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Abstract: As the power output of direct drive generators increases, they become prohibitively large
with much of this material structural support. In this work, implicit modeling was coupled to finite
element analysis through a genetic algorithm variant to automate lattice optimization for the rotor of
a 5 MW permanent magnet direct drive generator for mass reduction. Three triply periodic minimal
surfaces (TPMS) were chosen: Diamond, Schwartz Primitive, and Gyroid. Parameter and functionally
graded lattice optimization were employed to reduce mass within deflection criteria. Inactive mass
for the 5 MW Diamond, Schwartz Primitive, and Gyroid optimized designs was 10,043, 10,858, and
10,990 kg, respectively. The Schwartz Primitive rotor resulted in a 34% reduction in inactive mass
compared to a 5 MW baseline design. Radial and axial deflections were below the critical limit of 0.65
and 32.17 mm, respectively. The lowest torsional deflection was seen in the Schwartz Primitive TPMS
lattice at 3.89 mm. Based on these designs, hybrid additive manufacturing with investment casting
was used to validate manufacturability in metal. A fused deposition modeling (FDM) TPMS topology
was printed for validation of the FEA results. Comparison between digital image correlation of
the FDM printed design and FEA design resulted in a 6.7% deformation difference for equivalent
loading conditions.

Keywords: permanent magnet direct drive generator; additive manufacturing; structural optimiza-
tion; implicit modeling; TPMS lattices; generative design

1. Introduction

As of 2019, wind energy provided 7.2% of the US electricity supply and is projected to
grow to 12.5% by 2050 [1]. Further research into wind turbine generator design will enable
higher powered machines with cost savings to drive down the levelized cost of electricity
and further increase wind penetration into the electricity grid.

In a direct drive generator, the gearbox is removed with direct coupling of the blade
shaft to the generator. This is of particular interest as it can lead to improved reliability
and lower levelized cost of energy by removing expensive gearbox replacements and
transmission losses [2]. However, high torque is needed in order to maintain high power
output at lower rotational speeds (8–15 rpm). With fixed current density, this requires a
large outer diameter [3]. For a 5 MW direct drive generator, the structural mass can be
up to 80% of its entire weight [4]. This large mass poses a particular concern for offshore
installation where direct drive generators hold potential for greater reliability. As a result,
much research has focused on reducing structural material mass. Zavvos et al. used
commercial shape optimization (ANSYS) resulting in 20% mass reduction of a 5 MW
permanent magnet direct drive (PMDD) generator [5]. Research into reducing structural
mass through shape optimization has lacked a link to manufacturing these large complex
designs on a large scale. Mueller et al. [6] developed a C-core electromagnetic topology with
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both longitudinal and transverse flux paths whose placement negates magnetic loading
leading to 55% lower mass for a prototype 100 kW machine.

Lattice structures have garnered attention due to their ability to produce high strength
to weight ratios. Nature holds many examples of lattices. Metals exhibit crystal structures
including body centered cubic and face centered cubic lattices [7]. Bees create a honey-
comb lattice in order to maximize packing ratio with minimal material [8]. Endoplasmic
Reticulum and mitochondrial membranes depict gyroid and diamond lattice structures
during cellular stress, though biological significance of this behavior is unknown [9]. Triply
periodic minimal surfaces (TPMS) such as a Gyroid, Diamond, and Schwartz Primitive
are mathematical surfaces which are invariant under a rank three lattice of translation. In
simpler terms, they contain three axis of symmetry, locally minimize their surface area, and
are an area of study for structural lightweighting. TPMS lattice functions of arbitrary cells
and volume fractions are obtained by finding the isosurfaces of the TPMS equations [10,11]:

UGyroid = cos(kxx)sin(kyy) + cos(kyy)sin(kzz)+

cos(kzz)sin(kxx)− t
(1)

UDiamond = sin(kxx)sin(kyy)sin(kzz)+

sin(kxx)cos(kyy)cos(kzz)+

cos(kxx)sin(kyy)cos(kzz)+

cos(kxx)cos(kyy)sin(kzz)− t

(2)

USchwartzP = cos(kxx) + cos(kyy) + cos(kzz)− t (3)

The isosurface becomes the boundary between solid and void regions and ki determines
the periodicity given by Equation (4). The value of ki determines the periodicity and is
broken down into ni, the number of cell repetitions in each direction, and Li, the absolute
size of the structure in each direction.

