [CrossRef]
- Singh, G.; Kim, I.Y.; Lakhi, K.S.; Joseph, S.; Srivastava, P.; Naidu, R.; Vinu, A. Heteroatom Functionalized Activated Porous Biocarbons and Their Excellent Performance for CO2 Capture at High Pressure. J. Mater. Chem. A Mater. 2017, 5, 21196–21204. [Google Scholar] [CrossRef]
- Babu, D.J.; Bruns, M.; Schneider, R.; Gerthsen, D.; Schneider, J.J. Understanding the Influence of N-Doping on the CO2 Adsorption Characteristics in Carbon Nanomaterials. J. Phys. Chem. C 2017, 121, 616–626. [Google Scholar] [CrossRef]
- Wang, M.; Yao, L.; Wang, J.; Zhang, Z.; Qiao, W.; Long, D.; Ling, L. Adsorption and Regeneration Study of Polyethylenimine-Impregnated Millimeter-Sized Mesoporous Carbon Spheres for Post-Combustion CO2 Capture. Appl. Energy 2016, 168, 282–290. [Google Scholar] [CrossRef]
- Mutch, G.A.; Shulda, S.; McCue, A.J.; Menart, M.J.; Ciobanu, C.V.; Ngo, C.; Anderson, J.A.; Richards, R.M.; Vega-Maza, D. Carbon Capture by Metal Oxides: Unleashing the Potential of the (111) Facet. J. Am. Chem. Soc. 2018, 140, 4736–4742. [Google Scholar] [CrossRef]
- Bhatta, L.K.G.; Bhatta, U.M.; Venkatesh, K. Metal Oxides for Carbon Dioxide Capture. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2019; pp. 63–83. [Google Scholar] [CrossRef]
- Wang, S.; Yan, S.; Ma, X.; Gong, J. Recent Advances in Capture of Carbon Dioxide Using Alkali-Metal-Based Oxides. Energy Environ. Sci. 2011, 4, 3805–3819. [Google Scholar] [CrossRef]
- Li, L.; King, D.L.; Nie, Z.; Howard, C. Magnesia-Stabilized Calcium Oxide Absorbents with Improved Durability for High Temperature CO2 Capture. Ind. Amp; Eng. Chem. Res. 2009, 48, 10604–10613. [Google Scholar] [CrossRef]
- Azmi, A.A.; Aziz, M.A.A. Mesoporous Adsorbent for CO2 Capture Application under Mild Condition: A Review. J. Environ. Chem. Eng. 2019, 7, 103022. [Google Scholar] [CrossRef]
- Wang, J.; Wan, W. Combined Effects of Temperature and PH on Biohydrogen Production by Anaerobic Digested Sludge. Biomass Bioenergy 2011, 35, 3896–3901. [Google Scholar] [CrossRef]
- Liu, H.; Liu, B.; Lin, L.C.; Chen, G.; Wu, Y.; Wang, J.; Gao, X.; Lv, Y.; Pan, Y.; Zhang, X.; et al. A Hybrid Absorption-Adsorption Method to Efficiently Capture Carbon. Nat. Commun. 2014, 5, 5147. [Google Scholar] [CrossRef]
- Kumar, R.; Jayaramulu, K.; Maji, T.K.; Rao, C.N.R. Hybrid Nanocomposites of ZIF-8 with Graphene Oxide Exhibiting Tunable Morphology, Significant CO2 Uptake and Other Novel Properties. Chem. Commun. 2013, 49, 4947–4949. [Google Scholar] [CrossRef] [PubMed]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science (1979) 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Rochelle, G.T. Air Pollution Impacts of Amine Scrubbing for CO2 Capture. Carbon Capture Sci. Technol. 2024, 11, 100192. [Google Scholar] [CrossRef]
- Boonmatoon, P.; Nokpho, P.; Piumsomboon, P.; Chalermsinsuwan, B. Enhanced CO2 Capture Performance Using Methyl Diethanolamine-functionalized Silica Gels: Assessing CO2 Capture Capacity. Appl. Environ. Res. 2025, 47, 1. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Y.; Acencios Falcon, L.P.; Hazewinkel, P.; Wood, C.D. Carbon Capture by DEA-Infused Hydrogels. Int. J. Greenh. Gas Control 2019, 88, 226–232. [Google Scholar] [CrossRef]
- Hoshino, Y.; Aki, S. Hydrogel particles for CO2 capture. Polymer 2024, 56, 463–471. [Google Scholar] [CrossRef]
- Chen, Z.; Du, C.; Liu, S.; Liu, J.; Yang, Y.; Dong, L.; Zhao, W.; Huang, W.; Lei, Y. Progress in Biomaterials Inspired by the Extracellular Matrix. Giant 2024, 19, 100323. [Google Scholar] [CrossRef]
- Xu, X.; Pejcic, B.; Heath, C.; Wood, C.D. Carbon Capture with Polyethylenimine Hydrogel Beads (PEI HBs). J. Mater. Chem. A Mater. 2018, 6, 21468–21474. [Google Scholar] [CrossRef]
- Balraj, A.; Kumar, M.S.; Ramamoorthy, S.V.; Sukumar, S. A Critical Review on CO2 Stripping/Carbon-Rich Solvent Regeneration: Process Intensification by Combined Sonication and Nanoparticles. Ind. Eng. Chem. Res. 2025, 64, 4554–4567. [Google Scholar] [CrossRef]
