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Abstract: This work focused on demonstrating the capability of unsupervised machine learning
techniques in detecting impending anomalies by extracting hidden trends in the datasets of fuel
economy and emissions of light-duty vehicles (LDVs), which consist of cars and light-duty trucks.
This case study used the vehicles’ fuel economy and emissions testing datasets for vehicle model
years 2015 to 2023 with a total of 34,602 data samples on LDVs of major vehicle manufacturers. Three
unsupervised techniques were used: principal components analysis (PCA), K-Means clustering,
and self-organizing maps (SOM). Results show that there are clusters of data that exhibit trends
not represented by the dataset as a whole. Fuel CO vs. Fuel Economy has a negative correlation in
the whole dataset (r = −0.355 for LDVs model year 2022), but it has positive correlations in certain
sample clusters (e.g., LDVs model year 2022: r = +0.62 in a K-Means cluster where the slope is around
0.347 g-CO/mi/MPG). A time series analysis of the results of clustering indicates that Test Procedure
and Fuel Type, specifically Test Procedure 11 and Fuel Type 26 as defined by the US EPA, could be
the contributors to the positive correlation of CO and Fuel Economy. This detected peculiar trend of
CO-vs.-Fuel Economy is an impending anomaly, as the use of Fuel 26 in emissions testing with Test
Procedure 11 of US-EPA has been increasing through the years. With the finding that the clustered
data samples with positive CO-vs.-Fuel Economy correlation all came from vehicle manufacturers
that independently conduct the standard testing procedures and not data from US-EPA testing
centers, it was concluded that the chemistry of using Fuel 26 in performing Test Procedure 11 should
be re-evaluated by US-EPA.

Keywords: machine learning; fuel economy; vehicle emissions

1. Introduction

Through the years, gas-fueled vehicles have been transformed by various means to
improve performance in terms of fuel economy and emissions. With the guidance of
regulatory agencies such as the US Environmental Protection Agency (US-EPA), better
performance in terms of lower emissions and higher fuel economy to meet regulations has
been the goal of vehicle manufacturers. Among the various types of transportation vehicles,
the light-duty vehicle (LDV) category, which consists of cars and light-duty trucks [1], has
the highest annual sales worldwide, amounting to 70–90 million vehicles per year from
2010 to 2020 [2]. Hence, LDVs have been the subject of early implementation testing of
various regulatory procedures and standards for transportation vehicles. LDVs were the
only vehicles covered when stringent emission standards were implemented by US-EPA
in the 1960s–1970s; on-board diagnostics were first implemented only on LDVs in the
1990s; and a mandatory LDV manufacturer in-use testing program was implemented in
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the 2000s, whereas other fleet categories were covered years later [3]. LDVs are the focus of
more stringent rules and standards [4], such as the “Revised 2023 and Later Model Year
Light-Duty Vehicle GHG Emissions Standards” [5]. From 2014 to 2017, the annual volume
of vehicles affected by emissions recalls in the US was in the range of 4 to 9 million per
year [6].

Inherent to the task of regulating LDVs’ performance and emissions is the responsibil-
ity of the regulating agencies to make sure the testing protocols are appropriate [7]. Even
though revisions of established emissions testing protocols involve various entities in the
judicial, legislative, and executive branches of the government, the information used in
making such decisions starts from the trends analysis of empirical data [8]. With continued
implementation of emissions testing protocols, testing datasets may contain information
that indicates the need to revise testing protocols. Oftentimes, however, such indicators
of anomalous trends that must be addressed are not apparent due to the multitude of
features in the datasets and the large amount of observations. This is a pervasive challenge
in multivariate datasets, and some of the literature in data analytics calls it the “curse of
dimensionality” [9], but this must be addressed to pave the way for detecting impending
anomalies which can be costly if not checked specially in the business of LDVs. Unsu-
pervised machine learning techniques can be used to determine hidden trends in large
datasets [10,11] such as the performance and emissions datasets of LDVs.

Unsupervised learning, which does not rely on labeling the dataset but rather on
calculating similarities and differences in variable attributes, can be used to segment
datasets and uncover hidden trends in the data [11]. Various unsupervised learning
techniques, such as K-Means clustering [12], principal components analysis (PCA) [13],
and self-organizing maps (SOM) have been commonly used in various applications [14,15].

