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Abstract: The capability of routing power from one phase to another, interphase power flow (IPPF)
control, has the potential to improve power systems efficiency, stability, and operation. To date,
existing works on IPPF control focus on unbalanced compensation using three-phase devices. An
IPPF model is proposed for capturing the general power flow caused by single-phase elements. The
model reveals that the presence of a power quantity in line-to-line single-phase elements causes an
IPPF of the opposite quantity; line-to-line reactive power consumption causes real power flow from
leading to lagging phase while real power consumption causes reactive power flow from lagging to
leading phase. Based on the model, the IPPF control is proposed for line-to-line single-phase power
electronic interfaces and static var compensators (SVCs). In addition, the control is also applicable
for the line-to-neutral single-phase elements connected at the wye side of delta-wye transformers.
Two simulations on a multimicrogrid system and a utility feeder are provided for verification and
demonstration. The application of IPPF control allows single-phase elements to route active power
between phases, improving system operation and flexibility. A simple IPPF control for active power
balancing at the feeder head shows reductions in both voltage unbalances and system losses.

Keywords: distribution system; microgrids; power quality; power system management; power
system reliability; smart grids

1. Introduction

AC power systems employ three-phase power technologies for economic reasons.
Even though power in each phase is naturally independent, i.e., loads are supplied by
the generation of the same phase, the capability for routing power between phases or
interphase power flow (IPPF) control, can improve flexibility and operation for distribution
systems. Power can be routed from heavily to lightly loaded phases for load in-balance
compensation. As a result, system losses can be reduced [1,2] while improving utilization
of power equipment. IPPF control capability also improves the system operation, especially
in microgrids. In critical scenarios, a phase may experience load-generation imbalance
due to line trips or insufficient generation. With IPPF control capability, the power of the
interrupted phase can be routed from the other phases to maintain load-generation balance
and system stability.

Among others, instantaneous symmetrical components [3], current physical com-
ponents [4], and the power unbalance compensation via static var compensators (SVCs)
in [5] are the leading theories related to power routing. However, they only focus on load
balancing and are not applicable for general power routing applications. Moreover, these
theories are developed for three-phase devices and not for single-phase devices.

From the hardware development perspective, line switches and three-phase flexible
alternating current transmission systems (FACTs) are the devices currently considered for
interphase power routing control applications. Line switches and tie-lines can be utilized
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to swap a part of a heavily loaded phase with a part of a lightly loaded phase downstream,
so that the upstream loading is balanced [6–8]. Three-phase FACTs are another group
of versatile devices that emerged in response to the increasing concern regarding power
quality. They can provide reactive power support, voltage regulation, or harmonic compen-
sation. With proper control, devices such as SVCs [5,9] and distribution static compensator
(DSTATCOMs) can also achieve load unbalance compensation [10–13]. Although they
can be used for power routing control, they require additional hardware. With the in-
creasing integration of photovoltaics (PVs) and other distributed energy resources (DERs),
three-phase power electronic interfaces have been proposed for compensation [14–16].
The back-to-back converters connecting asynchronous microgrids to the main distribution
grid are also considered for unbalance compensation in [17]. Even though three-phase
power electronic interfaces are attractive for IPPF control applications, their interphase
power routing capability is limited as they are designed for balanced power operations.
Unbalanced operations may induce unacceptable DC-link voltage fluctuation [18].

The contributions brought in the paper are three fold. Firstly, the IPPF theory is
proposed for modeling the power flow behavior through single-phase devices connected
between two different phases. The proposed model is applicable for constant impedance,
constant current, and constant power elements connected in line-to-line or line-to-neutral
configurations. The second contribution involves the development of control algorithms
governing the IPPF of line-to-line single-phase SVCs and line-to-line single-phase power
electronic interfaces. Additionally, the control is also applicable for the line-to-neutral SVCs
and power electronic interfaces connected at the wye side of delta-wye transformers. Two
control modes are proposed for line-to-line single-power electronic interfaces. The first
mode provides the active and reactive power control of the devices. The second control
mode enables the auxiliary controls including precise power injection and power routing
control of two connected terminals. Lastly, two applications utilizing the coordinated IPPF
controls for improving system operation and flexibility are provided.

The organization of this paper are outlined as follows: In Section 2, the IPPF model is
proposed for modeling the power flow phenomena of single-phase elements. The model
serves as the development framework for the IPPR control of line-to-line single-phase
elements in Section 3. In Section 4, simulations are provided for demonstration and
verification. Finally, Section 5 concludes the paper.

2. Interphase Power Flow via Single-Phase Element

In this section, general power flow phenomena of a single-phase element are investi-
gated and modeled. For generality, single-phase elements are modeled as loads, which can
be categorized into constant current, constant power, or constant impedance loads.

2.1. Interphase Power Flow

IPPF refers to power flow as the result of connecting a single-phase element between
two terminals, a and b. The power flow of interest includes active power (P), reactive
power (Q), and complex power (S). Active power is the power (measured in W) that is
utilized by the element for real work. Reactive power is the power (measured in var) used
to maintain electric and magnetic fields of the element. Complex power (measured in VA)
is the sum of the active power and reactive power (S = P + jQ). The power flow of the
single-phase element modeled in IPPF can be categorized as follows:

1. Complex, active, and reactive power absorption through each terminal: Sa, Pa, Qa, Sb,
Pb, Qb,

2. Total power absorbed by the single-phase element: Sab, Pab and Qab,
3. The difference in the power absorption between two terminals: S∆ab, P∆ab, and Q∆ab.