- Salas, R.; Villa, R.; Velasco, F.; Cirujano, F.G.; Nieto, S.; Martin, N.; Garcia-Verdugo, E.; Dupont, J.; Lozano, P. Ionic liquids in polymer technology. Green. Chem. 2025, 27, 1620–1651. [Google Scholar] [CrossRef]
- Kumar, N.; Bryantsev, V.S.; Roy, S. The Role of Nonequilibrium Solvent Effects in Enhancing Direct CO2 Capture at the Air–Aqueous Amino Acid Interface. J. Am. Chem. Soc. 2024, 147, 1411–1415. [Google Scholar] [CrossRef]
- Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 2017, 7, 243–249. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar] [CrossRef]
- Jouny, M.; Luc, W.; Jiao, F. General Techno-Economic Analysis of CO2 Electrolysis Systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177. [Google Scholar] [CrossRef]
- Zang, G.; Sun, P.; Elgowainy, A.; Wang, M. Technoeconomic and Life Cycle Analysis of Synthetic Methanol Production from Hydrogen and Industrial Byproduct CO2. Environ. Sci. Technol. 2021, 55, 5341–5355. [Google Scholar] [CrossRef]
- Pate, R.; Klise, G.; Wu, B. Resource demand implications for US algae biofuels production scale-up. Appl. Energy 2011, 88, 3377–3388. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Carbon Capture, Utilisation and Storage. 2024. Available online: https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage (accessed on 12 July 2025).
- Environment and Climate Change Canada. Overview of 2019 Reported Emissions: Facility Greenhouse Gas Reporting Program. Government of Canada. 2021. Available online: https://publications.gc.ca/collections/collection_2021/eccc/En81-6-1-2019-eng.pdf (accessed on 12 July 2025).
- Emissions Reduction Alberta (ERA). Alberta Joins World Leaders to Accelerate CCUS Technology Development. 2023. Available online: https://www.eralberta.ca/media-releases/alberta-joins-world-leaders-to-accelerate-ccus-technology-development-era-announces-almost-10-million-in-funding/ (accessed on 12 July 2025).
- Natural Resources Canada. North American Carbon Storage Atlas. Ottawa: Office of Energy Research and Development. 2013. Available online: https://publications.gc.ca/site/eng/9.846614/publication.html (accessed on 12 July 2025).
- NETL. CO2 Capture Technology Project Review Meeting. 2023. Available online: https://www.netl.doe.gov/node/8394 (accessed on 8 May 2025).
- Ndlovu, P.; Bulannga, R.; Mguni, L.L. Progress in carbon dioxide capture, storage and monitoring in geological landform. Front. Energy Res. 2024, 12, 1450991. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Fu, X.; Lu, J.; Huang, M.; Zeng, F. Potential, Efficiency, and Leakage Risk of CO2 Sequestration in Coal: A Review. Processes 2025, 13, 1680. [Google Scholar] [CrossRef]
- Suter, J.; Ramsey, B.; Warner, T.; Vactor, R.; Noack, C.; Nowak, J. Carbon Capture, Transport, & Storage: Supply Chain Deep Dive Assessment; U.S. Department of Energy: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Palombo, E.A.; Ong, D.E.; Nissom, P.M. Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method. Constr. Build. Mater. 2019, 228, 116828. [Google Scholar] [CrossRef]
- Zoback, M.D.; Gorelick, S.M. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc. Natl. Acad. Sci. USA 2012, 109, 10164–10168. [Google Scholar] [CrossRef]
- EAGHG. Quantification Techniques for CO2 Leakage; Report 2012/02; IEA Greenhouse Gas R&D Programme: Cheltenham, UK, 2012; Available online: https://ieaghg.org/publications-library/ (accessed on 13 August 2025).
- Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the Geological Storage of Carbon Dioxide and Amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006 (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0114:0135:EN:PDF (accessed on 13 August 2025).
- ISO 27914:2017; Carbon Dioxide Capture, Transportation and Geological Storage-Geological Storage. International Organization for Standardization: Geneva, Switzerland, 2017.
