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Abstract: Wastewater (WW) analysis is a critical step in various operations, such as the control of a
WW treatment facility, and speeding up the analysis of WW quality can significantly improve such
operations. This work demonstrates the capability of neural network (NN) regression models to
estimate WW characteristic properties such as biochemical oxygen demand (BOD), chemical oxygen
demand (COD), ammonia (NH3-N), total dissolved substances (TDS), total alkalinity (TA), and
total hardness (TH) by training on WW spectral reflectance in the visible to near-infrared spectrum
(400–2000 nm). The dataset contains samples of spectral reflectance intensity, which were the inputs,
and the WW parameter levels (BOD, COD, NH3-N, TDS, TA, and TH), which were the outputs.
Various NN model configurations were evaluated in terms of regression model fitness. The mean-
absolute-error (MAE) was used as the metric for training and testing the NN models, and the
coefficient of determination (R2) between the model predictions and true values was also computed
to measure how well the NN models predict the true values. The highest R2 (0.994 for training
set and 0.973 for testing set) and lowest MAE (0.573 mg/L BOD, 6.258 mg/L COD, 0.369 mg/L
NH3-N, 6.98 mg/L TDS, 2.586 m/L TA, and 0.014 mmol/L TH) were achieved when NN models
were configured for single-variable output compared to multiple-variables output. Hyperparameter
grid-search and k-fold cross-validation improved the NN model prediction performance. With online
spectral measurements, the trained neural network model can provide non-contact and real-time
estimation of WW quality at minimum estimation error.

Keywords: neural network regression; wastewater quality; spectral reflectance

1. Introduction

This study demonstrates for the first time the potential of neural network (NN) regres-
sion models [1] in estimating wastewater (WW) quality parameters (BOD, COD, NH3-N,
TDS, TA, and TH) by using WW spectral reflectance as the model input. The task of treating
WW is integral in the objective of minimizing the negative footprint of human waste in
our environment and its impact on human health. Hence, WW treatment facilities exist
in various systems involving WW streams, from industrial to municipal sectors [2]. To
maintain these facilities within their set continuous operating conditions while meeting
regulatory levels of effluent streams, various parameters are monitored [3], such as BOD,
COD, NH3-N, TDS, TA, and TH, to check the quality of effluents. A common approach of
monitoring is by sampling the WW at various locations of the treatment facility and the
samples are tested immediately using readily available test kits or by being brought to the
laboratory to undergo various physical and chemical analysis procedures. Some of these
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procedures can take hours to days to be completed (COD, BOD, etc.) [2]. The lag time in
making operational decisions based on WW quality measurements can significantly affect
the dynamics of the treatment facility amid the control systems in place [4–6]. Recent works
on the analysis of water quality by [7–9] have shown the potential of visible to near-infrared
spectral reflectance data as a reliable spectral signature of key WW parameters (BOD,
COD, etc.). The data analytics implemented in these previous works consist of several
mathematical transformations that involved human intervention in selecting a set of good
wavelength bands for each WW parameter [7,9]. Amid achieving high R2 [7], such a data
analysis approach still needed human intervention to complete the regression modeling
and prediction. This approach may be fitting when the objective is a highly accurate esti-
mation of water or WW parameters not for use in process control, e.g., for testing river or
lake water quality, but it cannot be easily integrated into a real-time estimation for process
dynamics control in a WW treatment facility. Hence, a fast method of estimating WW
quality parameters would be desirable in achieving the goal of operating a WW treatment
facility within target operational settings.

We propose in this work the use of NN regression models to accelerate the estimation
of WW quality parameters. A trained NN can be deployed and used in the estimation of
WW parameters in the time-scale of milliseconds to minutes [1], which is fitting in a process
control of a WW treatment facility. In addition to the theoretical basis of the reliability
of spectral reflectance for building estimation models [10], others have demonstrated
the potential of artificial NN in using spectral reflectance data to model and estimate
water quality parameters in large water bodies [11], properties of soil and rocks [12], and
properties of crops [13,14]. The success of these works indicates the possible applicability
of NN models in other, similar tasks such as estimating WW properties with potential
applications in the process control of WW treatment facilities. Another advantage of
developing NN models, given the current developments in computing, is their adaptability
for deployment in machine learning-dedicated hardware designed for mobile applications,
e.g., NVIDIA Jetson Nano [15]. The main objective of the study is to demonstrate the
potential of NN as regression models that can estimate WW characteristic parameters at
minimal prediction errors. Here are the specific questions that this paper aims to answer:

• What data preprocessing tasks must be carried out on the WW spectral data to produce
regression NN models with good prediction performance?

