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Abstract: Soil organic carbon influences several landscape ecological processes, and soils are be-
coming recognized as a mechanism to mitigate the negative impacts of climate change. There is a
need to define methods and technologies for addressing soils’ spatial variability as well as the time
and cost of sampling soil organic carbon (SOC). Visible and near-infrared spectroscopy have been
suggested as a sampling tool to reduce inventory cost. We sampled nineteen ranch properties totaling
17,347 ha across Oklahoma and Texas in 2019 to evaluate the effectiveness and accuracy of a handheld
reflectometer (Our Sci, Ann Arbor, MI, USA) (370–940 nm) and existing remote sensing approaches to
estimate SOC in semi-arid grazing lands. Our data suggest that the Our Sci Reflectometer estimated
soil organic carbon with a precision of approximately (±0.3% SOC); however, it was least accurate at
higher carbon concentrations. The Our Sci reflectometer, although consistently accurate at lower SOC
concentrations, was still less accurate than a model built using only remote sensing and digital soil
map data as predictors. Combining the two data sources was the most accurate means of determining
SOC. Our results indicated that the Our Sci handheld Vis-NIR reflectometer tested may have only
limited applications for reducing inventory costs at scale.

Keywords: soil organic carbon; vis-NIR; spectroscopy; soil variability; grazing lands

1. Introduction

Soil is the largest terrestrial carbon store on Earth with approximately 1500 Gt of car-
bon (C) in the top meter [1]. This reservoir has decreased over time due to anthropogenic
and natural disturbances, contributing to 78 ± 12 PgC being released to the atmosphere [2].
As a result, sequestering soil carbon by reversing these losses could be an important climate
change mitigation strategy [3]. Researchers estimate that over the next 50 years, the global
potential of soil organic carbon sequestration and restoration of degraded soils is approxi-
mately 0.6–1.2 PgC year−1, suggesting a possible cumulative sink capacity of 30–60 PgC [4].
On decadal time scales, soil can serve as a carbon sink or source depending on climate
and land-use history [5]. Consequently, applying soil-health-focused management in agri-
cultural production systems that prioritize rebuilding soil carbon concentrations could
provide multiple benefits to both the on-farm production system and society.
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Over the last two decades, the desire to quantify soil carbon stocks and their manage-
ment response have gained increased attention as a climate change mitigation strategy [4,6].
Soil organic carbon sequestration potential in agricultural production systems has been
widely reported [7–9]. However, the logistical mechanisms of dealing with spatial soil
variability pose challenges to accurate soil organic carbon quantification [10]. Along with
variability concerns, laboratory analyses can be time- and cost-prohibitive [11]. The uti-
lization of carbon flux models based on remotely sensed data has been an approach that
researchers have used to attempt to limit these constraints [12].

Estimating soil carbon content with spectroscopy tools may mitigate cost concerns,
as such methods are non-destructive and require less specialized equipment than typical
laboratory analyses. Specifically, visible and near-infrared (vis-NIR) spectroscopy has been
proposed for rapid in-field carbon estimation [13]. Successful prediction of various soil
properties, including soil moisture, soil organic carbon, and total soil nitrogen content, has
been accomplished using vis-NIR spectroscopy techniques [14–19].

Bench-top spectroscopy instrumentation has been used successfully to predict soil
carbon levels [20,21]; however, previous reports demonstrate that field conditions limit
the accuracy of these estimates [22]. In-field Vis-NIR spectroscopy has been reported as an
effective method of assessing soil organic carbon content [23], but soil moisture and other
abiotic and biotic factors can affect the predictive capability of vis-NIR spectroscopy. Thus,
spectral reflectance data is suspect to accuracy concerns as soil moisture fluctuates [22].
The integration of geospatial data products and vis-NIR soil spectroscopy to model soil
organic carbon content may provide a solution [24].

