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Abstract: In this paper, an optimization approach for designing a hybrid renewable energy system
with zero load rejection is presented for a specific location in Malaysia. The proposed renewble
energy system includes photovoltaic system, gas turbine generator and battery bank. The aim of
the optimization process is to design the system with a loss of load probability that is less than
1%. An improved numerical algorithm is proposed in this paper. Moreover, a comparison between
electrification options, including the existing gas-turbine-based generator (existing system), electricity
grid and the proposed system, is presented in terms of the annualized total life-cycle cost. The results
show that the proposed system can reduce the annual running cost by USD 2.1 million, while the
electricity grid connection option can reduce the annual cost by USD 1.16 million as compared to
the existing gas-turbine-based generator. In addition to this, the proposed optimization algorithm
provides a reliable power system with zero load rejection based on simulation results.
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1. Introduction

The fast growth of the energy demand made the prices of conventional power sources, such as oil,
gas, and coal, increase across the world. In addition to this, the carbon dioxide emissions, which are
the main reason for global warming, also increased [1]. Thus, the whole world is now going toward
renewable energy to overcome the problem of fuel costs, gas emissions, and even the close time of
conventional power sources’ end. Solar photovoltaic (PV) and wind energy units are highly used in
terms of supplying loads in remote and rural areas [2]. However, the typical drawbacks for these units
are the intermittent nature of solar PV and wind turbines. Furthermore, the fluctuation of renewable
energy may not tally with the load demand in the supply time. These challenges cause significant
reliability issues in the operation and design of wind turbines and PV systems. An over-sizing
technique has been employed to solve the reliability issues. In contrast, hybrid PV/Wind (H-PVWG)
systems integrate the properties of wind turbines and PV to enhance the availability of the power
supply in the system and decrease its costs [3].

Diesel generator can do the task as a backup energy source instead of the storage system
with a lower cost. The main drawbacks of the system are their emissions and requirement of fuel.
Comparatively, hydrogen-based storages do not produce emissions and do not require any supply of
fuel [4].
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In general, the hybrid PV system proved its performance and reliability in many studies [5];
specifically, such a system proved its ability under the Malay condition, whereas, in [6], the hybrid
system performance under Malaysia’s weather conditions was investigated and analyzed over three
months. This system was found reliable and feasible. However, optimization and sizing methods
should effectively search for the best combination of parameters, such as the cost of the system,
reliability, the size of the PV system, the size of the battery, the tilt angle of the PV panels and the size
of the wind turbine and its height. Due to the over-sizing issue, the cost of the system increases, while
system under-sizing causes an inadequate supply of power. Meanwhile, for a broad use of the hybrid
PV system in Malaysia, there is a need for precise sizing of the PV system and the backup battery to
reach the desired loss of load probability (LLP). A loss of load happens when the generation cannot
supply the load demand. It is recommended that the LLP for such a system to be 0.01 [7]. This LLP
value leads to a high reliable system that can supply the load during the year with almost 99 %, which
is around 361.35 days over 365 days in the year.

In [8], a new procedure to design an optimum size system for a sustainable building by using
sustainable energy, battery banks, and proton exchange membrane fuel cells (PEMFCs) was proposed.
Meanwhile, in [9], it is shown that hybrid PV and H-PVGTG (Hybrid photovoltaic/gas turbine generators)
is better ecologically, but the combined DG (Diesel generator) and PV is better in the economical position.
Similarly, in [10], it is proved that the combination between the PV and the GTG with the operational
strategy of matching the power has a higher net profit if compared with standalone GTG or the
standalone PV system. According to [11], the H-PVGTG system reduces the gas consumption by 16%,
with a 33% reduction in the emission when compared with the standalone GTG system.