This work demonstrates the capability of unsupervised learning PCA, K-Means, and
SOM algorithms to extract data trends within a multivariate large dataset on fuel economy
and emissions. Specifically, this work examines the LDV emissions and fuel economy
datasets of US-EPA to demonstrate a data analytics workflow that may elucidate hidden
trends that can result in anomalies if not addressed. Hence, this work shows how to detect
impending anomalies in LDV emissions and fuel economy tests by using unsupervised
machine learning techniques.

2. Methodology

A workflow schematic of the data analysis done is shown in Figure 1. The raw
data, which was downloaded from the US-EPA data center [16], was preprocessed to
consider only the key column variables for fuel economy, vehicle design, and emissions
data (Table 1). Then the following analysis cases were done: (1) PCA on the whole dataset
without any segmentation or clustering of the samples, and (2) PCA on samples within
clusters after applying clustering algorithms, i.e., K-Means and SOM. K-Means is a greedy
algorithm, which has the tendency to stop convergence search at a local optimum [11],
whereas SOM is a non-greedy clustering algorithm, which has the capability to search
for a global optimum [17]. Hence, variable trends resulting from the clusters of these
two algorithms would be an interesting comparison, especially in terms of consistency of
results. After clustering, variable trends within clusters were then analyzed for peculiar
patterns using typical techniques such as regression, multivariate correlations, and sample
distribution analysis. These techniques were done using the SAS-JMP Pro 16 software [14]
and MATLAB R2013a programming language [18].
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Figure 1. Schematic of the data analysis workflow implemented in this study: (A) PCA, K-Means and
SOM unsupervised learning techniques were applied; (B) cluster calculation by K-Means algorithm
and (C) cluster calculation by SOM algorithm.

Table 1. Summary of the LDVs dataset variables used in the unsupervised learning analytics.

Variable Description Data Type

Fuel Economy Fuel economy in miles per gallon (MPG) Numeric, continuous
Displacement Engine volume displacement in liters (L) Numeric, continuous

PWR Power-to-Weight ratio of the vehicle in horsepower/pound (hp/lb) Numeric, continuous

Axle Ratio The number of revolutions the output shaft or driveshaft needs to
make to spin the axle one complete turn Numeric, continuous

THC Exhaust total hydrocarbons (THC) in grams/mile (g/mi) Numeric, continuous
CO2 Exhaust carbon dioxide in grams/mile (g/mi) Numeric, continuous
CO Exhaust carbon monoxide in grams/mile (g/mi) Numeric, continuous

NOx Exhaust NOx in grams/mile (g/mi) Numeric, continuous

2.1. Data Source

The dataset used in this work was composed of the US-EPA datasets on vehicles
used for testing fuel economy and emissions for LDVs with model years 2015, 2016, 2017,
2018, 2019, 2020, 2021, 2022, and 2023 [16]. The datasets were the combined results from
vehicle testing done at the EPA’s National Vehicle and Fuel Emissions Laboratory in Ann
Arbor, Michigan, and from testing results from vehicle manufacturers that independently
implemented the standard testing procedures and submitted their own test data to US-
EPA. The whole dataset can be accessed from the GitHub repository for this work [19]:
https://github.com/dhanfort/Cars22-FEandEmissions.git (accessed on 9 April 2022), and
is also free to download from the US-EPA webpage [16]. Note that the LDVs model year
2023 dataset accounted only for the early reporting data and an updated version for the
second half of the year would be typically released by US-EPA.

2.2. Data Preprocessing

The raw datasets were preprocessed to extract only the key variables of unsupervised
learning. An overview summary of the key variables and their definitions is shown in
Table 1. The dataset was also checked for any emissions levels exceeding set limits by
US-EPA [1] and it was found that all samples were below the emission limits for light-duty
vehicles and light-duty trucks.