ki = 2π
ni
Li

(where i = x, y, z) (4)

With advances in additive manufacturing, TPMS structures are able to be manufac-
tured leading to increased research on their potential engineering utility. These structures
are challenging to manufacture through conventional means due to internal cavities and
overlapping features. However, TPMS structures have high specific strength and energy
absorption making them advantageous for structural support [12]. They are easily fab-
ricated using additive techniques such as fused deposition modeling, polyjet material
deposition, or selective laser sintering. Maconachie et al. [12] utilized fused deposition
modeling with Gyroid TPMS structures in order to develop design rules governing its
structural properties. Vanez et al. [13] used electron beam melting of Ti-6Al-4V for human
cancellous bone implants finding greatest strength to weight ratios for strut angles under
35◦. Maskery et al. [10] found that the Schwartz Primitive TPMS had an elastic modulus
2.06 times that of the Gyroid TPMS. This is supported by previous work by Afshar et al.
who found the ratio to be 1.94 [14]. Furthermore, it was seen that the Schwartz Primi-
tive structures depict stretching dominated deformation while the Gyroid and Diamond
structures showed bending dominated deformation. Despite a higher elastic modulus,
the Schwartz Primitive TPMS had highly localized plastic deformation, structural buck-
ling, and low failure strain. This suggests the Schwartz Primitive may perform best in
high strength applications where one loading direction dominates. These studies indicate
an optimal TPMS support structure strongly depends on multiple parameters including
periodicity, strut angle, strut thickness, and cell size.

Additive manufacturing (AM) has enabled the design of extremely complex geome-
tries with fewer design rules [15,16]. Internal structures [17], increased surface area [18],
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conformal cooling passages [19], and lattice structures [20–25] can be manufactured just
as easily as simple, planar parts. Now, optimization methods and structural analysis can
be coupled to create designs catered for functionality. For example, Haertel et al. [26]
used topology optimization to create an air cooled heat exchanger that had a 71% greater
conductance per unit volume. These designs had tendril-like structures impossible to man-
ufacture without additive manufacturing. However, additive manufacturing of extremely
large structures is limited due to machine size. This is especially true for metal additive
manufacturing techniques such as laser metal deposition (LMD) [27], direct metal laser
sintering (DMLS) [28], and electron beam melting (EBM) [28],

To fully take advantage of additive manufacturing, components must be optimized for
functionality. Two main optimization approaches are parameter optimization and topology
optimization. The first [29,30], takes a given number of inputs and uses any deterministic or
stochastic optimization scheme in order to iterate parameters towards an optimal solution.
This includes genetic algorithms, particle swarm approaches, and Monte-Carlo analysis.
The former [31–34], uses a numerical process to add or remove material penalizing for
discontinuous or disadvantageous structures while simultaneously calculating the strain
field in order to minimize or maximize an objective function. The typical structural
compliance problem has two conflicting conditions, for example, maximizing stiffness
while minimizing mass where an optimal condition exists with the maximum stiffness at
minimum mass. Theoretically, a topology optimized approach should achieve a global
minima or maxima; however, many times, convergence leads to local minima. In this
case, a different approach is needed. Daynes et al. [35] combined both methods by using
topology optimization to remove unnecessary material and then applied a strain optimized
lattice structure from finite element analysis (FEA) results to reduce compliance of a bracket
by 13% and improve manufacturability. This study employs a genetic algorithm variant for
parameter optimization coupled with implicit modeling to control the topology of complex
lattice structures for PMDD generator inactive mass.

Large electric machines are a good application space of structural optimization using
minimal surfaces due to their large size and reliance on structural support for functionality
(such as maintaining a 5 mm air gap radius on a 5 m machine). Specifically, we look to
the rotor of wind turbine direct generators for mass reduction using implicit structural
optimization. Advances in lightweighting and modeling complex lattices holds promise
for further mass reduction of these generators.