Comprehensive models for estimating soil organic carbon have been developed using
vis-NIR data from global soil libraries [25]; however, these models may lack accuracy at
smaller scales. Estimating soil organic carbon at a local scale requires site-specific data;
factors such as soil type, plant cover, or precipitation need to be integrated into these
models to address the underlying spatial variability [26,27]. Accurate estimation of soil
organic carbon could provide valuable decision-support to agricultural producers at a
reduced price point over conventional testing, but additional research is needed to refine
the process, and to better understand its viability across soil texture classes and depths
across a range of soil carbon concentrations. Here we: (a) evaluated the use of the Our Sci
Reflectometer (https://our-sci.gitlab.io/manufacturing/reflectometer-tutorials/ (accessed
on 10 March 2022)), an open-source, handheld vis-NIR reflectometer for estimating soil
organic carbon concentrations in the Southern Great Plains; (b) compared these resulting
soil organic carbon estimates with existing prediction models.

2. Materials and Methods
2.1. Study Sites

Data for this study were collected across nineteen participating ranches encompassing
approximately 17,347 ha (Figure 1). Selected study ranches were distributed across the
Southern Great Plains ecoregion of the United States and appropriately represented six
Major Land Resource Areas (MLRAs) (Southern High Plains, Breaks (77E); Central Rolling
Red Plains, Eastern Part (78C); Central Rolling Red Prairies (80A); West Cross Timbers
(84B); Grand Prairie (85); Texas Blackland Prairie, Northern Part (86A)) and their primary
production enterprises.

All participating ranches were beef cattle (Bos taurus taurus) operations and fully
integrate management goals around grazing intensity, frequency, and duration within
an operational grazing management plan. Forty-two percent of the study site ranches
comprised native vegetation only, primarily mid and tall warm-season grasses. However,
some areas support shortgrass prairie communities. Fifty-eight percent of the properties
in the study had a complement of introduced pasture, primarily bermudagrass (Cynodon
dactylon (L.) Pers.), and some cropland. Although most of the study site ranches had a
diversity of land uses, most of the randomly selected sampling locations were on rangeland
due to rangelands comprising most of the total acreage. Around 72.2% of the randomly
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selected sampling locations were on rangelands, compared to 15.3 and 12.5% for pasture
and cropland, respectively. As mentioned earlier, beef cattle production is the dominant
agricultural enterprise; however, dryland winter wheat (Triticum aestivum L.) and other
small grains are grown for either cash or feed crops. Other crops, mainly corn (Zea mays L.),
grain sorghum (Sorghum bicolor L. Moench), and other forage crops are produced depending
on market drivers, on the more productive soils. According to the USDA-Natural Resources
Conservation Service [28], the regional land management issues on rangeland are excessive
grazing, dispersion of invasive woody plants, and noxious weeds. The primary land
management issues on cropland are wind and water soil erosion and soil organic matter
loss. Water quality and quantity concerns are also significant, primarily due to sediment
and nutrient loading.
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The dominant soil orders in the represented MLRAs are Mollisols, Alfisols, and
Vertisols. The annual average precipitation in this area ranges from 635 to 965 mm. The
yearly amount of precipitation can vary widely from year to year, with the predominance
occurring as high-intensity, convective thunderstorms during spring and fall. The average
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annual temperature is 14 to 18 ◦C. The freeze-free period averages 235 days and ranges
from 205 to 265 days, respectively [28].

2.2. Sampling Design

Soil sampling sites were selected through stratified random sampling with the web
application Stratifi [29]. The web app uses an unsupervised classification algorithm, WEKA
X-Means [30], to incorporate data on vegetation productivity (Landsat 8 derived indices;
30 m resolution), topography/slope/aspect (National Elevation Dataset; 10 m resolution),
and soil properties (gSSURGO 30 m resolution) within a pre-defined study area to define a
series of “strata” or areas with similar combinations of the above attributes. The WEKA
X-Means algorithm automatically selects the appropriate number of strata based on the
variability of input layers within the study area. Stratifi then chooses a series of random
sampling sites based on the desired sampling density and the relative size of each stratum.

