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Abstract: In the state of Baden-Wuerttemberg, Southwest-Germany, a large-scale forest liming trial
was government-funded in 1983 and a lime treatment was carried out in autumn 1983 until early
winter 1984. Repeated liming was applied in 2003. The limed sites and adjacent control plots were
surveyed repeatedly: in 2003 before the second lime application and again in 2010 and 2015. Research
of this scope presents a rare opportunity to evaluate firstly the long-term development of acidified
soils with their potential for natural recovery on established control plots, and secondly the long-term
effects of repeated lime application—at a collective of study sites of various growth regions and soil
properties. A natural recovery in soil pH was observed since 2003, on average limited to an increase
of 0.2–0.4 pH units in the forest floor and 0.1–0.3 pH units in the mineral soil until 2015. The majority
of the organic layers still show very strong or extreme acidity with a pH value 3.9 on average and in
the mineral soil with pH values between 3.8 and 4.6 on average. The exchangeable cations calcium
and magnesium slightly increased also, although the base saturation remained <20% by 2015. The
exchangeable acid cation concentrations indicated no significant changes and thus no recovery. The
lime treatment greatly accelerated the rise in pH by 1.2–1.3 units and base saturation by 40–70% in
the organic layer, as well as 0.3–1.2 pH units and base saturation by 7–50% in mineral soil. These
effects were decreasing (yet still significant) with depth in the measured soil profile as well as with
time since last treatment. Changes in soil cation exchange capacity after liming were significant
in 0–5 cm mineral soil, below that they were negligible as the significant increase in base cations
were accompanied by decreasing acid cations aluminum and iron (III) especially in the upper soil
profile. Additionally, a decrease of forest floor and an enrichment of organic carbon and nitrogen
in the mineral topsoil tended to follow liming at some sites. Overall the liming effects had a high
variability among the study sites, and were more pronounced in the more acidic and coarser textured
sites. Liming of acidified forest soils significantly adds to natural recovery and therefore helps to
establish greater buffering capacities and stabilize forest nutrition for the future.
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1. Introduction

Forest soils in Central Europe underwent acidification in the 20th century, which was primarily
due to anthropogenic emissions of SO2 and NOX that became acidic compounds in precipitation
as well as dry deposition, and depletion of organic matter from topsoil [1,2]. In the 1970s–1980s a
phenomenon of “forest dieback”—a new challenge due to deteriorating forest crown condition—was
identified. Over time, several ecological effects of the acidifying agents sulfur, nitrogen as well as
ozone have been identified: harmfully affected assimilation organs of trees, damaged tree roots with
declining fine root biomass, changes in ectomycorrhizal associations and in fine root distributions,
magnesium deficiencies in acidified soil and nutrient imbalances due to nitrogen eutrophication [3–5]
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(p. 30). Earthworms—important ecosystem engineers—are also known to avoid acidic (pH < 3.6) and
high aluminum content soils [6]. The overall functioning of the forest ecosystems has been shown to
be impeded in acidified conditions [7].

The acid-base status of forest soils is typically evaluated by the pH, base saturation and reciprocal
to it the exchangeable acid cations Al, Fe, Mn and H. Acidified soils experience a reduction in their
natural acid neutralization capacity (ANC) as the pH decreases and with it the soils’ buffering range
shifts [8]. For forest soils in Southwest Germany a distinct change of pH values between the years
1927 and 1997 was reported with a pH reduction of up to 2 pH units in the top-soils [9]. Many
soils have left the silicate buffer range and reached pH values buffered by aluminum-oxides and
aluminum-hydroxides, with potentially adverse effects on plant roots and soil organisms, as well as
hampered phosphorus availability [10–12] (pp. 94–96). Since the long-term buffering of acids in soils
depends on the weathering rate of primary minerals, in carbonate-free soils the base cations Ca, Mg, K
and Na—also important tree nutrients—are being released from silicate and clay minerals and leached,
leading to further nutrient imbalances in already base poor soils [8,13].

Due to legislative measures such as the Convention on Long-Range Transboundary Air Pollution of
the United Nations Economic Commission for Europe [14] the emissions of SO2 have been successfully
reduced, however a legacy of S compounds is still stored in soil and delays the recovery from
acidification. On the other hand, in many regions, the deposition on N compounds NO3- and NH4+

remains high, and continues to impact the forest ecosystems. Meanwhile, also Ca and Mg deposition
rates have been decreasing [2,13,15]. Forest soil inventories in Germany prove that soil acidification
still is an ongoing process with decreasing base saturations in the mineral subsoil (below 5 cm) while
pH values showed a slight recovery in the topsoils and no changes in the subsoils at unlimed sites [12]
(pp. 93–116).

Since natural soil development and, in this case, recovery is expected to be a slow process,
forest soil liming may be an effective counter-measure to help alleviate the consequences of soil
acidification [16]. Liming is the application of buffering compounds—most commonly calcite (calcium
carbonate, limestone and CaCO3) and dolomite (CaMg(CO3)2)—in order to restore acid deposition
impaired soils [17]. In Finland and Sweden liming was studied extensively already in 1950s for its
potential to accelerate N-mineralization in the organic soil [18]. In Germany lime application has been
a wide-spread forestry practice since the mid-1980s to compensate acid inputs and remediate acidified
soils, in order to improve the forest stand vitality [5] (pp. 38–39). A great number of studies have
attempted to characterize the effects of liming. In a meta-study on liming and wood-ash treatment
effects on forest ecosystems Reid and Watmough [17] showed that the most significant impacts of
liming were on soil pH and foliar Ca concentrations, best predicted by the soil type and time since
treatment, and by the treatment dose and type respectively. Other important indicators of liming
success were base-saturation, as well as various tree growth measures. Meanwhile a number of studies
reported no significant liming effect at all. Šrámek et al. [19] showed significant increase of soil pH
as well as exchangeable Ca and Mg up to five years after liming in upper soil horizons, with the
effect decreasing ten years after treatment. Ouimet and Moore [20] found similar effects seven years
after liming, along with a slight decrease in exchangeable K and strongly decreased exchangeable
acidity—with an increased lime dose. In a study that found increased soil profile pH as well as changes
in sorption complex of the forest floor 16 years since last liming Drápelová et al. [10] pointed out the
role of site soil properties, climate and tree species composition in the outcome of liming in a study,
which found increased soil profile pH as well as changes in sorption complex of the forest floor 16 years
since treatment. Saarsalmi et al. [18] showed decreased acidity and improved base saturation in the
organic layer and topsoil of Norway spruce and Scots pine stands even 20 years after liming. Similarly,
Court et al. [13] observed a trend of increased pH, base saturation, Ca, Mg as well as decreasing
exchangeable Al more than 20 years after lime application in beech stands. Increased tree growth was
also noted in this study, likely due to the improved soil chemical and biological properties even 40
years after. In Germany the results of the second national forest soil inventory (NFSI) of 2006–2008 also
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showed overall positive liming effects on forest soil acid-base as well as nutrient status since the first
survey in 1987–1992, noting also a decrease in N stocks in the organic layer with an increase in the
0–30 cm mineral soil [21] (p. 157). This observation was attributed to increased soil pH stimulating the
microbial activity and decomposition of organic matter, with no notable change in the C/N ratio.

Thus the relevance of forest liming lies in its potential to both restore and preserve the sustainability
of soils’ functionality: acid buffer capacity, nutrient supply for forest growth, leading to improved
structural integrity of the ecosystem. Meanwhile, as the acid deposition distinctly decreased since the
1980s it might currently be sufficiently counteracted and buffered by natural soil weathering, whereby
a trend reversal from deposition driven acidification to a natural recovery might have taken place.
With this in mind, the soil chemical parameters and their temporal development were studied at ten
long-term lime treated research sites in the Southwest-German state of Baden-Wuerttemberg in order
to answer the following questions:

1. Has natural recovery of acidified forest soils taken place since 1980s, and to what extent?
2. Has liming been an effective counter-measure to forest soil acidification?
3. What site parameters dictate the extent of change in soil acidity status in case of (1) and (2)?