2.3. Data Analysis

The dataset of vehicles with model year 2022 was first used to show the detailed
analysis tools and discussions of results derived from unsupervised machine learning
analytics (Figure 1). This particular vehicle model year was also the source of the most
peculiar trends in clusters of emission results, as shown in the results and discussion
sections. Then, the datasets of other model years, 2015 to 2023, were added to conduct
a more comprehensive analysis of the peculiar trends observed in the 2022 dataset. In
general, the number of observations in each working dataset for the various vehicle model

https://github.com/dhanfort/Cars22-FEandEmissions.git
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years was as follows: 4390 for 2015; 4116 for 2016; 4077 for 2017; 4164 for 2018; 4061 for
2019; 3815 for 2020; 3549 for 2021; 3580 for 2022; and 2850 for 2023. In total, there were
34,602 observations from nine vehicle model years. The number of observations in any
model year was well above the suggested minimum number of samples for clustering
analysis [20].

2.3.1. K-Means Implementation

The K-Means algorithm for clustering was implemented via the SAS-JMP software
that uses the FASTCLUS procedure [21]. The optimal number of clusters was determined
via the fit statistic Cubic Clustering Criterion (CCC), which has larger values at better fit
models. The range of 2 to 10 clusters were tested iteratively and the optimal number of
K-Means clusters was indicated by the maximum CCC.

2.3.2. SOM Implementation

The SOM algorithm available via the MATLAB R2013a add-in SOM Toolbox [17] was
used instead of the SOM in SAS-JMP, as the former is more amenable to model configuration
by user compared to the latter. A rectangular topographic map of hexagonal lattice of
size 15 neurons by 12 neurons constituted the SOM model. This map size meets the size
requirement for SOM to have enough datapoints that can hit most of the map neurons (best
matching units, or BMU). The rectangular map was chosen over the cylindrical and toroid
maps that were also available from the Toolbox due to its lower quantization error during
preliminary testing of the SOM models. The other details of the rectangular SOM and its
coded implementation in MATLAB can be checked in the supplementary materials in the
online repository for this work [19]. The optimal number of clusters from the trained SOM
was determined using the Davies–Bouldin Index (DBI), which must have a minimum value
at optimal cluster size [17]. The range of 2 to 10 clusters were tested iteratively and the
optimal number of rectangular SOM clusters was indicated by the minimum DBI.

2.3.3. Linear Discriminant Analysis

To evaluate the performance of the clusters from K-Means and SOM as separating
planes of the dataset, linear discriminant analysis (LDA) in SAS-JMP [14] was done on
all the working variables against the cluster assignments. This analysis was the only
supervised learning step in the data analysis. Canonical plots were created to visually show
the clusters in terms of the canonical variables. The prediction rates of the clusters were
also determined. The receiver operating characteristic (ROC) curve of each cluster on the
training data was also calculated to determine the trade-off between the sensitivity and
(1-specificity) across a series of cut-off points through the clusters.

2.3.4. PCA Implementation

PCA was implemented via the SAS-JMP software [14]. The eigenvalues of the principal
components (PCs) were evaluated to determine the data variance captured by the first two
PCs (PC1 and PC2), which were then used as projection axes on two-dimensional loadings
plots to render the trends of all the variables relative to each other.

3. Results and Discussion

Data re-projection onto the first few principal components (PCs) was done to reduce the
dimensionality of the multivariate dataset, hence simplifying the comparison of variable
trends. With this technique, variable trends in the whole (unsegmented) dataset were
compared with the segmented dataset resulting from K-Means and SOM clustering. Then,
statistical testing of model fits on the whole dataset and pertinent clusters was done to test
the significance of parameter statistics.
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3.1. Whole Dataset Fuel Economy and Emissions

When looking at the whole dataset projected onto the first few PCs (Figure 2), it
was found that the first two PCs were enough to capture most of the variabilities in the
dataset. That is, the eigenvalues of the first two PCs were higher compared to the residual
eigenvalues after the first two PCs (Figure 2A,B). The combined PC1 and PC2 projections
can explain 60.8% of the data variability. The score plot of the samples when projected on
PC1 and PC2 (Figure 2C) shows some samples are far from the centroid, which indicates the
possibility of a unique outliers cluster [10]. These outliers increase the variance of the data,
which must be reduced to minimize uncertainties in statistic parameters [14]. Variance
reduction can be done through data segmentation such as K-Means and SOM clustering.
The loadings plot (Figure 2D) shows the direction (from the center (0, 0)) of variables relative
to each other. For example, Fuel Economy is opposite the direction of all emissions variables
THC, CO, CO2, and NOx, which means there is an inverse relationship of Fuel Economy
with the emissions variables. As the variables approach orthogonal relation, for example
THC with either PWR or Axle Ratio, the correlation becomes negligible. Displacement and
CO2 emission almost coincide, which indicates direct proportionality.
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Figure 2. PCA results for the whole dataset. (A) Eigenvalues and their proportions, (B) scree plot of
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on PC1 and PC2. LDVs model year is 2022.

