Category	Site	Sample
Raised bed	1	1-RB
Raised bed	3	3-RB
Raised bed	4	4-RB
Raised bed	5	5-RB
Raised bed	6	6-RB
Raised bed	7	7-RB
Cultivated native soil	1	1-CN
Cultivated native soil	2	2-CN
Cultivated native soil	5	5-CN
Cultivated native soil	7	7-CN
Uncultivated native soil	1	1-UN
Uncultivated native soil	2	2-UN
Uncultivated native soil	3	3-UN
Uncultivated native soil	4	4-UN
Parking lot	3	3-PL
Parking lot	4	4-PL
Compost	2	2-C
Compost	3	3-C
Compost	6	6-C
Hotspot	1	HS-1
Hotspot	1	HS-2
Hotspot	1	HS-3
Hotspot	1	HS-4

Table S1. Sample description and nomenclature used in the manuscript.

Table S2. Concentration of 1M HNO₃ extracted metals for soil samples collected from Sites 1-7 and comparison to New Jersey Department of Environmental Protection (NJDEP) Residential Direct Contact Soil Remediation Standard (RDCSRS) values.

Community	Average Metal Concentration							
Sample	(mg kg-1)							
	Cd	Cu	Zn	Pb				
NJDEP RDCSRS	78	3100	23,000	400				
1-RB	0.03	19.22	20.86	173.65				
1-UN	0.32	31.08	106.35	830.29				
1-CN	0.61	86.56	173.13	141.28				
2-UN	0.22	10.03	90.66	163.47				
2-CN	0.09	14.97	34.77	82.32				
2-C	0.00	14.56	66.16	71.9				
3-RB	6.04	207.68	2332.05	60.65				
3-UN	7.80	359.92	2776.84	423.11				
3-PL	8.92	296.61	3410.15	438.07				
3-C	3.62	159.53	452.12	368.91				
4-RB	0.30	7.88	44.83	30.48				
4-UN	0.49	6.80	66.02	127.03				
4-PL	0.35	8.96	54.7	86.19				
5-CN	0.05	3.73	103.96	23.94				
5-RB	0.09	2.52	408.38	23.18				
6-RB	0.04	1.82	72.61	38.85				
6-C	0.05	4.43	253.61	309.51				

7-RB	0.06	2.32	391.04	21.64
7-CN	0.03	1.28	77.63	539.89

Anthropogenic Pb extracted using 1 M HNO₃ can be correlated to total Pb (Pb^{Total}), as determined by a standard acid digestion technique, by the equation [50]:

Pb (total) = 1.317 Pb (1 M HNO₃) + 0.606
$$r^2 = 0.933$$
 (1)

Using Equation 1 as a guideline, 1 M HNO₃ concentrations are likely to underestimate Pb^{Total}. By ~33%. Therefore, all samples with 1 M HNO₃ extractable Pb > 400 mg kg⁻¹ are also likely to have Pb^{Total} > 400 mg kg⁻¹, exceeding the NJDEP RDCSRS limit. Overall, the results from the 1 M HNO₃ extraction represent a potential minimum Pb concentration and are therefore compared with the NJDEP RDCSRS limit throughout the manuscript.

Figure S1. Single-step (1 M HNO₃) extractable concentration of (a) Cd, (b) Cu, and (c) Zn in samples.

CF	Extent of contamination	Class Igeo		Classification
<2	None	0	<0	Uncontaminated
1–3	Moderate	1	0–1	Uncontaminated to moderately contaminated
3–6	Considerable	2	1–2	Moderately contaminated
>6	Very high	3	2–3	Moderate to strongly contaminated
		4	3–4	Strongly contaminated
		5	4–5	Strongly to extremely contaminated
		6	>5	Extremely contaminated

Table S3. Classification based on Contamination factor (CF) and geoaccumulation index (Igeo).

Table S4. Calculated mean and median concentration of Pb (in mg kg⁻¹) across sites and categories for single-step extractions. The mean and median value for all samples is indicated in italics.

Calculated Pb Concentration (mg kg ⁻¹)								
Site	Mean	Median	Category	Mean	Median			
1	381.74	173.65	С	250.10	309.50			
2	105.89	82.32	CN	196.85	111.80			
3	322.68	396.01	PL	262.13	262.13			
4	81.23	86.19	RB	57.93	34.24			
5	23.56	23.56	UN	385.97	293.29			
6	173.75	173.75	All Commlas	Mean	Median			
7	280.76	280.76	All Samples	208.07	127.03			

Table S5. Average Pb concentration in soil fractions for all samples collected in the study.