Positive indicates that the absorbed power on terminal a is higher than terminal b, i.e.,
Pa > Pb, or Qa > Qb.

IPPF from terminal a to b can be represented compactly as (1),
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IPPFab =
[
Pa Qa Pb Qb Pab Qab P∆ab Q∆ab

]t. (1)

The relationship among the power in IPPF can be expressed mathematically as (2)–(5)
and illustrated in Figure 1.

Sab = Sa + Sb, (2)

S∆ab = Sa − Sb, (3)

Sa =
Sab
2

+
S∆ab

2
, (4)

Sb =
Sab
2
− S∆ab

2
. (5)

The power drawn by the single-phase element through each terminal (Sa or Sb) consists
of two parts. The first part (0.5 Sab) is absorbed by the element, which is a half of the total
power (Sab). The other part (0.5 S∆ab), defined as “interphase power routing” (IPPR), is
not absorbed by the load but routed through the load from terminal a to b. It is equal to
half of the power difference between terminals. In the following subsections, the IPPF of
different single-phase load types is investigated. The considered load models are as shown
in Figure 2.
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Figure 1. Interphase power flow model of a single-phase load connected across terminal a and b.
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Figure 2. Physical models of single-phase constant (a) current, (b) power, (c) impedance loads.

2.2. Constant Current Load

Considering that the constant current load in Figure 2a draws in complex currents Ia
and Ib from each terminal, respectively, the current flowing through the load is denoted as
I = Ia = −Ib. By the definition of complex power, the following relations hold:

Sa = Va I∗a = Va I∗, (6)

Sb = Vb I∗b = −Vb I∗, (7)

Sab = (Va −Vb) I∗, (8)

S∆ab = (Va + Vb) I∗. (9)
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The steady-state complex voltages and currents in (6)–(9) can be expressed in rectan-
gular coordinates with subscripts r and i representing the real and the imaginary parts,
respectively, i.e., I = Ir + jIi where Ir and Ii are the real and the imaginary parts of I. As a
result, (6)–(9) can be rewritten as (10),

Pa
Qa
Pb
Qb
Pab
Qab
P∆ab
Q∆ab


=



Var Vai
Vai −Var
−Vbr −Vbi
−Vbi Vbr

Var −Vbr Vai −Vbi
Vai −Vbi −Var + Vbr
Var + Vbr Vai + Vbi
Vai + Vbi −Var −Vbr


[

Ir
Ii

]
. (10)

Apart from depicting the relationship between the steady-state current and IPPF,
(9) and (10) also show that constant current loads cause power differences; IPPR. The amount
of IPPR is proportional to the current magnitude. Furthermore, constant current loads can
trade off between real and reactive IPPR by varying the current angle as shown in (10).
More active power and less reactive power is routed as current aligns more toward Va +Vb.

2.3. Constant Power Load

The model of a constant power load consuming a total complex power of Sab is shown
in Figure 2b. By rearranging (10), the relationship between the constant power load and
IPPF can be obtained in polar coordinate as (11), where V and θ denote voltage magnitude
and angle respectively,

Pa

Qa

Pb
Qb
Pab
Qab
P∆ab
Q∆ab


=



Var Vai
Vai −Var

−Vbr −Vbi
−Vbi Vbr

Var −Vbr Vai −Vbi
Vai −Vbi −Var + Vbr
Var + Vbr Vai + Vbi
Vai + Vbi −Var −Vbr



[
Var −Vbr Vai −Vbi
Vai −Vbi −Var + Vbr

]−1[
Pab
Qab

]
,

=
1

V2
ab



Va cos(θa) Va sin(θa)

Va sin(θa) −Va cos(θa)

−Vb cos(θb) −Vb sin(θb)

−Vb sin(θb) Vb cos(θb)

Va cos(θa)−Vb cos(θb) Va sin(θa)−Vb sin(θb)

Va sin(θa)−Vb sin(θb) −Va cos(θa)+Vb cos(θb)

Va cos(θa)+Vb cos(θb) Va sin(θa)+Vb sin(θb)

Va sin(θa)+Vb sin(θb) −Va cos(θa)−Vb cos(θb)



[
Va cos(θa)−Vb cos(θb) Va sin(θa)−Vb sin(θb)

Va sin(θa)−Vb sin(θb) −Va cos(θa)+Vb cos(θb)

][
Pab
Qab

]
, (11)

=
1

V2
ab

M

[
Pab
Qab

]
=



1
2 Pab
1
2 Qab
1
2 Pab
1
2 Qab

Pab

Qab

0

0


︸ ︷︷ ︸

N

+



uPab

uQab

−uPab

−uQab

0

0

2uPab

2uQab


︸ ︷︷ ︸

U

+



rQab

−rPab

−rQab

rPab

0

0

2rQab

−2rPab


︸ ︷︷ ︸

R

,



Clean Technol. 2021, 3 41

where M =



V2
a −VaVb cos(θa − θb) VaVb sin(θa − θb)
−VaVb sin(θa − θb) V2

a −VaVb cos(θa − θb)
V2

b −VbVa cos(θb − θa) VbVa sin(θb − θa)
−VbVa sin(θb − θa) V2

b −VbVa cos(θb − θa)
V2

ab 0
0 V2

ab
V2

a −V2
b 2VaVb sin(θa − θb)

−2VaVb sin(θa − θb) V2
a −V2

b


, u = (V2

a −V2
b )/2V2

ab ,

r = VaVb sin(θa − θb)/V2
ab and Vab = ||Va −Vb||.