- Schulz, K.J.; John, H.; DeYoung; Robert, R.S.; Dwight, C.; Bradley, D. (Eds.) Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply; Geological Survey: Reston, VA, USA, 2017. [Google Scholar] [CrossRef]
- International Energy Agency. Coal Information: Overview, 2020 ed.; IEA: Paris, France, 2020. [Google Scholar]
- Dolley, T.P. Industrial Sand and Gravel. Min. Eng. 2020, 72. Available online: https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-sand-gravel-industrial.pdf (accessed on 13 August 2025).
- Revuelta, M.B. Lime. In Construction Materials: Geology, Production and Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 167–193. [Google Scholar]
- Hart, A.; Gnanendran, N. Cryogenic CO2 Capture in Natural Gas. Energy Procedia 2009, 1, 697–706. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Iniyan, S.; Goic, R. A Review of Climate Change, Mitigation and Adaptation. Renew. Sustain. Energy Rev. 2012, 16, 878–897. [Google Scholar] [CrossRef]
- Hares, R.; Mccoy, S.; Layzell, D.B. Review of carbon-dioxide storage potential in western canada: Blue hydrogen roadmap to 2050. Transit. Accel. Rep. 2022, 4, 1–12. [Google Scholar]
- Nocentini, A.; Supuran, C.T. Advances in the Structural Annotation of Human Carbonic Anhydrases and Impact on Future Drug Discovery. Expert. Opin. Drug Discov. 2019, 14, 1175–1197. [Google Scholar] [CrossRef] [PubMed]
- Tripp, B.C.; Bell, C.B.; Cruz, F.; Krebs, C.; Ferry, J.G. A Role for Iron in an Ancient Carbonic Anhydrase. J. Biol. Chem. 2004, 279, 6683–6687. [Google Scholar] [CrossRef]
- Li, Z.; Liu, A.; Sun, C.; Li, H.; Kong, Z.; Zhai, H. Biomineralization process of CaCO3 precipitation induced by Bacillus mucilaginous and its potential application in microbial self-healing concrete. Appl. Biochem. Biotechnol. 2024, 196, 1896–1920. [Google Scholar] [CrossRef]
- Akocak, S.; Supuran, C.T. Activation of α-, β-, γ-, δ-, ζ-, η-, θ-, and ι-class of carbonic anhydrases with amines and amino acids: A review. J. Enzym. Inhib. Med. Chem. 2019, 34, 1652–1659. [Google Scholar] [CrossRef]
- Meldrum, N.U.; Roughton, F.J.W. Carbonic Anhydrase. Its Preparation and Properties. J. Physiol. 1933, 80, 113–142. [Google Scholar] [CrossRef]
- Supuran, C.T.; Capasso, C. An Overview of the Bacterial Carbonic Anhydrases. Metabolites 2017, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Seijo, J.A.; Borchert, M.S.; Navarro-Poulsen, J.C.; Schnorr, K.M.; Mortensen, S.B.; Lo Leggio, L. Structure of a Dimeric Fungal α-Type Carbonic Anhydrase. FEBS Lett. 2011, 585, 1042–1048. [Google Scholar] [CrossRef]
- Elleuche, S.; Pöggeler, S. Carbonic Anhydrases in Fungi. Microbiology 2010, 156, 23–29. [Google Scholar] [CrossRef]
- Urbanski, L.J.; Fiore, A.D.; Azizi, L.; Hytönen, V.P.; Kuuslahti, M.; Buonanno, M.; Monti, S.M.; Angeli, A.; Emameh, R.Z.; Supuran, C.T.; et al. Biochemical and Structural Characterisation of a Protozoan Beta-Carbonic Anhydrase from Trichomonas Vaginalis. J. Enzym. Inhib. Med. Chem. 2020, 35, 1292–1299. [Google Scholar] [CrossRef]
- Murray, A.B.; McKenna, R. β-Carbonic Anhydrases. In Carbonic Anhydrases: Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–77. [Google Scholar] [CrossRef]
- Kimber, M.S.; Pai, E.F. The Active Site Architecture of Pisum Sativum Β–carbonic Anhydrase Is a Mirror Image of That of A–carbonic Anhydrases. EMBO J. 2000, 19, 1407–1418. [Google Scholar] [CrossRef]
- Kim, S.; Yeon, J.; Sung, J.; Jin, M.S. Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus. Mol. Cells 2020, 43, 831–840. [Google Scholar] [CrossRef]
- Abuaita, B.H.; Withey, J.H. Bicarbonate Induces Vibrio Cholerae Virulence Gene Expression by Enhancing ToxT Activity. Infect. Immun. 2009, 77, 4111–4120. [Google Scholar] [CrossRef]
- Ferraroni, M. γ-Carbonic Anhydrases. In Carbonic Anhydrases: Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target; Elsevier: Amsterdam, The Netherlands, 2019; pp. 79–105. [Google Scholar] [CrossRef]
- Langella, E.; De Simone, G.; Esposito, D.; Alterio, V.; Monti, S.M. ζ-Carbonic Anhydrases. In Carbonic Anhydrases: Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target; Elsevier: Amsterdam, The Netherlands, 2019; pp. 131–137. [Google Scholar] [CrossRef]
