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Abstract: Visible near-infrared reflectance spectroscopy (VNIRS) and laser-induced breakdown
spectroscopy (LIBS) are potential methods for the rapid and less expensive assessment of soil quality
indicators (SQIs). The specific objective of this study was to compare VNIRS and LIBS for assessing
SQIs. Data was collected from over 140 soil samples taken from multiple agricultural management
systems in New Mexico, belonging to arid and semiarid agroecosystems. Sampled sites included
New Mexico State University Agricultural Science Center research fields and several commercial
farm fields in New Mexico. Partial least squares regression (PLSR) was used to establish predictive
relationships between spectral data and SQIs. Fifteen soil measurements were modeled including the
soil organic matter (SOM), permanganate oxidizable carbon (POXC), total microbial biomass (TMB),
total bacteria biomass (TBB), total fungi biomass (TFB), mean weight diameter of dry aggregates
(MWD), aggregates 2–4 mm (AGG > 2 mm), aggregates < 0.25 mm (AGG < 0.25 mm), wet aggregate
stability (WAS), electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), and iron
(Fe). Overall, calibrations based on measurements irrespective of locations performed better for LIBS
and combined VNIRS-LIBS. Measurements separated according to locations highly improved the
quality of prediction for VNIRS as compared to combined locations. For example, the prediction
R2 values for regression of VNIRS were 0.19 for SOM, 0.30 for POXC, 0.24 for MWD, 0.15 for
AGG > 2 mm, and 0.13 for EC in combined datasets irrespective of location. When separated
according to locations, for one of the locations, the predictive R2 values for VNIRS were 0.48 for SOM,
0.70 for POXC, 0.67 for MWD, 0.60 for AGG > 2 mm, and 0.51 for EC. The prediction values varied
with the sampling time for both LIBS and VNIRS. For example, the prediction values of some SQIs
using VNIRS were higher in samples collected in winter for measurements, including SOM (0.90),
MWD (0.96), WAS (0.66), and EC (0.94). Using the VNIRS, the corresponding predictive values for
the same SQIs were lower for samples collected in the fall (SOM (0.61), MWD (0.45), WAS (0.46), and
EC (0.65)). While this study illustrates the prospects of VNIRS and LIBS for estimating SQIs, a more
comprehensive evaluation, using a larger regional dataset, is required to understand how the site and
soil factors affect VNIRS and LIBS, in order to enhance the utility of these methods for soil quality
assessment in arid and semiarid agroecosystems.
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1. Introduction

Soil quality is the capacity of a specific kind of soil to function within its natural or managed
ecosystem boundaries to sustain plant and animal productivity, maintain or enhance water and air
quality, and support human health and habitation [1,2]. Conventional assessments of soil quality
rely on laboratory and field measurements known as soil quality indicators (SQIs) [3,4]. However,
the necessary laboratory and field soil analyses for determining SQIs are usually expensive, destructive,
time-consuming, often complicated, and can require extensive chemical use [5]. Therefore, other
methods to estimate SQIs would be useful to reduce costs and improve efficiency.

Visible-near infrared spectroscopy (VNIRS) and laser-induced breakdown spectroscopy (LIBS)
have been considered as possible rapid, precise, non-destructive, portable and cost-efficient methods to
replace conventional soil analysis and characterization of a wide range of soil materials [6–8]. Visible
near-infrared reflectance spectroscopy (VNIRS) includes the visible (400–700 nm) and near-infrared
(700–2500 nm) spectral regions [8] while LIBS spectra are measured in the spectral region between
200–1000 nm [9].

The fundamentals of VNIRS as described by Viscarra et al. [8] and Bo Stenberg et al. [10] rely
on generating a soil spectrum where radiation containing all relevant frequencies is directed to the
soil of interest. Based on the elemental and structural composition of the soil, the radiation will be
absorbed or reflected because of the vibration and rotation of molecular bonds in the soil materials
caused by the incident radiation. These bonds will absorb the radiation to different degrees, with a
specific energy quantum, corresponding to the differences between the two energy levels. The energy
quantum is directly related to the frequency and inversely related to the wavelength. The absorbed
or reflected radiation will generate characteristic spectra that can be used to infer the physical and
chemical composition of the soil.

Fundamentally, LIBS detects emitted light in the range of 200–1000 nm, and thus LIBS spectrum
contains information about the concentration of most of the elements in the periodic table [11]. LIBS
analyzes the light produced from the interaction of the sample with laser radiation and records the
light emitted from the decay of electrons to lower-energy orbitals during the cooling of laser-induced
ablation plasmas [6,11] (Figure 1).
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elemental mapping of the root-rhizosphere-soil continuum using LIBS, 119–132. Copyright 2019, with
permission from Elsevier.



Soil Syst. 2020, 4, 42 3 of 16

Most soil materials have distinct spectral fingerprints, and there are three major soil chromophores
(materials that absorb incident radiation) including minerals, organic matter, and water [13,14].
For instance; absorption in the visible (VIS) region (400–700 nm) is associated with minerals containing
primarily iron, while multiple absorption features in the near-infrared (NIR) region (700–2500 nm) are
due to OH, SO4, CO2, and CO3 groups and band combinations of H2O and CO2. Some absorption
peaks in the MIR (mid-infrared) region (2500–25,000 nm) can be attributed to aliphatic CH2 and CH
stretching [10]. Thus, identifying a specific spectrum may be a challenge as many organic and inorganic
molecules may absorb/reflect light in the VIS and NIR regions [10].

The LIBS technology is a more elemental technique and is suitable for measuring the elemental
composition of different solid and liquid materials, and only small amounts of the materials are needed
for the analysis [9]. However, LIBS is a costlier and more complex system compared to the VNIRS
system. On the other hand, visible near-infrared reflectance spectroscopy (VNIRS) is a more molecular
technique that is better suited for detecting essential constituents of the soil such as clay minerals and
organic materials. While VNIRS is less costly and complex compared to LIBS, one of the limitations
of VNIRS is that the positions of absorption features for various soil materials and minerals are not
unique and often overlap [6].