2. Materials and Methods

2.1. Site Description

The ten study sites are located in the SW-German state of Baden-Wuerttemberg, first described
by Littek [22] (pp. 1–8, 14) and Wilpert et al. [23] (pp. 1, 7–22). They were initially selected in 1983
according to the following criteria: porous, non-waterlogged, severely acidified soils on sandstone
substrates in the regions of Black Forest, Forest of Odes and Neckarland, as well as on Pleistocene
deposits in Alpine foothills, with larger, homogeneous stands (10–50 ha) of Norway spruce (Picea abies)
in pure stands or mixed with Silver fir (Abies alba), Scots pine (Pinus sylvestris), Douglas fir (Pseudotsuga
menziesii) and European beech (Fagus sylvatica), with the age of the stand being 40–90 years. Excluded
were the areas of nature conservation, water protection, special biotopes (e.g., capercaillie habitats),
protected forests, other study sites, as well as previously limed areas. With regard to the tree vitality,
severely damaged stands with tree needle loss >40% were also excluded from selection. Directly
adjacent to an untreated “control” plot a “limed” plot was established by applying a calcium carbonate
CaCO3 in mixture with 4–8% MgO, 3% P2O5 and 6–10% K2O (“Kohlensaurer Kalk 121/123/127”, lime
grade 95% < 3.15 mm and 70% < 1.0 mm) from autumn 1983 until early winter 1984. The dose was
established site-specific according to the pH, humus form and tree species surveyed in 1983, and was
no higher than 3.5 Mg ha−1, in most cases between 2.5 and 3 Mg ha−1. This comparably low dosage
was chosen in order to avoid overly high mobilization of the humus layer and undesirable nutrient
leaching in the groundwater and surface waters. This also meant that any changes in the soil acidity
status were expected to progress slowly over several years.

In 2003 a second treatment of 6 Mg ha−1 dolomite lime with 55% CaCO3 and 35% MgCO3

(“CaMg(CO3)2 55/35”, lime grade 90% < 0.1 mm) was applied. The dolomite lime was seen to buffer
acid deposition effectively and to react slower than the previously applied calcium carbonate mixture,
with milder effects on humus, and was therefore chosen to be applied in larger doses.

It is important to note that the study sites have been considered as praxis-fertilization trials,
meaning that the scientific investigations have accompanied the regular forest management practices
(moderate thinning of stands, storm damage response, natural regeneration or planting, etc.). A recent
comprehensive inventory of these sites was conducted in 2015 and their updated description is shown
in Table 1. A map of study site locations is shown in Appendix A (Figure A1).
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Table 1. Study sites and their key parameters in 2015.

Site
Latitude

(◦)
Longitude

(◦)
Altitude
(m asl)

Plot Size (ha)
Substrate Soil Type 1 Texture 2 Humus

Type 3
Stand
Type 4

Stand
Age Grouping 5

Control Limed

Bad
Waldsee 47◦50′ 9◦41′ 580 4 22 Glacial till cambisol LS

mull -
moder
mull

PI-FA 70 G1

Ellwangen 49◦01′ 10◦10′ 490 10 15 Sandstone stagnosol SL mull PI 100 G1
Freuden-

stadt 48◦26′ 8◦25′ 740 8 21 Sandstone cambisol SL mull - mor
moder AB-PI 100 G1

Heidelberg 49◦30′ 8◦47′ 490 2 3 Sandstone podsol SL mull PI 70 G1

Ochsen-
hausen 48◦06′ 10◦02′ 620 5 17 Periglacial

gravel cambisol L
mull -
moder
mull

PI 90 G1

Herzogen-
weiler 48◦01′ 8◦20′ 950 8 20 Sandstone stagnosol LS-SL

mull -
moder
mull

AB-PI 90 G2

Horb 48◦28′ 8◦32′ 630 8 21 Sandstone cambisol LS mull AB-PI 100 G2

Hospital 48◦07′ 9◦41′ 650 3 5 Glacial till stagnosol SiL-L mull - mor
moder PI-FA 110 G2

Wangen 47◦47′ 9◦45′ 710 6 22 Glacial till umbrisol SiL-L mor
moder PI 100 G2

Weithard 47◦58′ 9◦17′ 630 1 6 Glacial till stagnosol CL-L mull - mor
moder PI 100 G2

1 dominating soil type according to FAO 2014 (World Reference Base For Soil Classification); 2 mean textural classes according to FAO [24] (pp. 25–29): LS = Loamy sand, SL = Sandy loam,
L = Loam, SiL = Silty loam, CL = Clay loam; 3 dominating humus forms according to Ad-hoc-Arbeitsgruppe Boden (German soil classification) [25] (pp. 303–310); 4 PI = Picea abies, AB-PI
= mixed Abies alba and Picea abies, PI-FA= mixed Picea abies and Fagus sylvatica; 5 Grouping according to K-means Cluster Analysis (see statistical analyses).
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2.2. Soil Sampling and Laboratory Methods

The sampling methods of the different sampling periods of 1985–2015 are described in Table 2

Table 2. Soil sampling design in the 1980s (as described in Wilpert et al. [23]), 2003, 2010 and 2015.

1985/86 and 1989 2003 2010 2015

Sample layout
within plot

3-10 (O-layer) and
6–10 (mineral soil)
samples in 10 m
distance along a

random diagonal
line

1 sample at 5
randomly distributed
points plus 5 samples
at 0, 80, 160, 240 and
320 gradian in 5 m
distance from a soil

profile

1 sample at 5
randomly

distributed points

1 sample at 5
randomly

distributed points

Sampled soil
layers

O-layer a

0–4 cm b

5–10 cm a

O-layer c

0–5 cm d

5–10 cm d

10–30 cm d

30–60 cm d

O-layer c

0–5c m d

5–10 cm d

10–30 cm d

30–60 cm d

O-layer c

0–5 cm d

5–10 cm d

10–20 cm d

20–30 cm d

30–60 cm d

Instrument
a: scraper

b: 100 cm3 soil
sample ring

c: 200 cm3 soil
sample ring

d: Eijkelkamp root
auger (diameter 8 cm,

length 15 cm)

c: 200 cm3 soil
sample ring

d: Eijkelkamp root
auger (diameter 8
cm, length 15 cm)

c: 200 cm3 soil
sample ring

d: Eijkelkamp root
auger (diameter 8
cm, length 15 cm)

No. of replicates 1 mixed sample 1 mixed sample 4 individual
samples

5 individual
samples

The first sampling period was 1985 and 1986, a further sampling campaign was completed in
1989/90. Three to ten samples of O-layer and six to ten samples of the mineral soil were collected and then
mixed into a single sample for the laboratory analysis. The results comparing the development at control
and limed plots between these two sampling campaigns have been published in Wilpert et al. [23]
(pp. 30–45). The control plot pH-KCl in mineral topsoil was pH 3.0, i.e., in the Al and Al-Fe buffer
range, meanwhile at limed plots it had increased by average 0.9 pH units in 1985/86 and 0.2 pH units
by 1989/90 in 0–4 cm topsoil, while in 4–10 cm topsoil only by 1989/90 an increase by 0.2 pH units
was observed. The pH-H2O was reported to be 0.5–1 pH units higher than pH-KCl, with 10–20% less
change after treatment. While at control plots the O-layer thickness tended to increase, at limed plots it
had decreased, and liming had increased the variability of C-content in 4–10 cm mineral soil with little
change in average C-content. Control plot exchangeable cations (CEC) and exchangeable cations were
analyzed only in 1989/90 samples, where base saturation improved significantly by 17% after lime
treatment (though with high variance) especially exchangeable Ca and slightly less exchangeable Mg,
with little change in exchangeable K. Meanwhile exchangeable Al and H had decreased. Limed plot
CEC had overall increased by 14%.

The second sampling was carried out in April until October 2003, i.e., twenty years after the
first liming and before the second treatment campaign. A soil sample per depth class was taken at
five randomly distributed points across a plot as well as in five directions from an established soil
profile, then mixed into a single sample. In March–October 2010—seven years after the second liming
event—soil sampling was done at four randomly distributed points per treatment plot. The final soil
sampling campaign was carried out in March until June 2015—twelve years since the second lime
application—at five randomly distributed points per plot.