- Capasso, C. δ-Carbonic Anhydrases. In Carbonic Anhydrases: Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target; Elsevier: Amsterdam, The Netherlands, 2019; pp. 107–129. [Google Scholar] [CrossRef]
- Del Prete, S.; Vullo, D.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.A.; Capasso, C.; Supuran, C.T. Discovery of a New Family of Carbonic Anhydrases in the Malaria Pathogen Plasmodium Falciparum—The η-Carbonic Anhydrases. Bioorg. Med. Chem. Lett. 2014, 24, 4389–4396. [Google Scholar] [CrossRef]
- D’Ambrosio, K.; Di Fiore, A.; Buonanno, M.; Monti, S.M.; De Simone, G. η- and θ-Carbonic Anhydrases. In Carbonic Anhydrases: Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target; Elsevier: Amsterdam, The Netherlands, 2019; pp. 139–148. [Google Scholar] [CrossRef]
- Del Prete, S.; Nocentini, A.; Supuran, C.T.; Capasso, C. Bacterial ι-Carbonic Anhydrase: A New Active Class of Carbonic Anhydrase Identified in the Genome of the Gram-Negative Bacterium Burkholderia territorii. J. Enzym. Inhib. Med. Chem. 2020, 35, 1060–1068. [Google Scholar] [CrossRef]
- Effendi, S.S.W.; Ng, I.S. The Prospective and Potential of Carbonic Anhydrase for Carbon Dioxide Sequestration: A Critical Review. Process Biochem. 2019, 87, 55–65. [Google Scholar] [CrossRef]
- Lindskog, S. Structure and Mechanism of Carbonic Anhydrase. Pharmacol. Ther. 1997, 74, 1–20. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Maciel, A.; Christakopoulos, P.; Rova, U.; Antonopoulou, I. Carbonic Anhydrase to Boost CO2 Sequestration: Improving Carbon Capture Utilization and Storage (CCUS). Chemosphere 2022, 299, 134419. [Google Scholar] [CrossRef] [PubMed]
- Savile, C.K.; Lalonde, J.J. Biotechnology for the Acceleration of Carbon Dioxide Capture and Sequestration. Curr. Opin. Biotechnol. 2011, 22, 818–823. [Google Scholar] [CrossRef]
- Rambo, B.M.; Bucholz, T.L.; Powell, D.C.; Weber, L.E.; Linder, A.J.; Duesing, C.M.H.; Zaks, A. Polysilicate-Polysilicone Enzyme Immobilization Materials. U.S. Patent 8,895,280, 25 November 2014. Available online: https://patents.google.com/patent/US20130267004A1/en (accessed on 15 August 2025).
- Iliuta, I.; Iliuta, M.C.; Larachi, F. Catalytic CO2 Hydration by Immobilized and Free Human Carbonic Anhydrase II in a Laminar Flow Microreactor-Model and Simulations. Sep. Purif. Technol. 2013, 107, 61–69. [Google Scholar] [CrossRef]
- Belzil, A.; Parent, C. Methods of Chemical Immobilization of an Enzyme on a Solid Support. Biochem. Cell Biol. 2005, 83, 70–77. [Google Scholar] [CrossRef]
- Sharma, A.; Bhattacharya, A.; Shrivastava, A. Biomimetic CO2 Sequestration Using Purified Carbonic Anhydrase from Indigenous Bacterial Strains Immobilized on Biopolymeric Materials. Enzym. Microb. Technol. 2011, 48, 416–426. [Google Scholar] [CrossRef]
- Azari, F.; Nemat-Gorgani, M. Reversible Denaturation of Carbonic Anhydrase Provides a Method for Its Adsorptive Immobilization. Biotechnol. Bioeng. 1999, 62, 193–199. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Rodrigues, D.S.; Mendes, A.A.; Adriano, W.S.; Gonçalves, L.R.B.; Giordano, R.L.C. Multipoint Covalent Immobilization of Microbial Lipase on Chitosan and Agarose Activated by Different Methods. J. Mol. Catal. B Enzym. 2008, 51, 100–109. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Y.; Chew, N.G.P.; Malde, C.; Wang, R. αBiocatalytic PVDF Composite Hollow Fiber Membranes for CO2 Removal in Gas-Liquid Membrane Contactor. J. Memb. Sci. 2019, 572, 532–544. [Google Scholar] [CrossRef]
- Ghoreyshi, A.A.; Pirzadeh, K.; Rahimpour, A.; Shakeri, M.; Nabian, N. Amine Based CO2 Absorption in Membrane Contactor Using PVP-Modified Polysulfone Flat Sheet Membrane: Experimental Study and Mass Transfer Resistance Analysis. Int. J. Eng. Trans. B Appl. 2016, 29, 1489–1498. [Google Scholar] [CrossRef]
- Mavroudi, M.; Kaldis, S.P.; Sakellaropoulos, G.P. A Study of Mass Transfer Resistance in Membrane Gas–Liquid Contacting Processes. J. Memb. Sci. 2006, 272, 103–115. [Google Scholar] [CrossRef]