Initial sampling locations were generated at double the desired density, then on-
site verification determined the accessibility of each sampling location. An edge buffer
constraint was added to each stratum, and sampling locations were generated as not to
exceed a 20 m buffer distance to the edge. The verification process selected points in
numerical order until the desired sampling density was met. Sampling density was set
at a minimum of five sites per strata and 1 site per 32.38 ha. If a sampling point was
inaccessible, a secondary and tertiary sampling protocol was randomly selected within
this buffer zone. If the subsequent backup protocols did not satisfy the sampling density,
additional randomized sampling locations were generated in the Stratifi application, and
the process repeated until the sampling density goal was met. Inaccessible regions with
steep slopes, high brush density, or other safety concerns were excluded from strata.

2.3. Soil Sampling

Soil sampling was conducted in 2019. In total, 1738 soil samples were collected at multiple
depths from 519 identified sampling locations. At each sampling location, soils were sampled
with a Giddings™ soil probe (7.62 cm, Giddings Machine Company, Windsor, CO, USA) to a
total depth of 90 cm and vertically stratified by depth (15, 30, 45, 60, 75, and 90 cm) or until
bedrock restricted collection. Samples were transported to the Noble Research Institute’s
soil laboratory for further processing and analysis. Soil samples were milled with an Agvise
soil grinder (<2 mm screen) and dried in an oven at 42 ◦C for 48 h. Dried soil samples were
scanned in the lab with the Our Sci reflectometer (https://our-sci.gitlab.io/manufacturing/
reflectometer-tutorials/ (accessed on 10 March 2022)). The device is a handheld reflectometer
designed to measure the reflectance of a material sample at a select set of wavelengths: 370,
395, 420, 530, 605, 650, 730, 850, 880, and 940 nm. To measure the reflectance, a soil sample is
prepared in a small glass petri dish or cuvette and clamped into position in front of a series
of LEDs at the wavelengths mentioned earlier. These LEDs then sequentially flash onto the
soil sample, and a set of photoreceptors measure the reflectance of the sample at each isolated
wavelength. Later, the soil samples were sent to a commercial laboratory where the industry
standard, the dry combustion method, was used to analyze soil organic carbon [31].

2.4. Statistical Analysis

Since all samples were geo-tagged in the field, we were able to extract relevant data
for each sample point from a various remote sensing datasets and digital soil maps. We
focused on collecting data types that would add potential predictive power to our models
for estimating soil C content, such as soil taxonomy, Normalized Differential Vegetation
Index (NDVI), and clay content (Table 1).

https://our-sci.gitlab.io/manufacturing/reflectometer-tutorials/
https://our-sci.gitlab.io/manufacturing/reflectometer-tutorials/
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Table 1. Remote sensing and digital soil map layers used in model development. Soil chemical
and physical properties derived from the United States Department of Agriculture’s Soil Survey
Geographic Database (SSRUGO). Plant properties, including vegetation greenness, were derived
from normalized differential vegetation index and soil topographic indices collected from the Unites
States Geological Survey’s National Elevation Dataset from soils collected from nineteen participat-
ing ranches encompassing approximately 17,347 ha in the Southern Great Plains ecoregion of the
United States.

Dataset Category Property

USDA SSURGO

Soil chemical properties

Organic matter (%)
Gypsum
CaCO3

pH
Cation exchange capacity

Soil texture
Silt (%)

Clay (%)
Sand (%)

Soil color

Munsell value
Munsell chroma
Munsell sigma

Munsell red
Munsell green
Munsell blue

Sentinel-2 Plant properties Normalized differential vegetation
index (NDVI)

USGS National Elevation
Dataset

Topography Slope
Aspect

For each point, we identified the most representative soil series as reported by the
United States Department of Agriculture’s SSURGO [32] and then extracted soil characteri-
zation data related to that series. Characterization data included representative estimates
of soil organic matter content; soil chemical properties related to the weathering status of
soils (pH and cation exchange capacity); estimates of inorganic carbon content (gypsum
and CaCO3); relative content of soil textural components (sand, silt, clay); data on soil color
as scored on the Munsell color system.