The soil samples were dried at 60 ◦C and ground in a mill with a 2 mm sieve.
The following soil chemical parameters were considered in our investigation: pH-H2O and

pH-KCl were measured with a glass electrode in 1:5 (mineral soil) and 1:10 (O-layer) solution with
H2O and 1 M KCl; mineral soil exchangeable cations Ca2+, Mg2+, K+, Al3+, Fe3+ (µmolc g−1) and their
sum CEC (including cations Na+, Mn2+ and H+) as well as the calculated mineral soil base saturation
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(%) were determined via percolation with 1 M NH4Cl-solution and extract analysis with ICP-OES;
total N and total C (g kg−1) were measured in dry combustion (Wösthoff in 1980s, Leco CN 2000
in 2003, Vario Max Elementar in 2010–2015) and C/N ratio was calculated; total Ca, Mg, K, Al and
Fe (g kg−1) in the O-layer only were determined in aqua regia extract; organic layer stocks (t ha−1)
were calculated form dried soil samples of defined sampled area. The methodology of our laboratory
analyses was according to “Handbuch Forstliche Analytik” (“Handbook of Forest Analysis”; HFA)
by the Forest Analysis Advisory Committee (GAFA) [26–28]. Our original data is available as Tables
S1–S3 in Supplementary Materials.

It was assumed that the mineral soil bulk density remained stable during the different sampling
periods at the study sites, and therefore the element concentrations may be directly compared
between the sampling years and between the directly adjacent treatment variants without considering
element stocks.

The element concentrations in 2015 were aggregated from 10–20 to 20–30 cm depth samples into
10–30 cm according to fine earth stocks for better comparison with the previous sampling periods. pH
values were aggregated after conversion into H+ concentration (mol L−1) and subsequent reconversion
into pH. Bulk density and fine earth stocks were estimated only in 2015 from soil sample volume,
weight and coarse soil fraction.

2.3. Statistical Analysis

The statistical evaluations were conducted using R 3.6.3 (R Core Team 2019).
First of all, a K-means cluster analysis (CA) was conducted in order to explore the similarity

of sites by their soil chemical parameters at 0-30 cm control plot mineral soil (aggregated, sampling
campaign 2015, n = 49), whereby the exchangeable cation as well as Ctot and Ntot concentrations were
calculated in stocks (t ha−1) according to fine earth stocks for better site comparability. The optimal
number of clusters, i.e., groups of sites was determined to be 2; Group 1 contains the study sites “Bad
Waldsee”, “Ellwangen”, “Freudenstadt”, “Heidelberg” and “Ochsenhausen” (n = 5), and Group 2 the
sites “Herzogenweiler”, “Horb”, “Hospital”, “Wangen” and “Weithard” (n = 5; Table 1). Additionally
a principal component analysis (PCA) was run in order to confirm the CA results, as well as determine
the most relevant soil chemical principal components (PC) of these site groups. The first two PCs
explained 64.9% of the variability in data, and were pH-H2O, pH-KCl and K+ (t ha−1; PC-1), Ctot

(t ha−1) and CEC (µmolc g−1; PC-2; Figure 1).
Group 1 (G1) includes the sites with predominantly “sandy soils” and is characterized with lower

CEC, lower Ctot stocks, lower K+ stocks and higher Al3+ stocks in the upper mineral soil compared
to Group 2 (G2) of predominantly finer textured “silty/clay loam soils”. For both study site groups
pH-H2O of 4.0–4.4 was similar in 0-30 cm mineral soil, whereas pH-KCl was 3.3–3.6 at G1 and 3.5–3.7
at G2 sites, i.e., comparably higher.

The statistical analysis was applied to both site groups separately. Due to small sample size in the
sampling campaigns (n < 30 per depth class) as well as a lack of normal distribution in some of the
data, non-parametric statistical tests were chosen. In order to compare the difference in group-means
between sampling years (separately for control and lime treatments) Friedman test for repeated
(dependent) measurements was applied. To find differences between control and lime treatments
within a sampling year Mann–Whitney U test for independent samples was used. The significance
level was chosen p < 0.05.
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Figure 1. Principal component analysis (PCA) to characterize study site grouping parameters: (a) study
sites and (b) principal components.

To estimate the natural recovery as well as the effects of lime application over time, i.e., the
difference between two sampling periods within a study site group, a relative response ratio (RRr) was
calculated for each of the relevant site parameters based on methodology in Hedges et al. [29] and
Reid and Watmough [17]:

RRr = (t2/t1) − 1, (1)

where t1 = site plot average (arithmetic mean) in previous sampling period, t2 = site plot average in
following sampling period. In case of already relative (C/N), log-transformed (pH) and discontinuous
(base saturation) variables an absolute RRa was calculated as difference between previous and following
sampling year or limed and control treatment.

RRa = t2 − t1 (2)

3. Results

Since the 1980s sampling design and data set was not comparable with the subsequent campaigns
from 2003 until 2015, we were not able to analyze statistically the changes in soil chemical properties
of the entire measured soil profile of our studied sites for the period 1980s until 2003. Nevertheless
with the sampling data of 2003 we can evaluate the liming effects in this initial study period on soil
properties with the direct comparison of control and limed plots. From 2003 on we can describe the
development of soil chemical properties with respect to liming effects in great detail. In this context
we will first of all present the changes in soil acidity status with focus on pH values, base saturation
and cation exchange capacities as well as the exchangeable cations concentrations. Secondly the
development of soil nutrient status with focus on carbon and nitrogen are outlined. A complete list of
parameter means (with standard deviations) as they developed over time and after lime treatment is
available as Table S4 (G1) and S5 (G2) in Supplementary Materials. The parameter response ratio (RR)
means, SD and ranges are fully detailed in Tables S6 (G1) and S7 (G2) of Supplementary Materials.

3.1. Liming Effects in 2003

In 2003—twenty years after the first lime treatment in 1983—no significant differences could be
seen in soil pH or base saturation between the control and limed plots. The mean values at limed plots
tended to be higher for both parameters, especially in the O-layer (pH) and 0–5 cm mineral soil (BS),
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however the confidence intervals of both control and lime treatment overlap. Similarly, sum CEC
by 2003 was comparable throughout the entire soil profile also. G2 site 0–5 cm mineral soil sample
exchangeable Ca as well as Ctot and Ntot were significantly increased—a potential residual effect of
lime application in 1983—yet even here the increase in CEC was only slight and not significant. G1 site
limed plot O-layer total Al and total Fe concentrations were significantly higher compared to control,
although again without any notable influence on the pH or CEC.

3.2. Soil Acidity Status Development between 2003 and 2015

3.2.1. pH Values

A tendency towards natural recovery of soil pH-H2O was observed between 2003 and 2015 in the
entire soil profile of G1 study sites (Figure 2a) from group average pH 3.5 to pH 3.9 in the O-layer, and
from pH 3.5–4.3 to pH 3.9–4.6 in the 0–60 cm mineral soil. The rate of response (RR) was significant in
0–5 cm and 10–60 cm mineral soil by 2010 (RRa 0.1–0.2 pH units), and in the O-layer by 2015 (RRa 0.3 pH
units) (Figure 3a). At G2 sites (Figure 2b) the natural recovery was significant in O-layer (RRa 0.2 pH
units) and 10–30 cm mineral soil (RRa 0.3 pH units) between 2003 and 2010. By 2015, however, this
recovery was no longer significant. The G2 group average shifted from pH 3.7 to pH 3.9 in the O-layer,
and from pH 3.6–4.3 to pH 3.8–4.6 in the 0–60 cm mineral soil in the period from 2003 until 2015.
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At lime treated plots pH-H2O has been increasing significantly in the entire soil profile of both G1
and G2 sites between 2003 and 2010, i.e., in the first 7 years since second lime application by 0.2–2.2 pH
units at G1 and 0.2–1.7 pH units at G2—the RR decreasing with depth (Figure 3a,b). Between 2010
and 2015 the rise in limed mineral soil pH-H2O was again comparable to that of control plots with
group average 0.1–0.3 (G1) and 0.1–0.2 (G2) pH unit increase in the mineral soil profile, although in the
O-layer the pH is once again decreasing by mean 1.0 (G1) and 0.5 (G2) pH units. While the difference
between the control and limed plots was significant in all G1 measured soil profile depths in 2010, the
treatment effect has lost its significance in 30–60 cm mineral soil by 2015, i.e., the period 7–12 years
since the last lime application. At G2 sites the liming effect reached significance only down to 10 cm
mineral soil by 2010, moving further down in the soil profile to 30 cm mineral soil by 2015.

Similar development in both natural recovery and liming effects over time was seen also in
pH-KCl (see Appendix B Tables A3 and A4). The effect of lime treatment was even more pronounced
in the O-layer and topsoil 0–5 cm, but overall the limed plots had a significant treatment effect only
down to 10 cm topsoil at G1 and just down to 5 cm at G2.