- Alavinasab, A.; Kaghazchi, T.; Ravanchi, M.T.; Shabani, K. Modeling of Carbon Dioxide Absorption in a Gas/Liquid Membrane Contactor. Desalin. Water Treat. 2011, 29, 336–342. [Google Scholar] [CrossRef]
- Rasouli, H.; Iliuta, I.; Bougie, F.; Garnier, A.; Iliuta, M.C. Hybrid Enzymatic CO2 Capture Process in Intensified Flat Sheet Membrane Contactors with Immobilized Carbonic Anhydrase. Sep. Purif. Technol. 2022, 287, 120505. [Google Scholar] [CrossRef]
- Kim, C.S.; Yang, Y.J.; Bahn, S.Y.; Cha, H.J. A Bioinspired Dual-Crosslinked Tough Silk Protein Hydrogel as a Protective Biocatalytic Matrix for Carbon Sequestration. Nat. Publ. Group. 2017, 9, 9. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, S.; Fang, X.; Salmon, S. Carbonic Anhydrase Enhanced UV-Crosslinked PEG-DA/PEO Extruded Hydrogel Flexible Filaments and Durable Grids for CO2 Capture. Gels 2023, 9, 341. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Fan, L.H.; Zhi, T.T.; Zhang, L.; Huang, H.; Chen, H.L. Synthesis and Characterization of Poly(Acrylic Acid-Co-Acrylamide)/ Hydrotalcite Nanocomposite Hydrogels for Carbonic Anhydrase Immobilization. J. Polym. Sci. A Polym. Chem. 2009, 47, 3232–3240. [Google Scholar] [CrossRef]
- Ren, S.; Li, C.; Tan, Z.; Hou, Y.; Jia, S.; Cui, J. Carbonic Anhydrase@ZIF-8 Hydrogel Composite Membrane with Improved Recycling and Stability for Efficient CO2 Capture. J. Agric. Food Chem. 2019, 67, 3372–3379. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Liu, C.; Xu, N.; Zong, Q.; Yu, J.; Zhang, P. Hydrogel Prepared by 3D Printing Technology and Its Applications in the Medical Field. Colloids Interface Sci. Commun. 2021, 44, 100498. [Google Scholar] [CrossRef]
- Agrawal, A.; Hussain, C.M. 3D-Printed Hydrogel for Diverse Applications: A Review. Gels 2023, 9, 960. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. Adv. Sci. 2023, 10, 2303326. [Google Scholar] [CrossRef] [PubMed]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef]
- Robescu, M.S.; Bavaro, T. A comprehensive guide to enzyme immobilization: All you need to know. Molecules 2025, 30, 939. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q. Enzyme-laden bioactive hydrogel for biocatalytic monitoring and regulation. Acc. Chem. Res. 2021, 54, 1274–1287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wei, X.; Yang, Q.; Li, N.; Yao, E. Numerical simulation and experimental study of the growth characteristics of particulate fouling on pipe heat transfer surface. Heat Mass Transfer 2019, 55, 687–698. [Google Scholar] [CrossRef]
- Kwak, N.S.; Lee, J.H.; Lee, I.Y.; Jang, K.R.; Shim, J.G. A study of the CO2 capture pilot plant by amine absorption. Energy 2012, 47, 41–46. [Google Scholar] [CrossRef]
- Brickett, L.; Munson, R.; Litynski, J. US DOE/NETL large pilot-scale testing of advanced carbon capture technologies. Fuel 2020, 268, 117169. [Google Scholar] [CrossRef]
- Oliveira, M.H., Jr.; Lopes, J.M.; Schumann, T.; Galves, L.A.; Ramsteiner, M.; Berlin, K.; Trampert, A.; Riechert, H. Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces. Nat. Commun. 2015, 6, 7632. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.; Chi, M.; Huang, R. Effect of Fineness and Replacement Ratio of Ground Fly Ash on Properties of Blended Cement Mortar. Constr. Build. Mater. 2018, 176, 250–258. [Google Scholar] [CrossRef]
- Aprianti, S.E. A Huge Number of Artificial Waste Material Can Be Supplementary Cementitious Material (SCM) for Concrete Production—A Review Part II. J. Clean. Prod. 2017, 142, 4178–4194. [Google Scholar] [CrossRef]
- Ibrahim, H.A.; Abdul Razak, H. Effect of Palm Oil Clinker Incorporation on Properties of Pervious Concrete. Constr. Build. Mater. 2016, 115, 70–77. [Google Scholar] [CrossRef]
- Muhammad Nazrin Akmal, A.Z.; Muthusamy, K.; Mat Yahaya, F.; Mohd Hanafi, H.; Nur Azzimah, Z. Utilization of Fly Ash as Partial Sand Replacement in Oil Palm Shell Lightweight Aggregate Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2017, 271, 012003. [Google Scholar] [CrossRef]
- Peck, D.C.; Huminicki, M.A.E. Value of Mineral Deposits Associated with Mafic and Ultramafic Magmatism: Implications for Exploration Strategies. Ore Geol. Rev. 2016, 72, 269–298. [Google Scholar] [CrossRef]