To study the behavior of H-PVGTG, a simulation model is developed in [12]. The result showed
that the new system produced more power with 140% per unit when compared to the GTG system.
Many works in the field of optimizing the hybrid PV/gas turbine system were done on the sizing
and optimization techniques of hybrid systems [13,14]. In [15], numerical equations are employed
to compute the best size of the PV system and the battery bank capacity based on Peak Sun Hours
(PSHs) and load demand. In [15], the author proposed a novel to optimize a model by using the integer
programming for a standalone PV system (SAPVS) in domestic buildings. In [16], the author presented
a new hybrid system to reduce wind suppression and improve the suppleness of the schedule. In [10],
the author introduced an optimization for the H-PVWG system depending on the LLP and system
expenses by using a Genetic Algorithm (GA). The authors of [17] presented an SAPV system to supply
the power demand for one domestic house in a village in Jordan. Similarly, the authors of [18] presented
an appraisal of the present PV energy transformation techniques, discussing the system parameters of
the different PV power station. In [19], the authors performed a survey to analyze different energy
operating techniques for hybrid sustainable systems based on (H2) as a back-up source. Meanwhile,
GA was used to apply a tri-objective model of a SAPVS/Split-diesel/Wind/ Battery (PV-WG-DG-B)
hybrid energy system for a common domestic house to reduce the LCC (Life cycle cost) CO2 emissions
and dump energy as much as possible [20]. Moreover, in [21], the focus was given to the designing of
an optimum sizing system based on a frequentative approach to optimise the size of a different islanded
(PV-WG-DG-B) hybrid system for zero load rejection. Finally, in [22], a new hybrid optimization
algorithm is proposed to optimally size a standalone hybrid solar and wind energy system based on
three algorithms, namely chaotic search, harmony search and simulated annealing. To improve the
accuracy of the size optimization algorithm results, weather forecasting is used along with artificial
neural networks for solar radiation, ambient temperature, and wind speed. An objective function that
aims to minimize the total life cycle cost is adapted to assess the feasibility of the hybrid renewable
energy system accounting for system reliability. The reliability of the system was assessed by the loss
of power supply probability parameter. Meanwhile, in [23], similar systems were optimized using the
Tabu search.

In this paper, the developed algorithm offers a new framework of all the accepted sizes of
the hybrid system. The size of the PV array, GTG and battery system that satisfies the technical
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requirements of the system in Malaysia is chosen. The optimum size of the hybrid system is selected
then in terms of the economic factor. Finally, cost comparison with other systems is presented.

2. Proposed Optimization Methodology

The first stage in the optimization process of a hybrid renewable energy system is identifying the
system’s components, such as the efficiency of the PV system, the efficiency of the wires, the battery
volt, the charging efficiency of the battery, load demand per hour, availability level, and climatic
parameters, such as sun irradiation and module temperature.

The design space contains many systems that have different performances regardless of the
technical and economical aspects. Here, the proposed algorithm is used to limit the design space to
shortlist systems that archive the desired system availability. The first value of the design framework
for the PV module’s size and the size of the battery bank is computed by (1) and (2). In the next step,
a model of energy flow in an hourly base is applied to figure out the LLP for all settings using the
suggested designs. This stage is done by two “for loops” to manage all the PV and battery settings
depending on the scale of the searching area. Finally, all of the results that have been chosen are
approved in terms of the LLP acceptance range. After determining the arbitrary scheme range that
matches the accepted LLP range, the annual total load cycle cost (ATLCC) of each configuration in the
design space is computed. Eventually, the best settings that minimize ATLCC are chosen as the best
size of the system. The optimization approach followed in this research is illustrated in Figure 1.
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The initial size of the PV array and battery system are determined based on Equations (1) and (2).

PPV =
ELS f

ηinvηRPSH
(1)

EB =
1.5× EL

ηB DOD
(2)

where EL is the total load energy demand per day; ηR is the voltage regulator efficiency; S f is the safety
factor that represents the losses of the dust, cable joints, and cloudy times; DOD (Depth of discharge) is
the allowable value to be discharged from the battery; ηB is the battery efficiency.