Subsequently, the use of VNIRS and LIBS methods in soil quality assessment requires advanced
statistical, spectral, and soil knowledge for calibration of spectra with SQIs. Various calibration methods
have been used for relating soil spectra to soil properties including principal component regression
(PCR), multiple regression analysis (MRA), partial least squares regression (PLSR), stepwise multiple
linear regression (SMLR), multivariate adaptive regression splines (MARS), Fourier regression, locally
weighted regression (LWR), and multivariate regression with covariance estimation (MRCE) [6,8,9].
There is no universal agreement on the use of a specific calibration method for VNIRS and LIBS spectra.

Many studies have shown the capability of VNIRS and LIBS in agriculture and natural resource
applications and for investigating specific soil materials including the mineral fraction, iron oxides,
organic matter, water, carbonates, soluble salts, and particle size distribution [6,9,15,16]. More than
fifteen SQI measurements were predicted simultaneously by VNIRS at different levels of success by
Idowu et al. [17]. The same study also reported a successful prediction (R2 > 0.80) for soil organic matter,
permanganate oxidizable carbon, soil pH, and exchangeable acidity. Other studies have suggested
that VNIRS used as a tool for integrating soil measurements may provide accurate estimates for soil
organic carbon, soil water, clay content, cation exchange capacity, some plant nutrients, and soil pH,
thus reducing the time and costs associated with analyzing the individual soil measurements [7,18].
It is worth noting that complete elimination of standard and/or conventional soil analytical procedures
may not be possible as those are still necessary for calibrating VNIRS and LIBS investigations.

Soil quality assessment in the Southwestern United States has unique challenges that are associated
with spatial, temporal, and crop management variations which make such an assessment arduous
and complicated. Soil quality or soil health assessment relies on identifying key soil measurements
known as soil quality indicators. These indicators are a combination of the physical, chemical, and
biological soil attributes that interact in a complex way to determine how effectively the soil will
function. Some common physical, chemical, and biological interactions that occur in the soil include
those between soil biota and soil particles and biochemical interactions between soil biota and soil
organic constituents. Some research has shown the potential and acceptable performance of VNIRS,
LIBS, and combined VNIRS-LIBS for soil carbon determination [6], one of the most important SQIs.
Therefore, there is a need for establishing soil spectral libraries based on data gathered at local and
regional scales that offer the potential to compare sensor data with traditional laboratory analysis.
Currently, little is known about the performance of the sensors and/or spectroscopies across a wide
range of soil and environmental conditions in the study area, for making soil quality assessment
more rapid, cost-effective, and environmentally friendly as well as facilitating digital soil mapping.
Therefore, the overall goal of this research is to explore the potential for VNIRS and LIBS to reduce or
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replace laboratory analysis. The specific objective of this study was to compare VNIR and LIBS for
assessing SQIs.

2. Materials and Methods

2.1. Soil Sampling and Laboratory Analyses

Soil samples were collected from different fields from multiple agricultural management systems
in 2015 and 2016 as part of a soil quality assessment study in the arid agroecosystems of New Mexico.
Two New Mexico State University (NMSU) Agricultural Science Centers (Los Lunas and Leyendecker)
were sampled, with 36 samples collected from each location, and 71 samples were collected from
another six commercial fields across New Mexico, resulting in a total of 143 soil samples (Table 1,
Figure 2).

At the NMSU Los Lunas site, soils were collected from long-term (≥5 years) replicated soil and
crop management systems which included permanent grass with tall fescue, a peach orchard with
clover understory, an alfalfa field, and conventional management with varied annual crops (Table 1).
At the Leyendecker Plant Science Research site in Las Cruces, NM, samples were collected under
different crop management systems including alfalfa, pecan, and cotton fields (Table 1). Additionally,
SQIs at the NMSU Leyendecker site were sampled over four seasons: fall (October 2015), winter
(January 2016), spring (April 2016), and summer (July 2016).

Table 1. The number of samples, time of sampling, soil texture, and crop management practices of the
sampled agricultural fields.

Sites Number of
Samples Time of Sampling Soil Texture Management Practices

Commercial
agricultural farms

71 samples ‡

from 6 sampling
areas †

Fall of 2016

Sandy loam, clay
loam, clay, loam,
sandy clay loam,
and loamy sand

Flood or sprinkler irrigated annual
field crop systems, Flood or sprinkler
irrigated vegetable systems and
Flood or drip-irrigated orchards

NMSU Agricultural
Science Center, Los
Lunas

36 samples Fall of 2016

Sandy loam,
sandy clay loam,
sandy clay, clay
loam, and clay

(a) Grass field with tall fescue
(Lolium arundinaceum (Schreb.));

(b) Alfalfa (Medicago sativa L.) field;
(c) Conventionally tilled with

varied annual crops;
(d) Peach (Prunus persica (L.) Batsch)

orchard with white clover
(Trifolium repens L.) understory;

(e) Young cottonwood (Populus
deltoides W. Bartram)
tree orchard

NMSU Leyendecker
Plant Science Center,
Las Cruces

36 samples per
sampling season

• Fall 2015
• Winter 2015
• Spring 2016
• Summer 2016

Sandy loam and
clay loam

Alfalfa fields, upland cotton
(Gossypium hirsutum) fields and pecan
(Carya illinoinensis) orchards

‡ Four replicate fields per crop management system (field crop systems, vegetable systems, and orchards) were
sampled in four areas (Area 1, Area 2, Area 4, and Area 5) (total samples = 48); for Area 6, seven replicate samples
were collected for field crop systems while four replicate samples were collected for vegetable systems and orchards
(total samples = 15); for Area 3, four replicate samples were collected only for field crops and vegetable crops
(total samples = 8). Different farm fields selected within each region were regarded as replicates. † Sampling areas
represent the major land resource areas (MLRA) in New Mexico included Southern Desert Basins, Plains, and
Mountains (MLRA 42) (Area 1), Southern High Plains, Southern Part (MLRA 77C) (Area 2), Central New Mexico
Highlands (MLRA 70C) (Area 3), Upper Pecos River Valley (MLRA 70B) (Area 4), Colorado Plateau (MLRA 35)
(Area 5) and Southwestern Plateaus, Mesas, and Foothill (MLRA 36) (Area 6) [19].