NDVI was calculated as the normalized difference between band 8 (NIR, 835.1 nm)
and band 4 (red, 664.5 nm) of the Sentinel 2 Multi-spectral Instrument dataset from the
European Space Agency. To calculate NDVI at each sampling point, we retrieved Level 1-C
Sentinel 2 reflectance data for a bounding box containing the entire sampling area using the ee
package [33] in Python to access the Google Earth Engine data catalog. Data were retrieved for
all available dates from 1 January 2019 to 31 December 2019. Images for each date were then
cloud-masked using the QA60 band from Sentinel 2 for the corresponding date to identify
and remove all pixels obscured by clouds. Finally, a ‘greenest pixel’ composite image of the
study area was created by selecting the highest NDVI value across the date range for each
pixel. Specific NDVI values for each sample point were then extracted from this composite
image by overlaying point coordinates and finding the corresponding NDVI value.

Topographic data were similarly retrieved for each point by accessing the Google
Earth Engine data catalog with the ee package in Python. Using the same bounding box,
we retrieved elevation data from the USGS National Elevation Dataset for the entire study
area. Slope and aspect were then derived from elevation data using the Google Earth
Engine ee.terrain.products function. Specific values of elevation, slope, and aspect were then
extracted for each sample point by overlaying the coordinates on each final image.

We then developed three models to estimate soil carbon content by the following:
(1) using reflectance data collected using the Our Sci reflectometer, herein referred to as
“reflectance” models; (2) using data extracted from remote sensing and digital soil maps
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(DSM), herein referred to as “remote” models; (3) reflectance data collected using the
Our Sci reflectometer in combination with data extracted from remote sensing and digital
soil maps, herein referred to as “full” models. Each of these modeling approaches were
calibrated using soil carbon data content from dry combustion elemental analysis as a
dependent variable. For each model, 80% of samples were randomly partitioned to create
a training dataset for the model, while the remaining 20% were partitioned for testing
model predictions. Predictive models were trained with 100 calibration/validation splits
to bootstrap each modeling approach and to assess the distribution of possible model
outcomes. Models were developed using a Bayesian Additive Regression Tree (BART) ap-
proach [34] using the “bartMachine” R package [35]. BART is a machine learning algorithm
that employs a Bayesian “sum of trees” approach to generate a best fit predictive model
(Figure 2). We chose to use it as opposed to alternative machine learning or traditional
statistical methods, as it is capable of dealing with high-dimensional data but also includes
a regularization feature that reduces overfitting. In addition, it allows for estimation of
posteriors, which allows us to better assess uncertainty in our predictions, and it also
generates statistics on variable importance (predictor inclusion frequency), allowing us to
assess the relative importance of different predictor variables in each model type.
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split decision rules for a set of independent variables x = {xi, . . . , xn}. Independent variables can
be either categorical or continuous. Additionally (b) Algorithm 1 outlines the model and training
stepwise process.
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On each iteration, we used the generated model to estimate soil carbon content on all
samples in the testing partition and compared these estimates to their observed reference
method, soil carbon content, as measured in the lab to estimate Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and coefficient of determination (R2). Mean Absolute
Error (MAE) is the average measure of errors between paired observations. Root Mean
Square Error (RMSE) is a measure of how far a prediction is from a measured reference
value. Coefficient of determination (R2) is the proportion of the variation in the dependent
variable that can be explained from the predictor variables. Estimating these error statistics
across all 100 iterations allowed us to determine how the accuracy of each method changes
as the training dataset changes.