3.2.2. Base Saturation

From 2003 on a tendency towards slight natural recovery of base saturation (BS) was seen across
all study sites, although significant only in case of G2 site 0–5 cm topsoil (Figures 4 and 5). The
average RRa in the 0–60 cm soil profile was 1–5% in 2003–2010, and 4–9% (G1) and 0.5–7% (G2) in
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2010–2015. Except for some of the sites of G1 in 2015, the control plot base saturation remained below
20%, i.e., poor.

The liming effect after 2003 was especially strong at G1 sites with an average 30–60% significant
increase in 0–10 cm topsoil BS and 7–11% in 10–60 cm in the first 7 years after second lime application.
This liming effect continued—with a 0–10 cm topsoil reduction in RRa to just 6–20% and 10–60 cm RRa

4–8%—also until 2015. At G2 sites the lime treatment effect was comparably lower: 15–30% in the
0–10 cm topsoil and 4–7% in 10–60 cm between 2003 and 2010. By 2015 the RRa had dropped in both
the 0–10 cm topsoil to 7–15%, as well as in the deeper soil horizons 10–60 cm to just a 1–3% increase
in group average BS. Compared to the control plots both G1 and G2 limed plot BS was significantly
higher in the entire mineral soil profile both 7 and 12 years since the second lime application: 75–80%
in 0–5 cm, 35–55% in 5–10 cm, 15–25% in 10–30 cm and 12–15% in 30–60 cm mineral soil. G2 limed plot
base saturation was generally lower: 45–55% in 0–5 cm, 20–30% in 5–10 cm, 11–12% in 10–30 cm and
9–12% in 30–60 cm mineral soil.
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3.2.3. Cation Exchange Capacities

From 2003 the sum of the control plot exchangeable cations (CEC; Figure 6) has remained stable
throughout the following sampling periods in the mineral soil profiles at both G1 and G2 study sites,
with no significant differences between the sampling years.

At limed plots, the 0–5 cm upper topsoil CEC at G1 sites was significantly higher in 2010
(RR 0.73)—mainly due to greatly increased availability of Ca and Mg base cations, and despite notably
decreased Al and Fe-III acid cation concentrations. At G1 5–30 cm this similar but less pronounced
increase in base cations appeared to balance out the decrease in acid cations so that the CEC did
not change significantly at the limed plots. No significant lime treatment effect on total CEC could
be observed in the topsoil G2 sites (although from 2010 to 2015 CEC did increase significantly in
0–5 cm topsoil, RRr 0.15) where Ca and Mg cation concentrations increased distinctly and the acid
cations decreased. Since the base cation increase reached down to 60 cm mineral soil, and acid cation
concentration only decreased in the upper 10 cm due to liming, G2 limed plot CEC became significantly
greater than control progressively with time.
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Figure 6. Control plot exchangeable cations (CEC) in the soil profile of the control and limed plots
2003–2015: (a) G1 sites and (b) G2 sites. #—limed plots significantly different from control; *—significant
differences between current and previous sampling campaign.

At the control plots there was a tendency for an increase of total Ca in the O-layer and exchangeable
Ca2+ in the mineral soil (Figure 7), which was significant at G1 sites until 10 cm topsoil between 2010
and 2015 (RRr 0.8–5.6), and at G2 sites 0–5 cm between 2003 and 2010 (RRr 0.71).

The effect of lime treatment on forest floor total Ca-concentration is a significant increase in the
first seven years after the second lime application (RRr 3.05–7.33), and a decrease (significant for G1,
RRr −0.34), i.e., the reverse process between 2010 and 2015 across all study sites. Between 2003 and 2010
the mineral soils experienced a significant increase of exchangeable Ca in 0–30 cm, especially strong at
G1 sites (RRr 5.72–18.61). Afterwards Ca concentrations increased significantly only in 0–10 cm at G1
(RRr 1.06–1.6), and just slightly at G2 sites.

Both organic layer total Mg and mineral soil exchangeable Mg2+ (see Appendix B) developed
similarly to Ca. The difference was a significant recovery at G2 control plots in the O-layer Mg
2003–2015 (RRr 0.34 and 0.25) without any significant improvement further down. Additionally,
the liming effect significance reached down to 60 cm mineral soil in 2003–2010 at both G1 and G2
study sites.

There was little change in the concentrations of the other base cations K and Na (see Appendix B).
What is notable is the significant reduction of exchangeable K in 30–60 cm depth at G2 sites between
2010 and 2015 irrespective of treatment.
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Figure 7. Calcium response ratio (RRr) in the soil profile seven years after (2003–2010) and twelve years
after the second lime treatment (2010–2015): (a) G1 sites and (b) G2 sites. *—significant differences
between current and previous sampling campaign.

It became obvious that Al was the strongly dominant exchangeable cation and remained so in the
control plots throughout the entire sampling period 2003–2015. Forest floor total Al and mineral soil
exchangeable Al concentrations (Figure 8) at the control plots showed no significant change over time
(G1 RRr −0.09–1.33 and G2 RRr −0.13–0.34); only the G2 site O-layer Al was significantly higher in
2010 compared to 2003 (RRr 0.22) and in 10–30 cm significantly lower (RRr −0.1).

In response to the second liming treatment in 2003 mineral topsoils’ exchangeable Al followed a
trend opposite to that of Ca and Mg, and was distinctly reduced in 0–10 cm at both G1 and G2 sites
between 2003 and 2010 at G1 and G2, though significantly only in 0–5 cm topsoil by 2010 (G1 RRr −0.67
and G2 RRr −0.37).

Soil Fe concentrations (see Appendix B) were obviously present at all sites especially in the 0–10 cm
mineral soils. Significant changes over time in the topsoil occurred at G2 sites only, where total Fe
concentrations increased in the control plot O-layer (RRr 0.37) and exchangeable Fe decreased in the
limed plot 0–5 cm (RRr −0.36) in the period 2003–2010. The subsoil Fe concentrations changed just
with low absolute values, which however resulted in significant RR-values, whereby Fe-concentrations
increased in 2003–2010 and slightly decreased in 2010–2015—more or less significantly at all study sites.
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Figure 8. Aluminum site average response ratio (RRr) seven years after (2003–2010) and twelve years
after the second lime treatment (2010–2015). (a) G1 study sites and (b) G2 study sites. *—significant
differences between current and previous sampling campaign.

Across all study sites forest floor total Mn concentrations were significantly higher at limed plots
relative to control 7 and 12 years since the last lime application; in addition after liming also the
exchangeable Mn in 0–5 cm topsoil was significantly higher at G1 sites (see Appendix B).

Exchangeable protons H (also see Appendix B) were significantly lower at limed plots compared
to control in 0–5 cm topsoil in 2010 for both G1 and G2, as well as in 0–10 cm (G1) and 0–5 cm (G2)
in 2015.

3.3. O-layer Stocks, Carbon and Nitrogen

For the evaluation of changes in carbon concentrations, the humus layer stocks have to be
considered, too (Figure 9). At both G1 and G2 study sites the O-layer stocks were (not significantly)
lower at limed plots relative to control in 2003, and in 2010 they were comparable. In 2015 the limed
plot O-layer stocks were significantly lower due to a tendency of increasing O-layer stocks at control
plots (G1 RRr 0.15 n.s. and G2 RRr 0.32 n.s.) and a decrease at limed plots (G1 RRr −0.3 significant
and G2 RRr −0.25 n.s.; Figure 10). In the mineral soil we assumed constant fine earth stocks, thus the
changes of the concentrations could be compared directly.



Soil Syst. 2020, 4, 38 15 of 33

Soil Syst. 2020, 4, x FOR PEER REVIEW 15 of 35 

 

plots (G1 RRr 0.15 n.s. and G2 RRr 0.32 n.s.) and a decrease at limed plots (G1 RRr −0.3 significant and 
G2 RRr −0.25 n.s.; Figure 10). In the mineral soil we assumed constant fine earth stocks, thus the 
changes of the concentrations could be compared directly. 

 

(a) 

 

(b) 

Figure 9. Organic layer stocks of control and lime treated plots in 2003–2015. (a) G1 study sites and 
(b) G2 study sites. #—limed plots significantly different from control; *—significant differences 
between current and previous sampling campaign. 

 

(a) 

 

(b) 

Figure 10. Organic layer stock site average response ratio (RRr) seven years after (2003–2010) and 
twelve years after the second lime treatment (2010–2015). (a) G1 study sites and (b) G2 study sites. 
*—significant differences between current and previous sampling campaign. 