Soil Syst. 2020, 4, 42 5 of 16
Soil Syst. 2020, 3, x FOR PEER REVIEW 5 of 16 

 

 

 

Figure 2. Sampled fields from different Major Land Resources Areas (MLRA) and areas in New 
Mexico included Southern Desert Basins, Plains, and Mountains (MLRA 42) (Area 1), Southern High 
Plains, Southern Part (MLRA 77C) (Area 2), Central New Mexico Highlands (MLRA 70C) (Area 3), 
Upper Pecos River Valley (MLRA 70B) (Area 4), Colorado Plateau (MLRA 35) (Area 5), Southwestern 
Plateaus, Mesas, and Foothill (MLRA 36) (Area 6) [19], Los Lunas Agriculture Science Centers, Los 
Lunas (Area 7), and Leyendecker Plant Science Center (Area 8). 

At the NMSU Los Lunas site, soils were collected from long-term (≥5 years) replicated soil and 
crop management systems which included permanent grass with tall fescue, a peach orchard with 
clover understory, an alfalfa field, and conventional management with varied annual crops (Table 1). 
At the Leyendecker Plant Science Research site in Las Cruces, NM, samples were collected under 
different crop management systems including alfalfa, pecan, and cotton fields (Table 1). Additionally, 
SQIs at the NMSU Leyendecker site were sampled over four seasons: fall (October 2015), winter 
(January 2016), spring (April 2016), and summer (July 2016). 

Surface soil samples (0–0.15 m) were collected from the field, air-dried, and analyzed for 15 SQI 
measurements. Soil samples were collected in a zig-zag pattern using a standard soil auger and ten 
random soil cores were collected per each sampled field to form a composite sample. Soil organic 
matter (SOM) was measured by Walkley–Black method [20], permanganate oxidizable carbon 
(POXC) was measured using the technique developed by Weil et al. [21], dry aggregate size 
distribution analysis resulted in mean weight diameter of dry aggregates (MWD), aggregates 
between 2–4 mm (AGG > 2 mm), and aggregates less than 0.25 mm (AGG < 0.25 mm), all of which 
were measured using a Tyler RX-29 Rotap sieve shaker (W.S. Tyler, Mentor, OH, USA) [22], wet 
aggregate stability (WAS) was measured using the Cornell sprinkle infiltrometer method [23]. 

Electrical conductivity (EC), pH, calcium (Ca), magnesium (Mg), and sodium (Na) were 
measured on the saturated paste extract using the US Salinity Lab method [24]. Soil iron (Fe) was 
measured using the DTPA extract method [25]. Additionally, during field sampling, separate soil 
samples (~200 g per sample) were collected in plastic bags, transferred into coolers and stored at  
−20 °C before they were shipped to Ward Laboratories (WARD Laboratories, Inc., Kearney, NE, USA) 

+

+

+

+

+
+ ++

6 

5 

7 3 
4 

2 

1 

8 

Sampling areas 

Figure 2. Sampled fields from different Major Land Resources Areas (MLRA) and areas in New Mexico
included Southern Desert Basins, Plains, and Mountains (MLRA 42) (Area 1), Southern High Plains,
Southern Part (MLRA 77C) (Area 2), Central New Mexico Highlands (MLRA 70C) (Area 3), Upper
Pecos River Valley (MLRA 70B) (Area 4), Colorado Plateau (MLRA 35) (Area 5), Southwestern Plateaus,
Mesas, and Foothill (MLRA 36) (Area 6) [19], Los Lunas Agriculture Science Centers, Los Lunas (Area 7),
and Leyendecker Plant Science Center (Area 8).

Surface soil samples (0–0.15 m) were collected from the field, air-dried, and analyzed for 15 SQI
measurements. Soil samples were collected in a zig-zag pattern using a standard soil auger and ten
random soil cores were collected per each sampled field to form a composite sample. Soil organic
matter (SOM) was measured by Walkley–Black method [20], permanganate oxidizable carbon (POXC)
was measured using the technique developed by Weil et al. [21], dry aggregate size distribution
analysis resulted in mean weight diameter of dry aggregates (MWD), aggregates between 2–4 mm
(AGG > 2 mm), and aggregates less than 0.25 mm (AGG < 0.25 mm), all of which were measured using
a Tyler RX-29 Rotap sieve shaker (W.S. Tyler, Mentor, OH, USA) [22], wet aggregate stability (WAS)
was measured using the Cornell sprinkle infiltrometer method [23].

Electrical conductivity (EC), pH, calcium (Ca), magnesium (Mg), and sodium (Na) were measured
on the saturated paste extract using the US Salinity Lab method [24]. Soil iron (Fe) was measured using
the DTPA extract method [25]. Additionally, during field sampling, separate soil samples (~200 g per
sample) were collected in plastic bags, transferred into coolers and stored at −20 ◦C before they were
shipped to Ward Laboratories (WARD Laboratories, Inc., Kearney, NE, USA) for phospholipid fatty
acid (PLFA) analysis to estimate the total microbial biomass (TMB), total bacteria biomass (TBB), and
total fungi biomass (TFB) [26].

2.2. Reflectance Measurements

VNIRS measurements were made on ≤2 mm fractions of air-dried soils with a Fieldspec
2500 spectrometer (Analytical Spectral Devices [ASD], Boulder, CO, USA) with a spectral range
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of 350–2500 nm, acquired at 1 nm increments [27]. The optical setup was done as recommended by the
instrument’s manufacturer and following the methodology developed by the US Natural Resources
Conservation Service (NRCS) for Rapid Carbon Assessment [27]. Soil sampler holders were filled to
capacity with air-dried, ≤2 mm sieved soils, and the excess soil was scraped off using a blade to ensure
a flat surface flush with the top of the holder. Afterward, the sample holder was directly, gently, and
firmly slid onto the ASD high-intensity mug light attachment of the spectrometer, and there was no gap
between the sample holder and mug light. Baseline measurements were taken before scanning every
sample as the thermoelectric coolers take time to stabilize. Ten spectra were collected for every sample
to minimize instrument noise and the average of the ten spectra were then recorded [2]. Scanning of
the samples using VNIRS equipment was performed at USDA–NRCS Soil Survey office in Las Cruces,
New Mexico.