- Ashwal, L.D. Anorthosites. In Encyclopedia of Geology: Volume 1–6, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 130–144. [Google Scholar] [CrossRef]
- Nur Munirah Syed Hasan, S.; Mohd Kusin, F. Potential of Mining Waste from Metallic Mineral Industry for Carbon Sequestration. In Proceedings of the International Conference on Process Engineering and Advanced Materials (ICPEAM2018), Kuala Lumpur, Malaysia, 13–14 August 2018. [Google Scholar] [CrossRef]
- Dey, A.; Hussain, M.F.; Barman, M.N. Geochemical Characteristics of Mafic and Ultramafic Rocks from the Naga Hills Ophiolite, India: Implications for Petrogenesis. Geosci. Front. 2018, 9, 517–529. [Google Scholar] [CrossRef]
- U.S. Geological Survey. ASBESTOS; U.S. Geological Survey: Reston, VA, USA, 2008.
- Garguad, M.; Amils, R. Encyclopedia of Astrobiology; Springer: Berlin/Heidelberg, Germany, 2011; p. 1853. [Google Scholar]
- Sciortino, M.; Mungall, J.E.; Muinonen, J. Generation of High-Ni Sulfide and Alloy Phases During Serpentinization of Dunite in the Dumont Sill, Quebec. Econ. Geol. 2015, 110, 733–761. [Google Scholar] [CrossRef]
- Harrison, A.L.; Power, I.M.; Dipple, G.M. Accelerated Carbonation of Brucite in Mine Tailings for Carbon Sequestration. Environ. Sci. Technol. 2013, 47, 126–134. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A Comprehensive Review on the Applications of Coal Fly Ash. Earth Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Yao, Z.T.; Xia, M.S.; Sarker, P.K.; Chen, T. A Review of the Alumina Recovery from Coal Fly Ash, with a Focus in China. Fuel 2014, 120, 74–85. [Google Scholar] [CrossRef]
- Tian, Q.; Guo, B.; Nakama, S.; Sasaki, K. Distributions and Leaching Behaviors of Toxic Elements in Fly Ash. ACS Omega 2018, 3, 13055–13064. [Google Scholar] [CrossRef]
- Alterary, S.S.; Marei, N.H. Fly ash properties, characterization, and applications: A review. J. King Saud. Univ. Sci. 2021, 33, 101536. [Google Scholar] [CrossRef]
- Revathy, T.D.R.; Ramachandran, A.; Palanivelu, K. Carbon Capture and Storage Using Coal Fly Ash with Flue Gas. Clean. Technol. Environ. Policy 2022, 24, 1053–1071. [Google Scholar] [CrossRef]
- Tamilselvi Dananjayan, R.R.; Kandasamy, P.; Andimuthu, R. Direct Mineral Carbonation of Coal Fly Ash for CO2 Sequestration. J. Clean. Prod. 2016, 112, 4173–4182. [Google Scholar] [CrossRef]
- World Steel Association. World Steel in Figures; World Steel Association: Brussels, Belgium, 2016. [Google Scholar]
- Bourzac, K.; Savage, N.; Owens, B.; Scott, A.R. Materials and Engineering: Rebuilding the World. Nature 2017, 545, S15–S20. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.Y.; Adhikari, R.; Chen, Y.H.; Li, P.; Chiang, P.C. Integrated and Innovative Steel Slag Utilization for Iron Reclamation, Green Material Production and CO2 Fixation via Accelerated Carbonation. J. Clean. Prod. 2016, 137, 617–631. [Google Scholar] [CrossRef]
- Pan, S.Y.; Chung, T.C.; Ho, C.C.; Hou, C.J.; Chen, Y.H.; Chiang, P.C. CO2 Mineralization and Utilization Using Steel Slag for Establishing a Waste-to-Resource Supply Chain. Sci. Rep. 2017, 7, 17227. [Google Scholar] [CrossRef]
- Suraneni, P.; Burris, L.; Shearer, C.R.; Hooton, R.D. ASTM C618 fly ash specification: Comparison with other specifications, shortcomings, and solutions. ACI Mater. J 2021, 118, 157–167. [Google Scholar]
- Jones, G.; Joshi, G.; Clark, M.; McConchie, D. Carbon Capture and the Aluminium Industry: Preliminary Studies. Environ. Chem. 2006, 3, 297–303. [Google Scholar] [CrossRef]
- Maruyama, I.; Kotaka, W.; Kien, B.N.; Kurihara, R.; Kanematsu, M.; Hyodo, H.; Hirao, H.; Kitagaki, R.; Tamura, M.; Tsujino, M.; et al. A New Concept of Calcium Carbonate Concrete Using Demolished Concrete and CO2. J. Adv. Concr. Technol. 2021, 19, 1052–1060. [Google Scholar] [CrossRef]
- Mining Rio Tinto, CR Minerals to Produce Pozzolans from Mine Waste to Decarbonize Cement-MINING. COM. Available online: https://www.mining.com/rio-tinto-cr-minerals-to-produce-pozzolans-from-mine-waste-to-decarbonize-cement/ (accessed on 9 May 2025).