• What are the effects of common hyperparameters in NN modeling, including the
number of hidden layers and number of neuron units in each hidden layer?

• How does the number of modelled outputs, i.e., WW parameters, affect the prediction
performance of NN models?

• How can hyperparameter tuning and k-fold cross-validation on regression NN models
improve prediction performance?

There are more pertinent questions that may be asked and tested to evaluate the
capabilities of NN models for the regression of WW characteristic parameters due to
the numerous possible ways of setting the architecture of NN models, and due to the
complexities that certain WW datasets can pose. Nonetheless, the questions above set to be
answered in this study should elaborate on important aspects of adopting NN models to
quantitate WW characteristic parameters by modelling on WW spectral reflectance data.
The contribution of this work in the current literature is two-fold: (1) the development of a
data analytics workflow to estimate WW quality parameters using spectral reflectance as
input data, and (2) the demonstration of the potential to reduce the computational steps
and time of using spectral reflectance data of WW to estimate WW quality parameter levels
by using NN regression models as prediction models.

2. Methodology

A schematic overview of the data analytics workflow implemented is shown in Figure 1.
The NN computations were implemented via Python codes using the Keras-TensorFlow
modules for NN modeling [16]. The hardware was a laptop computer with an Intel Core i7
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(12th Gen) CPU with 2.10 GHz base speed (max speed 5.3 GHz). The Python codes organized
in Jupyter Notebook files used in the data analytics workflow have been made available in
the online GitHub repository of the paper [17] (URL: https://github.com/dhanfort/WW_
Spectra_Nnlearning.git, accessed on 1 August 2023).
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Figure 1. Schematic overview of the data analytics workflow implemented in this work. The
wastewater spectral reflectance in the wavelength range of 400 nm to 2000 nm raw signal in continuous
form is banded into a 1 nm interval. Then, the banded signal is used as input data to train the neural
network (NN) model with the levels of wastewater parameters (BOD, COD, NH3-N, TDS, TA, and
TH) as target outputs.

2.1. Dataset
2.1.1. WW Data Source and Structure Overview

The spectral reflectance dataset used in this study were the open-source data originally
collected and published by Xing, Chen [7]. The WW samples were taken from different
locations in a municipal WW treatment facility: water inlet (Influent WW), anoxic tank,
aerobic tank, sedimentation tank and water outlet (Effluent WW) under different treatment
methods at a domestic sewage treatment plant [7]. The various chemical analyses carried
out were discussed in detail by Xing, Chen [7]. They noted that there were two subsets of
the dataset according to WW quality, consisting of high levels and low levels of COD, BOD,
and NH3-N: (Group 1) high levels for influent WW, and (Group 2) low levels for anoxic
tank, aerobic tank, sedimentation tank, and water outlet (effluent WW). The collected
dataset consisted of WW spectral reflectance in the wavelength of 400 nm to 2000 nm
(visible to near infrared) with the corresponding measurements of levels of BOD, COD,
NH3-N, TDS, TA, and TH, which were designated as the targets of the learning process.
There were a total of 87 data samples in the whole dataset [7]. A descriptive summary of
the dataset is shown in Figure 2.

2.1.2. Training Set and Test Set

For each NN modelling, the dataset was divided into two exclusive subsets: the
training set and the test set. The training set was used to adjust the parameters of the
NN model and in computing the training cost function. The test set was used to compute
the cost function MAE on data not seen by the NN Model during training. To keep the
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same training and testing datasets across all computational experiments, the random seed
index was set to a constant value (see the Python code for the details). When modelling
on the whole dataset, subset partitioning was 90% for training and 10% for testing. When
modelling on the Influent WW dataset, dataset partitioning was 90% for training and 10%
for testing. When modelling on the Group 1 (Influent WW) dataset, the dataset partitioning
was 90% for training and 10% for testing. When modelling on the WW Group 2 dataset,
the dataset partitioning was 80% for training and 20% for testing. The input data, which
had levels of banded spectral intensity (see Figure 1) in both training set and testing
set data, were normalized by scaling using the ‘MinMaxScaler’ of the Scikit-Learn [18].
Scaling input data to a machine learning model being trained has been shown to improve
model prediction performance [19]. Note that since the input data was the banded spectral
reflectance at 400 nm, 401 nm, . . ., 2000 nm, with each band as a feature, each input sample
is a vector of 1601 features.
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training the NN models. The dataset is an open-source data originally collected by Xing, Chen [7].