The LIBS sample preparation involved compressing approximately 11 g of air-dried, ≤2 mm
sieved soil inside a 38 mm Spec-Cap using a 15 ton hydraulic press for one minute to ensure that the
soil sample would not be scattered by the pulses of laser light focused on the sample, once it was
placed on the LIBS sample platform. In this study, the LIBS spectra were recorded with an average of
200 laser shots as the sample was rotated, and the result was a spectrum with 13,700 variables where
each variable was the intensity of one of the 13,700 channels of light collected over a range between
198 and 969 nm [9].

2.3. Data Calibration and Modeling

In addition to testing VNIRS and LIBS independently, spectra from both VNIR and LIBS were
combined to test their ability for predicting soil quality indicators (SQIs). This was accomplished by
first independently mean-centering and variance-scaling the VNIR and LIBS spectra and then merging
both spectra into a single combined LIBS-VNIRS predictor dataset.

Spectral pre-treatments were applied to remove any noise in the spectra caused by subtle variations
in sample preparation and measurement [28]. All spectra were filtered using the Savitzky–Goly filter
and were trimmed to remove noisy regions at the edge of the detector limits, especially in the regions
of 350–500 nm and 2450–2500 nm for VNIRS, 1–150 nm and 13,652–13,701 nm for LIBS, and 1–150 nm
and 15,801–15,850 nm for combined VNIRS-LIBS. Multiplicative scatter correction was used to correct
the spectra to an ideal spectrum to ensure that the baseline and amplification effects were the same
average level in every spectrum [28]. Continuum removal and wavelets were applied to the spectra to
fit a convex hull to each spectrum and for multiscale examinations of the spectra, respectively [28].
The number of predictors (i.e., individual bands) after preprocessing were 1950, 13,500, and 15,650 for
VNIRS, LIBS, and combined VNIRS-LIBS, respectively. In this study, 75% of the dataset was used for
calibration and 25% for validation.

Our modeling strategy was based on samples collected from previous soil quality studies that
presented a unique opportunity to study how different spectroscopic methods would perform in
relating measured soil quality indicators to spectral data (Table 2). Model 1 (a statewide library) was
used to explore a regional prediction of soil measurements from spectral reflectance measurements.
Model 2 (a local spectral library) was used to explore soil spectra from soils collected from long-term
crop management practices in an agricultural research center. Model 3 (a temporal spectra library)
was used to understand the variations in the soil spectra as a function of the sampling dates that
corresponded to the fall, winter, spring, and summer.

Partial least squares regression (PLSR) was used to model the relationship between spectra and
SQIs. The number of PLSR components was selected based on R-square values, the cumulative
percentage of variance, and scree plots for VNIRS, LIBS, and VNIRS-LIBS. The PLSR model was used
to fit the calibration data and afterward used to predict the validation dataset. Model performance for
both the calibration and validation datasets was assessed using the coefficient of determination (R2)
and root mean square error (RMSE) computed using both datasets [29]. All analyses were performed
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using the R statistical software, and multiple R packages/libraries including signal, plyr, wavethresh,
spectroscopy, Cubist, pls, and devtools (R version 3.4.4, 64-bit) [30].

Table 2. Locations used for developing the partial least squares regression (PLSR) models.

Models † Locations Sample Size

Model 1

All the data irrespective of locations across the state of New Mexico 71
commercial farm samples from 6 regions, 36 samples from NMSU Agricultural
Science Center in Los Lunas, and 36 fall season samples from NMSU
Leyendecker Plant Science Center in Las Cruces

143

Model 2 Data from NMSU Agricultural Science Center in Los Lunas, New Mexico,
(34◦46′00.34” N, 106◦45′31.95” W, Elevation 1478.28 m) 36

Model 3 Data from NMSU Leyendecker Plant Science Center in Las Cruces, New Mexico,
(32◦11′5” N, 106◦44′26” W, Elevation 1175.00 m)

• Winter 36
• Spring 36
• Summer 36
• Fall 36
† Soils were collected from different management systems and were modeled irrespective management systems.

3. Results

3.1. Calibration-Model 1 (A Statewide Library)

Descriptive statistics of SQIs for all samples are presented in Table 3. Most SQIs had positive
skewness, however, WAS (−0.27) and pH (−0.65) had negative skewness. Similarly, most SQIs had
positive kurtosis, except POXC, AGG < 0.25, and WAS, which had negative kurtosis (Table 3). Although
transformations of the data could reduce the impact of skewness, no transformations of the data were
undertaken in this study because the downside of the transformations would be a loss of interpretability
of the individual values, and the SQIs would not be in the original units.

Table 3. Descriptive statistics for laboratory-measured soil quality indicators (SQIs) using a dataset
from all locations in New Mexico (n = 143).

SQIs ‡ Mean S.D. C.V. (%) Min. Max. Skewness Kurtosis

SOM (%) † 1.37 0.86 62.3 0.76 4.83 1.62 3.14
POXC (mg·kg−1) 426 63.8 15.0 379 591 0.72 −0.09

TMB (ng·g−1) 2163 1849 85.5 891 11266 2.09 6.39
TBB (ng·g−1) 1038 937 90.3 442 4841 2.07 5.19
TFB (ng·g−1) 227 267 117 34.9 1280 1.91 3.79
MWD (mm) 0.74 0.51 67.5 0.31 2.65 0.91 0.83

AGG > 2 mm (%) 24.1 18.9 78.3 6.24 80.5 0.70 0.04
AGG < 0.25 mm (%) 34.1 18.3 53.6 19.6 87.2 0.62 −0.43

WAS (%) 54.6 17.2 31.7 43.5 93.9 -0.27 −0.40
pH 7.44 0.27 3.60 7.30 8.10 -0.65 0.55

EC (dS·m−1) 1.60 1.53 95.5 0.67 8.28 2.18 4.96
Ca (mg·kg−1) 8.86 7.90 89.1 4.17 46.6 2.19 4.99
Mg (mg·kg−1) 2.88 3.06 106 1.08 18.4 2.51 7.25
Na (mg·kg−1) 6.56 9.13 139 1.75 62.6 3.19 12.6
Fe (mg·kg−1) 4.16 3.58 85.9 2.09 21.2 2.46 7.52