- IEA. Putting CO2 to Use; IEA: Paris, France, 2019; Available online: https://www.iea.org/reports/putting-CO2-to-use (accessed on 9 May 2025).
- Choi, Y.; Jang, J.J.; Hwang, S.M.; Seo, M.W.; Lee, D.; Jeong, S.K.; Ryu, H.J.; Choi, S.A.; Hwang, B.; Nam, H. Optimizing heat transfer rate for efficient CO2-to-chemical conversion in CO2 methanation and CO2 hydrogenation reactions. J. CO2 Util. 2024, 81, 102730. [Google Scholar] [CrossRef]
- Collet, P.; Hélias, A.; Lardon, L.; Ras, M.; Goy, R.A.; Steyer, J.P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour. Technol. 2011, 102, 207–214. [Google Scholar] [CrossRef]
- Dong, H.; Huang, L.; Zhao, L.; Zeng, Q.; Liu, X.; Sheng, Y.; Shi, L.; Wu, G.; Jiang, H.; Li, F.; et al. A critical review of mineral–microbe interaction and co-evolution: Mechanisms and applications. Natl. Sci. Rev. 2022, 9, nwac128. [Google Scholar] [CrossRef]










| Material Class | Examples | Typical CO2 Uptake Capacity | Operating Temp. Range | Regeneration Energy (GJ/tCO2) | Key Advantages | Key Limitations | References |
|---|---|---|---|---|---|---|---|
| Absorbents-Amines | MEA, DEA, Modified DEA | 2–6 mol CO2/mol amine (~0.4–0.9 g/g) | 40–70 °C (abs), 100–140 °C (des) | 3–4 | Mature technology; high selectivity; fast kinetics | High regeneration energy; corrosion; solvent degradation; amine loss | [22,23,60,115] |
| Absorbents-Hydroxides & Carbonates | NaOH, K2CO3 | 0.2–0.5 g/g | Ambient-80 °C | 2–3 | Low cost; abundant; permanent carbonation | Large volume requirement; slow kinetics without promoters | [20,57,92] |
| Absorbents-Ionic Liquids | [BMIM][Ac], [EMIM][Tf2N] | 0.05–0.2 g/g | Ambient | 1–2 | Low volatility; tunable chemistry; low regeneration energy | High viscosity; cost; scaling issues | [57,116] |
| Absorbents-Amino Acids | Potassium glycinate | 0.2–0.4 g/g | 30–70 °C | 2–3 | Biodegradable; low volatility | Lower reaction rates vs. MEA | [25,26,117] |
| Adsorbents-Zeolites | 13X, 5A, ZSM-5 | 2–5 mmol/g (0.09–0.22 g/g) @ 25 °C, 1 bar | Ambient-200 °C | 1–2 | High selectivity; low cost; well-defined pores | Sensitive to humidity; reduced capacity at high temp | [30,31,87,89] |
| Adsorbents-MOFs | Hong Kong University of Science and Technology-1 (HKUST-1), Matériaux de l’Institut Lavoisier (MIL-101), Zeolitic Imidazolate Framework-8 (ZIF-8) | 8–10 mmol/g (0.35–0.44 g/g) @ 25 °C, 1 bar | Ambient-150 °C | 1–2 | Ultra-high surface area (2000–7000 m2/g); tunable chemistry | Moisture sensitivity; high cost; stability issues | [28,29] |
| Adsorbents-Carbon-based | Activated carbon, graphene, CNTs | 2–6 mmol/g (0.09–0.26 g/g) @ 25 °C, 1 bar | Ambient-200 °C | 0.5–1.5 | Stable in humidity; low regeneration cost; scalable | Lower selectivity; limited high-pressure uptake | [32,33,92] |
| Adsorbents-Metal Oxides (CaO) | CaO | Up to 0.78 g/g | 500–750 °C | 3–4 | High-temp flue gas; low cost | Sintering; capacity loss upon cycling | [11,34,35] |
| Adsorbents-Metal Oxides (MgO) | MgO | ~0.02 g/g | 200–375 °C | 2–3 | Stable over cycles; abundant | Very low capacity | [35,36,103] |
| Hybrid Sorbents-Absorbent + Adsorbent | MOF-in-amine slurry | 0.4–0.6 g/g | 40–70 °C | 2–3 | Combines high capacity & selectivity | Stability; viscosity management | [38,106] |
| Hybrid Sorbents-Adsorbent + Adsorbent | GO-ZIF composites | Up to 0.72 g/g | Ambient-150 °C | 1.5–2.5 | Synergistic performance; tunable | Complex synthesis | [39,107] |