Past structural mass reduction attempts have focused on electromagnetic topology
design changes [6], optimization with 1D models [4,36] or low resolution topology opti-
mization [5]. This study attempts to further reduce structural mass of PMDD generators
by improving rotor design through evolutionary structural optimization with implicitly
generated triply periodic minimal surfaces. We combine advances in implicit modeling
and understanding of triply periodic minimal surfaces with finite element analysis using a
closed loop evolutionary algorithm in order to create a tool for lightweighting PMDD rotors
with TPMS structures. To the authors’ knowledge, this research is the first implementation
of optimizing TPMS structures for large electric machine design.

This research will explain implicit modeling as used for PMDD generators as well
as the loading condition methods and lattice optimization and simulation techniques.
Experimental validation with digital image correlation on a scaled part will be explained.
Results and discussion of the genetic algorithm lattice simulation and functional grading
are then depicted showcasing the mass savings associated with TPMS lattices for wind
turbine generators.

2. Materials and Methods
2.1. Implicit Modeling

Implicit modeling eliminates the need for faces,vertices, and edges by representing
the boundary between solid and void regions through a signed distance function. It is
orders of magnitude faster than traditional CAD methods as operations are performed
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on the function representation and then sampled at varying resolutions for visualization.
Consider the implicit equation of a torus in Equation (5).

(
√

x2 + y2 − R)2 + z2 = r2 (5)

where x, y, z are Cartesian coordinates, R is the major radius, and r is the minor radius.
In order to transform this equation into an boundary defined implicit representation of a
torus, we normalize by the minor radius and evaluate to zero (Equation (6)).

F(x, y, z) =
(
√

x2 + y2 − R)2 + z2

r2 − 1 (6)

In this form, evaluation of the implicit function for x,y,z resulting in values greater
than zero define void regions, less than zero indicate regions inside the part, and equals
zero indicates the boundary between part and void (Figure 1). Software package Ntopology
Element [37] was used for lattice implicit modeling of all lattices. Three minimal surfaces
were explored in this study: Gyroid, Schwartz Primitive, and Diamond.

Figure 1. (a) B-rep representation of a torus (b) Implicit modeling of a torus as a signed distance field
where F < 0 indicates part, F = 0 indicates boundary, F > 0 indicates void.

2.2. Rotor Loading Criteria

Three main forces act on the rotor during operation seen in Figure 2. Due to its low
speed (8–15 rpm), a high torque exists which is the useful work to produce electricity. Due
to electromagnetic interactions, a normal component of the Maxwell stress acts radially
outward. Finally, gravity acts on the entire structural and cannot be neglected due to
the large mass of a PMDD generator. Load values used in this study agree with those
used in the literature for a 5MW radial flux (RF) PMDD machine [4,36]. The normal
component of the Maxwell stress was assumed to be 0.2 MPa, the shear stress arising from
the torque 40 kPa, and a gravitational acceleration of 9.81 m/s2. The 5 MW deflection
criteria were determined such that the radial deflection was less than 10% of the air gap
diameter (to avoid closing the airgap), the torsional deflection less than 0.05◦ angle of twist
(to prevent shear failure), and the axial deflection less than 2% the axial length (to prevent
transportation damage). For our 5 MW machine this results in a maximum radial, torsional,
and axial deformations of 0.65, 2.84, and 32.17 mm, respectively. For FEA analysis, the
rotor was assumed to be homogeneous and isotropic and made out of structural steel with
an elastic modulus of 200 GPa, Poisson ratio of 0.28, and density of 7850 kg m−3. The rotor
was assumed to be well cooled and thermal effects assumed to be mitigated.
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Figure 2. Structural loads of a 5 MW Radial Flux PMDD machine with critical limits.