‡ Standard deviation (S.D.), Coefficient of variation (C.V), Minimum (Min.) and Maximum (Max.). † Soil organic
matter (SOM), permanganate oxidizable carbon (POXC), total microbial biomass (TMB), total bacteria biomass
(TBB), total fungi biomass (TFB), mean weight diameter (MWD), aggregates 2–4 mm (AGG > 2 mm), aggregates <
0.25 mm (AGG < 0.25 mm), wet aggregate stability (WAS), electrical conductivity (EC), calcium (Ca), magnesium
(Mg), sodium (Na), and iron (Fe).
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Calibration R2 and RMSE values for the SQIs are presented in Table 4. The R2 ranged from 0.13 for
EC, Mg, and Na to 0.76 for pH. The calibration using LIBS alone showed that few SQIs had R2 > 0.90
except the microbial components (TMB, TBB, and TFB) which had R2 = 0.96 (Table 4). The calibration R2

for combined VNIRS-LIBS was ≥ 0.80 for pH, TMB, TBB, and TFB (Table 4). The combined VNIRS-LIBS
yielded a better prediction for all the SQIs as compared to VNIRS alone. Moreover, the R2 for combined
VNIRS-LIBS improved for SOM, pH, EC, Mg, and Na as compared to LIBS alone (Table 4). The decline
in R2 values using the combination VNIRS-LIBS in comparison with LIBS alone for some soil quality
indicators may be related to fundamental basis, elemental, and molecular responses of each sensor.
Combined VNIRS-LIBS may have affected the stoichiometric relationships in the data used by PLSR,
and molecular and elemental information may not be successfully integrated in some cases either [6].

Table 4. Calibration R2 and root mean square error (RMSE) values of soil quality indicators (SQIs)
using visible-near infrared spectroscopy (VNIRS), laser-induced breakdown spectroscopy (LIBS), and
combined VNIRS-LIBS for all samples (n = 143).

SQIs
VNIRS LIBS VNIRS-LIBS

R2 RMSE R2 RMSE R2 RMSE

SOM (%) † 0.19 0.66 0.61 0.43 0.65 0.54
POXC (mg·kg−1) 0.30 51.5 0.81 26.4 0.68 36.2

TMB (ng·g−1) 0.44 1211 0.96 430 0.82 835
TBB (ng·g−1) 0.45 649 0.96 214 0.81 499
TFB (ng·g−1) 0.41 189 0.96 68.8 0.80 120
MWD (mm) 0.24 0.48 0.72 0.27 0.57 0.34

AGG > 2 mm (%) 0.23 16.1 0.72 9.66 0.58 12.6
AGG < 0.25 mm (%) 0.15 16.2 0.68 9.64 0.56 11.6

WAS (%) 0.16 16.1 0.73 8.72 0.54 11.6
pH 0.76 0.11 0.89 0.11 0.92 0.07

EC (dS·m−1) 0.13 1.20 0.33 1.20 0.54 1.10
Ca (mg·kg−1) 0.17 5.84 0.61 5.44 0.61 4.86
Mg (mg·kg−1) 0.13 2.25 0.61 1.72 0.67 1.62
Na (mg·kg−1) 0.13 7.80 0.58 4.59 0.59 6.41
Fe (mg·kg−1) 0.15 2.66 0.69 1.38 0.63 2.12

† Soil organic matter (SOM), permanganate oxidizable carbon (POXC), total microbial biomass (TMB), total bacteria
biomass (TBB), total fungi biomass (TFB), mean weight diameter (MWD), aggregates 2–4 mm (AGG > 2 mm),
aggregates < 0.25 mm (AGG < 0.25 mm), wet aggregate stability (WAS), electrical conductivity (EC), calcium (Ca),
magnesium (Mg), sodium (Na), and iron (Fe).

3.2. Calibration-Model 2 (A Local Spectral Library)

Considering the soil measurement data collected from a single location (NMSU Agricultural
Science Center at Los Lunas), the assessment of univariate normality for soils at this location showed
that only POXC (−0.17) was negatively skewed, while the rest of the SQIs had positive skewness
(Table 5). The SQIs with negative kurtosis include AGG > 2 mm (−0.57), AGG < 0.25 mm (−0.74),
and WAS (−0.50), while the rest of the SQIs had a positive kurtosis (Table 5).

Calibration R2 and RMSE values are presented in Table 6. The R2 values ranged from 0.48 for
SOM to 0.75 for soil pH using VNIRS alone. For LIBS alone, the R2 ranged from 0.66 for POXC to
0.95 for TFB. The R2 values using LIBS alone showed that some SQIs had R2

≥ 0.90 including TFB
(R2 = 0.95), Mg (R2 = 0.94), TMB (R2 = 0.91), and TBB (R2 = 0.90). The R2 for combined VNIRS-LIBS
ranged from 0.57 for Ca to 0.95 for pH (Table 6).
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Table 5. Descriptive Statistics for laboratory-measured soil quality indicators (SQIs) using a dataset
from NMSU Agricultural Science Center in Los Lunas, NM (n = 36).

SQIs ‡ Mean S.D. C.V. (%) Min. Max. SkewnessKurtosis

SOM (%) † 1.28 0.81 63.4 0.29 4.47 2.09 5.99
POXC (mg·kg−1) 381 32.7 8.58 288 452.1 −0.17 0.76
TMB (ng·g−1) 1489 1633 109 105 7943 2.27 6.38
TBB (ng·g−1) 736 829 112 26.0 4152 2.38 7.56
TFB (ng·g−1) 145 225 155 0.00 956 2.55 6.81
MWD (mm) 0.64 0.49 77.0 0.13 2.03 1.00 0.24
AGG > 2 mm (%) 19.3 18.7 96.6 0.28 65.1 0.81 −0.57
AGG < 0.25 mm
(%) 32.5 16.1 49.6 6.65 64.2 0.35 −0.74

WAS (%) 64.0 11.3 17.7 43.4 87.1 0.07 −0.50
pH 7.58 0.15 2.00 7.30 7.90 0.31 0.07
EC (dS·m−1) 0.69 0.34 48.8 0.30 2.00 1.91 5.55
Ca (mg·kg−1) 4.53 1.94 42.9 2.05 10.9 1.34 2.12
Mg (mg·kg−1) 1.13 0.56 49.3 0.44 2.68 1.43 1.85
Na (mg·kg−1) 2.39 1.33 55.6 1.08 7.83 2.42 7.45
Fe (mg·kg−1) 1.80 1.02 56.4 0.72 4.79 1.34 2.11

‡ Standard deviation (S.D.), Coefficient of variation (C.V), Minimum (Min.) and Maximum (Max.). † Soil organic
matter (SOM), permanganate oxidizable carbon (POXC), total microbial biomass (TMB), total bacteria biomass
(TBB), total fungi biomass (TFB), mean weight diameter (MWD), aggregates 2–4 mm (AGG > 2 mm), aggregates <
0.25 mm (AGG < 0.25 mm), wet aggregate stability (WAS), electrical conductivity (EC), calcium (Ca), magnesium
(Mg), sodium (Na), and iron (Fe).