In addition to partitioning the dataset into training and testing groups across all sites
and soil types, we used the same approach on subsets of data divided by the USDA soil
textural classification (i.e., sand, clay, etc.). This approach allowed us to better understand
how fundamental differences in soil texture and mineralogy, which are likely to affect a soil
sample’s reflectance characteristics, might also affect soil carbon estimation.

3. Results

The soil organic carbon content of samples ranged from 0.03 to 6.03% and followed
a lognormal distribution with a mean of 0.96%. Means and distributions of soil carbon
content values were similar across sites, and soil carbon was stratified by depth such that
surface soil samples had higher carbon content, and carbon content rapidly declined with
depth. Most samples were categorized as being medium-to-moderately fine-textured.

When training and testing splits were made across the entire dataset, models with
reflectance data only had the lowest accuracy and the greatest bias, followed by mod-
els with remote and DSM data only, and then full models combining both data sources
(Table 2). Student’s t-tests indicated that these differences in accuracy and bias were all
significant (Table 3). Models relying solely on reflectance data explained just over half of
the total variability in %SOC (R2 = 0.54), while models developed with remotely sensed
data (R2 = 0.71) and the combination of both data sources (R2 = 0.75) explained a greater
amount of variability in the dataset (Figure 3). The reduction in accuracy for models
using reflectance data only was the greatest for samples with higher soil carbon content,
which the model tended to underestimate. In contrast, remote and full models made more
accurate predictions across the range of soil carbon content (Figure 4). Error across depth
had a similar pattern for all model types, but distinct patterns across the depth gradient
emerged (Figure 5).

Table 2. Metrics of model accuracy and bias for Reflectance, Remote, and Full model types developed,
including Mean Absolute Error (MAE), coefficient of determination (R2), and Root Mean Squared
Error (RMSE). Numbers represent the mean and standard deviation in parentheses of each metric for
100 randomly selected test datasets from soils (n = 1738) collected from nineteen participating ranches
encompassing approximately 17,347 ha in the Southern Great Plains ecoregion of the United States.

Model Type MAE R2 RMSE

Reflectance 0.305 (0.018) 0.54 (0.045) 0.602 (0.041)
Remote 0.303 (0.016) 0.71 (0.051) 0.469 (0.044)

Full 0.284 (0.015) 0.75 (0.054) 0.447 (0.045)

Estimates for 0–15 cm samples had the highest error, and below 15 cm, error rapidly
declined (Figure 5). Given that soil carbon content was generally highest in the surface layer,
this observation is consistent with the above results. Similarly, when separate models were
developed for each texture class, models for medium to coarse texture soils (silt, loam, and
sand) generally had lower soil carbon content than estimated soil carbon content, with MAE
of about 0.2, and MAE was similar between full and reflectance-only models (Figure 6).
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In contrast, models on fine-textured soils (clay), which generally had higher soil carbon
content, had lower accuracy, particularly in the reflectance data-only models (Figure 6).

Table 3. Student’s t-tests comparing variation in the mean absolute error of 100 train/test splits for
each model type. Numbers represent the t statistic and corresponding p-values in parenthesis from
soils (n = 1738) collected from nineteen participating ranches encompassing approximately 17,347 ha
in the Southern Great Plains ecoregion of the United States.

Model Type Reflectance Remote Full

Reflectance - 38.033 (<0.001) 47.204 (<0.001)
Remote - - 8.507 (<0.001)