As shown in (11), the constant power load influence over IPPF can be decomposed
into 3 components expressed as separate matrices. They can be interpreted as follows:

1. The first component, N represents the fundamental power distribution of a single-
phase load. It shows that power is drawn equally from both terminals. This component
can be considered the base power flow that does not involve IPPR.

2. The second component, U involves a factor u, which describes how a voltage magni-
tude unbalance causes an IPPR and an uneven power distribution in the base power
flow described above. The power is drawn more from the terminal with the higher
voltage magnitude.

3. The last component, R describes an IPPR as a result of the presence of the opposite
power quantity in a single-phase load. In particular, the real power consumption of
a load (Pab) routes interphase reactive power of rPab from the lagging phase to the
leading phase terminal. On the other hand, the reactive power consumption of a load
(Qab) routes an interphase real power of rQab from the leading phase to the lagging
phase terminal.

The IPPF of a constant power load can be illustrated with the three components as
in Figure 3.

Pab Qab

QΔab/2QΔab/2

Qab/2Qab/2Pab/2Pab/2

PΔab/2PΔab/2

uPabuPab rPabrPab rQabrQab uQabuQab

QΔab/2QΔab/2

Qab/2Qab/2Pab/2Pab/2

PΔab/2PΔab/2

PaPa

QaQa

PbPb

QbQb

QΔabQΔab

PΔabPΔab

Figure 3. Interphase power flow of a constant power load.

Under the assumption that the voltage is balanced and the voltages of terminal a leads
b by 120◦, u and r become 0 and 1

2
√

3
respectively. Hence (11) simplifies to (12), which can

be used to approximate the IPPF of a line-to-line connected constant power load.

Pa
Qa
Pb
Qb
Pab
Qab
P∆ab
Q∆ab


'



1/2 1/2
√

3
−1/2

√
3 1/2

1/2 −1/2
√

3
1/2
√

3 1/2
1 0
0 1
0 1/

√
3

−1/
√

3 0


[

Pab
Qab

]
. (12)
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2.4. Constant Impedance Load

A constant impedance load denoted Zab can be modeled as in Figure 2c with an
admittance of Gab + jBab. IPPF in (11) can be rewritten as (13) where M is as defined in (11).

IPPFab = M
[

Gab
−Bab

]
. (13)

Similar to the constant power load analysis, (13) describes the precise IPPF regardless
of the terminal voltages. However, with a balanced voltage assumption (the voltage angle
of phase a leads phase b by 120◦), (13) is simplified to (14).



Pa
Qa
Pb
Qb
Pab
Qab
P∆ab
Q∆ab


' V2

ab



1/2 −1/2
√

3
−1/2

√
3 −1/2

1/2 1/2
√

3
1/2
√

3 −1/2
1 0
0 −1
0 −1/

√
3

−1/
√

3 0


[

Gab
Bab

]
. (14)

The influence of the constant impedance load is similar to that of the constant power
load. The conductance of the load draws real power equally from both terminals while

routing interphase reactive power ( V2
abGab

2
√

3
) from lagging to leading terminal. On the other

hand, the inductive load (negative susceptance) draws reactive power equally from both

phases and routes interphase real power (−V2
abBab

2
√

3
) from leading to lagging terminal.

2.5. Line-to-Neutral Load

In this section, a line-to-neutral load is analyzed as a special case of a line-to-line load
when one of its terminals is connected to neutral. Without loss of generality, the load is
modeled as a constant power load and terminal b is connected to neutral (denoted n) at
which the voltage is zero. As a result, expression (11) simplifies to (15).



Pa
Qa
Pn
Qn
Pan
Qan
P∆an
Q∆an


=



1
2 Pab
1
2 Qab
1
2 Pab
1
2 Qab

Pab

Qab

0
0


︸ ︷︷ ︸

N

+



1
2 Pab
1
2 Qab

− 1
2 Pab

− 1
2 Qab

0
0

Pab

Qab


︸ ︷︷ ︸

U

+



0
0
0
0
0
0
0
0


︸︷︷︸

R

. (15)

When the neutral voltage is zero, factors u and r in (11) become 0.5 and 0 respectively.
This indicates that power routing control becomes ineffective as R component does not
affect IPPF. Moreover, at the neutral terminal, the IPPR caused by U (−0.5 Pab and−0.5 Qab)
is drawn back to the load by the N component (0.5 Pab and 0.5 Qab). This results in no
power flow at the neutral terminal. However, some power can leak to the neutral network
and small interphase power routing is possible when the neutral voltage is non-zero.
Nevertheless, since neutral voltage in practice can be neglected, the line-to-neutral single-
phase loads do not produce an IPPR between its phase terminal and neutral.
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2.6. Delta-Wye Transformer

The circuit diagram of a delta-wye transformer (Dy1) according to ANSI/IEEE C57.12
is shown in Figure 4. The secondary windings of phase a-n, b-n, and c-n are connected
directly across the primary windings of phase A-C, B-A, and C-B, respectively. As a result,
line-to-neutral loads on the secondary side are perceived effectively as line-to-line loads on
the primary perspective. The IPPF at the delta side of a delta-wye transformer caused by a
phase a load at the wye side can be calculated with (12).