Table 6. Calibration R2 and RMSE values for visible-near infrared spectroscopy (VNIRS), laser-induced
breakdown spectroscopy (LIBS), and combined VNIRS-LIBS using data from NMSU Agricultural
Science Center in Los Lunas, NM (n = 36).

SQIs ‡
VNIRS LIBS VNIRS-LIBS

R2 RMSE R2 RMSE R2 RMSE

SOM (%) † 0.48 0.61 0.89 0.27 0.69 0.45
POXC (mg·kg−1) 0.70 14.7 0.66 5.23 0.77 32.04
TMB (ng·g−1) 0.55 1107 0.91 510 0.71 1058
TBB (ng·g−1) 0.55 576 0.90 274 0.76 480
TFB (ng·g−1) 0.67 134 0.95 48.4 0.77 131
MWD (mm) 0.67 0.26 0.85 0.15 0.73 0.25
AGG > 2 mm (%) 0.66 10.1 0.85 6.26 0.73 9.00
AGG < 0.25 mm (%) 0.60 9.95 0.80 6.35 0.71 9.73
WAS (%) 0.72 5.55 0.77 5.11 0.69 9.27
pH 0.75 0.07 0.85 0.05 0.95 0.06
EC (dS·m−1) 0.51 0.24 0.82 0.14 0.65 0.85
Ca (mg·kg−1) 0.55 1.29 0.78 4.14 0.57 4.73
Mg (mg·kg−1) 0.55 0.35 0.94 0.14 0.63 1.93
Na (mg·kg−1) 0.63 0.83 0.77 0.63 0.67 5.08
Fe (mg·kg−1) 0.54 0.72 0.80 0.38 0.66 1.62

‡ The soils of this location were collected from different soil and crop management systems including permanent
grass with tall fescue, a peach orchard with clover understory, an alfalfa field, and conventional with varied annual
crops. † Soil organic matter (SOM), permanganate oxidizable carbon (POXC), total microbial biomass (TMB), total
bacteria biomass (TBB), total fungi biomass (TFB), mean weight diameter (MWD), aggregates 2–4 mm (AGG > 2
mm), aggregates < 0.25 mm (AGG < 0.25 mm), wet aggregate stability (WAS), electrical conductivity (EC), calcium
(Ca), magnesium (Mg), sodium (Na), and iron (Fe).

3.3. Calibration-Model 3 (A Temporal Spectra Library)

Sampling seasons affected the correlation between soil spectra and SQIs (Table 7). The VNIRS
calibration showed that the R2 values were less than 0.90, except for pH (R2 = 0.94), in the fall. In the
winter, the R2 values for some SQIs, including MWD, Fe, EC, and SOM, increased to ≥0.90. The R2
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values ranged from 0.61 for the Fe to 0.92 for soil pH in the spring while the R2 values ranged from
0.51 for POXC to 0.92 for soil pH in the summer (Table 7).

Table 7. Calibration R2 and RMSE for visible-near infrared spectroscopy (VNIRS) over four measurement
seasons at Leyendecker Plant Science Center, Las Cruces, NM (n = 36 for each season).

SQIs ‡
Fall Winter Spring Summer

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SOM (%) † 0.61 0.22 0.90 0.10 0.75 0.19 0.68 0.14
POXC (mg·kg−1) 0.62 27.1 0.70 13.4 0.75 9.68 0.51 20.6
MWD (mm) 0.45 0.45 0.96 0.07 0.68 0.24 0.81 0.31
AGG > 2 mm (%) 0.47 16.6 0.66 8.31 0.63 9.28 0.83 8.50
AGG < 0.25 mm (%) 0.46 14.8 0.66 6.09 0.67 9.30 0.90 5.86
WAS (%) 0.46 10.5 0.66 8.41 0.62 7.97 0.52 7.73
pH 0.94 0.06 0.67 0.08 0.92 0.01 0.92 0.03
EC (dS·m−1) 0.65 0.67 0.94 0.26 0.65 0.64 0.68 0.47
Ca (mg·kg−1) 0.61 4.27 0.82 2.77 0.69 3.43 0.59 2.58
Mg (mg·kg−1) 0.63 1.03 0.82 0.77 0.68 1.09 0.65 0.67
Na (mg·kg−1) 0.71 3.09 0.89 2.11 0.63 4.45 0.74 2.27
Fe (mg·kg−1) 0.71 0.97 0.95 0.28 0.61 0.91 0.84 0.42
‡ The soil samples were collected in the fall (October 2015), winter (January 2016), spring (April 2016), and summer
(July 2016) from three replicate fields of the three tested crop production systems [5]. † Soil organic matter (SOM),
permanganate oxidizable carbon (POXC), mean weight diameter (MWD), aggregates 2–4 mm (AGG > 2 mm),
aggregates < 0.25 mm (AGG < 0.25 mm), wet aggregate stability (WAS), electrical conductivity (EC), calcium (Ca),
magnesium (Mg), sodium (Na), and iron (Fe).

The seasonal changes of model calibration values followed a similar trend for some of the
laboratory soil measurements. For example, the calibration R2 values for SOM had a high value in
winter spectra measurement, and the SOM content was the highest during the winter sampling [5].
The lowest R2 values for SOM spectra were found in samples collected during the fall and summer,
and the laboratory soil measurements showed that SOM varied significantly in the following order:
winter (1.19%), spring (1.05%), fall (0.87%), and summer (0.84%) [5]. Moreover, the R2 for AGG > 2 mm
was the highest in summer sample spectra (R2 = 0.83), corresponding to the highest AGG > 2 mm
laboratory measurement for the summer samples [5].