2.3. Lattice Optimization and Simulation

Implicit lattice creation and functionally graded lattices were performed using the
software package nTopology Element [37]. This was selected due to its ability to quickly
create large lattice structures, high parametrization of the lattice for complete control,
ability to input custom lattices, and API interface with python. A cylindrical TPMS lattice
was used. Shear loads, large problems, precise material control, and nonlinearity are a
challenge within nTopology. Therefore, once the lattice was generated, it was exported
to Abaqus [38] for structural analysis. TPMS optimization is challenging due to high
computational costs for large structures spanning multiple length scales. In this case, to
capture the lattice structures, length scales of three orders of magnitude were needed
(≈10−2 to 101 m). A genetic algorithm (GA) variant and custom linkage was employed in
python to connect nTopology and Abaqus in order to conduct parameter optimization to
adjust the lattice parameters towards a more optimal solution (Figure S2). A GA was used
due to the large sample space and expectation of many local minima as mass is minimized
while stiffness maximized. A genetic algorithm generates individuals in a population
with genes representative of parameters. Variability is introduced through parameter
crossover in mating individuals and through random mutation. The GA variant used is
shown in Figure 3. In this case, variability was increased to reduce the likelihood of local
minima by introducing new random individuals in each generation. The presence of many
local minima would hinder traditional gradient based approaches. The GA approach was
compared to random sampling and found to converge faster and with an overall lower
fitness score (Figure S3). The optimization scheme is shown in Figure 4. A mesh analysis
was performed and a 35 mm mesh element size selected for maximum feature resolution
at lowest computational resource usage (Figure S1). An additional mesh analysis was
performed at the conclusion of each optimization step with results indicating less than
5% change in deflection with increasing mesh size past 35 mm. The GA is performed
for three minimal surfaces: Gyroid, Schwartz Primitive, and Diamond. After parameter
optimization, the strain field in the weakest direction (torsional for this study) was used as
an input field to selectively thicken or thin the lattice structure. This functionally graded
lattice was used to further optimize the TPMS structure. Functionally graded lattice
optimization was performed for each minimal surface to determine the final designs.
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Figure 3. Flow chart depicting genetic algorithm procedure.

Figure 4. (a) Optimization scheme combining FEA and lattice generation with genetic algorithm
(b) Visualization of three lattice types used in implicit optimization.

2.4. Hybrid Additive Manufacturing

Many minimal surface geometries are impossible to manufacture through conven-
tional approaches (CNC, Lathe, Mill) due to internal curvature and cavities. Metal additive
manufacturing enables these complex surfaces but is limited in size. GE’s Spectra L,
the largest electron beam melting machine, maintains a diameter of 350 mm and height
of 430 mm [39]. GE’s X Line 2000R is similarly the largest direct metal laser sintering
(DMLS) machine with a build chamber of 800 × 400 × 500 mm [40]. Both fall short for
manufacturing large PMDD generators as found in commercial wind turbines which can
have diameters of 6 m for a 5 MW machine. This study explores manufacturing methods
combining additive technologies with traditional techniques such as casting, a process
known as hybrid additive manufacturing. Hybrid additive manufacturing can be used to
economically manufacture these large complex lattices. For proof of concept, investment
casting of a wax-impregnated fused-deposition modeling part was carried out by the Art
Castings of Colorado [41]. Successful investment casting of the complex minimal surface
geometries suggests extension to other hybrid additive manufacturing technologies such
as powder-binder jetting for large scale sand casting. Typically, the rotor is made of struc-
tural steel. Due to material availability, proof of concept hybrid AM-casting was done
with bronze.
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2.5. Experimental Validation

In order to validate the FEA model, digital image correlation (DIC) was used for a
prototype part fabricated with an FDM printer (Raise 3D, Irvine, CA) with PLA. PLA was
chosen for ease of manufacturing. Small deformations result in a linear elastic behavior.
This suggests that only material properties and shape will influence deformation results
under a given loading scenario. For this reason, the PLA printed model simply loaded
with a torque arm was used to validate simulation accuracy. A simulation matching the
FDM printed loading scenario was ran on a scaled (200 mm diameter) optimized Schwartz
Primitive design with PLA material properties. These results were validated with DIC
of the same printed PLA model. A torsion arm and shaft were printed concurrently to
allow loading and support of the part. The final printed part can be seen in Figure S6. A
Canon Rebel 12.2 MP camera with a resolution of 83 µm per pixel was used with open
source software DICe [42]. A speckle pattern was applied with white and black spray
paint. A known mass was loaded on the torsion arm and full field 2D strain data captured
through DIC. PLA material properties for the specific filament were validated through
tensile testing of the exact prototype part printing conditions as seen in Figure S4 and
shown to agree with manufacturer data.

3. Results and Discussion
3.1. Simulation

A structural optimization tool using parameter optimization with an evolutionary
algorithm was developed for wind turbine PMDD generator rotor optimization. First,
parameter optimization with the GA resulted in proper lattice parameters subject to fitness
criteria. Next, these optimized lattices were further optimized by selective thickening or
thinning of the lattice thickness according to the strain field. At the end of each minimal
surface and GA run, a mesh study was ran on the final design to determine convergence
as the simulations were originally ran with a courser mesh to reduce computational load
(Figure S1). Compared to random sampling, the GA reached a more optimal solution with
a significantly lower fitness score with fewer generations (Figure S3).