2.2. NN Model Training and Testing

There are various model settings that can be specified when working with NN models.
The following subsections describe the main components of the NN modelling implemen-
tation. Other details can be found in the Jupyter Notebook files of Python codes for the
work [17].

2.2.1. Learning Cost Function

The objective of the learning process in NN modelling was to minimize the cost
function (also called loss function). Among various possible metrics of machine learning
with Keras-TensorFlow [20], the mean-absolute-error (MAE) measures the deviations from
the true values more directly [21], which can be clearly interpreted as the average error in
estimating the WW parameter levels. MAE = ∑n

i
|Yi−Ti |

n , where Ti = true value of the WW
parameters in observation sample i and Yi = prediction on the levels of the WW parameters
of observation sample i by the NN model. The inputs to the NN model fNN were the
banded spectral reflectance signal designated as Xi; hence, Yi = fNN(Xi, θ), where θ is the
NN model parameters configured (hyperparameters) and tuned (neuron weights) during
training. Hence, the objective for each NN modelling was to minimize MAE by adjusting θ
via an optimization algorithm. The coefficient of determination (R2) between the model
predictions and true values was also computed to measure how well the NN models predict
the true values [22].

2.2.2. Optimization Algorithm, Learning Rate, Activation Function, and Training Epoch

The Keras-TensorFlow modules for NN modelling contain various optimization al-
gorithms that were all used in this work during preliminary computation runs: Adadelta,
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Adafactor, Adagrad, Adam, AdamW, FTRL, Lion, Nadam, RMSprop, and SGD [23]. Among
these algorithms, the Adam optimizer consistently produced NN models with the best fit
scores (low MAE and high R2). Hence, the Adam optimization algorithm was used in the
majority of computations. The best performance of the Adam optimizer was also achieved
when the learning rate was set to 0.0001. The training epoch was set to 5000, which was
found to be large enough to allow for the cost function MAE to settle at an almost constant
level in all of the training runs. The best activation function [24] for the hidden layers (H1
and H2) was also determined to be the ‘ReLU’ function. The best activation function for
the output layer was the ‘Linear’ function.

2.2.3. Effect of Number of Hidden Layers, Number of Neuron Units, and Outputs

To test the performance of NN models at varying numbers of hidden layers, and
the number of neurons in the hidden layers, the following configurations were used: one
hidden layer (H1) with low and high numbers of neuron units, and two hidden layers (H1,
and H2) with the number of neuron units varied in the first layer (H1) and the number of
neuron units fixed in the second layer (H2). See Table 1 for the summary of these hidden
layer configurations.

Table 1. Summary of NN modelling run settings implemented in the study.

NN Model Settings Model Output(s) Y Settings

(1) One Hidden Layer: H1 w/ 32 neuron units
(2) One Hidden Layer: H1 w/ 1000 neuron units
(3) Two Hidden Layers: H1 w/ 64 neuron units;
H2 w/ 32 neuron units
(4) Two Hidden Layers: H1 w/ 1000 neuron units;
H2 w/ 32 neuron units

Multiple Outputs:
(1) BOD, COD, NH3-N, TDS, TA, TH (all)
(2) BOD, COD, NH3-N, TDS, TA
(3) BOD, COD, NH3-N, TDS
(4) BOD, COD, NH3-N
(5) BOD, COD
Single Output:
(6) BOD; (7) COD; (8) NH3-N; (9) TDS; (10) TA; (11) TH

Total Number of Modelling Settings = (NN Model Settings) × (Model Output(s) Settings) = 4 × 11 = 44

Given that there were several WW parameters being estimated (BOD, COD, NH3-
N, TDS, TA, and TH), the effects of various combinations of the WW parameters being
modelled as outputs were also evaluated. Table 1 shows a summary of NN modelling
implemented consisting of 44 different computational runs. Note that the set of combina-
tions of model output Y (Table 1) does not cover all possible combinations, i.e., there are
26 = 64 possible Model Output(s) Y Settings, resulting in (NN Model Settings) × (Model
Output(s) Settings) = 4 × 64 = 256 Total Number of Modelling Settings for all possible
settings of computational experiments. Rather, the choice of model output combinations
was motivated by the purpose of working with a number of results, i.e., 44 sets of results,
that was manageable in the discussion of key aspects of the work.