A a

b

c

B

C

n

SanSA

SC

SACSΔAC

Figure 4. A circuit diagram of a delta-wye transformer (Dy1) and the IPPF at the delta winding as a
result of a phase a load on the wye winding.

3. Interphase Power Flow Control

In the previous section, the IPPF models for different load types were developed,
showing that the line-to-neutral elements behind delta-wye transformers and line-to-line
single-phase elements can be utilized for routing power between terminals. The reactive
power of the elements can be utilized to route interphase real power while the real power
can be used for routing interphase reactive power. In this section, control methodologies
are proposed for controlling line-to-line SVCs and power electronic interfaces to achieve
desirable IPPR and IPPF. The controls are developed for the line-to-line elements for
simplicity; however, it is also applicable for line-to-neutral single-phase elements connected
at the wye side of a delta-wye transformer.

3.1. Line-to-Line Static Var Compensator (SVC)

SVCs are shunt devices consisting of reactance bank which may employ either capac-
itors or inductors. In general, SVCs are deployed to provide reactive power support at
selected locations. To provide the desired reactive power support, the corresponding reac-
tive power or reactance is determined and SVCs then adjust their capacitance or inductance
appropriately.

From the IPPF control perspective, SVCs are considered a constant impedance load
with uncontrollable and negligible resistance. According to (13) and (14), interphase
reactive power routing achievable (Q∆ab/2) would also be uncontrollable and small. Hence,
the IPPR control of SVCs will focus only on real power routing. To achieve a desired
interphase real power routing, P∆ab/2, the appropriate reactive power and reactance of
SVCs can be computed precisely by using (16) and (17):

Qab =
V2

abP∆ab − (V2
a −V2

b )Pab

2VaVb sin(θa − θb)
, (16)

Bab = −
P∆ab − (V2

a −V2
b )Gab

2VaVb sin(θa − θb)
. (17)

The reactive power and reactance can also be estimated with balanced a voltage
assumption. From (12) and (14), (18) and (19) can be obtained as follows:
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Qab =
√

3P∆ab, (18)

Bab = −
√

3P∆ab

V2
ab

. (19)

3.2. Line-to-Line Power Electronic Interface

This subsection proposes an online IPPR control for a power electronic interface. The
model of a power electronic interface connected to the grid in line-to-line configuration
is shown in Figure 5. The power electronic interface consists of an inverter, a filter and a
DC link, which is connected to DC power source such as PV, energy storage or an electric
vehicle. Unlike SVCs, power electronic interfaces utilize power electronic gates and PWM
techniques.

Ia , Sa

Vg,a

Vg,b

Filter

Inverter

Ib , Sb

+

-

Vdc

R/2XL/2

Vg

R/2XL/2

Vt

Vt,a

Vt,b

I

Figure 5. Physical model of a single-phase line-to-line power electronic interface.

The overview of the control algorithm is shown in Figure 6. The proposed controller
consists of phase lock loop (PLL) and three hierarchical control loops. The PLL unit serves
as the observer for the system that uses the measurement of physical states to estimate
other states of interest. The estimated states will be prompted for the controllers to utilize.
The outermost controller loop is the IPPF control loop, whose main task is to calculate
the corresponding target AC current flow from a desired IPPF. The current control loop’s
responsibility is to determine the appropriate voltage at the inverter terminal. Finally, the
voltage control loop issues the control signal for the power electronic gates in the inverter
to realize the target voltage set by the current controller.

In the practical implementation, another control for the DC link voltage should also
be considered. However, since this is not relevant for the main functionality, the DC link
voltage control is omitted. In this work, the DC-link voltage is assumed to be perfectly
maintained by a constant voltage source.

Inter-Phase Power 
Flow Control

Current Control Voltage Control

Phase lock loop Plant

Vdq Vdq , Idq

V, I

Idq* vinv*P*,Q*,
PΔ*,QΔ*  

SW1,2 

Figure 6. Interphase power flow control blocks of power electronic interfaces.

3.2.1. Phase Lock Loop (PLL)

Since expression (10) relating current and IPPF can be regarded as a representation of a
synchronous rotating reference frame or d-q domain, the referencing frame is chosen as the
coordinate system for developing the control hence forth. As a result, it is necessary for the
controller to have a means for extracting the states of interest in such coordinate system. This
can be achieved by utilizing second-order-general integrator quadrature signal generator
(SOGI-QSG) to generate quad delay signals [19] and using the Park Transform to convert
the single phase stationary coordinates to the d-q reference coordinates. However, since the
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outputs of SOGI-QSG are instantaneous, the values obtained after Park transformation are
amplitudes. The RMS values can be calculated by dividing the outputs by

√
2.