The control plots show little significant change in carbon concentrations between 2003 and 2015 
(see Appendix B). Only the G1 site O-layer Ctot significantly decreased in 2010–2015 (RRr −0.12). 

Between 2003 and 2010 this Ctot was significantly decreasing, however, and was again 
comparable to that of the control. At G1 sites Ctot remained comparable between the control and 
limed, except for the significantly lower O-layer Ctot in 2010. In 0–10 cm topsoil of limed G1 sites Ctot 
concentrations rose significantly in the period 2003–2010 (RRr 0.28–0.61). 

At the control plots, the total nitrogen in the soil profile of G1 sites (see Appendix B) remained 
on average unchanged since 2003, with a tendency to increase in the entire measured mineral soil 

Figure 9. Organic layer stocks of control and lime treated plots in 2003–2015. (a) G1 study sites and (b)
G2 study sites. #—limed plots significantly different from control; *—significant differences between
current and previous sampling campaign.

Soil Syst. 2020, 4, x FOR PEER REVIEW 15 of 35 

 

plots (G1 RRr 0.15 n.s. and G2 RRr 0.32 n.s.) and a decrease at limed plots (G1 RRr −0.3 significant and 
G2 RRr −0.25 n.s.; Figure 10). In the mineral soil we assumed constant fine earth stocks, thus the 
changes of the concentrations could be compared directly. 

 

(a) 

 

(b) 

Figure 9. Organic layer stocks of control and lime treated plots in 2003–2015. (a) G1 study sites and 
(b) G2 study sites. #—limed plots significantly different from control; *—significant differences 
between current and previous sampling campaign. 

 

(a) 

 

(b) 

Figure 10. Organic layer stock site average response ratio (RRr) seven years after (2003–2010) and 
twelve years after the second lime treatment (2010–2015). (a) G1 study sites and (b) G2 study sites. 
*—significant differences between current and previous sampling campaign. 

The control plots show little significant change in carbon concentrations between 2003 and 2015 
(see Appendix B). Only the G1 site O-layer Ctot significantly decreased in 2010–2015 (RRr −0.12). 

Between 2003 and 2010 this Ctot was significantly decreasing, however, and was again 
comparable to that of the control. At G1 sites Ctot remained comparable between the control and 
limed, except for the significantly lower O-layer Ctot in 2010. In 0–10 cm topsoil of limed G1 sites Ctot 
concentrations rose significantly in the period 2003–2010 (RRr 0.28–0.61). 

At the control plots, the total nitrogen in the soil profile of G1 sites (see Appendix B) remained 
on average unchanged since 2003, with a tendency to increase in the entire measured mineral soil 

Figure 10. Organic layer stock site average response ratio (RRr) seven years after (2003–2010) and
twelve years after the second lime treatment (2010–2015). (a) G1 study sites and (b) G2 study sites.
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The control plots show little significant change in carbon concentrations between 2003 and 2015
(see Appendix B). Only the G1 site O-layer Ctot significantly decreased in 2010–2015 (RRr −0.12).

Between 2003 and 2010 this Ctot was significantly decreasing, however, and was again comparable
to that of the control. At G1 sites Ctot remained comparable between the control and limed, except for
the significantly lower O-layer Ctot in 2010. In 0–10 cm topsoil of limed G1 sites Ctot concentrations
rose significantly in the period 2003–2010 (RRr 0.28–0.61).

At the control plots, the total nitrogen in the soil profile of G1 sites (see Appendix B) remained on
average unchanged since 2003, with a tendency to increase in the entire measured mineral soil profile.
Similarly at G2 sites, except for significantly increased Ntot in 0–5 cm between 2010 and 2015 (RRr 0.34).

At limed plots the only significant rise in Ntot concentrations occurred in 0–5 cm topsoil. At G1
the RR was 0.65 between 2003 and 2010, leading to significantly higher Ntot between limed and control
plots in 2010. G2 site Ntot concentrations significantly dropped (RRr -0.32), only to once again increase
in 2010–2015 (RRr 0.32; overall similar development to Ctot).
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While at G2 sites the C/N ratio remained comparable between the sampling periods 2003–2015
and between both control and limed plots, at G1 sites C/N significantly increased in the limed plot
O-layer between 2010 and 2015, so that lime treated site C/N was 27, and control C/N was 24 in 2015.
Meanwhile, in 0–5 cm mineral soil limed plot C/N decreased (n.s.) and limed plot C/N of 19 was
significantly lower than the control plot C/N of 21.

4. Discussion

After a short discussion on methodological characteristics and boundary conditions of our study,
we will discuss the temporal development of soil chemistry at the control plots, which will allow us to
evaluate the extent of natural recovery. Afterwards we will assess the effects of lime treatment as the
intended counter-measure to soil acidification. We differentiated our study sites by their soil chemical
and physical properties to identify those site parameters, which affect both the rate of natural recovery
and response to liming.

4.1. Discussion on Methods and Boundary Conditions of the Study

The soil sampling in the campaigns of 2003 and 2010 were focused upon element concentrations
being analyzed at disturbed bulk samples, which did not allow for calculation of element stocks. Only
in the last campaign 2015 volumetric soil samples were taken allowing for determination of bulk
density of fine earth and volumetric content of the coarse soil fraction. However, also the volumetric
reference is somehow unsharp because the samples were taken with an auger and artificial compaction
of the soil samples cannot be excluded. Due to that uncertainty and above all because of comparability
among the results of the sampling campaigns we decided to perform all evaluations on the basis of
element concentrations.

The dosage of the lime application between the liming campaigns in 1983/84 and 2003 were
different—the latter was with 6 Mg ha−1 roughly double the dosage of the first campaign. Vice versa
were the “reaction times” of both liming campaigns. The effect of the first campaign was observed in
2003, 20 years after liming. Between 1983 and 2003 the highest acid load from deposition in Central
Europe occurred [30]. Therefore it is probable that a high proportion of the buffer capacity from the
first campaign was neutralized by deposition before 2003. Both observation periods 2003–2010 and
2010–2015, with a length of 7 and 5 years, were more or less comparable, but much shorter than 20
years. The fact that this study is based on data from three sampling campaigns provides some insight
in the dynamics of both the natural recovery as well as the lime treatment effects, which can be derived
predominantly from the RR plots. However, the assessment of the exact temporal dynamics of the
liming effects are incriminated with uncertainty and may only been derived as tendencies.

4.2. Natural Recovery of Acidified Soils

A natural recovery of soil pH that we found was overall slight, and comparable in both H2O and
KCl throughout the entire soil profile. Between 2003 and 2015 pH-H2O rose by 0.6–0.7 pH units in the
organic horizon and by 0.2–0.3 pH units in mineral soil. In the O-layer and 0–10 cm topsoil the pH-H2O
remained ≤ 4.2 and pH-KCl ≤ 3.5, i.e., extremely acidic until 2015. The average pH-KCl of 3.0 in the
mineral topsoil samples of our study sites in the 1980s [23] (pp. 36–37) thus has seen little improvement
over three decades. In the comparison between Germany’s 1st and 2nd National Forest Soil Inventory
(NFSI) at acidification-sensitive unlimed sites Meesenburg et al. [12] (p. 100) found pH-H2O had
increased in the O-layer and 0–10 cm mineral soil from 1987–1992 until 2006–2008, although without a
significant change in pH-KCl. An effect of increasing pH values in the subsoil, which we found in
our study, has not yet been reported (to our knowledge) as a consequence of reduced acid deposition.
While at G1 sites—which had overall lower pH-KCl, lower CEC and higher exchangeable Al stocks in
the topsoil, as well as predominantly coarser soil-fractions—a distinct recovery was already seen from
2003 until 60 cm in the soil profile, at G2 sites the natural recovery was significant only to the depth of
30 cm mineral soil.
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After 2003 only slight changes in the mineral soil base saturation could be observed at the control
plots, which for the most part remained at < 20% BS. The comparison between NFSI I and II found
prevailing low topsoil base saturation in almost every region in Germany and loss of BS in 5–90 cm soil
profiles of unlimed acid-sensitive soils, noting that the base cation uptake as tree nutrients as well as
remobilization of S and nitrification processes may have contributed to this trend [12] (p. 102). In our
study we found the base cations Ca and Mg tended towards natural recovery, which was however only
significant in the O-layer (Mg) or in topsoil (Ca). No improvement was found for K concentrations,
which irrespective of treatment even declined in the 30–60 cm subsoil between 2010 and 2015. All-in-all,
despite the slight recovery we observed at our study sites, pH values and base saturation are still far
from pre-industrial values, which are reported or modeled to have been distinctly higher [9].