2.2.4. NN Model Hyperparameter Grid-Search

Often, at the start of developing a NN model and when a very challenging dataset is
encountered, the NN model settings for the optimizer, learning rate, number of neurons
per hidden layer, etc., must be fine-tuned. This task focuses on finding the NN model
parameters other than the weights of neuron connections in the NN Model, and this is
called the hyperparameter grid-search, with the main goal of improving the prediction
performance of the NN model. The grid-search implemented was the full-factorial search
via the Scikit-Learn module ‘GridSearchCV’ [25], which considers all combinations of
hyperparameters being tested. The hyperparameter grid-search was carried out during
the preliminary runs to set the optimizer Adam, learning rate 0.0001, epoch of 5000, and
activation function ‘ReLU’ for H1 and H2, as discussed in Section 2.2.2.

The hyperparameter grid-search was also implemented to refine the NN modelling on
the Group 2 WW subset that posed a challenge (see Section 3.3). This task demonstrated how
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NN models can be subjected to tuning the hyperparameters such as optimizer algorithm,
number of neuron units per hidden layer, activation function in each hidden layer and
the output layer, and learning rate. The selection of the best NN model with its respective
hyperparameter settings was still based on the MAE. The grid-search settings produced a
total of 864 NN models evaluated (see Section 3.3).

2.2.5. Repeated K-Fold Cross-Validation during NN Training

When the dataset has a small sample size, the training of the NN model can be
improved by performing k-fold cross-validation [1], which exposes the NN model to all
data samples one fold subset at a time by dividing the training data into k folds and
implementing training k times. Hence, this study also demonstrated the performance of
k-fold cross-validation by implementing repeated k-fold training on the Group 2 WW data
subset. This was performed using the ‘RepeatedKFold’ module from Scikit-Learn [26]
with k = 3 folds and repeat = 10, where the sampling for each fold at each repeat was
randomly initialized to minimize training on the same k-fold subsets for each repeat. A
hyperparameter grid-search was also performed and determined the following settings to
be the best for the repeated k-fold training: H1 = 1000 units, H2 = 1000 units, and ‘Linear’
as the best activation function for H1, H2, and output layers. This resulted in training the
NN model 30 different times on the Group 2 WW data subset (see Section 3.3).

3. Results

Though numerous results were generated in the study, the following results sections
have been organized to facilitate the discussion of the key aspects of the work. Section 3.1
covers the results that show the need for dedicated NN models for WW stream groups.
Section 3.2 covers the results that show how the performance of NN models can be affected
by the various combinations of WW parameters used as model outputs. Section 3.3 covers
the results that show how hyperparameter grid-search and k-fold cross-validation can
improve the predictive performance of NN models.

3.1. Need for a Dedicated NN Model for Wastewater Stream Groups

Part of the initial stage of developing the NN models was the task of determining
whether the whole WW dataset could be treated as a single input array to the models.
Training the NN model on the whole dataset resulted in a set of predictions that shows two
apparent groups of the data, as shown in Figure 3 for the model outputs BOD, COD, and
NH3-N. This was an indication that the WW dataset cannot be treated as a single input
array. After dividing the whole dataset into two groups according to the Group 1 WW and
Group 2 WW subsets, the NN models started to achieve good prediction performance, as
shown in Figure 4 for the Group 1 WW (Influent WW) and in Figure 5 for the Group 2 WW.
These results indicate the need for dedicated NN models for certain WW stream groups.