In this section, d and q components are considered as real and imaginary parts respec-
tively. Furthermore, PLL will regard line-to-line voltage at grid side (Vg) as the reference
for the d-q rotating frame. In particular, the rotating d-q frame shall synchronously align
with Vg such that the q component of Vg will be adjusted to zero. A simple PI controller
achieves alignment. By using the aligned d-q rotating frame as a reference, other properties
of interest in the d-q frame can be determined via Park Transform. The control block of
SOGI-QSG is as shown in Figure 7. The closed loop transfer functions of Vd and Vq are as
shown in Equations (20) and (21). It can be observed that the gain at ω of vd

v is 1 while the
gain of vq

v is −j (90◦ delay of the same magnitude). The gain k determines the closed-loop
bandwidth.

vd
v

=
kωs

s2 + kωs + ω2 . (20)

vq

v
=

kω2

s2 + kωs + ω2 . (21)

ω 

v k × × 

× × 

1

s

1

s

1

s

1

s

+

− +

−
vd

vq

Figure 7. Second-order-general integrator quadrature signal generator control block.

3.2.2. Interphase Power Flow Control Loop

The main purpose of IPPF controller is to determine the target current flowing in the
AC side to attain a desired IPPF characteristic with respect to the real time system voltage.
This can be accomplished by using the inverse of (11), but this method introduces several
challenges. Firstly, as the rank of the transfer matrix is two, only two power quantities
can be chosen for control while the other three dependent power quantities would be
contingently determined and indirectly controlled. The importance of each power quantity
in the control perspective is as follows:

1. Pab determines the active power transfer between the DC side and AC side. An
inappropriate setting of Pab would result in the increase and decrease of the DC link
voltage.

2. Qab determines the total reactive power absorption which may be dispatched from a
centralized controller.

3. P∆ab and Q∆ab relate to real and reactive power routing control.
4. Pa, Pb, Qa and Qb may be selected for precise real and reactive power absorption at

the terminal.

The second challenge is that although there are four candidate control parameters,
(12) suggests that they should not be chosen arbitrarily. Particularly, under balanced volt-
age conditions, interphase real power routing (P∆ab) and total reactive power (Qab) are de-
pendent and interphase reactive power routing (Q∆ab) and total real power (Pab) are depen-
dent. Thus, the two power quantities in each pair should not be selected simultaneously.

Considering the variable importance and dependency, two operation modes and the
corresponding controls are proposed:
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1. In the first operating mode in which the set point of Pab and Qab are given, Pab and
Qab should be selected as the control parameters. When Qab is small, the real power
should be roughly equally distributed between the two phases.

2. In the second mode, power electronic interfaces are utilized for ancillary services such
as IPPF control or precise power absorption or injection. In this mode, two power
quantities of IPPF can be selected for control. To control active and reactive IPPR, P∆ab
or Q∆ab can be selected. For controlling the precise power injection at a connected
terminal, Pa, Pb, Qa and Qb can be selected. However, neither P∆ab and Qab, nor Q∆ab
and Pab should be chosen simultaneously. After the control parameters have been
determined, the corresponding Pab and Qab to achieve the desired ancillary service
can be calculated by using Equation (11). Those values should be limited within the
inverter power rating. Moreover, the AC-DC active power balance should be enforced
to ensure stable DC link voltage.

Regardless of the operation modes, after Pab, Qab have been determined, Equation (10) can
be used to calculate the corresponding target currents, I∗d and I∗q .

3.2.3. Current Control Loop

The purpose of the current controller is to determine the target instantaneous terminal
voltages at the inverter AC side to realize the target current issued by the IPPR controller
given the current system voltage. Since the component in the d-q reference is readily
available, the control is developed using the double synchronous reference frame (DSRF)
control scheme. From Figure 5, the following system dynamics can be derived.

Vg,a −Vt,a =
R
2

Ia +
L
2

dIa

dt
,

Vg,b −Vt,b =
R
2

Ib +
L
2

dIb
dt

.
(22)

These translate to
Vg −Vt = RI + L

dI
dt

. (23)

Also in the d-q domain as
L

dId
dt

= Vg,d −Vt,d − RId + ωLIq,

L
dIq

dt
= Vg,q −Vt,q − RIq −ωLId.

(24)

Following DSRF control scheme, the controller employs 2 PI controllers, one each for d
and q reference frame. From the system dynamics, it can be observed that the coupling term
can be decoupled by using backward compensation. Furthermore, forward compensation
is utilized to cancel out the constant terms (Vg,d and Vg,q) to improve system dynamics.
The control block diagram is as shown in Figure 8. After the target AC inverter terminal
voltage Vd and Vq are obtained, the inverse Park transform is applied to convert the voltage
in d-q coordinates to the instantaneous coordinates.

3.2.4. Voltage Control Loop

After receiving the target instantaneous voltage magnitude, the voltage controller’s
responsibility is to generate the corresponding power electronic gate control signals. The
voltage controller is similar to other general sinusoidal voltage controllers, for example,
employing unipolar sinusoidal pulse width modulation.

4. Simulation and Verification

In this section, the IPPF model developed in Section 2 and the IPPF control proposed
in Section 3 are verified and demonstrated by the simulation of two systems.
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Figure 8. Double synchronous reference frame current control block.

4.1. Multimicrogrid System Simulation

The first simulation is performed in PSCAD to demonstrate the application of IPPF
control for power routing in a multimicrogrid system.