3.2. Clustered Dataset Fuel Economy and Emissions

The implementation and testing of clustering algorithms in segmenting the dataset
into groups of similar attributes was done using K-Means and SOM. The optimal number
of clusters was determined, then the clusters with distinct trends were examined further to
elucidate variable trends.

3.2.1. K-Means Clustering

The results of K-Means clustering are shown in Figures 3 and 4. The optimal number
of clusters, which was found to be three, resulted in distinct segmentation of the whole
dataset. A visual representation of the segmentation is evident in Figure 3, which shows
the projection of the cluster-coded samples onto the first two PCs (Figure 3A) and onto the
first three PCs (Figure 3B). The results of LDA on these three clusters (Figure 4) confirmed
that the three clusters achieve a very high area under the ROC (AUC), which is in the
range 0.9949–0.9999. AUC is the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one, with AUC = 1.0 being a
perfect classifier and AUC = 0.5 being a uniformly random classifier [14]. Hence, the three
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clusters from the K-Means clustering meet the requirements for a set of good segmentation
planes for the dataset. The classification scores of these three clusters are summarized in
Table 2. The prediction rates of the three clusters are close to one, with an overall percent
misclassification of only 3.22%. The trends within each of these clusters were then examined
using PCA (Figure 5).
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Table 2. Linear discriminant analysis prediction scores and rates for the K-Means clusters. LDVs
model year is 2022.

Actual Predicted Count Predicted Rate

Cluster 1 2 3 1 2 3

1 1270 87 0 0.936 0.064 0.000
2 26 2115 2 0.012 0.986 0.001
3 2 0 76 0.038 0.000 0.962

Total Count: 3580 Percent Misclassified: 3.32% Entropy R-square: 0.848
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Figure 5. PCA trends in K-Means Cluster 3. (A) Eigenvalues and their proportions, (B) scree plot of
eigenvalues, (C) score plots of the samples on the PC1 and PC2, and (D) loadings plot of the variables
on PC1 and PC2. Note that the originators of the data samples clustered in K-Means Cluster 3 are
the vehicle manufacturers that independently conduct the fuel economy and emissions tests. LDVs
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As an unsupervised learning technique, K-Means is not guaranteed to produce clusters
containing equal numbers of samples. Clusters 1 and 2 were assigned 1357 and 2144 sam-
ples, respectively, whereas Cluster 3 was assigned 79 samples (out of the 3580 total samples).
When applying PCA in each cluster, Clusters 1 and 2 demonstrated variable trends sim-
ilar to the whole dataset (see supplementary material for these results), whereas Cluster
3 showed a peculiar trend (Figure 5). For Cluster 3, the CO levels were directly proportional
to the Fuel Economy levels (Figure 5D), which had the opposite relation when considering
the whole dataset (Figure 2D). The Axle Ratio was also directly proportional to the CO
levels in K-Means Cluster 3, but it did not have any effect on CO levels on average in the
whole dataset (Figure 2D). The same trend exists for Axle Ratio and THC, with Axle Ratio
inversely proportional to the THC levels in K-Means Cluster 3, but not having any effect
on THC levels on average in the whole dataset (Figure 2D).