3.2. Challenge with Increasing Number of NN Model Output Variables

By varying the combination of WW parameters as model outputs (Table 1), the com-
prehensive evaluation of NN model prediction performance was collected and the key
results are shown in Figures 6 and 7. In general, NN models trained for single output,
i.e., one WW parameter estimated per NN model trained, achieved the best prediction
performance in terms of the R2 and MAE between the prediction Y and actual level T of
each WW parameter (Figure 6A–D). When more than one WW parameter is being modeled
in an NN model, the R2 and MAE of Y-vs-T may turn to poorer levels (Figure 6A–D), even
though increasing the number of hidden layers and the number of neuron units can be
used to improve the R2 and MAE of Y-vs-T (Figure 6D). Also, a corresponding decrease
in MAE is observed, in general, with an increase in the R2 of Y-vs-T of an NN model. The
MAE levels for the best NN models (Figure 6D) can be very low, as shown in Figure 8,
which is a good indication of minimizing prediction error.
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Figure 3. Illustration on the need to train an NN model dedicated to a wastewater stream group.
One NN model may not be able to capture all trends, as indicated by the two apparent groups in
the prediction-versus-actual plots. Results of training, validation, and testing of the NN model with
1 hidden layer of 32 units of neurons. Annotated red solid line shows the reference relation Y = T.
(A) NN model configuration implemented, (B) changes in cost function MAE during the training for
5000 epochs, (C) Y-vs-T of the training data for BOD, (D) Y-vs-T of the training data for COD, I Y-vs-T
of the training data for NH3-N, (E) Y-vs-T of the training data for NH3-N, (F) Y-vs-T of the test data
for BOD, (G) Y-vs-T of the test data for COD, and (H) Y-vs-T of the test data for NH3-N.
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Figure 4. NN modelling on the data subset for Group 1 WW (Influent WW) using 2 hidden layers
consisting of 1000 neuron units in first hidden layer H1 and 32 neuron units in second hidden layer
H2. A linear fit Y = f(T) with a blue dashed line is annotated to compare with reference line Y = T
with the red solid line. (A) NN model configuration implemented, (B) changes in cost function MAE
during the training for 5000 epochs, (C) Y-vs-T of the training data for BOD, (D) Y-vs-T of the training
data for COI (E) Y-vs-T of the training data for NH3-N, (F) Y-vs-T of the test data for BOD, (G) Y-vs-T
of the test data for COD, and (H) Y-vs-T of the test data for NH3-N.
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test data for COD, and (H) Y-vs-T of the test data for NH3-N.
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Figure 6. Summary of R2 values between target T values and predicted Y values of the Influent
WW (Group 1 WW) parameters from the training and testing of the NN model at varying model
configurations and model output combinations. Color fill represents the R2 values, with red being
closest to 1.0 and no color fill for the R2 values lower than 0.8. (A) Using NN model with 1 hidden
layer (H1) of 32 neuron units, (B) using NN model with 1 hidden layer (H1) of 1000 neuron units,
(C) using NN model with 2 hidden layers: 64 neurons units in first (H1) and 32 neuron units in
second (H2), and (D) using NN model with 2 hidden layers: 1000 neurons units in first (H1) and
32 neuron units in second (H2).
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Figure 7. Summary of mean-absolute-error (MAE) between target T values and predicted Y values
of the influent WW (Group 1 WW) parameters from the training and testing of the NN model with
2 hidden layers: 1000 neurons units in first (H1) and 32 neuron units in second (H2).

Table 2. Hyperparameter grid-search levels used to determine the best NN model hyperparameters
for training on the Group 2 WW dataset (WW data subset for anoxic tank, aerobic tank, sedimentation
tank, and WW effluent).

NN Model Hyperparameter Grid-Search Settings Best NN Model Hyperparameter Setting

Optimizer: [‘Adam’, ‘Adadelta’, ‘SGD’] Optimizer: ‘Adam’
Activation function in H1: [‘ReLU’, ‘Linear’] Activation function in H1: ‘Linear’
Activation function in H2: [‘ReLU’, ‘Linear’] Activation function in H2: ‘ReLU’

Activation function in output layer: [‘ReLU’, ‘Linear’] Activation function in output layer: ‘Linear’
Number of neuron units in H1: [1600, 1000, 64] Number of neuron units in H1: 1000

Number of neuron units in H2: [64, 32, 9] Number of neuron units in H2: 32
Learning rate *: [0.00001, 0.0001, 0.001, 0.01] Learning rate *: 0.0001

Total hyperparameter grid-search settings with full-factorial grid via Scikit-Learn ‘GridSearchCV’ = 864
Epoch for each setting NN model training = 5000

