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Potentially toxic elements (PTE) can cause significant damage to the environment
and human health in the functions of mobility and bioavailability [1]. Given the urgency
to remediate polluted soils all over the world, appropriate innovative and sustainable
remediation strategies need to be developed, assessed, and promoted [2–4].

Before that, a detailed knowledge of PTE bioavailability and bioaccessibility as well as
of soil processes affecting contaminant dynamics, in terms of lixiviation, colloidal transport,
redox conditions, or microbial activity, is essential in order to assess the actual danger/risk
posed by contamination [5]. It is widely recognized that the bioavailability of toxic elements
in soils depends on their solubility and geochemical forms, rather than on their origin and
total concentration. Therefore, the knowledge of their spatial distribution and chemical
speciation in soil is of paramount importance to perform an accurate risk assessment.
Investigating these aspects requires the use of analytical techniques able to solve the high
complexity of the soil matrix with a spatial resolution down to the micrometer—or even
nanometer—scale [6].

In addition, a correct evaluation of remediation intervention requires detailed knowl-
edge of the geochemical forms into which PTE have been converted following the soil
treatment. This information is crucial to predict any possible transformation PTEs might
naturally undergo over time or as consequence of physical–chemical perturbations that
might impact the soil system.

In this Special Issue we invited the submission of articles to address the assessment
of PTE contamination in soil systems using innovative approaches, the study of soil pro-
cesses affecting pollutant dynamics, and the application of new sustainable remediation
techniques for the long-term reduction in the threat posed by PTE towards the health
of the human being and the environment. This volume contains ten original research
articles. Four articles deal with the assessment of bioavailability of PTEs in contaminated
soils [7–10], three articles report results on the application of phytoremediation to PTEs
contaminated soils [11–13], one paper is related to the source–sink relationships of PTEs at
basin scale [14], and two manuscripts address the issue of PTEs contamination in urban
soils [15,16].

The assessment of the risk posed by the presence of PTEs in soil has been studied
by Porfido et al. [7] investigating the Pb availability in a former polluted shooting range.
Micro-XRF and SEM-EDX analyses showed that most of the Pb underwent stabilization
processes: a weathering crust (mixture of orthophosphates) around Pb-containing bullet
slivers dispersed within the soil. Moreover, no toxicity effects and low bioavailability were
measured in earthworm tissues. Kaur et al. [8] assessed the risk of the presence of several
PTEs in industrial effluents and soils through Allium cepa root chromosomal aberration
assay and the potential ecological and human health risks and bioaccumulation in plants,
respectively. The study of Diquattro et al. [9] assessed the mobility, phytotoxicity, and
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bioavailability of antimony (Sb) in soils after the addition of municipal solid waste compost
(MSWC). The Sb mobility decreased in amended soils as well as phytotoxicity in triticale
plants, whereas soil metabolic activity and catabolic diversity increased. Ahmad et al. [10]
assessed the phytoextraction of PTEs by different vegetable crops in soil irrigated with
city wastewater, evidencing the possibility of using some species for phytoremediation as
well as the significant risk to human health and the environment due to PTE content in
their tissues.

The adoption of a sustainable remediation strategy was proposed by Gorelova et al. [11]
in a study of the bioaccumulation of PTEs in Echinochloa frumentacea grown in different con-
taminated soils. Results obtained by chemical, biochemical, microbiological, and metage-
nomic (16S rRNA) methods of analysis recommend E. frumentacea for phytoremediation
of PTEs contaminated soils. Pietrini et al. [12] confirmed the crucial role of plant–microbe
interaction in the phytoremediation of PTEs polluted soil by investigating the inoculation of
microcosms of Brassica juncea and Helianthus annuus with a selected microbial consortium.
Adopting a phytoextraction strategy, Fedje et al. [13] used sunflowers and rapeseed to
extract Zn from the mineral fraction of the incinerator bottom ash in order to meet the
increasing worldwide demand of the metal.

The acquisition of soil and sediment geochemical data in a basin located in the eastern
Amazon enabled the source distribution of PTEs content and evidenced that local anomalies
were mostly influenced by the predominant lithology rather than any anthropogenic
impact [14].

Finally, two articles studied the source and distribution of PTEs in soils of two impor-
tant cities. Rate [15] performed a spatial statistics analysis to define geochemical zones
characterized by the presence of PTEs because of historical waste disposal in public recre-
ation areas in Perth, Western Australia. Silva et al. [16] determined the soil PTEs content
in six locations (traffic zone, residential area, urban park, and mixed areas) of the city of
Lisbon (Portugal), evidencing the low levels of pollution.
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