Modelling of the System

Figure 2 shows the suggested H-PVGTG system. The suggested system includes the PV array,
GTG, the battery bank, and converters. The regular load of the suggested model is 107 MWh/day
with a peak load demand of 6.062 MW. The energy that is produced daily by the PV is calculated by
Equation (3)

PPV(t) =
(
PPV

(
G(t)
Gre f

)
−

(
αP

(
T(t) − Tre f

)))
ηinvηw (3)

where PPV is the maximum output power of the system at the STC; G is the correlated solar irradiation
in W/m2; Gre f is the solar radiation at the STC; αP is the temperature coefficient of the PV power
module that is provided by the fabricator; T is the module temperature; Tre f is the room temperature at
the STC; ηinv is the inverter efficiency; and ηw is the efficiency of wires.
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Figure 2. Hybrid photovoltaic (PV)/GTG (Gas turbine generator) system configuration.

Figure 3 shows a verification of the utilized PV output power model. From this figure, the utilized
mathematical model successfully predicts the pout power of the PV array. This is very important for
the optimization process as it directly affects the accuracy of the results. However, it is still important
to evaluate the utilized model using statistical measures. Thus, as recommended by [23], the Relative
Root Mean Square Error (NRMSE) is used to verify the utilized model. Here, Equation (1) is used to
compute the initial required size of the PV system that can cover the load demand. In addition to this,
the extra produced energy that comes out from both the PV and the GTG systems is used to design the
battery bank capacity, as shown in Figure 4c and calculated by Equation (4).
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This investigation takes place in Malaysia, in Seri Iskandar, Perak, and the case study for this
research is the Universiti Teknologi PETRONAS system that includes academic buildings, laboratories,
street lights, sports fields, and residential villages. The load data has been gathered from the power
substations distributed among the campus. The existing power supply system consists of two GTG
units, where each set is 4.2 MW with a total supply power of 8.4 MW. The maximum demand during
the day is 6.062 MWh with a 107.711 MWh total load demand per day. During the year, the UTP
(Universiti Teknologi PETRONAS) has different load curves as the load demand is not the same during
semester days. The lecturing week curve that is shown in Figure 5 is the main load curve that has
been used in this study. Based on the load demand, the size of the SAPVS with a battery that can
supply the UTP is calculated. The size of the PV model has been computed by (1), and the output
energy generated by the array is also calculated by (3). After that, the size of the storage system has
been computed by (2), and the LLP is figured out by (4).

LLP =

∑365
i=1 Energy de f icitsi∑365
j=1 Energy demand j

(4)
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Figure 6 shows the optimization algorithm utilized in this research. The primary objective of this
optimization is to consider the control part of the battery in addition to use the extra produced energy
that is gained by the system sources to design the battery capacity. The cycle charge strategy was used
with some modifications in part of the battery design to use the excess energy. Figure 6 shows the
cycle charge strategy, and Figure 4b and c are presenting the modifications of the battery design. After
designing the system, the LLP is calculated to make sure that the system is achieving the technical
requirements. ATLCC is calculated to choose the best optimum size that acquires the technical needs
with the minimum ATLCC.

In general, most of the previous optimization algorithms did not consider the control technique
or the dynamic battery model to design the system. In this research, a numerical algorithm for a PV,
GTG, and dynamic battery accurate models is used. Based on [23], the cycle charge strategy is more
economical than the load following strategy dispatch for the battery model. The cycle charge strategy
that is shown in Figure 6 has some drawbacks. Thus, new modifications are added to the cycle charge
strategy dispatch to increase the accuracy of the battery sizing and performance. Following the cycle
charge strategy, there are two conditions that are expressed in Equation (5).

Enet =

{
Supply the load and Check the battery conditon , i f Enet > 0;

Supply the load only, i f Enet = 0;
(5)
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The first condition of Equation (5) also has two conditions, which are figured in Equation (6).