Since the control plot pH-H2O of ≤ 4.2 in the topsoil is still predominantly in the Al and Al-Fe
buffer range [12] (p. 95), which Wilpert et al. [23] (pp. 37–38) found already in our 1980s samples, and
the base saturation remained low, the lack of reduction in the acid cation Al and Fe concentrations that
we found is not surprising. Thus there has been little change in control plot CEC and the exchangeable
cation concentrations over time.

While in Wilpert et al. [23] (pp. 31–34) increased O-layer thickness at the control plots from
1985/86 to 1989/90 was reported, from 2003 on neither O-layer stocks or Ctot and Ntot concentrations
changed significantly at our control plots, except for a significant decrease in the O-layer Ctot at G1 and
a significant increase of 0–5 cm topsoil Ntot at G2 between 2010 and 2015. There was no noticeable
change in the C/N ratio.

4.3. Effects of Liming

The depth gradient of liming was obvious, whereby a downward movement of lime treatment
effects in the soil profile over time occurred. A simplified interpretation of the RR-values gives the
impression that the liming effects are very strong in the first period and hardly significant in the second
period and thus have lessened substantially. However, this could also mean that the strong effects
of liming in the first observation period are still ongoing, but with no further strong amplification.
Dolomite limestone has principally low solubility, which is likely an important factor in our study.
The solution rate of limestone is controlled by the factors humidity, CO2 partial pressure and pH
value [31] (pp. 195–197). Humidity and CO2 partial pressure are on the mid-term constant factors
and thus limiting the solution rate constantly. Low pH values on heavily acidified soils accelerate
the dissolution rate. As we found distinctly increased pH values as a direct effect of liming, in the
reverse one can conclude that this pH increase should decelerate the further dissolution rate. Thus we
cannot assume whether the liming effects of the second, high-dosed liming campaign have weakened
essentially or dissolution rates are reduced and thus the liming effects have not yet developed fully in
the last observation period 2010–2015.

Li et al. [16] identified increased liming rate as the main driver in soil pH improvements, which
might explain why the first lime application of 3 t ha−1 in 1980s no longer had a significant effect
compared to control plot pH by 2003. Wilpert et al. [23] (pp. 36–38) saw the liming effect on topsoil pH
decline already 5–6 years after treatment, with an increase of just 0.2 pH units then compared to 0.9 pH
units 1–2 years after. The second lime dose of 6 t ha−1 made a notable difference both 7 and 12 years
after application. Similar to the findings of Pabian et al. [32], Court et al. [13] and Meesenburg et al. [12]
(p. 100), our study showed that liming greatly accelerated the rise in soil pH-H2O compared to control
plots by 0.6–2.2 units down to 10 cm topsoil and a decreasing (yet still significant) effect with depth
in the entire measured soil profile during the first 7 years since 2003 treatment. In the following
years—between 2010 and 2015—the limed plot forest floor pH was again decreasing, though the
positive difference to control remained significant. Drápelová et al. [10] also found reacidification of
limed Ol-horizon 12 years after treatment while the deeper horizons did still show decreased acidity
compared to the control.
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The effect of liming appears to have reached greater depth—up to 60 cm—in the soil profiles of G1
sites in less time compared to G2 where below 30 cm mineral soil the limed treatment was no longer
significantly different from the control in the first 7 years since last lime treatment. In the 7–12 year
period the pH change at both G1 and G2 plots was lower and comparable to natural regeneration
(although limed plot pH still remained significantly higher than the control). Li et al. [16] saw the
maximum effect of lime in the first 3 years after application, although the different environmental and
ecological conditions potentially delay or reduce liming effects. Their study found that lower initial
soil pH led to stronger liming effects as well as increased variances. Reid and Watmough [17] also
showed that initially extremely acidic sites treated with high doses showed the highest increase in pH.
In our case, from 2003 on the soil pH-H2O values were comparable at G1 and G2 sites while pH-KCl
was lower at G1, indicating that perhaps the soil texture differences (a higher sand fraction in G1 soil
profiles) had impact on the site-specific development in soil pH-KCl.

The temporal change in soil pH-KCl due to lime application was similar in the O-layer and
0–10 cm (G1) and 0–5 cm (G2) topsoil, while further down in the soil profiles no significant liming
effect was observed. Huber et al. [33] found similar results. While pH-H2O is a measure of the effective
soil acidity and shows seasonal fluctuations, pH-KCl takes into account also the potential acidity of
released exchangeable Al and H in soil and therefore is a long-term measure of soil pH [12] (p. 97).
Indeed we found no significant reduction in exchangeable Al or proton concentrations below 10 cm
depth at our limed plots, which indicates that the subsoil of limed plots has not yet fully recovered
from acidification.

The total Al and Fe concentrations were significantly higher in the O-layer of G1 limed plots
in 2003, i.e., 20 years after the 1st lime treatment in the 1980s. We presumed this resulted from
bioturbation and subsequent mixing of mineral soil with the organic soil material; notably lower Ctot

concentrations in the limed plot O-layer support this assumption. The 2nd lime treatment in 2003
obviously limited—and even reversed—the extent to which Al, Fe and H cations were increasing at
our study sites in the upper 0–10 cm soil profile by 2015, compared to the control. A difference that
Meesenburg et al. [12] (pp. 99–100) found between NFSI I and II was a reduction in Al and Al-Fe buffer
range and an increase in the exchange buffer and even silicate buffer ranges at limed plots in 0–30 cm
mineral soil.

The 1st lime application in the 1980s improved topsoil base saturation at our study sites by 17%
after 5 years [23] (p. 43). While by 2003 there was no significant difference between the limed and
control plot BS any more (except for still significantly higher exchangeable Ca in 0–5 cm topsoil),
afterwards the 2nd lime treatment again made a significant impact improving base saturation in the
entire 0–60 cm mineral soil profile of all study sites—by 40–70% in the organic layer and by 7–50%
in mineral soil. Specifically, the concentrations of base cations Ca and Mg—the main constituents
of dolomite lime—rose significantly until 30 cm and 60 cm mineral soil respectively in the first 7
years after last lime treatment. Meanwhile, neither Wilpert et al. [23] (pp. 44–45) nor we observed
a distinct liming effect on K concentrations, similar to findings of Huber et al. [33]. Court et al. [13]
found a BS of 9% at the control and 41% at the limed plots 16 years after treatment and significantly
increased exchangeable Ca, Mg and K in 0–15 cm topsoil. Guckland et al. [34] also found a significantly
increased BS in 0–40 cm mineral soil 28 years after lime application, with a mean increase of 11%.
Meesenburg et al. [12] (pp. 102, 110) showed an increase in 0–30 cm mineral soil BS between NFSI I
and II at limed sites, especially on largely base-depleted plots.

Our study found the limed plot BS response ratio was double in the soil profile of G1 sites
compared to G2 sites in 2003–2010 period, despite the Ca concentrations being significantly higher in
the 0–5 cm topsoil of G2 limed sites compared to control in 2003 already (after the 1st lime application
in 1980s). After 2010, i.e., 7–12 years since 2nd liming in both site groups the RRa of BS was declining,
however. This is in agreement with findings of several studies that liming effects reached their
maximum in the first decade after treatment [13,35], and Reid and Watmough [17] who showed that
time since treatment has a major influence on BS response to liming. Reid and Watmough [17] noted
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that also soil type as well as the tree species would have an impact on the intensity and dynamic of
liming effects. At our study sites we could not differentiate a stand effect as both groups contain a
mixture of stand types with varying dominance of Norway spruce. The effect of soil types could also
not be proven as they were from similar classes in our study, however, the texture seems to play a
distinct role in differentiating G1 and G2 study site liming effect on BS. This effect was also shown by
Li et al. [16] who found 32% higher liming effects in sandy soils than clayey soils. His argument was
that fine textured soils show a greater buffering capacity to changes in soil chemical properties than
coarse-textured soils.