3.2.2. Self-Organizing Maps Clustering

The results of SOM clustering are shown in Figures 6 and 7. A unique set of results
from SOM are the projections of the variables onto component planes (Figure 6B,I) after
the SOM model training on the dataset. These are visual renderings of the relative levels
of the variables at a specific neuron position (a unit cell on the map) on the maps. The
U-matrix, or unified distance matrix (Figure 6A), represents the Euclidean distance between
the codebook vectors of neighboring neurons, and the high values in the map indicate
regions of samples of distinct attribute levels [17]. The optimal number of clusters for
the model year 2022 dataset was seven, which resulted in the minimum DBI during the
SOM clustering (Figure 6J). Unlike the K-Means, which showed very distinct segmentation
of the dataset on a 2D canonical plot, SOM produced a set of clusters that have some
overlaps when projected onto the first two canonical variables in the LDA (Figure 7A). This
is expected, as the number of SOM clusters is greater than the first few canonical variable
representations. Nonetheless, the AUCs of the seven SOM clusters were in the range of
0.9664-0.9977 (Figure 7B), which are still high AUC values [10]. The classification scores of
these seven SOM clusters, which are in the prediction rate range of 0.794–0.955 (Table 3),
are not as high as those of K-Means and have an overall percent misclassification of 14.72%.
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Table 3. Linear discriminant analysis prediction scores and rates for the SOM clusters. LDVs model
year is 2022.

Actual Predicted Count

Cluster 1 2 3 4 5 6 7

1 63 0 0 2 0 1 0
2 0 800 24 7 25 7 15
3 0 93 913 0 105 1 0
4 0 45 0 476 47 0 4
5 0 71 7 0 399 0 1
6 0 8 0 17 1 100 0
7 0 3 30 0 13 0 304

Actual Predicted Rate

Cluster 1 2 3 4 5 6 7

1 0.955 0.000 0.000 0.030 0.000 0.015 0.000
2 0.000 0.911 0.027 0.008 0.028 0.008 0.017
3 0.000 0.084 0.821 0.000 0.094 0.001 0.000
4 0.000 0.079 0.000 0.832 0.082 0.000 0.007
5 0.000 0.149 0.015 0.000 0.834 0.000 0.002
6 0.000 0.063 0.000 0.135 0.008 0.794 0.000
7 0.000 0.009 0.086 0.000 0.037 0.000 0.869

Total Count: 3580 Percent Misclassified: 14.72% Entropy R-Square: 0.753

The segmentation of samples in each SOM cluster was examined for any commonality
with the K-Means clusters. The samples captured by SOM Cluster 1 are subset samples
of the K-Means Cluster 3. That is, of the 78 samples in K-Means Cluster 3, 66 were also
assigned to the SOM Cluster 1 (Figure 8E). This indicates that these two clusters covered
almost the same segment of the dataset. This can be visually verified in Figures 4A and
7A, showing these clusters as extreme groups in the first two canonical variables in LDA.
The prediction rate of the SOM Cluster 1 is at 0.955, which is the second highest rate in the
eight clusters (Table 3).
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on PC1 and PC2. Note that the originators of the data samples clustered in SOM Cluster 1 are the
vehicle manufacturers that independently conduct the fuel economy and emissions tests. LDVs
model year is 2022.
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3.3. Performance of K-Means and SOM Clustering

The data segmentation results of the K-Means and the SOM algorithms are not exactly
the same, but they both capture clusters of samples, K-Means Cluster 3 and SOM Cluster 1,
that exhibit similar trends. These clusters show some variable trends that the whole dataset
does not represent. These findings demonstrate the capability of K-Means and SOM in
extracting hidden trends in the bigger dataset. Of the 3580 total working samples, 78 (or
2.18 % of 3580) are assigned to K-Means Cluster 3, and 66 (or 1.84% of 3580) are assigned
to SOM Cluster 1. This is the kind of data mining problem where clustering algorithms
K-Means and SOM are needed—detecting outliers that are of smaller percentages of the
data, but that can have attributes with correlations different from the whole dataset [10,11].
The LDA results (Figures 4 and 7; Tables 2 and 3) also confirm this consistency of clustering
results for K-Means Cluster 3 and SOM Cluster 1. Between the two clustering techniques,
however, K-Means has a lower cluster misclassification rate of 3.32% (Table 2) than that of
SOM at 14.72% (Table 3).