SOC =

{
Charge the battery , i f SOC < SOCmax;

Excess Energy, i f SOC = SOCmax;
(6)

Equation (7) shows that the condition of charging the battery is not considered if the extra
generated energy is enough to charge the battery or may exceed its maximum capacity. To overcome
this disadvantage, there is necessary feedback to ensure that the proposed algorithm considers all the
battery conditions. Similarly, at the right side of the algorithm, while checking the battery discharging
process, there is no feedback to show when the battery is already fully discharged and when the diesel
generator is needed to be operated to satisfy the demand of the system. Furthermore, the algorithm
does not consider the value of LLP. Moreover, the optimum size of energy sources such as the PV array
and the diesel generator has not been considered, nor has the storage system capacity. Besides, there is
no use of the surplus power that has been generated from the PV array only or the diesel generator.
The new algorithm covers all those disadvantages besides the economic analysis of the system.
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The accepted sizes of the islanded system for the UTP is calculated and the ATLCC is computed
by (7). The definition of the ATLCC in terms of (USD/year) is the summation of the annualized capital
costs, Ccap, a, the operation and annualized maintenance costs, Co&m, a, and the annualized replacement
costs, Crep, a. The annualized salvage value Cs, a is deducted from the sum of Ccap, a , Co&m, a, and Crep, a

as follows:
ATLCC =

∑
Device

Ccap, a + Co&m, a + Crep, a + Cs, a (7)

In this research, the Crep, a and the Cs, a are calculated within the maintenance cost; due to this,
they are equal to zero in Equation (7).
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The ATLCC has been formulated as follows:

Ccap, a =
Ccap

(1+ndr)Ls−1
ndr(1+ndr)Ls

(8)

Co&m, a =
Co&m

(1+ndr)Ls−1
ndr(1+ndr)Ls

(9)

ndr =
[(

1 + interst%
1 + in f lation%

)
− 1

]
(10)

Ccap = Ccap,PV + Ccap,Inv + Ccap,OC + Ccap, Bat + Ccap,CC (11)

Co&m = Co&m,PV + Co&m,Inv + Co&m,OC + Co&m, Bat + Co&m,CC (12)

where Ccap and Co&m are the total capital cost and the operating and maintenance expenses during
the expected lifespan of the system, respectively. Ls is the total lifetime of the according to the study,
and ndr is the net of inflation rate discount. Ccap, PV , Ccap,Inv, Ccap,OC, Ccap, Bat, and Ccap, CC are the total
capital cost for the PV array, inverter, other, battery, and the charger controller in conjunction. Co&m,PV ,
Co&m,Inv, Co&m,OC, Co&m,Bat, and Co&m,CC are the total operating and maintenance cost for the PV array,
inverter, other, battery, and the charger controller jointly. Moreover, to calculate the expenses of the
energy, levelized cost of energy (LCE) is used and computed by Equation (13).

LCE =
ATLCC

Etot
(13)

where Etot is the annual total load demand.
Similarly, the ATLCC is calculated for the proposed H-PVGTG system. However, the ATLCC of the

standalone GTG existing system is calculated based on statistics from its control unit. Furthermore, the
ATLCC for all these systems is compared and analyzed to show the impact of the proposed algorithm.

3. Results

In this research, all the data are collected from the case study location. The solar irradiation and
the module temperature have been measured by sensors and the data collected through a data logger
for one year with an interval of one hour with PSHa of 4.4 hours. To verify the experimental output
data, (3) is used on the 2-kW PV module and the result shown in Figure 3. Based on [21], various scales
of the NRMSE can be identified to show the models strength. If the NRMSE is less than 10%, it is very
good, and if it is between 10% and 20%, this means that it is good. NRMSE is pearly accepted if it is
between 20% and 30%, but, if its value is more than 30%, it is poor and cannot be accepted.

Based on Figure 4a, the meteorological data and the load demand data were called; furthermore,
the sizing of the PV array, GTG system, and the storage system capacity is determined. At the end of
this section, the net energy (Enet) has been calculated. If Enet ≥ 0 the flow will go toward the excess
energy section in Figure 4c, else it will go to the deficit energy section in Figure 4, section (b). After the
end of the cycle flow among the first three sections, the accepted data is stored in the section of the
system optimization parameters and the cost calculation in Figure 4d.