While at G1 sites limed plot CEC significantly increased compared to the control in the 0–5 cm
topsoil, where as discussed the increase in BS as well as the decrease in Al and Fe was of greater
magnitude, at G2 sites a significant rise in CEC was found in 10–60 cm subsoil, where especially in
30–60 cm the exchangeable Ca and Mg limed plot RRr still exceeded natural regeneration RRr by 2015.
Guckland et al. [34] reported similarly increased CEC after liming due to increased exchangeable Ca
and Mg replacing exchangeable acidity and/or Al3+ in the upper mineral soil, meanwhile without
effect on CEC in the 20–40 cm mineral soil. These different reactions on liming at G1 and G2 sites
indicate different processes triggered on these site groups by lime application. These processes could
be on the one hand replacement of Al3+ with Ca2+ and Mg2+ as the statement of Guckland et al. [34]
suggests. This process reduces the activity of Al-ions in the soil solution, which generates protons
through hydrolysis [31] (pp. 190–191). On the other hand the high increase of pH-H2O throughout the
soil profile down to 30–60 cm and the partially increased CEC suggest that according to the theory of
variable charges of exchanger surfaces in the soil [31] (pp. 170–173), the amount of negative charges und
thus CEC increases with increasing pH. The process behind that is an increase in pH-H2O functional
groups of metal hydroxides (OH), of alumo-silicates (SiOH, AlOH) and of carboxyl groups (COOH)
that get de-protonized and thus increase the negative charge of the exchanger surfaces as well as CEC.
The third process that could explain changes of CEC is a translocation of carbon from the O-layer
to the mineral soil. This can generate new organic exchanger surfaces [31] (p. 175). The significant
increase of CEC at G1 sites in 0–5 cm was accompanied by a significant and over-proportionally strong
increase of pH-H2O and indeed a significant increase of Ctot. This suggests that in the more sandy
soils of G1 sites the increase of organic carbon in combination with increased pH might have created
new exchanger places and thus were the dominating process explaining increasing CEC there. The
described processes might also have occurred in 5–10 cm, where similar changes were observed, which
however were not as strong and overall not significant.

At G2 sites with more loamy texture and higher colloid content and higher CEC at control plots a
weak, but significant increase of CEC occurred after liming in mineral soil layers below 10 cm. The
only predictor that shows at G2 sites a substantially higher reaction on liming in that depth layers is
base saturation. This is due to a higher amount of Al being mobilized from the exchanger surfaces
and replaced by Ca and Mg. This depletion of Al is visible in Figure 8 to the depth of 30 cm. At the
depth layer 30–60 cm Figure 8 shows no depletion of Al rather than a possible increase indicating
partial resorption of Al mobilized in the upper soil layers. It is somehow an unexpected finding that
at the more loamy G2 sites the liming effect on CEC reaches deeper than at G1 sites where a higher
water permeability could be expected according to the more sandy texture. The explanation might be
the higher natural sorption capacity of G2 sites and perhaps preferential flow paths enhancing the
“short-cut” like transport of Ca- and Mg-ions to deeper soil layers.

We also found few distinct effects of liming on carbon and nitrogen properties of the studied sites,
which allow a further ecological discussion. The limed plot O-layer stocks were comparable to those of
the control in the 2003–2010 period. Afterwards in 2010–2015 they were significantly lower—similar to
what Wilpert et al. [23] (pp. 31–34) observed 1 and 5 years after the 1980s lime treatment at our study
sites. Court et al. [13] also found decreasing O-layer dry weight mid to long term after liming, likely
due to enhanced microbial activity and accelerated decomposition rates. Meanwhile Ctot decreased
in the O-layer, and increased in the 0–10 cm topsoil of G1 sites in the first 7 years after 2nd lime



Soil Syst. 2020, 4, 38 20 of 33

application. Additionally, Ntot concentrations rose in the 0–5 cm topsoil after liming. Kreutzer (1995)
showed changed O-layer morphology with increased mineral content in the O-layer and organic matter
transported downward as a result of earthworm activity at limed plots—probably this also occurred at
our G1 study sites.

At G2 sites 0–5 cm Ctot and Ntot were significantly higher at limed plots in 2003, potentially a
persisting effect of the 1st lime treatment in 1980s, where by the end of the 1980s increased variance
of the limed plot C-content in the topsoil was observed [23] (pp. 34–35). After 2003, though, both
control and limed treatment Ctot and Ntot concentrations were comparable. Ouimet and Moore [20]
also observed no significant change in forest floor Ctot and Ntot concentrations after lime treatment,
indicating no obvious change in mineralization rates.

Despite G1 limed plot C/N significantly increasing in the O-layer and significantly decreasing
in 0–5 cm mineral topsoil between 2010 and 2015, C/N ratio remained in the range typically under
Norway spruce in cambisols, podsols and stagnosols according to Cools et al. [36].

5. Conclusions

Lime treatment has had notable positive effects on our soil’s recovery that are visible in the
entire studied soil profile. Thus in soils with proven soil acidification—where it exceeds natural
acidification—we recommend liming to be established as a long-term forestry management practice.
Site characteristics like soil texture and acidity status have to be taken into account when considering
the site-specific outcomes of both natural and aided soil recovery.

In order to evaluate even further the mechanisms of soil development in the process of recovery
from acidification over time it would be beneficial to expand the research at our study sites in the
future. Further measured ecosystem parameters could be evaluated, e.g., possible changes in soil
physics and water budget that impact our soil’s hydrological functions, as well as the biological activity
of soil fauna, plant root distributions and nutrients in plant biomass as important indicators of overall
recovery and stabilization of biodiversity and ecosystem functionality.
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given are group means with standard deviations. Marked bold—significant differences between current
and previous sampling campaign, underline—limed plots significantly different from control.

Parameter Unit Depth Treatment 2003 2010 2015

C/N O-layer Control 26.48 (1.48) 24.6 (2.63) 24.41 (3.42)
C/N O-layer Limed 23.98 (2.36) 24.27 (1.8) 27.16 (4.74)
C/N 0–5 cm Control 20.74 (3.48) 20.96 (2.19) 21.41 (5.71)
C/N 0–5 cm Limed 20.68 (3.5) 20.09 (3.12) 18.72 (1.92)
C/N 5–10 cm Control 21.52 (2.17) 21.44 (3.57) 21.43 (4.72)
C/N 5–10 cm Limed 18.82 (3.57) 20.41 (2.8) 19.46 (2.75)
C/N 10–30 cm Control 20.64 (4.57) 18.14 (2.48) 18.53 (4.29)
C/N 10–30 cm Limed 17.28 (2.21) 18.93 (2.97) 17.99 (2.78)
C/N 30–60 cm Control 17.82 (7.28) 13.52 (2.99) 13.45 (5.73)
C/N 30–60 cm Limed 12.92 (2.61) 15.33 (3.9) 13.64 (3.96)
Ctot g/kg O-layer Control 403.64(81.13) 385.75 (44.88) 338.14 (66.53)
Ctot g/kg O-layer Limed 286 (104.16) 301.56 (81.34) 322.93 (60.94)
Ctot g/kg 0–5 cm Control 42.43 (29.47) 45.62 (25.02) 52.17 (28.84)
Ctot g/kg 0–5 cm Limed 37.9 (15.32) 56.12 (22.77) 61.19 (27.55)
Ctot g/kg 5–10 cm Control 23.63 (14.14) 24.12 (10.85) 27.01 (13.14)
Ctot g/kg 5–10 cm Limed 22.08 (11.14) 26.76 (10.46) 32.01 (13.08)
Ctot g/kg 10–30 cm Control 12.49 (8.29) 12.94 (6.04) 13.14 (8.1)
Ctot g/kg 10–30 cm Limed 14.37 (7.54) 14.91 (6.23) 15.65 (6.68)
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Table A1. Cont.