3.1.1. GA Optimized Minimal Surfaces

For each minimal surface, seven different parameters were varied shown in Figure 5.
The outer ring radius (the amount of radial material around the shaft), the lattice depth
(how much of the space in the thickness of the rotor the lattice was allowed to fill), the
number of circumference repetitions (the periodicity of the lattice), the radius cell size (the
radius of a unit cell in cylindrical coordinates), the radius cell height (the height of the unit
cell in cylindrical coordinates), the lattice cell thickness (the thickness of the lattice support
material), and the bias length (the radial offset of the unit cell). The rotor ring outer radius
and thickness of the rotor back iron was fixed for a 5 MW machine at 3254 and 66 mm,
respectively and the axial length 1609 mm allowing comparison with past literature [36].

For the GA, first, a random population with seven chromosomes representing the
seven parameters was initialized. Next, a given number of individuals were selected to
mate with a central chromosome crossover point. Mutations were introduced in these
offspring randomly impacting one parameter. To increase randomness, two randomly
generated individuals were added to the population pool. Finite element analysis was
used to calculate deflections and mass in order to determine each individual’s fitness score
(Equation (7)). A given number of individuals with the lowest fitness score were then
selected as parents to begin the process again and the cycle repeated 200 generations to
ensure convergence.
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Figure 5. (a) Lattice parameters used in minimal surface optimization (b) Parameters used in
functionally graded lattice optimization.

F(Optimal) = min(C1FRadial + C2FTorsional+

C3FLattice + C4FInnerring)
(7)

FRadial =
δradial − δradialcrit

δradialcrit

(8)

FTorsional =
δtorsional − δtorsionalcrit

δtorsionalcrit

(9)

FLattice =
Mlattice

Mouterring

(10)

FInnerring =
Minnerring

Mouterring

(11)

The individual deflection fitness functions (Equation (8)–(11)) were normalized to their
critical limits and the lattice and inner ring mass fitness functions relative to the constant
outer ring mass. δradial represented the radial deformation of the TPMS new design with
δradialcrit

representing the critical radial limit seen in Figure 2. The same nomenclature was
used for the torsional deflection. Mlattice represents the lattice mass with the lattice mass
fitness score subset found by normalizing the lattice mass to the rotor active mass (outer
ring mass). The inner ring fitness score subset was found by dividing the mass of the
inner ring (Minnerring ) by the mass of the rotor outer ring (Mouterring ). The constants were
used as weighting parameters to assign relative importance of each fitness criteria. For
TPMS parameter optimization, mass was selected as the highest fitness score contributor
by selecting radial and torsional weighting constants as 1, the lattice mass weighting factor
as 10, and the inner ring weighting factor as 20 (C1 = 1, C2 = 1, C3 = 10, C4 = 20). These



Clean Technol. 2021, 3 235

factors ensured a unit change in mass reflected a stronger fitness score variation preventing
an optimal solution by simply minimizing deflection with high mass. These constants were
chosen experimentally.

Results of the parameter optimization for each minimal surface as well as the cor-
responding design is given in Figure 6. The Diamond, Schwartz Primitive, and Gyroid
TPMS lattices had a total inactive mass (mass only for structural support—the inner ring
and lattice) of 10,928, 9903, and 10,063 kg, respectively. The reference mass of the 5 MW
spoked arm rotor was 16450 kg with a radial, torsional, and axial deflection of 0.56, 2.36,
and 0.20 mm, respectively [36]. Radial deflections were 0.53 mm for the Diamond TPMS,
0.51 mm for the Schwartz Primitive TPMS, and 0.58 mm for the Gyroid TPMS. Torsional
deflections for Diamond, Schwartz Primitive, and Gyroid TPMS lattices were 5.76, 5.46 mm,
and 6.96 mm, respectively. Axial deflections were well below the critical limit of 32.17 mm
and were 3.49 mm for Diamond, 1.10 mm for Schwartz Primitive, and 0.94 mm for Gyroid
TPMS lattices. The parameter optimization of all three minimal surfaces resulted in up to
40% inactive mass savings from the spoked arm design; however, the torsional deflection
for all three was above the deflection criteria of less than 0.05◦ angle of twist (2.84 mm).