Full - - -
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Analysis of variable importance based on variable inclusion proportion indicated that
when reflectance data alone were used, wavelengths in the mid-visible range had the most
significant apparent effect on model accuracy (Figure 7). However, when remote sensing
data and digital soil map data were introduced, those patterns changed, and “far-red” and
near-infrared wavelengths had higher variable inclusion proportion scores relative to other
wavelengths (Figure 7b). Furthermore, these analyses showed that several remotely sensed
information and digital soil map layers added substantially to model accuracy and were
often the most important variables.
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adjacent (right) to each boxplot depict the histogram of raw data points and the frequency of different
binned observations. Model bars in each boxplot represent the median value of 100 train/test splits
for the corresponding model by depth combination; outer edges of the boxes represent the 25 and
75% percentiles; whiskers represent 1.5× the interquartile range, and points represent outlying values
greater than 1.5× the interquartile range from soils collected from nineteen participating ranches
encompassing approximately 17,347 ha in the Southern Great Plains ecoregion of the United States.
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declined (Figure 5). Given that soil carbon content was generally highest in the surface 
layer, this observation is consistent with the above results. Similarly, when separate 

Figure 5. Model performance measured as Mean Absolute Error (MAE) (a), coefficient of determina-
tion (R2) (b), and Root Mean Square Error (RMSE) (c) of different model types across depth increments
measured (n = 1738). Raincloud plots adjacent (right) to each boxplot depict the histogram of raw
data points and the frequency of different binned observations. Model bars in each boxplot represent
the median value of 100 train/test splits for the corresponding model by depth combination; outer
edges of the boxes represent the 25 and 75% percentiles; whiskers represent 1.5× the interquartile
range, and points represent outlying values greater than 1.5× the interquartile range. Data are from
soils collected from nineteen participating ranches encompassing approximately 17,347 ha in the
Southern Great Plains ecoregion of the United States.
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Figure 6. Model performance measured as Mean Absolute Error (MAE), coefficient of determination
(R2), and Root Mean Square Error (c) across USDA soil textures (n = 1738). Model bars in each boxplot
represent the median value of 100 train/test splits for the corresponding model; outer edges of the
boxes represent the 25 and 75% percentiles; whiskers represent 1.5× the interquartile range, and
points represent outlying values greater than 1.5× the interquartile range from soils collected from
nineteen participating ranches encompassing approximately 17,347 ha in the Southern Great Plains
ecoregion of the United States.
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Figure 7. Variable inclusion proportion (VIP) of variables used in the (a) full model, (b) spec-only
model, and (c) remote/digital soil map variables model. Bars in each boxplot represent the median
VIP of 100 train/test splits for the corresponding model by depth combination; outer edges of the
boxes represent the 25 and 75% percentiles; whiskers represent 1.5× the interquartile range; and
points represent outlying MAE values greater than 1.5× the interquartile range from soils (n = 1738)
collected from nineteen participating ranches encompassing approximately 17,347 ha in the Southern
Great Plains ecoregion of the United States.

4. Discussion

The use of visible and near infrared spectroscopy continues to be a focus area for
research investigating methods to reduce laboratory costs, increase the precision of estima-
tions, and reduce variability associated with estimating soil organic carbon concentrations.
Cost-effective handheld reflectometers have been suggested as a tool to address these
concerns. The Our Sci handheld reflectometer estimated soil organic carbon in this study
to precision of approximately +/− 0.3% SOC; however, estimation accuracy was greatly
reduced for those samples with carbon concentrations above 2.0%. Further, models re-
lying solely on reflectance data explained just over half of the total variability in %SOC
(R2 = 0.54). This reduced accuracy at higher soil carbon concentrations could suggest that
vis-NIR spectroscopy within the wavelength range studied (370–980 nm) is potentially best
suited for environments with relatively low concentrations of soil organic carbon. It is also
possible that higher SOC levels may be more accurately measured with higher wavelengths,
as bands from 1100 to 2400 nm have proved particularly important for SOC calibration in
past studies [36,37]. Alternatively, reduced accuracy at higher concentrations may be an
artifact of those samples being less represented in the training data, given there were fewer
samples in that range.