Sample	Average Pb Concentration (mg kg ⁻¹)						
	Exchangeable	Acid-soluble	Reducible	Oxidizable			
1-RB	44.40	538.00	298.35	121.44			
1-UN	210.60	625.13	666.40	290.68			

1-CN	105.04	555.25	257.45	63.20
2-UN	169.56	558.88	255.40	44.12
2-CN	140.16	544.50	238.2	32.28
2-C	161.36	551.13	200.85	19.68
3-RB	1.18	88.73	425.61	214.15
3-UN	5.33	948.28	1935.94	303.94
3-PL	14.16	703.34	3001.59	1246.13
3-C	14.83	322.39	1494.99	2226.53
4-RB	0.14	0.00	0.00	0.04
4-UN	30.66	19.16	11.66	10.33
4-PL	10.99	7.31	55.63	57.38
5-CN	0.00	0.00	2.39	8.25
5-RB	0.00	0.00	2.11	8.39
6-RB	0.00	0.00	1.05	6.06
6-C	0.00	0.00	10.24	20.49
7-RB	0.00	0.00	90.03	14.11
7-CN	10.76	32.94	2.11	87.05

Table S6. Calculated median concentration of Pb (in mg kg⁻¹) across categories for sequential extractions. The median values for all samples in each fraction is indicated in italics.

Category	Median Pb in Soil Fractions (mg kg ⁻¹)						
	Exchangeable	Acid-soluble	Reducible	Oxidizable			
С	14.83	322.38	200.85	20.49			
CN	57.89	288.72	120.29	47.74			
PL	12.57	355.32	1528.61	651.75			
RB	0.10	0.00	46.01	11.24			
UN	100.11	592	460.90	167.40			
All Samples	10.99	88.72	200.85	44.12			

Ň

Figure S2. Sampling scheme implemented in Site 1 to generate samples (HS 1-4) for identifying Pb hotspot.

Table S7. Extractable Pb concentration, and Pb associated with soil fractions collected for hotspot(HS) identification.

Sample	Pb concentration (mg kg ⁻¹)									
	1 M HNO3	Exchangeable	Acid-soluble	Reducible	Oxidizable					
HS-1	390.34	7.40	20.45	113.65	101.36					
HS-2	3405.39	57.13	410.19	1181.68	625.31					
HS-3	142.27	19.91	12.35	47.20	12.01					
HS-4	73.30	1.44	3.23	15.25	21.53					

Table S8. Extractable Pb concentration in various particle size fractions of selected samples.

Sample		Pb in Particle Size Fraction (mg kg-1)							
	2 mm	1 mm	0.6 mm	0.25 mm	0.125 mm	<0.125mm			
1-UN	830.29	N/A*	842.96	862.74	848.02	809.99			
3-UN	423.11	N/A*	422.61	366.67	427.49	535.95			
3-PL	438.07	N/A*	377.75	372.35	486.31	532.57			
HS-2	3405.39	4197.24	3135.51	3791.80	4258.41	4375.00			

*Quantity of 1 mm fraction obtained after sieving was negligible to use in extraction.

Table 9. The structural parameters derived from EXAFS analysis of samples including error reported in analysis (shown in italics).

Sample	Shell CN		R (Å) σ^2 (Å ²)		Eo	R Factor
	0	1	2.16 (0.023)	0.005 (0.001)		
1-UN	0	1	2.36 (0.017)	0.006 (0.001)	-3.84	0.018
	С	1	3.34 (0.071)	0.010 (0.008)		