Figure 6. Results of TPMS parameter optimization (a) Top view of Diamond rotor (b) Side view of
Diamond rotor (c) Top view of Schwartz Primitive rotor (d) Side view of Schwartz Primitive rotor
(e) Top view of Gyroid rotor (f) Side view of Gyroid rotor (g) Tabulated Results of TPMS parameter
optimization.

3.1.2. Functionally Graded Lattice Optimization

In order to reduce the torsional deflection without sacrificing mass savings, function-
ally graded lattice optimization was performed on the best previous parameter optimized
design. Note that it was necessary to run this secondary analysis as a separate optimization
cycle and not concurrent with the first in order to first obtain design specific nodal strain
profiles and create functionally graded lattices. Nodal strain data were extracted from finite
element results and the torsional strain isolated and converted to millimeters of deflection.
Next, the nodal torsional strain data were converted to a torsional strain field. The torsional
strain field was then used to selectively thicken or thin the lattice at all nodal points. By
using the torsional strain field, optimization of the field ramp values caters specifically
to minimizing torsional deflection while maintaining mass savings. Optimization was
performed using the same GA discussed previously. The best lattice parameters for each
TPMS were fixed and only the ramp in minimum (FEA torsional deflection to begin field
ramp), ramp in maximum (FEA torsional deflection to end field ramp), ramp out minimum
(minimum lattice cell thickness to begin ramp), and ramp out maximum (maximum lattice
cell thickness to end ramp) were optimized (Figure 5). As an example, a ramp in minimum,
ramp in maximum, ramp out minimum, and ramp out maximum values of 1.06, 0.00,
29.93, and 72.48 mm, respectively for the Schwartz Primitive TPMS indicates the lattice cell
thickness will vary at radii with FEA torsional deflections between 0 and 1.06 mm with
decreasing lattice thickness radially outward from 72.48 mm to 29.93 mm. This means in
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order to minimize torsional deflection, the thickest portion of the lattice is near the center
and then gradually thins with increasing radius to a minimum value.

After functionally graded lattice optimization, radial deformations for the Diamond,
Schwartz Primitive, and Gyroid TPMS lattices were 0.67, 0.64 and 0.60 mm, respectively.
Torsional deformations were 5.78, 3.89, and 4.82 mm, respectively. Axial deformations were
4.86, 7.98, and 8.86 mm, respectively. Inactive mass was 10,043 kg for the Diamond lattice,
10,858 kg for the Schwartz Primitive lattice, and 10,990 kg for the Gyroid lattice. Tabulated
results with each TPMS strain field ramp parameters and the corresponding optimized
lattice with lattice thickness overlaid can be found in Figure 7.

Figure 7. Results of TPMS functionally graded lattice optimization with color map depicting gradient
lattice thickness (a) Diamond rotor TPMS design with strain field thickness (b) Schwartz Primitive
rotor TPMS design with strain field thickness (c) Gyroid rotor TPMS design with strain field thickness
(d) Tabulated results from functionally graded lattice rotor optimization.

The Schwartz lattice depicted lowest torsional deflection out of the three TPMS lattices.
This agrees with literature finding the Schwartz Primitive TPMS had an elastic modulus
up to 2× that of the Gyroid TPMS lattice [10,14]. However, it was found that the Schwartz
Primitive TPMS structures had highly localized plastic deformation, buckling, and low
failure strain. Limitations of this approach included no thermal deformation or fatigue
analysis. The Schwartz Primitive lattice results shown here are only valid in the elastic
deformation range for small deflections; therefore, high thermal loading or quick loss of
properties in fatigue could enable a failure mode. Although with small deformations the
lattice is expected to remain in its elastic regime, thermal and fatigue analysis would enable
a more complete picture of its structural behavior.