4.1.1. System Description

The system consists of three grid-tied microgrids. The overview of the circuit and the
PSCAD implementation are as shown in Figures 9 and 10, respectively. The first microgrid
(MC1) is connected to the primary feeder through a 4.16 kV/208 V wye-wye transformer. This
microgrid has 2 energy storage devices (ES1 and ES2) and a PV (PV1) connected across phases
A-N, B-C, and A-B, respectively. The second microgrid (MC2) is served by a 4.16 kV/208 V
delta-wye transformer. There are a PV device (PV3), and two ESs (ES3 and ES4) on phase b,
c, and a, respectively. The third microgrid (MC3) is tapped from phase C on primary through
a single-phase 2.4 kV/120–240 V transformer. A PV (PV2) provides distributed generation
on this microgrid. For simplicity, loads are neglected, and all single-phase device ratings are
50 kVA. The initial power flow of the circuits is as shown in Figure 10. All power is provided
from the primary feeder for the line and transformer losses.

a

b

c

A

B

C

a

b

c

A

B

C

4.16 kV

T2: 2.4 kV/ 120-240 V 
100 kVA

T3: 4.16 kV/ 208 V
300 kVA

ES2 ES1ES1
PV1PV1

PV2PV2

PV3PV3
ES3ES3

T1: 4.16 kV/ 208 V
300 kVA

MC 1

MC 3

MC 2

ES4ES4

Figure 9. Multi-microgrid system.
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Figure 10. PSCAD model of the multimicrogrid systems. The multimeters display the initial active and reactive power flow
(in kW and kvar) of the circuit with no power injection from PVs and ESs.
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4.1.2. Interphase Power Flow Control

Three control actions are performed in a chronological order to demonstrate IPPF
application:

1. At 0.4 s, 10 kW from PV3 (on phase B) is routed to charge ES3 (phase C). Additionally,
the steady state active and reactive powers are provided entirely by the devices in the
microgrid, making MC2 self-sufficient. The active and reactive power flow required
for achieving this power routing can be calculated using the approximate IPPF model
(12). The theoretical power flow at the delta-wye transformer is as shown in Figure 11.

2. At 0.6 s, 10 kW from PV2 in MC3 (phase C) is routed to charge ES2 in MC1 (on phase
B-C). ES2 injects 17.3 kvar so that the active power is drawn solely from phase C.

3. At 0.8 s, 10 kW from PV3 in MC2 (phase B) and 10 kW from PV1 in MC1 (phase A-B)
are routed to charge ES1 in MC1 (phase A). The total reactive power required for IPPF
control can be calculated using (12). The reactive power burden for IPPF control can
be distributed evenly among the PVs, requiring 17.3 kvar from each.

A a

b

c

B

C

n

3.33

3.33

3.33

3.33

10 kW

3.33

10 

10 kW

A a

b

c

B

C

n

11.5 kvar

11.5 

5.75 

5.75 

5.75 

5.75 

5.75 kvar

5.75 

5.75 

5.75 kvar

10 

6.66

6.66 

(a) (b)

Figure 11. Theoretical interphase active (a) and reactive (b) power flow at the delta-wye transformer (Dy1) of MC2 as a
result of routing 10 kW from phase B to C at the secondary circuit. The active and reactive power required for IPPF control
are provided solely from the secondary circuit.

4.1.3. Result

Real powers at the main feeder head, the secondary side of the delta-wye transformer
in MC2, the primary A-B winding of delta side of the delta-wye transformer in MC2, and the
secondary side of the Wye-Wye transformer in MC1, and PV1 are shown in Figures 12–16,
respectively. Figure 17 shows the steady-state power flow of multimicrogrid circuit after the
all power routing. Additionally, Figure 18 is the steady-state power flow of the delta-wye
transformer (T3) in MC2 after the first power routing action. The results show that the
proposed IPPF control is effective in routing power between microgrids for achieving the
desired objectives.

After the first control action at 0.4 s, active power is successfully routed from PV3
(phase B) to ES3 (phase C). Figure 18 shows the simulated power flow of MC 2, which matches
with the theoretical power flow in Figure 11. It can be observed that the real and reactive
power utilized for IPPF control is provided from within the microgrid as the power flow at
the primary side of T3 is similar to the initial power flow in Figure 10. Furthermore, the
active power in the secondary circuit is routed between phases successfully through the
primary delta winding as desired according to Figure 11. Figure 14 shows the simulated
active power injection from the A-B winding of the primary side of T3. Before the first IPPF
control action is applied (before 0.4 s), it can be observed that small active power (0.577 kW)
is routed from phase A to phase B due to the reactive power loss in the transformer
winding. After the first IPPF control action, 9.998 kW from phase b in the secondary circuit



Clean Technol. 2021, 3 50

is transferred to the primary A-B winding of T3. The power is then split into two portions,
3.308 and 6.69 kW. Furthermore, 6.69 kW is injected from the A-B winding to the B-C
winding through phase B terminals. The other portion, 3.308 kW, is injected from the
A-B winding through phase A terminal and then routed through A-C winding into B-C
winding. Finally, the total active power in B-C winding of the delta side is transferred to
the c phase in the secondary circuit.

After 0.6 s, the power from PV2 (phase C) in MC3 is routed to charge ES2 (phase B-C)
in MC1. The reactive power of ES2 is controlled for power routing so that the active power
is drawn through phase C only as observed in Figures 15 and 17. IPPF control enables
single-phase elements to regulate their power drawn or injected at each terminal.