3.4. Bivariate Analysis on CO vs. Fuel Economy

Among the various clusters determined, Cluster 3 from K-Means and Cluster 1 from
SOM showed peculiar trends regarding the relation of CO emissions to Fuel Economy. A
bivariate analysis of this relation was done to determine summary statistics and model
fitting. Figure 9 shows a summary of the results for the whole dataset samples (Figure 9A),
K-Means Cluster 3 samples (Figure 9B), and SOM Cluster 1 samples (Figure 9B). These
results show that the correlation of CO emissions and Fuel Economy is statistically different
between the calculation on the whole dataset and the calculation on the clusters. The
direction of proportionality changes from negative correlation r = (−) 0.355 (Figure 9A) on
the whole dataset to a positive correlation on the clusters; r = (+) 0.62 on K-Means Cluster
3 (Figure 9B) and r = (+) 0.491 on SOM Cluster 1 (Figure 9C). Model fitting on the data
was also done to test the null hypothesis that the slopes of proportionality are zero, which
would mean no functional linear relation between CO and Fuel Economy. Rejecting this null
hypothesis would mean the slopes are statistically different from zero, which eliminates
the possibility of random errors causing the correlations. The calculated slopes of the linear
models fitted to the clusters data are different from zero; they are 0.347 CO (g/mi)/MPG
and 0.298 CO (g/mi)/MPG for K-Means Cluster 3 and SOM Cluster 1, respectively, with
[Prob>|t|] less than 0.001 at a 5% significance level (Figure 9B,C). In addition, the lack-
of-fit test was done to confirm the fitting performance of the models; it tested whether
the lack-of-fit error is zero (equivalently means significantly smaller than pure error) [14].
With F-statistic probabilities [Prob>F] = 0.0.2349 and 0.4215 for K-Means Cluster 3 and
SOM Cluster 1, respectively, the lack-of-fit test cannot reject the null hypothesis at a 5%
significance level, which means that the lack-of-fit error is statistically zero. This confirms
the inference that the linear models for CO vs. Fuel Economy statistically fit the data in
each cluster. These results mean that when looking at the whole dataset, the statistical
inference is that the CO emission decreases with Fuel Economy. On the other hand, when
looking at the two clusters, K-Means Cluster 3 and SOM Cluster 1, the statistical inference
is that CO emission is increasing with increasing Fuel Economy.
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3.5. Other Notable Variable Correlations

There are other notable trends seen on the whole dataset and on the K-Means Cluster 3
and SOM Cluster 1 as shown by the multivariate correlation graphs in Figure 10. Power-to-
weight (PWR) and Fuel Economy correlation values are close to each other, with negative
values r = (−) 0.49, r = (−) 0.53, and r = (−) 0.53 for the whole dataset, K-Means Cluster
3, and SOM Cluster 1, respectively. This means an increasing PWR results in decreasing
Fuel Economy whether considering the whole dataset or the clusters. On the other hand,
the PWR shows a change in direction of correlation with CO when analyzed from the
whole dataset compared to the clustered dataset. PWR and CO have almost negligible
correlation if analyzed in the whole dataset, with r = (+) 0.06, but they have a negative
correlation, seen in values r = (−) 0.52 and r = (−) 0.64, in K-Means Cluster 3 and SOM
Cluster 1, respectively.
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3.6. Unsupervised Learning Uncovers an Impending Anomaly

With the clusters K-Means Cluster 3 and SOM Cluster 1 for LDVs model year 2022
showing peculiar trends relative to the whole dataset, the distributions of clustered data
based on the categorical variables in the dataset were evaluated. These categorical vari-
ables were not used in the unsupervised clustering of the dataset done in the preceding
discussions, but their dominance in the K-Means Cluster 3 and SOM Cluster 1 could help
explain the peculiar CO-vs.-Fuel Economy correlations. Two categorical variables were
found to have dominant levels in K-Means Cluster 3 and SOM Cluster 1: Test Procedure
and Fuel Type. Figure 11 shows a distribution analysis of Test Procedure and Fuel Type in
the whole 2022 dataset and in K-Means Cluster 3. Note that because SOM Cluster 1 is a
subset of K-Means Cluster 3, and because K-Means has a lower misclassification rate (3.32%
in Table 2) than SOM, the distribution analysis used only the clustered K-Means Cluster
3 against the whole dataset. The categorical level codes for the Test Procedure and Fuel
Type are based on the US-EPA coding described in Tables 4 and 5.
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Table 4. US-EPA testing procedure codes and descriptions [16].