The ultimate goal of this study was to reduce mass of a 5 MW PMDD wind turbine
generator rotor while maintaining allowable deflections through use of an optimized
TPMS lattice. Results are found in Figure 8. After functionally graded lattice optimization,
the final strain optimized Schwartz Primitive TPMS rotor had 34% lower mass than the
baseline spoked arm design [36] and 19% lower mass than previous work [43]. Radial
and axial deflections were below critical limits. The allowable angle of twist for this study
was 0.05◦ which is the highest found in the literature. The Schwartz functionally graded
lattice optimized design is slightly above the highest allowable angle of twist [36] (1.05 mm
higher); however, the complexity of calculating the critical angle of twist for non-circular
TPMS structures suggests future work is needed to determine the true critical torsional
limit for these TPMS rotor variants. As critical loading conditions are dependent on the
polar moment of inertia for torsional deflections, the geometry of a design will influence
its critical loading conditions. Therefore, future work coupling the individual design with
its loading conditions is necessary for accurate calculations of critical limits and factors
of safety.
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Figure 8. Functionally graded lattice optimization results with dotted line at critical values (a)
Inactive Mass of all designs (b) Radial deformation of all designs (c) Torsional deformation of all
designs.

3.2. Manufacturing

The developed implicit modeling TPMS lattice optimization tool for large structures
is only useful if the resultant design can be manufactured. PMDD generators can vary
widely in size depending on the output power. The power of a PMDD machine is roughly
proportional to the square of the generator radius [3]. Based off the reference value of
5 MW at a radius of 3254 mm [36], a scaling law for this Schwartz Primitive rotor design
can be made.

P = C1R2 (12)

In this scenario, C1 = 0.472 which translates to a 0.03 MW, 1 MW, 3 MW, and 5 MW
generator with a rotor radius of 250, 1455, 2521, and 3254 mm, respectively. Looking
to commercially available additive manufacturing (Table 1), direct metal laser sintering
and electron beam melting are capable of manufacturing highly accurate PMDD rotors
with a maximum diameter of 500 mm. However, they are expensive techniques and size
limited. Under the scaling approximation, the largest DMLS machine would only be able
to manufacture a 30 kW electric machine. Hybrid manufacturing combines additive and
traditional manufacturing techniques to produce more complex parts at lower cost. In this
study, we looked to investment casting and powder-binder jetting. investment casting of a
wax mold to realize high resolution, complex shapes, and lower costs and is advantageous
for 0–3 m rotors. Powder-binder jetting [44] a sand mold is capable of printing the largest
sized parts; however, due to an inability to heat the mold, large scales are necessary to
ensure metal flow through the complex channels. For both sand and wax molds, larger
sizes can be accomplished by printing the mold in pieces and combining together. Large
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metal foundries, such as Sheffield Forgemasters, are capable of pouring 570 mT of metal.
This is more than enough for even the largest rotor diameters.

Table 1. Large scale AM techniques and associated printing time and mass for scaled Schwartz Primitive rotors.

AM Method
Possible Part
Dimensions

(m)

Cost
($)

Part Res-
olution

(µm)

Estimated Print Time (hrs) Schwartz P Scaled Rotor Weight (mT)

0.03 MW 1 MW 3 MW 5 MW 0.03 MW 1 MW 3 MW 5 MW

DMLS [39] 0–0.5 $$$ 100 16 — — —

0.01 2.48 12.93 27.72

Investment
Casting Wax
Printed Part

[41]

0–3 $$ 500 6 weeks 6 weeks — —

Powder
Binder

Jetting Sand
Casting [44]

3–10 $ 1000 — — 80.9 105

In this study, proof of hybrid manufacturing was carried out with investment casting
of a wax fused deposition modeling (FDM) printed model. First, a Raise 3D printer with
Polycast filament was used to create a 285 mm scaled version of the genetic algorithm
parameter optimized Schwartz rotor. Next, the model was processed through standard
investment casting procedures. This included creating a silica shell, burnout of the wax
model, and firing before pouring for smooth metal flow. The FDM part and final bronze part
can be seen in Figure 9. Casting was done in bronze due to its wide availability and lower
prototyping cost than stainless steel. Successful casting of an FDM model suggests much
finer resolution can be achieved with a wax material jetting printer. This also validates
the ability of metal flow in casting of complex TPMS geometries. This is particularly
important as smaller parts are expected to be more difficult to manufacture with this hybrid
method due to metal flowability. Successful manufacturing of a 285 mm part suggests
the feasibility of scaling this technique. It is expected that powder-binder jetting and wax
printing would enable better results due to their finer resolutions than FDM. A Cartesian
Gyroid and Schwartz rotor with internal features were also successfully cast (Figure S5).
For large scaled up rotors, a combination of casting structural support and directed energy
deposition active material could be used to combine the large throughput of casting with
more precise additive techniques for inactive and active generator materials [45].