At the end of Figure 4a, if the value of Enet = 0 then supply the load and save this value in the
matrix of the accepted systems. If Enet > 0, the battery SOC is going to be checked, and, based on the
result, there are two conditions. The first option if the battery is already full is the surplus power will
be excess energy and used to redesign the size of the battery bank to fit the extra produced energy, and
the second one is if the storage system is not completely charged; therefore, the excess energy will keep
charging the battery until SOC = SOCmax, then the flow will go again to the first condition to resize
the storage system. After the Figure 4c, process has ended, the new values of the system have been
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added to the accepted systems matrix. If Enet < 0, in this case, the system automatically will go to the
deficit energy section, which is placed in Figure 4b, to find the way to overcome the energy shortage
either by the battery storage system or by the GTG. The deficit energy section is essentially trying to
reduce the gap between the load demand and the generated energy. To achieve this, there are two
options, the first of which is to discharge the battery system after checking its SOC to make sure that
SOC > SOCmin. The second option is to run the GTG and increase its power production. Afterward,
check the value of Enet to make sure that there is no deficit power; if there is, it must be within the
allowable limit of the LLP value. In case of the inability to reduce the gap to the accepted range in
the power generation system, then the flow of the chart goes to system sizing section at Figure 4a,
to find a way to overcome this disablement. The flowchart will keep flowing like this until all possible
conditions are tried. Then, by filtering the results, the optimum size of the system units is decided in
terms of the ATLCC of the system for 25 years.

Based on the proposed algorithm, the size of the battery will not follow Equation (2) to calculate
the battery size, but it will be designed based on the excess energy produced from the power sources
during the generation process. After the sizing step, the accepted design space has been calculated.
Figure 7 shows the accepted design space as a percentage from the maximum size of each power source
and the storage system. To find the best size system between all design spaces, the lowest total system
cost has been chosen. The red point in Figure 7 is the optimum size point based on the annual system
cost. Table 1 shows the comparison between the annual cost of the suggested system, the GTG existing
system, and the TNB (Tenaga National Berhard). By using the TNB, the annual savings will be USD
1.167 million per year, while the hybrid system will save USD 2.1 million per year.
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Table 1. Cost saving comparison.

Yearly (USD) Proposed System GTG System TNB System

Tariff 0.046681 0.07530421 0.05952902
Savings 2,171,345.0175 0 1,167,514.0812

Figure 8 indicates the simulation results of the proposed algorithm in one year. Figure 8a, shows
the produced energy by the PV power source. Moreover, the total energy resulted from the PV power
source through the year is 6.464 GWh (17.7 MWh as the average production in the single day). Figure 8b,
shows the GTG energy output in one year, which is 36.7 GWh (100.6 MWh as a mean daily output).
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Figure 8c, shows that the battery bank supply is only 4.8 MWh over the whole year. Meanwhile,
Figure 9 presents 280 MWh deficit energy for one year. By using (5), the LLP of the suggested system is
0.0097. This value of LLP is not equal to zero, but it falls within the allowable range.
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4. Conclusions

In this research, size optimization of the H-PVGTG system has been done and simulated.
An improved numerical algorithm is proposed so as to design the system at zero load rejection.
Accurate models for the PV array and system energy flow modes are also given in this study.



Clean Technol. 2020, 2 250

The validation of the utilized system models was done first. Then, a one-year simulation of the
system is conducted. The aim of simulating the system is to check its ability to fulfil the load demand
and consequently calculate the system’s LLP. The conducted optimization first generated the design
space, which contains many possible configurations of the system. After that, evaluation of these
configurations was done based on system availability and cost. The optimization reached the lowest
ATLCC with the accepted technical requirements. The proposed algorithm found the solution to this
problem and has been considered the battery control section. A comparison between the existing
system (GTG), electricity grid, standalone PV, and the proposed hybrid system has been presented in
terms of the ATLCC. The result of the optimization shows that the improved algorithm reduced the
ATLCC by 38% as compared to the existing system at an LLP of 0.0097. Thus, the proposed system is
the most feasible option for powering the adapted load demand in the selected site.
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