The reflectance only model, although accurate at lower soil carbon concentrations, was
consistently less accurate than the remote model built using exclusively existing geospatial
data products as predictors (R2 = 0.71). The full model, combining the two data sources,
provided significant, but only modest accuracy improvements (R2 = 0.75; p < 0.001). This
small increase in model accuracy suggests that the Our Sci reflectometer has limited capacity
to improve the accuracy of digital soil mapping methods in the studied region.
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The relatively poor performance of vis-NIR spectroscopy reported by this study
is consistent with wide variation in accuracy reported in other studies across different
systems. Soils have been effectively characterized globally based on vis-NIR spectroscopy
analysis, but only using far more robust laboratory grade spectroscopy [25]. While some
studies have reported specific instances of high-performance carbon estimation via vis-NIR
spectroscopy [38,39] researchers increasingly question the method’s ability to fully replace
laboratory analysis [40]. Subsequently, the high performance of vis-NIR-derived models
can be misleading, as it may be a result of overfitting or poor validation techniques [41].

We observed higher accuracy of vis-NIR spectroscopy at depth and in lower carbon
sites, however, this pattern has not been observed consistently across other regions, cli-
mates, and management systems. While soil depth has a considerable impact on soil
organic carbon stocks, data regarding the vertical distribution of the SOC stocks in re-
lation to vegetation and land use are rare [42–47]. In contrast, in a temperate, forested
ecosystem, Gholizadeh et al. [48] found that in a very high carbon density landscape
(mean soil C = 23.54%), in situ spectroscopy performed less well with increasing soil depth.
There, SOC prediction accuracy was higher in shallower organic layers with higher con-
centrations of organic matter. Other studies have found in situ application of vis-NIR
to produce models with high performance fits in high-carbon environments, specifically
in a high-elevation pastoral landscape (R2 = 0.77) [49] and in a tropical volcanic soil
(R2 = 0.91) [50]. Allo et al. [50] suggested that better performance in high-carbon environ-
ments might be the result of greater variation leading to greater detectability. However,
relatively higher performance on low-carbon samples in our study may be because they
were more represented in model training datasets.

The availability of accurate covariate data could also play a significant role in model
accuracy of digital soil mapping options. In a recent study conducted in Sub-Saharan
Africa, Ewing et al. [51] found the Our Sci reflectometer provided sufficient accuracy in
models developed that combined reflectance data with covariate data from the African Soil
Information Service (AfSIS) database (R2 = 0.69). However, a model developed from AfSIS
covariate data alone provided the poorest agreement with reference laboratory samples
(R2 = 0.04). Our findings are consistent, in that a model developed with reflectance data
combined with covariate data from remotely sensed sources provided the greatest accuracy
and the least error. However, inconsistencies arise when evaluating the accuracy of the
covariate data alone. In our study the full model (R2 = 0.75), although significant, was
not substantially better than a model developed with only remotely sensed covariates
(R2 = 0.71). The addition of NDVI greenness estimations to our remote models in semi-arid
environments vs arid environments with less herbaceous biomass production may explain
some of the variation. Thus, in semi-arid grazing land environments in the United States,
where models developed completely from remotely sensed covariates perform similarly to
models developed with the addition of the reflectance data, the modest increase in accuracy
does not justify the time, labor, and cost of field sampling if change detection over time is
not a concern.

Several recent studies suggest that models built on wider spectra can perform better
than those based on solely vis-NIR. Researchers have tested MIR measurements as an alter-
native to vis-NIR, reporting substantial improvements in estimation accuracy. In a review of
published literature, Soriano-Disla et al., [52] investigated the performance of visible, near-,
and mid-infrared spectroscopy as an appropriate tool to estimate soil properties including
soil carbon concentration. Their review provided evidence to suggest that mid-infrared
spectroscopy offered more accurate predictions than Vis-NIR. Further, Riedel et al. [53]
investigated the prediction of soil parameters of Vis-NIR and MIR spectroscopy across soil
types as part of the Saxon Permanent Soil Monitoring Program in Germany. Ultimately
their findings suggested that mid-infrared spectra provided more accurate prediction capa-
bilities for the majority of soil parameters investigated, however, Vis-NIR-based calibration
models performed well with coefficient of determination estimates greater than 0.67 for
total organic carbon, further suggesting that approaches utilizing the full range of Vis-
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NIR wavelengths (up to 2500 nm) as opposed to the spectral range utilized in this study
(370–940 nm) could increase model performance and accuracy.