After 0.8 s, active power from PV1 and PV3 is routed to charge ES1. Since IPPF control
for active power routing utilizes reactive power, the main active power operation of the
participant is not interrupted. PV1 and PV3 can generate the active power while also
utilizing their reactive power for IPPF application. Furthermore, the reactive power burden
can also be shared among participant devices in MC1 and MC2.

Figure 12. Feeder head active power shows that the power is shared between the multimicrogrid
system effectively without requiring the power from the feeder head.

Figure 13. Active power at the wye side at the delta-wye transformer (Dy1) of MC2. Active power in
phase A, B and C are labeled as Pa, Pb, Pc, respectively.
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(1) 

Pb = 0.577k
Pab = 0

Pa = 2.731k = -0.577k + 3.308k
 

Pb = 7.267k = 0.577k + 6.69k
 

Pab = 9.998k 

Pa = -0.577k

Pab = 19.998k
      = 9.998k + 10k

Pa = 12.661k
     = 2.731k + 9.93k 

Pb = 7.337k
     = 7.267k + 0.07k 

(3) 

Figure 14. Active power across A-B winding at the delta side of T3. Active power injection to
terminal A, B, and total power are labeled as Pa, Pb, Pab, respectively.

Figure 15. Active power at the secondary side at the wye-wye transformer of MC1. Active power in
phase A, B and C are labeled as Pa, Pb, Pc, respectively.

Figure 16. Active power of PV1 in MC1. Active power injection to phase A, B, and total power are
labeled as Pa, Pb, Pab, respectively.
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Figure 17. PSCAD simulation shows the active and reactive power flow (in kW and kvar) of the multimicrogrid system
after all power routing actions. (1) Within MC2, 10 kW from PV3 (phase B) is routed to ES3 (phase C), (2) 10 kW from PV2 in
MC3 (phase C) is routed to charge ES2 in MC1 (on phase B-C), and (3) 10 kW from PV3 in MC2 (phase B) and 10 kW from
PV1 in MC1 (phase A-B) are routed to charge ES1 in MC1 (phase A).
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Figure 18. PSCAD simulation shows the active and reactive power flow (in kW and kvar) of Microgrid 2 after the first
power routing action. 10 kW from phase B is routed to C at the secondary circuit. The active and reactive power required
for IPPF control are provided solely from the secondary circuit.

The results in this simulation verify the IPPF models and controls developed in
Section II and III. Furthermore, the simulation demonstrates the potential of IPPF control
application for improving the system operation and equipment utilization of a multiphase
microgrid and multimicrogrid systems. Within a microgrid, the generation of a phase
can be routed to the designated equipment in another phase. IPPF control also enables
the resources of multiple microgrids to be shared effectively despite the different phase
connections from the primary. In addition, the simulation shows that real power routing
as an ancillary function does not interrupt the main real power operation of the power
electronic interfaces. Lastly, the reactive power burden required for IPPF control can be
shared among the participating devices in different microgrids.

4.2. Distribution Feeder Simulation

In this simulation, a simple IPPF control is applied to a distribution circuit for balancing
the active power at the feeder head. The control effectiveness and the impacts on system
voltage unbalance and loss are evaluated. The simulation is performed in the Matlab—
OpenDSS environment.

4.2.1. System Detail

The simulation circuit is a 12 kV distribution feeder of a utility. The one-line diagram
is plotted in Figure 19 using GridPV tool [20]. This feeder is served by a 25 MVA, 69/12 kV,
wye-wye connected substation transformer. The circuit has unbalanced loads of 2795,
3216, 3260 kW, in phases A, B, and C, respectively. Additionally, there are 215 single-phase
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PVs generating a total power of 1806, 916, 716 kW, in phases A, B, and C, respectively.
With loads and PVs connected, the total power at the feeder head is 953.4 + j 692, 2369.8 + j
1104.5, 2572.6 + j 1152.6 kVA as shown in Figure 20a. It can be observed that this power
unbalance is the result of the lightly loaded conditions and high PV penetration in Phase A
in comparison to the other phases. The distribution of the voltage unbalance of all buses is
shown in Figure 21 under “base case” scenario. Voltage unbalance of most buses is in the
range 0.8–1.6% with an average of 1.2%. A few buses have voltage unbalance below 0.8%.
These buses are located near the substation where voltage is balanced. In general, it can be
observed that the farther away from the feeder head, the higher the voltage unbalance.

Figure 19. One-line diagram of the distribution circuit shows the locations of the PVs (PVs),
line-to-line power electronic interfaces connected across A-B phase (A-B devices) and C-A phase
(C-A devices), and capacitor banks.

Figure 20. Substation active and reactive power flow in (a) base case, and (b) Case 2.



Clean Technol. 2021, 3 55

For IPPF control application demonstration purpose, it is assumed that there are 130
single-phase power electronic interfaces connected across each A-B and A-C phase. These
devices can inject or absorb 12 kvar for IPPF control application. In addition, 5150-kvar
capacitor banks across A-C phase are assumed to be connected at the primary feeder. These
capacitor banks can be used in conjunction with the power electronic interfaces to share
the IPPF control burden.

4.2.2. Interphase Power Flow Control

Three scenarios are considered for evaluating the IPPF control. The first scenario,
“base case”, is the original feeder without IPPF control. This scenario will serve as the
baseline for comparison.