* Note: A learning rate schedule was implemented using the tabulated value as the initial rate and the value was
decreased to a factor of 0.5 (50% decrease) for every 500 epochs using an exponential decay model. See the Python
codes provided for details.
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Figure 8. NN modelling on the data for Group 2 WW subset using the NN model configured using
the best settings from the hyperparameter grid-search (see Table 2). A linear fit Y = f(T) with a blue
dashed line is annotated to compare with reference line Y = T with the red solid line. (A) Cost function
MAE value during the training for 5000 epochs, (B) Y-vs-T of the test data for BOD, (C) Y-vs-T of the
test data for COD, and (D) Y-vs-T of the test data for NH3-N.

3.3. Improving the NN Model via Hyperparameter Grid-Search and K-Fold Cross-Validation

Based on the results in the previous sections, the Influent WW (Group 1 WW) parame-
ters could be modelled at good levels of fitness (high R2 and low MAE) using an NN model
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(Figures 6 and 7) consisting of two hidden layers with 1000 units in the first layer (H1) and
32 units in the second layer (H2). However, using the same NN model for the Group 2 WW
data subset, which is the WW subset for the anoxic tank, aerobic tank, sedimentation tank
and water outlet (effluent WW), did not perform as well, as can be seen in Figure 5 (for
other results, see the GitHub repository of the paper [17]). A possible solution to this issue,
which is also an opportunity to demonstrate the flexibility of the NN modelling approach,
is the evaluation of hyperparameters beyond those used above, i.e., a learning optimizer
other than Adam, a learning rate other than 0.0001, a varied number of neurons in H1 and
H2, etc. The hyperparameter grid-search implemented is summarized in Table 2 with the
corresponding best setting determined after the grid-search based on scoring using MAE.
Figure 8 shows pertinent graphical results after training the NN model consisting of the
best settings from the hyperparameter grid-search (Table 2, column 2).

When working with a small sample size is inevitable, which is the case with the Group
2 WW data subset, the performance of the NN model may also be improved by training on
the whole data subset via a k-fold cross-validation approach [1]. The results are shown in
Figure 9. The specific type of k-fold cross-validation implemented in this study was the
repeated k-fold, which overcomes the tendency of single-pass k-fold to be noisy, especially
on small datasets [27].
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Figure 9. Repeated k-fold NN modelling on the data for Group 2 WW. A linear fit Y = f(T) with a
blue dashed line is annotated to compare with reference line Y = T with the red solid line. (A) Cost
function MAE value during training for 1000 epochs, (B) Y-vs-T of the test data for BOD, (C) Y-vs-T
of the test data for COD, and (D) Y-vs-T of the test data for NH3-N.

4. Discussion

First, we will address the main questions posed in the introduction of the paper
(Section 4.1). Then, the limitations of the results of the work will be discussed (Section 4.2).
Finally, we will put into perspective the significance and possible future directions of the
research work (Section 4.3).

4.1. Answers to the Main Questions of the Study

Question 1: What data preprocessing tasks must be performed on the WW spectral
data to produce regression NN models with good prediction performance?

Based on the results shown in Figures 3–5, the WW dataset of a treatment facility
may need to be grouped according to WW strength levels (high strength for Group 1 WW
and low strength of Group 2 WW) for a better performance of NN models. The apparent
grouping of data in the plots of Y-vs-T for the whole WW dataset, as shown in Figure 3, was
an interesting trend from a NN model trained for regression. Such grouping trends usually
arise in the classification type of NN modelling. The grouping trends in Figure 3 indicate
how the performance of a NN model can be good only when the data array being used as
the input has been properly preprocessed, which, in this case, was a simple grouping of the
data into subsets according to the WW strength (Group 1 WW and Group 2 WW). Another
preprocessing method implemented in this study was the scaling of the banded spectral
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reflectance data before feeding them as input to the NN models (see Section 2.1.2). Scaling
the input features allows for each feature, which is the spectral band, in this case, to have
standardized levels between 0 and 1, and this usually improves NN model training [19].

Question 2: What are the effects of some common hyperparameters in NN modeling:
the number of hidden layers and the number of neuron units in each hidden layer?