Generally, the relationships between LIBS spectra and SQIs had R2 values < 0.90, except for soil
pH, which had R2 > 0.90 in three out of the four seasons (Table 8). Calibration R2 values for LIBS in the
fall ranged from 0.62 for Na to 0.97 for soil pH while calibration R2 values ranged from 0.75 for Ca and
Mg to 0.96 for pH in the winter. The soil pH was the only SQI which had R2

≥ 0.90 in the spring, while
the R2 values were less than 0.90 for all the SQIs during the summer (Table 8).

Similar to VNIRS, there was a trend between LIBS model calibration values and some soil
measurements. For instance, the highest LIBS calibration R2 value for soil salinity (EC) was 0.86 in the
summer, and the highest soil salinity measured (2.01 dS·m−1) was also observed during the summer [5].
Some indicators, mostly the physical SQIs, had relatively high calibration R2 values during the winter
including MWD, AGG > 2 mm, AGG < 0.25 mm, and POXC. Many of the chemical SQIs (pH, EC, Ca,
Mg, Na, and Fe) had relatively lower calibration R2 values during the summer using LIBS (Table 8).

Building validation models was not the main focus of this study since we had a small sample size
for such a geographically wide and varied region.
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Table 8. Calibration R2 and RMSE values for laser induced breakdown spectroscopy (LIBS) over four
measurement seasons at Leyendecker Plant Science Center, Las Cruces, NM (n = 36 for each season).

SQIs ‡
Fall Winter Spring Summer

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SOM (%) † 0.83 0.14 0.81 0.13 0.87 0.14 0.64 0.15
POXC (mg·kg−1) 0.65 26.0 0.83 10.0 0.77 9.34 0.67 16.9
MWD (mm) 0.72 0.32 0.89 0.12 0.86 0.15 0.85 0.27
AGG > 2 mm (%) 0.74 11.5 0.88 4.79 0.68 7.10 0.85 7.89
AGG < 0.25 mm (%) 0.70 11.0 0.86 3.83 0.81 6.97 0.80 8.38
WAS (%) 0.78 6.73 0.77 6.89 0.85 4.88 0.88 3.73
pH 0.97 0.03 0.96 0.02 0.94 0.01 0.86 0.03
EC (dS·m−1) 0.63 0.70 0.79 0.47 0.76 0.53 0.86 0.3
Ca (mg·kg−1) 0.69 3.80 0.75 3.02 0.76 3.01 0.89 1.32
Mg (mg·kg−1) 0.66 1.00 0.75 0.83 0.77 0.91 0.87 0.39
Na (mg·kg−1) 0.62 3.57 0.82 2.67 0.79 3.30 0.88 1.56
Fe (mg·kg−1) 0.81 0.79 0.86 0.59 0.79 0.66 0.89 0.33
‡ The soil samples were collected in the fall (October 2015), winter (January 2016), spring (April 2016), and summer
(July 2016) from three replicate fields of the three tested crop production systems [5]. † Soil organic matter (SOM),
permanganate oxidizable carbon (POXC), mean weight diameter (MWD), aggregates 2–4 mm (AGG > 2 mm),
aggregates < 0.25 mm (AGG < 0.25 mm), wet aggregate stability (WAS), electrical conductivity (EC), calcium (Ca),
magnesium (Mg), sodium (Na), and iron (Fe).

3.4. Validation-Model 1 (A Statewide Library)

The R2 of the validation dataset of VNIRS ranged from 0.01 for AGG < 0.25 mm, WAS, EC, Ca,
Na, and Fe to 0.60 for pH while the R2 of the validation dataset of LIBS ranged from 0.01 for SOM, TFB,
AGG < 0.25 mm and WAS to 0.75 for pH. The R2 of the validation dataset of VNIRS-LIBS ranged from
0.01 for SOM, AGG < 0.25 mm, WAS, EC, Ca, and Na to 0.57 for pH.

3.5. Validation-Model 2 (A Local Spectral Library)

The R2 of the validation dataset of VNIRS ranged from 0.02 for TMB and WAS to 0.35 for SOM,
while the R2 of the validation dataset of LIBS ranged from 0.04 for Mg to 0.84 for POXC. The R2 of the
validation dataset of VNIRS-LIBS ranged from 0.01 for TMB, TBM, TFB, MWD, AGG > 2 mm, EC, Ca,
Mg, and Na to 0.48 for pH.

3.6. Validation-Model 3 (A Temporal Spectra Library)

The R2 of the validation dataset of VNIRS ranged from 0.02 for AGG < 0.25 mm to 0.64 for pH in
the fall sampling season, while it ranged from 0.10 for POXC, AGG > 2 mm and AGG < 0.25 mm to
0.60 for SOM in winter. The R2 of the validation dataset of VNIRS ranged from 0.01 for Ca and Na to
0.76 for pH in spring and from 0.03 for POXC to 0.61 for pH in summer.

The R2 of the validation dataset of LIBS ranged from 0.01 for SOM, EC, and Ca to 0.80 for pH in
fall while it ranged from 0.03 for SOM and AGG < 0.25 mm to 0.85 for pH in winter. The R2 of the
validation dataset of LIBS ranged from 0.01 for WAS to 0.51 for pH in spring while it ranged from 0.01
for Na to 0.70 for pH in summer.

4. Discussion

Spectral analysis cannot be perfectly executed without challenges. Challenges particular to this
research are highlighted as follows:

• Data visualization and cleaning: Numerous trimming procedures were conducted before the
conclusion was finally made.
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• Different models were considered before picking the best one for this analysis. Among the models
considered were the Forest Regression, the Principal Component Regression, and the Partial Least
Square Regression (PLSR).

• Obtaining suitable software for data processing and analysis.