Test Procedure Code Test Procedure Description

2
• CVS 75 and later (w/o canister load); Constant Volume Sampler (CVS)-75 is an emission certification driving mode

for gasoline, LPG, and older diesel vehicles

3 • HWFE, which is the Highway Fuel Economy Driving Schedule, represents highway driving conditions under 60 mph

11 • Cold CO, which is the cold temperature testing procedures for measuring CO

21 • Federal Test Procedure (FTP) fuel 2-day exhaust (w/canister load)

31 • Federal Test Procedure (FTP) fuel 3-day exhaust

90
• US06, which is a high acceleration aggressive driving schedule that is often identified as the “Supplemental FTP”

driving schedule

95 • SC03, which is the Air Conditioning “Supplemental FTP” driving schedule
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Table 5. US-EPA testing fuel type codes and descriptions [16].

Fuel Type Code Fuel Type Description

19 • Federal Cert Diesel 7–15 PPM Sulfur

26 • Cold CO Regular (Tier 2)

27 • Cold CO Premium (Tier 2)

30 • Cold CO Diesel 7–15 ppm Sulfur

38 • E85 (85% Ethanol 15% EPA Unleaded Gasoline)

61 • Tier 2 Cert Gasoline

To perform a more comprehensive evaluation of the influence of Test Procedure and
Fuel Type, the datasets for other vehicle model years 2015, 2016, 2017, 2018, 2019, 2020,
2021, and 2023 were also analyzed in the same data analytics workflow applied to model
year 2022 as depicted in Figure 1. This allowed for a trends analysis that leveraged on the
strength of the K-Means algorithm to test the hypothesis that increasing the use of Test
Procedure 11 and Fuel 26 results in a higher tendency to have positive correlation of CO vs.
Fuel Economy. This concept is based on the fact that segmentation of dataset via K-Means
results in more distinct clusters that exhibit particular trends as the number of observations
increases [10,20]. That is, higher percentages of a particular test or fuel type implemented
on LDVs should result in higher chances of their being clustered together due to the higher
dominance of their influence on the features used in clustering. If the influence of a test
procedure or a fuel type is not peculiar, then it should be clustered by K-Means with the
majority of the dataset amid the increasing percentage of its count in the dataset; otherwise,
its peculiar influence would stand out with its increasing count in the dataset. Figure 12
shows the graphical results of this analysis.

The use of Fuel 26 as part of US-EPA’s emissions testing standard fuel set has been
increasing through the years (Figure 12B). The use of Fuel 26 in Test Procedure 11 has also
been increasing through the years (Figure 12C). Applying the concept that the increasing
sample size of a particular treatment can affect the clustering of samples with peculiar
feature trends [20], it can be inferred that Fuel 26 and Test Procedure 11 may have been the
factors behind the positive correlation of CO and Fuel Economy (Figure 12A). Isolating
the effects of each factor may be difficult because Fuel 26 has been increasingly used in
Test Procedure 11 in recent years. Also worth noting is that the originators of the data
samples in the clusters with positive correlation of CO vs. Fuel Economy are the vehicle
manufacturers (see captions of Figures 5 and 8) and not a US-EPA testing center. This
was found in both the LDVs model years 2022 and 2023. Considering that manufacturers
follow established test procedures and use test fuel standards independent of each other
and US-EPA, the independence of sampling was guaranteed in the clustered datasets. This
also eliminates the possible issue of US-EPA testing centers being factors in the peculiar
trends. This leads the inquiry to the chemistry of Fuel 26 being used in Test Procedure 11.
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in the US-EPA emissions test standards, on the positive correlation of CO vs. Fuel Economy. (A) The
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(B) percentage of number of tests that used Fuel 26 in the whole dataset from a vehicle model year;
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LDV tests in the dataset for a model year.