The effects of the number of hidden layers and the neuron units are shown in
Figures 6 and 7 for the influent WW (Group 1 WW). In general, the higher the number
of neuron units in a hidden layer, the better the prediction performance. The same trend
can also be seen for the effect of the number of hidden layers. This, however, does not
mean that a large number of hidden layers and neuron units always results in better model
performance. Other studies have shown that large numbers of hidden layers and neuron
units can result in the overfitting of the model on the training set, with the consequence of
poor prediction performance on the test set [28]. Therefore, the number of hidden layers
and neuron units must be set accordingly, perhaps with guidance from the hyperparameter
grid-search (Section 3.3).

Question 3: How does the number of modelled outputs, i.e., WW parameters, affect
the prediction performance of the NN models?

In general, the NN models have their best prediction performance when the modelled
output variable is a single WW parameter, i.e., BOD only, COD only, etc., as shown in
Figures 6 and 7. As more WW parameters are assigned as NN model output variables,
the prediction performance can degrade. The implication of this finding is that the same
spectral reflectance input data can be fed to separate NN models, with each model assigned
to a WW parameter to be estimated. This setup can be easily implemented in a computer
running NN models. If the performance of a combination of WW parameters as outputs is
acceptable, then NN models with multiple outputs may also be run for estimation.

Question 4: How can hyperparameter tuning and k-fold cross-validation on regression
NN models improve prediction performance?

Hyperparameter tuning can boost the performance of a machine learning model such
as an NN model [29]. The challenge with the WW data subset of Group 2 WW is apparent
in Figure 5F–H, which shows that even though the NN model can have a good performance
on the training set, the prediction performance of the model on the test set may be very
poor. One obvious limitation in the Group 2 WW subset data is the fewer number of
observations (with 28 samples) compared to the Group 1 WW subset (with 57 samples).
Machine learning models such as NN models improve in their prediction capabilities with
an increasing number of observations used in training. Given that this limitation on the
number of observations was limited by the source of the data, hyperparameter grid-search
was the only approach left to try to improve the NN model performance on the Group
2 WW subset. The results of the hyperparameter grid-search for improved prediction
performance shown in Table 2 and Figure 8 indicate that there was an improvement in
terms of higher R2 values and lower MAE values compared to those of Figure 5F–H. Even
though the Y-vs-T R2 and MAE in Figure 8 for Group 2 WW were not close to those of the
Group 1 WW shown in Figure 6D, the improvements compared to those in Figure 5F–H are
good indications of the potential of hyperparameter grid-search to improve NN models.

Repeated k-fold cross-validation can also improve the prediction performance of the
NN models, as shown in Figure 9. K-fold cross-validation can improve the reliability of a
NN model, especially when the dataset size is small [30], such as that of the Group 2 WW
data subset. The one drawback of k-fold cross-validation is the computational cost, because
the model training is performed k times in a single-pass training [31]. This contrasts with
the single training run needed to perform the single-split training in the prior tasks, with
results shown in Figures 3–8.

4.2. Limitations of the Proposed Data Analytics

Amid the promising results of our proposed data analytics, there are limitations in
what they can do. First is the inherent deficiency of the interpretability of NN models [32].
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This means that NN models may not be the best models to use when the main objective of
a study is the determination of the mathematical structure of the system being studied [33].
However, the interpretability of NN models should not be an issue if the objective is the
process dynamics control of a WW treatment facility in which the main concern is the
minimization of estimation error, e.g., MAE, of NN model prediction. If the user is more
interested in determining the mathematical structure of the system variables, then non-NN
modelling must be consulted, such as in these works: [7,34–36]. Another limitation is that
we cannot develop a single NN model that can be applied to all the WW stream groups
in a WW treatment facility, which was made apparent in the preliminary training results
shown in Figure 3. Finally, the proposed data analytics being a machine-learning technique
performs well when many data samples are used for training the NN models. This was
made apparent in the results of NN model training for the Group 1 WW (Figure 4) and
Group 2 WW (Figure 5), where the former WW subset had more data samples compared to
the latter data subset. Even though hyperparameter grid-search and k-fold cross-validation
(Section 3.3) may help improve model reliability and prediction performance in small
sample sizes, the NN models usually improve with larger sample sizes used in training [37].