110.0	0	1	2.24 (0.010)	0.0007 (0.001)	2 (0	0.000
H5-2	Ο	2	2.41(0.012)	0.006 (0.001)	-3.60	0.006
LIC 2 Tession 1	Ο	1	2.25 (0.018)	0.001 (0.001)	()5	0.012
H5-2 Tessier I	Ο	2	2.43 (0.024)	0.008 (0.001)	-6.35	0.013
UC 2 Tossion 2	Ο	1	2.23 (0.015)	0.003 (0.001)	-9 72	0.006
115-2 Tessiel 2	0	2	2.42 (0.015)	0.009 (0.001)	-0.75	0.000
	Ο	1	2.16 (0.000)	0.004 (0.000)		
HS-2 Tossior 3	Ο	1	2.38 (0.000)	0.007 (0.000)	_9 90	0.019
115-2 1655161 5	Pb	1	2.96 (0.022)	0.008 (0.002)).)0	0.017
	Pb	1	4.04 (0.050)	0.008 (0.006)		
HS-2 Tessior 4	0	2	2.30 (0.036)	0.008 (0.003)	-8 16	0.07
110 2 1035101 4	0	2	2.47 (0.022)	0.014 (0.001)	0.10	0.07
HS-2.1 mm	0	1	2.23 (0.010)	0.001 (0.0009)	-4 71	0.001
	0	2	2.40 (0.011)	0.006 (0.001)	1.7 1	0.001
	0	1	2.23 (0.013)	0.001 (0.001)		
HS-2 0.6 mm	0	2	2.39 (0.014)	0.007 (0.001)	-5.32	0.010
	Pb	1	3.83 (0.024)	0.009 (0.002)		
HS-2 0.25 mm	Ο	1	2.24 (0.018)	0.002 (0.001)	-5.47	0.011
	0	2	2.40 (0.018)	0.008 (0.002)	0.17	0.011
HS-2 0 125 mm	0	1	2.26 (0.012)	0.001 (0.001)	-5.12	0.008
	0	2	2.42 (0.016)	0.008 (0.001)	0.12	0.000
HS-2 <0 125 mm	Ο	1	2.25 (0.016)	0.002 (0.001)	-4 14	0.017
	0	2	2.42 (0.018)	0.008 (0.001)	1.1.1	0.017
7-CN	Ο	1	2.19 (0.043)	0.017 (0.010)	-7.37	0.019
	0	2	2.30 (0.017)	0.010 (0.002)		01015
3-UN	Ο	1	2.25 (0.019)	0.003 (0.001)	-6.01	0.019
	0	1	2.40 (0.034)	0.008 (0.003)	0.01	
	0	2	2.28 (0.000)	0.006 (0.000)		
3-UN 0.6 mm	Ο	2	2.53 (0.019)	0.019 (0.004)	-5.63	0.019
	Pb	1	2.89 (0.037)	0.008 (0.004)	0100	01015
	Pb	1	3.29 (0.025)	0.009 (0.003)		
	0	1	2.23 (0.019)	0.004 (0.001)		
3-UN 0.125 mm	0	1	2.39 (0.029)	0.007 (0.003)	-6.67	0.017
	Pb	1	3.74 (0.043)	0.014 (0.005)		
3-UN <0.125 mm	0	1	2.23 (0.012)	0.001 (0.001)	-5.011	0.019
	0	1	2.40 (0.000)	0.003 (0.002)		
	0	1	2.21 (0.000)	0.004 (0.000)		
3-PL	0	1	2.37 (0.019)	0.010 (0.001)	-1.93	0.015
	Pb	1	3.66 (0.029)	0.008 (0.003)		
	0	2	2.32 (0.004)	0.004 (0.0003)		
3-PL 0.6 mm	O	1	2.54 (0.000)	0.003 (0.000)	-4.59	0.016
	Pb	1	2.94 (0.039)	0.013 (0.004)		
	Pb	1	3.18 (0.016)	0.008 (0.002)		
	0	2	2.33 (0.004)	0.005 (0.0003)		
3-PL 0.125 mm	0	1	2.56 (0.000)	0.006 (0.000)	-2.611	0.006
	Pb	2	2.97 (0.021)	0.016 (0.002)		
	Pb	1	3.21 (0.008)	0.004 (0.001)		
	0	1	2.21 (0.010)	0.003 (0.0008)		
3-PL <0.125 mm	0	1	2.42 (0.000)	0.010 (0.000)	1.62	0.019
-	Pb	1	3.72 (0.038)	0.009 (0.004)		
	Pb	1	4.01 (0.065)	0.013 (0.009)		

Figure S3. Raw (solid) and corresponding fitted (dashed) (a) k^3 -weighted χ spectra, and (b) radial structure functions obtained via Fourier transforming the raw k^3 -weighted spectra for samples (*marked samples denote composite 2 mm fractions).

Table S10. EXAFS parameters for Pb compounds from the literature and analyzed soil samples.

Surface	Pb-O refer- ence (Å)	Refer- ence	Sample	Pb-O Sample (Å)	Sorption Model	Pb-X Sam- ple (Å)
PbSiO₃	2.27	73	1-UN	2.32	Birnessite + hydroxy pyromorphite	√- X = C, 3.32

Pb (CH ₃) ₄	2.24		HS-2 Tessier 2	2.37	Humic acid	
Goethite	2.27	74	HS-2	2.32	Birnessite + hydroxy- pyromorphite	
Hematite	2.28		HS-2 Tessier 1	2.34	Hydroxypyromor- phite	
Feldspar	2.28		HS-2 Tessier 3	2.27	Geothite	X = Pb, 3.50
Birnessite	2.30		HS-2 Tessier 4	2.38	Humic acid	
Humic-acid	2.38		HS-2 1 mm	2.31	Birnessite + hydroxy- pyromorphite	
Hydrocer- rusite	2.29	75	HS-2 0.6 mm	2.31	Hydroxypyromor- phite	X = Pb, 3.83
Litharge	2.30		HS-2 0.25 mm	2.32	Birnessite + hydroxy- pyromorphite	
Cerussite	2.66	-	HS-2 0.125 mm	2.34	Hydroxypyromor- phite	
Hydroxypy- romorphite	2.33	25	HS-2 <0.125 mm	2.33	Hydroxypyromor- phite	
Chloropy- romorphite	2.42	- 35	7-CN	2.24	Pb (CH ₃) ₄	
			3-UN	2.32	Birnessite + hydroxy- pyromorphite	
			3-UN 0.6 mm	2.40	Humic acid + chloro- pyromorphite	X = Pb, 3.09
			3-UN 0.125 mm	2.31	Birnessite	X = Pb, 3.74
			3-UN <0.125 mm	2.31	Birnessite	
			3-PL	2.29	Hydrocerrusite	X = Pb, 3.66
			3-PL 0.6 mm	2.43	Humic acid + chloro- pyromorphite	X = Pb, 3.06
			3-PL 0.125 mm	2.44	Humic acid + chloro- pyromorphite	X = Pb, 3.09
			3-PL <0.125 mm	2.31	Birnessite	X = Pb, 3.86