| Hydrogel-based Amine Systems | MEA-, DEA-, PEI-loaded hydrogels | 2.9–7.8 wt% for DAC; up to 4.5 mmol/g under high CO2 | Ambient-60 °C (des) | 1–2 | Low-temp regeneration; tunable; stable cycling | Lower volumetric capacity; water management needed | [41,42,43] |
| Material Class | Typical CO2 Uptake | Regeneration Energy (GJ/tCO2) | TRL | Key Advantages | Key Limitations | References |
|---|---|---|---|---|---|---|
| Amine-grafted Silicas | 0.36–0.38 mg CO2/g | – | 6–7 | High surface area; tunable pore structure | Amine leaching; thermal degradation; scale-up challenges | [110] |
| Hybrid MOFs | 3.5–8.0 mmol/g | 1.32 GJ/t (30 kJ/mol) | 3–5 | Very high surface area; tunable chemistry; low regen energy | High synthesis cost; hydrothermal instability; scale-up issues | [18,70] |
| Carbon based Sorbents | 4.5 and 6.7 mmol/g at 25 and 0 °C, respectively | 1 GJ/t | 6–7 | Low cost; high thermal stability; fast kinetics | Lower selectivity; moisture sensitivity; slower kinetics | [64,91] |
| Hydrogel–CA Systems | ~3 mmol/g | – | 2–3 | Operates in humid conditions; low-temperature regen; scalable | Mechanical stability; limited capacity; complex drying | [112] |
| Pathway | TRL | CO2 Permanence | Cost Range (USD/tCO2) | Key Advantages | Key Challenges | References |
|---|---|---|---|---|---|---|
| Geological storage | 8–9 | >1000 years | 10–300 | Large capacity, proven | Site selection, monitoring | [16,17,18,19] |
| Chemical fuels (e.g., methanol, synthetic methane) | 4–7 | Months–years | Depends on H2 production costs | Displaces fossil fuels | High energy & renewable H2 demand | [220,221] |
| Polymers & chemicals (e.g., polycarbonates, urea) | 8–9 | Years–decades | - | Valuable products | Limited market size | [15] |
| Biological (algae) | 4–5 | Days-Years | - | Co-products, renewable | Land/water inputs | [222] |
| Mineralization (natural/accelerated) | 6–9 | Permanent | 50–300 | Waste valorization, co-benefits | Logistics, reaction kinetics | [20] |
| Biomineralization (enzyme- or microbe-assisted) | 4–7 | Permanent | - | Mild conditions; potential integration with bio-based industries; can enhance material properties | Enzyme/microbe stability; scalability; contamination control | [223] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, N.; Brar, K.K.; Asgarian, A.; Kaur, K.; Magdouli, S.; Perreault, N.N. Advancements in Carbon Capture, Utilization, and Storage (CCUS): A Comprehensive Review of Technologies and Prospects. Clean Technol. 2025, 7, 109. https://doi.org/10.3390/cleantechnol7040109
Salem N, Brar KK, Asgarian A, Kaur K, Magdouli S, Perreault NN. Advancements in Carbon Capture, Utilization, and Storage (CCUS): A Comprehensive Review of Technologies and Prospects. Clean Technologies. 2025; 7(4):109. https://doi.org/10.3390/cleantechnol7040109
Chicago/Turabian StyleSalem, Nisreen, Kamalpreet Kaur Brar, Ali Asgarian, Kulwinder Kaur, Sara Magdouli, and Nancy N. Perreault. 2025. "Advancements in Carbon Capture, Utilization, and Storage (CCUS): A Comprehensive Review of Technologies and Prospects" Clean Technologies 7, no. 4: 109. https://doi.org/10.3390/cleantechnol7040109
APA StyleSalem, N., Brar, K. K., Asgarian, A., Kaur, K., Magdouli, S., & Perreault, N. N. (2025). Advancements in Carbon Capture, Utilization, and Storage (CCUS): A Comprehensive Review of Technologies and Prospects. Clean Technologies, 7(4), 109. https://doi.org/10.3390/cleantechnol7040109