4.3. Perspective

Applications of machine-learning models in improving the operation of WW treatment
facilities have been gaining popularity [38,39] due to the success of machine-learning
models in other processing systems [40]. A bottleneck in this effort, however, is the
limitation of some key process variables, e.g., BOD, COD, etc., to be measured in a timely
manner such that the measurements can be used as inputs into a machine learning model
for the WW treatment facility. Even a traditional non-machine-learning process control
system can significantly benefit from a fast estimation of process variables [41]. This current
work aimed to contribute to this need for a fast estimation technique for process variables
by using spectral reflectance data of WW as the input to a data analytics workflow that
uses NN regression models.

The use of spectral reflectance has been a common technique in remote sensing areas,
such as in low-orbit satellites designed to study the Earth’s water [36,42] and atmospheric
data [43]. Though such applications are in a large-scale aggregation of signals from the
sources of spectral reflectance, they inspired the concept of also applying spectral reflectance
in small-scale systems such as soil systems [44,45] and water systems [7]. The processing of
such spectral data to estimate target variables poses a challenge in terms of the speed of
data analytics when implemented in a process control system for a WW treatment facility
and similar systems that can benefit from immediate signal conversion to system variable
values. Unlike the analysis performed by the originators of the dataset [7], the use of NN
models in this study eliminates the intermediate steps of fitting the raw spectral data to
structured models of data filters, which usually result in a loss of information from the
original spectral signal and additional lag-time in the data analytics workflow. The NN
models account for all signal features during the training stage.

Given a NN model has been trained, the estimation of the WW parameter levels
when the spectral data are fed to the model takes just milliseconds to execute with a
laptop computer of decent hardware specifications, such as the one used in this work.
An envisioned practical setup can involve the use of smaller hardware that can run such
computations. With the increasing adoption of artificial intelligence (AI) in various systems,
hardware dedicated to running AI programs with a small physical size has been recently
developed by leading companies such as NVIDIA, with their Jetson Nano for implementing
AI in mobile platforms [15]. Such innovations in hardware can be leveraged to implement
NN models integrated with off-the-shelf sensors for spectral reflectance in the wavelength
range of 400–2000 nm used in the collection of the dataset [7] used in this study. The
traditional wired sensors connected to a centralized control room where the NN model
estimations are run in centralized computers can also be a default implementation setup [46].
The NN-enabled sensor system, however, will not totally eliminate the traditional WW
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sample-based chemical analysis method. Such sample chemical analysis will still be carried
out, but with less frequent occurrences to make sure that the NN model is within reasonable
accuracy. The chemical analysis data will also be added to the training dataset where the
NN model can be re-trained to refine the model parameters for better estimation.

Finally, an important consideration in the proposed approach of using NN models
trained on WW spectral reflectance is the acceptable range of error on the model output for
a particular application. Figure 7 shows a summary of the MAE for various NN models.
The MAE values represent the average error around the true values T by the estimate Y
from the NN model. These errors may be acceptable in the process control system of a
WW treatment facility, but these may not be acceptable errors for purposes requiring more
stringent limits of error on WW parameters, such as scheduled measurements according
to regulatory agencies like US-EPA [2]. Such more stringent WW analysis should still use
the established chemical analysis for the various WW parameters amid longer analysis
time. Hence, there is a trade-off between tolerance for error and the speed of spectral signal
conversion to WW parameter levels via NN models.

5. Conclusions

Neural network (NN) models may accelerate the estimation of wastewater quality
parameters (BOD, COD, NH3-N, TDS, TA, and TH) at minimal estimation error by using
WW spectral reflectance as input data. The WW dataset in a treatment facility may need
to be grouped according to WW stream strength for the best NN model training and
prediction. Various model hyperparameter settings can be configured to improve the
prediction performance of NN models on WW quality parameters, including the number of
hidden layers, number of neurons in each hidden layer, activation functions, learning rate,
and optimization algorithm. The highest R2 (0.994 for training set and 0.973 for testing set)
and lowest MAE (0.573 mg/L BOD, 6.258 mg/L COD, 0.369 mg/L NH3-N, 6.98 mg/L TDS,
2.586 m/L TA, and 0.014 mmol/L TH) were achieved when NN models were configured
for a single-output variable compared to multiple-output variables. The number of data
samples may significantly affect the predictive capability of the NN regression model and
more data samples will favor better prediction performance.
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