The exact causal relations of these two factors cannot be determined using the datasets
in this work, as strong correlation is not sufficient to model any mechanistic relations of
variables. However, the correlations can be used to warrant some actions by US-EPA,
such as re-evaluating the chemistry of Fuel 26 when it is used in Test Procedure 11. Fuel
26 and test Procedure 11 supposedly simulate a cold start of a vehicle [16]. Previous
works have investigated the case of cold-start emissions and compared the standard lim-
its of California’s LDVs surveillance program and found that the cold-start emissions
in the actual setup produced lower levels than the levels predicted by the standard
model, and concluded that the importance of cold-start emissions may be overstated
in emission inventories [22]. This also leads to the question of how accurate is using
Fuel 26 with Test Procedure 11 in modeling actual driving conditions, and some of the liter-
ature [23] has already demonstrated some techniques in such an inquiry. Such evaluation
may elucidate necessary adjustments to the established testing procedures and standard
fuels [7,8].

3.7. CO vs. Fuel Economy Anomaly in the Big Picture of LDVs Market

The fuel economy of vehicles has been a common parameter used in the valuation
of vehicle performance, not just in the US, but also worldwide [24,25]. Hence, vehicle
manufacturers have been aiming to constantly improve fuel economy ratings. Part of having
these vehicles be available for purchase by consumers, however, is the need for certifications
issued by regulatory agencies such as US-EPA that consider emissions performance in
addition to fuel economy ratings. Emissions performance has been the center of legislative
and regulatory issues; for example, the state of California in the US has been imposing
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stricter emission standards relative to US-EPA standards [26,27]. A higher fuel economy
rating does not necessarily mean a good emissions rating, as shown in this work (Figure 9).
However, emissions ratings are the result not solely of vehicle engine design, but also of the
implemented testing procedures and the test fuels used in testing, as shown in this work
(Figure 11, Tables 4 and 5). Therefore, it is necessary for regulatory agencies to make sure
the test procedures and test fuels are appropriate, especially for LDVs that are averaging
sales of around 70–90 million vehicles per year [2]. Amid the efforts for the massive use of
electric vehicles, the use of petrol-based vehicles is still the largest fraction of transportation
worldwide, especially the LDVs category [28]. Gasoline and diesel are still the major energy
sources, but new technologies are diffusing into the LDV sector in response to fuel efficiency
and emissions standards [29].

If emissions test procedures and test fuel types are found to be not the issue, then the
findings in this work (Figure 9) imply that certain LDVs are emitting higher CO levels at
higher Fuel Economies. The fact that the positive correlation of CO and Fuel Economy
was detected in the test LDVs datasets that meet emissions limits alludes to the questions:
“What is the trend of CO and Fuel Economy in the LDVs that did not meet emissions
limits?” and “Are Test Procedure and Fuel Type still probable significant factors for any
emissions anomaly in the LDVs that did not meet emissions limits?” These are questions
that this work may not be able to answer due to dataset limitations. Nonetheless, the data
analytics workflow demonstrated in this work (Figure 1) would still be appropriate in
answering such questions.

4. Conclusions

This study demonstrated that unsupervised machine learning algorithms PCA, K-
Means, and SOM can elucidate trends in a large collection of testing datasets on vehicle
fuel economy and emissions of LDVs collected by US-EPA. The combined application of
these techniques shows that variable trends for the whole dataset can be different from
the variable trends within certain K-Means and SOM clusters. Among the bivariate trends
that significantly change, the trends between the Fuel Economy and CO emission levels are
evidently significantly different when calculated on the whole dataset and when calculated
in clusters. CO vs. Fuel Economy has a negative correlation in the whole dataset, but it
has positive correlations in certain sample clusters. Upon performing a comprehensive
analysis of datasets for LDVs model years 2015 to 2023, it was found that Test Procedure
and Fuel Type could be the significant factors behind the positive correlation of CO and
Fuel Economy. Specifically, the increasing use of Test Fuel 26 used in Test Procedure
11 was found to be the probable cause. This is an impending anomaly, as the use of Fuel
26 in emissions testing with Test Procedure 11 of US-EPA has been increasing through the
years. With the finding that the clustered data samples with positive CO-vs.-Fuel Economy
correlation all came from vehicle manufacturers that independently conduct the standard
testing procedures, it is suggested that the chemistry of using Fuel 26 in performing Test
Procedure 11 be re-evaluated by US-EPA.
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