Digital soil mapping methods that combine local, proximal sensing with data from
remote sensing sources, such as those tested in this paper, have been proposed as a means
to rapidly map soil properties at reduced cost [54]. Since digital soil mapping often relies
on models using environmental covariates that are fixed (e.g., soil texture, topographic
features), they have limited use in tracking changes in soil carbon over time. Combin-
ing such methods with local, proximal sensing data could provide improved accuracy
for change detection at minimal additional cost. However, our results indicate that the
OurSci reflectometer may not substantially improve accuracy of such methods in the
studied region.

Furthermore, while a suggested use of low-cost, handheld spectroscopy devices for
rapid in-field carbon assessments continue to increase in demand, there are additional
potential challenges to consider that are related to the technology and the environmental
context of interest. The accuracy of infield assessments is often challenged by uncertain and
highly variable field conditions. Many biotic and abiotic factors can affect soil reflectance
and, ultimately, the spectral signature. Factors that could potentially impact reflectance
include quartz content, shadowing, soil particle size, plant residues, and even soil moisture.
Sample moisture content can decrease spectroscopy-based model fits [55–59]. Recent work
has focused on external parameter orthogonalization [60]. However, the impacts of sample
moisture on sample spectra may be non-linear. Cao et al. [60] observed that moisture had
a greater impact on the spectra of samples with lower SOC. These vary with substrate
physical structure, biochemistry, and temperature. Gholizadeh et al. [48] suggested that a
finer scale in situ spectroscopic models, where there is less soil textural and moisture content
variation, may perform better than broader scale models [61,62]. The promise of low-cost,
handheld spectroscopy tools is to be able to measure SOC concentrations in the field and
to reduce laboratory analysis costs. However, in an effort to reduce the environmental
variability and address these factors that may affect reflectance, samples in this study were
processed and dried in the lab to more aptly measure the reflectometer’s direct ability to
estimate SOC concentration. Given the extra steps taken to address variability, our results
continue to question the ability of the Our Sci reflectometer, measuring a wavelength
range of (370–980 nm) at discrete intervals to replace dry combustion laboratory analysis in
semi-arid grazing lands.

Ultimately, this study has potentially described the upper limit of accuracy with the
Our Sci reflectometer for measuring SOC in semi-arid grazing land soils within the wave-
lengths described. An attempt was made to reduce as much variability as reasonably
possible with the experimental design, then to further reduce sample variability by scan-
ning the samples in the lab after they had been ground and dried. Thus, field measured
results would have likely been less accurate. Approaches that utilize the full spectrum
of the near infrared and mid infrared spectral range may provide greater accuracies, al-
beit the instrument costs would greatly increase. Inevitably, the tradeoff of accuracy and
cost remain.

5. Conclusions

As the desire to better understand soils, their dynamic properties, and as ecosystem
service market opportunities emerge, there will be an ever-increasing need to define
methods and technologies that reduce labor and data acquisition costs. These techniques
and technologies will need to be scalable, repeatable, and address temporal changes in
dynamic soil properties. Our data suggest that low-cost vis-NIR spectroscopy (370–940 nm)
does not add substantially better accuracy to remote/DSM-developed models in the studied
region, and so may have limited utility in the estimation of stocks and monitoring of change
in carbon over time. However, further refinement is warranted, particularly the testing of
similarly low-cost MIR tools. Additional research is needed to investigate advanced remote
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sensing and other sensor technologies to mitigate the time and cost constraints of standard
laboratory testing and high throughput.
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