As expected, many SQIs did not show ideal normal distributions, a concern highlighted by
Veum et al. [31] who indicated that it may be a challenge to find datasets that exhibit ideal distributions
of SQIs, particularly if the measurements come from within a single field or from under similar
management practices. Generally, the low prediction values of VNIRS and LIBS for different soil
measurements were attributed to the effects of the material’s matrices on the intensity of reflectance or
emission, including chemical composition, density, hardness and compaction, biological substances,
soil moisture, reflectivity, soil organic contents, high dispersion, and appropriate time gating of LIBS
signals [32,33].

Additionally, the difference in prediction between LIBS and VNIRS could be a result of fundamental
molecular principles on which those spectroscopies are based [6,9]. Generally, calibration dataset
R2 values may be influenced by the high dimensional and co-linear predictors particularly for
VNIRS [34,35].

We noticed in this study that validation dataset results were not much different when using data
from combined locations or separate sample sets, indicating that the accuracy of prediction models
may depend more on the sample size, range of data values, and the degree of autocorrelation rather
than on model selection or spectral pretreatments of the data [36].

In our study, only 25% of each dataset was used to build validation models; this, combined
with the fact that we had a relatively small number of samples, proves to be inadequate for a robust
validation. Therefore, the results may not be faithfully extended beyond the range of calibration models.
As reported by many researchers, building robust validation and calibration models requires the use of
large soil-spectra libraries, similarity of validation and calibration samples, and pre-screening of the
soil samples to limit the effects of within-site heterogeneity and soil diversity especially in agricultural
fields [37,38].

Although VNIRS and LIBS have shown predictive relationships with some microbial measurements
as compared to the other SQIs, presumably due to the carbon contents of soil microbes, better predictive
relationships may be achievable with some other soil measurements by increasing the number of
samples evaluated and by taking spectroscopic readings in situ, rather than using disturbed samples
measured in the laboratory [39]. In agricultural systems, SQI values may be altered by anthropogenic
inputs that may disrupt or change the relationships between soil characteristics that produce soil
spectral features [29].

Spectral data might be more suitable in predicting SQIs, especially soil-biological related indicators
such as microbial biomass and soil carbon content, which can vary significantly with the season of
sampling [5,40]. Previous studies showed the importance of sampling time and related environmental
soil factors on soil spectra results and calibration [5,39,41]. The seasonal variability in the soil spectra
shows that the results may be applicable only during the time of sampling for which soils were collected.
The results may not be regarded as universal and should be interpreted based on the sampling season.

This study demonstrated the feasibility of VNIRS and LIBS spectroscopies as innovative methods
for soil quality monitoring, which is fundamental for sustainable agriculture development in arid
and semi-arid agroecosystems. In such agroecosystems, soil degradation is widespread, and a key
reason for the poor quantification of this degradation is that the conventional methods of soil quality
assessment are usually expensive, time-consuming, and often require large numbers of samples to be
analyzed across soil types and regions [2].

However, with spectroscopic methods, soil quality assessment may be faster even if many samples
have to be analyzed, since the spectroscopic methods do not involve elaborate chemical analyses
that often require waiting times for reactions to complete in the laboratory. Moreover, the results of
spectroscopic interpretations can be generated more quickly using a previously calibrated dataset.
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Another advantage of spectroscopic methods is the absence of chemicals in the process of analysis.
Methods used for several soil chemical and biological measurements often involve chemicals that
constitute human health and environmental hazards, generating waste products that may need to be
handled in special ways to prevent pollution. For example, the SOM analytical method used in New
Mexico is the Walkley−Black method [16] which essentially is a chromic acid wet oxidation technique.
Chromic acid is a very toxic chemical reagent which is regarded as an environmental pollutant and a
carcinogen [42].

Spectroscopic methods are becoming popular and are being gradually embraced by different
environmental and agriculture communities, and some examples of applications can be found in soil
and plant sciences, water quality, agricultural inputs, livestock health, and food product quality and
processing [15]. Although a wide range of spectroscopy applications is possible, the potential use of
VNIRS and LIBS applications has not been exploited in the arid regions of the Southwestern USA,
and this region in particular can benefit from spectroscopic applications for soil quality assessment
considering the vast acreage of land devoted to agricultural production that need monitoring for
sustainable production.

The lack of widespread adoption of the spectroscopic techniques for soil management in this
region is related to the lack of comprehensive studies that define the relationships of multiple SQIs to
spectral data in the region. Another challenge that could possibly limit VNIRS and LIBS applications
for assessment of soil quality in the region may be related to handling data pretreatments and the
development of effective calibration strategies [43]. Nevertheless, the outcomes of this research serve
as a baseline for future studies since our results show the predictive capability of VNIRS and LIBS for
various SQI measurements. Rapid and convenient soil analytical methods are crucial for soil quality
assessment and precision soil−crop management. Incorporating the use of VNIRS and LIBS for soil
management may require active collaborations between growers, land managers, and researchers,
to develop effective calibration models that will prove useful for tracking directional changes in
soil quality.

At this point in our research, LIBS yielded better prediction over VNIRS, therefore, it may be
recommended for estimating soil quality in arid and semiarid agroecosystems. However, more
laboratory and field studies are needed to validate this recommendation using larger local and
regional datasets.

5. Conclusions

Relationships between multiple soil quality indicator measurements and spectral data generated
by visible near-infrared (VNIRS) and laser induced breakdown (LIBS) spectroscopies were studied in
selected agricultural soils of the arid Southwestern United States. The results of this study highlight
the potential use of spectroscopic techniques for rapid and cost-effective soil assessment. However,
predictive accuracies of these methods are location-specific and seasonally dependent in the dataset
explored in this study.

The calibrations based on combined measurements irrespective of locations performed better
for LIBS and combined VNIRS-LIBS, while measurements separated according to locations highly
improved the quality of prediction for VNIRS as compared to combined locations. The prediction
values varied with the sampling season for both LIBS and VNIRS. The predictive accuracy of VNIRS
and LIBS may be affected by sample size and seasonal variability of soil quality measurements.

While this study shows the promising prospect of the spectroscopic techniques for rapid soil
quality evaluations, more comprehensive studies are needed within the study region to create robust
calibrations of the relationships between the spectral data and soil quality indicator measurements.
Such calibrations will need to consider factors such as location, soil type, and season of sampling to
improve predictive accuracy.
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