In the second scenario, denoted “Case 1”, a simple IPPF control is implemented for
routing active power from phase A to phase B and C so that the active power is balanced
at the feeder head. The total reactive power requirement for IPPF application is calculated
using (12). This reactive power burden is then shared evenly among all IPPF control devices;
10.4, −10.7 and 150 kvar is required from each A-B and A-C phase IPPF control device and
capacitor bank, respectively.

The third scenario, denoted “Case 2”, has IPPF control implemented the same as Case
1. In addition, the existing PVs are utilized for power factor correction so that power factor
is unity at the feeder head. The reactive power requirement for power factor correction is
calculated from the result of Case 1 and shared evenly among the PVs.

4.2.3. Simulation Results

The active and reactive power at the feeder head and the voltage unbalance distribu-
tion of all scenarios are summarized in Table 1 and Figure 21, respectively. In Case 1, the
power at the feeder head becomes 1988.7 + j 366, 1906.1 + j 1767.3, and 1926.3 − j 32.1 kVA
in phase A, B, and C, respectively. The system loss is reduced by 4%. The active power
becomes balanced as expected after IPPF control. The reactive power is reduced in phase
A and C, while increased in phase B. The reactive power remains unbalanced as it is not
controlled and utilized for active power routing.

Figure 21. Voltage unbalance distribution of base case, Case 1 with IPPF control, and Case 2 with
IPPF control and PF correction.
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Table 1. Active and reactive power at the feeder head of base case, Case 1 and Case 2.

Feeder Head Power

Scenarios Active Power (kW) Reactive Power (kvar)

Pa Pb Pc Qa Qb Qc

Base case 953.4 2369.8 2572.6 692 1104.5 1152.6

Case 1 1988.7 1906.1 1926.3 366 1767.3 −32.1

Case 2 1980 1944.9 1955.2 −11.2 −90.7 −9.8

As observed in Figure 21, the average voltage unbalance is reduced from base case
to 1%. Furthermore, significant voltage unbalance reduction is observed for the buses
further away from the substation (voltage unbalance greater than 50th percentile). This
demonstrates the effectiveness of performing unbalanced compensation in a distributive
manner. Power unbalance is compensated throughout the system and voltage unbalance is
improved throughout the system rather than a few locally.

In Case 2, the substation power after power routing is as shown in Figure 20b. Both
active and reactive power at the feeder head becomes balanced: 1980 − j 11.2, 1944.9 − j
90.7, 1955.2 − j 9.8 kVA in phase A, B, and C, respectively. Significant improvement can be
observed in system loss and voltage unbalance. System loss is reduced by 14% while the
average voltage unbalance is reduced to 0.2%. Compared to Case 1, balance in both active
and reactive power is achieved by using the line-to-neutral PVs to complement the IPPF
control devices. The line-to-neutral PVs help compensate the reactive power in each phase
which is not controlled in the IPPF control.

The simulation in this section demonstrates the effectiveness of the simple IPPF control
in balancing the active power at the feeder head. The resulting system shows improvement
in both voltage unbalance and system loss. The voltage unbalance of all buses show
improvement rather than a few locally as the unbalance compensation is performed in a
distributed manner throughout the circuit. Moreover, the line-to-neutral devices can be
utilized to control or compensate the reactive power which is regulated in the active power
routing. With both IPPF control and power factor correction, significant voltage unbalance
and system loss is observed.

5. Conclusions

In this work, the power flow phenomena of single-phase elements were investigated
and modeled as IPPF. The analysis showed that IPPF can be decomposed into three
components: the fundamental power of the single-phase elements which is drawn equally
from each terminal, the IPPR caused by voltage unbalance, and IPPR caused by the presence
of the opposite power quantity. The last component is the key that enables IPPF controls
for (1) line-to-line single-phase elements and (2) line-to-neutral single-phase elements that
are connected at the wye side of delta-wye transformers.

Based on the developed model, the control for line-to-line SVCs and power electronic
interfaces was proposed for achieving a desired IPPR or IPPF. For SVCs, the determination
of the appropriate reactive power and reactance for achieving the desired power routing
was proposed. For the power electronic interfaces, two operation modes along with the
hierarchical controls were proposed. In the first mode, the total power of the power
electronic interfaces is controlled. In the second mode, ancillary functions including precise
power injection and interphase power routing control were developed.

The developed models and control effectiveness were verified and demonstrated
through two simulations. In the multimicrogrid system simulation, IPPF control was
implemented to improve system operations and flexibility by directing the active power
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from a phase of a microgrid to the desired device in another phase of another microgrid.
The main active power operations of the controlled devices are not interrupted while the
devices are utilized for IPPF control. Furthermore, the control burden can be shared among
multiple participants for distributed control. In the second simulation, a simple IPPF
control was applied to a utility distribution circuit to balance the active power at the feeder
head. Results showed reductions in both system voltage unbalance and losses.

Future work should explore improved coordination for IPPF controls to further en-
hance the operation and resiliency of distribution systems and microgrids. In addition to
the line-to-line single-phase elements, other devices should be investigated for potential
IPPF control utilization. The performance of the future IPPF controls should be improved
with more complex dispatch schemes. Reactive power routing and limitations of IPPF
devices such as energy and power availability should be considered.
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