These designs offer improved structural performance; yet complete casting of the rotor
active material would increase eddy current losses. Manufacturing methods to alleviate
this include traditional welding of the more complex support structure achieved through
casting and additive manufacturing onto the rotor active material. Furthermore, full
additive manufacturing of the rotor incorporating an oxide layer or thin insulating layer
between subsequent layers could be used to fully manufacture TPMS support structure
rotors with low eddy current losses.

Figure 9. (a) Polycast FDM printed Schwartz Primitive rotor (b) Bronze cast Schwartz Primitive rotor.



Clean Technol. 2021, 3 239

3.3. Experimental Validation

Due to their large sizes and mass, it is difficult and expensive to experimentally
validate the TPMS structural designs in structural steel in a lab setting. However, due to
the complexity of the TPMS geometries, experimental deflection validation is necessary for
confidence of the FEA results. In order to accomplish this, the Schwartz Primitive parameter
optimized design was printed with PLA filament on an FDM printer scaled to 200 mm
outer diameter (Figure S6). We assumed in the elastic regime the only difference between
metal and PLA rotors will be the material properties and thus the TPMS geometry can be
validated with PLA instead of structural steel. A torque arm and shaft were concurrently
printed and 100% infill used in order to create as isotropic a part as possible. A 2.3504 kg
mass was hung off the torque arm to provide a force (23.06 N) and the shaft was clamped
in a vice to prevent motion. Digital image correlation was used to capture the 2D full field
deflection map and compared to Abaqus FEA results with the same loading conditions.
The maximum deformation magnitude was used as comparison between FEA and DIC
results. The FEA results predicted a maximum deformation magnitude of 2.704 mm while
DIC found 2.898 ± 0.083 mm (Figure 10). This is a 6.7% difference which can be explained
by irregularities in the printed part and anisotropy of the 3D printed part. These results
validate the FEA model and provide justification to FEA modeling of the TPMS lattice
structures. DIC and FEA results focused on the lattice structure response to loading can be
found in Figure S7 and further agree with one another.

Figure 10. (a) Abaqus simulated DIC loading conditions deflection magnitude (b) DIC deflection
magnitude with weighted torque arm.

4. Conclusions

This work resulted in creation of an implicit modeling optimization tool coupled with
FEA through an evolutionary algorithm for structural optimization of large TPMS lattices
for a PMDD generator. Implicit modeling holds promise for quickly designing lattice
structures which span many orders of magnitude. An evolutionary approach was used for
TPMS lattice parameter optimization and Diamond, Schwartz Primitive, and Gyroid TPMS
structures. The main results of this work include:

1. A 34% max mass reduction with a Schwartz Primitive TPMS design in a 5 MW PMDD
generator rotor structural mass coupling implicit modeling, functionally graded lattice
optimization, and FEA through a genetic algorithm

2. Implementation of functionally graded lattice optimization for further parameter
optimization allows customization of the lattice thickness towards the deflection
field. This enabled a design catered towards the weakness of each lattice and further
improved mass savings while maintaining deflection criteria.

3. Successful manufacturing with hybrid additive manufacturing on a scaled rotor TPMS
structure suggesting feasibility of scaling to full size using this technique.

4. The Schwartz Primitive design depicted increased strength in the torsional deflection
than Gyroid or Diamond designs

5. Experimental validation of the TPMS structure FEA model through DIC of a 3D
printed Schwartz Primitive rotor model in PLA.

Implicit modeling coupled to FEA holds promise for lightweighting of large scale
parts and is the focus of much research in other industries such as aerospace, automotive,
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and civil engineering. Limitations to this study include a lack of multi physics modeling
connecting structural to thermal to electromagnetics as well as the difficulty of large scale
prototyping. Nevertheless, this study represents a step toward PMDD generator mass
reduction through optimized TPMS generative design of large lattice parts and hybrid
additive manufacturing.

Supplementary Materials: The following are available online at https://www.mdpi.com/2571-879
7/3/1/13/s1.
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