Parameter Unit Depth Treatment 2003 2010 2015

Ctot g/kg 30–60 cm Control 5.52 (4.19) 6.19 (3.98) 5.94 (3.85)
Ctot g/kg 30–60 cm Limed 6.58 (4.64) 7.45 (4.48) 7.3 (5.03)
Fe g/kg O-layer Control 2.52 (0.95) 3.5 (1.5) 4.31 (2.06)
Fe g/kg O-layer Limed 5.54 (1.92) 5.67 (2.58) 4.08 (2.01)

Fe3+ µmolc/g 0–5 cm Control 8.91 (6.68) 12.78 (9.54) 7.39 (3.56)
Fe3+ µmolc/g 0–5 cm Limed 6.87 (2.95) 4.72 (5.36) 1.55 (1.49)
Fe3+ µmolc/g 5–10 cm Control 3.9 (4.54) 7.83 (4.23) 4.39 (2.41)
Fe3+ µmolc/g 5–10 cm Limed 4.29 (3.17) 6.43 (4.87) 2.4 (2.85)
Fe3+ µmolc/g 10–30 cm Control 1.34 (1.73) 1.41 (1.52) 0.77 (0.71)
Fe3+ µmolc/g 10–30 cm Limed 0.77 (0.48) 1.81 (1.88) 0.78 (0.73)
Fe3+ µmolc/g 30–60 cm Control 0.33 (0.62) 0.98 (0.66) 0.23 (0.27)
Fe3+ µmolc/g 30–60 cm Limed 0.08 (0.06) 1.13 (1.58) 0.36 (0.74)
H+ µmolc/g 0–5 cm Control 11.87 (3.16) 17.77 (7.99) 18.16 (11.02)
H+ µmolc/g 0–5 cm Limed 13.5 (6.36) 4.55 (5.9) 3.03 (4.05)
H+ µmolc/g 5–10 cm Control 7.11 (5.64) 7.69 (4.62) 9.05 (6.44)
H+ µmolc/g 5–10 cm Limed 6.88 (4.95) 5.1 (4.17) 3.78 (3.78)
H+ µmolc/g 10–30 cm Control 2.42 (1.47) 2.47 (3.16) 2.11 (1.85)
H+ µmolc/g 10–30 cm Limed 1.71 (0.65) 1.36 (1.36) 1.7 (1.65)
H+ µmolc/g 30–60 cm Control 1.17 (0.56) 0.69 (1.01) 0.72 (0.62)
H+ µmolc/g 30–60 cm Limed 0.85 (0.82) 0.58 (0.64) 0.62 (0.58)
K g/kg O-layer Control 0.86 (0.22) 0.99 (0.15) 1.05 (0.28)
K g/kg O-layer Limed 1.17 (0.26) 1.29 (0.22) 1.22 (0.37)

K+ µmolc/g 0–5 cm Control 0.83 (0.42) 0.74 (0.35) 1.03 (0.63)
K+ µmolc/g 0–5 cm Limed 0.7 (0.31) 0.96 (0.33) 0.96 (0.41)
K+ µmolc/g 5–10 cm Control 0.52 (0.22) 0.49 (0.15) 0.57 (0.18)
K+ µmolc/g 5–10 cm Limed 0.52 (0.21) 0.59 (0.27) 0.56 (0.17)
K+ µmolc/g 10–30 cm Control 0.42 (0.27) 0.43 (0.13) 0.45 (0.16)
K+ µmolc/g 10–30 cm Limed 0.47 (0.18) 0.48 (0.2) 0.49 (0.15)
K+ µmolc/g 30–60 cm Control 0.68 (0.59) 0.65 (0.36) 0.75 (0.68)
K+ µmolc/g 30–60 cm Limed 0.7 (0.58) 0.72 (0.39) 0.61 (0.37)
Mn g/kg O-layer Control 0.85 (0.69) 0.87 (0.51) 1.21 (0.96)
Mn g/kg O-layer Limed 0.94 (0.6) 2.12 (1.3) 1.84 (1.19)

Mn2+ µmolc/g 0–5 cm Control 0.92 (1.43) 1.05 (1.46) 1.39 (1.31)
Mn2+ µmolc/g 0–5 cm Limed 1.7 (1.16) 3.66 (3.15) 4.8 (3.27)
Mn2+ µmolc/g 5–10 cm Control 2.09 (3.04) 1.53 (1.31) 1.48 (1.47)
Mn2+ µmolc/g 5–10 cm Limed 2.33 (1.77) 2.33 (1.71) 2.36 (1.95)
Mn2+ µmolc/g 10–30 cm Control 1.12 (1.38) 2.73 (1.82) 2.09 (2.14)
Mn2+ µmolc/g 10–30 cm Limed 1.9 (1.16) 2.64 (1.41) 2.12 (1.47)
Mn2+ µmolc/g 30–60 cm Control 0.85 (1.01) 2.14 (0.78) 1.26 (0.77)
Mn2+ µmolc/g 30–60 cm Limed 1.17 (0.98) 2.21 (1.29) 1.57 (1.51)

Na g/kg O-layer Control 0.1 (0.02) 0.16 (0.03) 0.14 (0.07)
Na g/kg O-layer Limed 0.1 (0.03) 0.16 (0.04) 0.15 (0.14)

Na+ µmolc/g 0–5 cm Control 0.24 (0.05) 0.82 (0.47) 1.06 (0.42)
Na+ µmolc/g 0–5 cm Limed 0.31 (0.21) 0.68 (0.27) 1.26 (0.59)
Na+ µmolc/g 5–10 cm Control 0.27 (0.1) 0.7 (0.33) 0.8 (0.34)
Na+ µmolc/g 5–10 cm Limed 0.21 (0.07) 0.62 (0.26) 0.9 (0.38)
Na+ µmolc/g 10–30 cm Control 0.19 (0.18) 0.48 (0.27) 0.51 (0.22)
Na+ µmolc/g 10–30 cm Limed 0.17 (0.08) 0.45 (0.28) 0.65 (0.32)
Na+ µmolc/g 30–60 cm Control 0.31 (0.17) 0.45 (0.23) 0.49 (0.21)
Na+ µmolc/g 30–60 cm Limed 0.2 (0.16) 0.6 (0.45) 0.57 (0.64)
Ntot g/kg O-layer Control 15.26 (3.14) 15.77 (1.83) 13.91 (2.43)
Ntot g/kg O-layer Limed 11.8 (3.86) 12.08 (3.27) 12.05 (2.33)
Ntot g/kg 0–5 cm Control 2.02 (1.36) 2.12 (1.08) 2.52 (1.44)
Ntot g/kg 0–5 cm Limed 1.77 (0.51) 2.79 (1) 3.27 (1.51)
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Table A1. Cont.

Parameter Unit Depth Treatment 2003 2010 2015

Ntot g/kg 5–10 cm Control 1.1 (0.64) 1.12 (0.49) 1.26 (0.56)
Ntot g/kg 5–10 cm Limed 1.13 (0.42) 1.3 (0.41) 1.62 (0.64)
Ntot g/kg 10–30 cm Control 0.61 (0.37) 0.7 (0.31) 0.69 (0.33)
Ntot g/kg 10–30 cm Limed 0.81 (0.36) 0.77 (0.24) 0.85 (0.3)
Ntot g/kg 30–60 cm Control 0.34 (0.24) 0.43 (0.21) 0.41 (0.19)
Ntot g/kg 30–60 cm Limed 0.5 (0.32) 0.45 (0.2) 0.49 (0.22)

pH-KCl O-layer Control 2.63 (0.54) 2.82 (0.34) 3.09 (0.77)
pH-KCl O-layer Limed 3.01 (0.46) 5.56 (0.46) 4.3 (0.7)
pH-KCl 0–5 cm Control 2.89 (0.13) 2.97 (0.14) 2.94 (0.62)
pH-KCl 0–5 cm Limed 2.9 (0.19) 3.72 (0.98) 3.73 (1.07)
pH-KCl 5–10 cm Control 3.11 (0.33) 3.25 (0.27) 3.17 (0.32)
pH-KCl 5–10 cm Limed 3.18 (0.23) 3.47 (0.32) 3.6 (0.72)
pH-KCl 10–30 cm Control 3.47 (0.35) 3.62 (0.34) 3.66 (0.26)
pH-KCl 10–30 cm Limed 3.69 (0.17) 3.83 (0.22) 3.78 (0.2)
pH-KCl 30–60 cm Control 3.78 (0.28) 3.94 (0.25) 3.92 (0.18)
pH-KCl 30–60 cm Limed 3.84 (0.28) 3.96 (0.23) 3.97 (0.19)

Table A2. G2 study site historic development of pH-KCl, Mg, K, Na, Fe, Mn, H, C and N in 2003-2015;
given are group means with standard deviations. Marked bold—significant differences between current
and previous sampling campaign, underline—limed plots significantly different from control.

Parameter Unit Depth Treatment 2003 2010 2015

C/N O-layer Control 25.53 (4.56) 25.4 (3.53) 24.15 (3.78)
C/N O-layer Limed 26.12 (3.17) 23.63 (2.78) 23.69 (3.6)
C/N 0–5 cm Control 18.86 (3.68) 19.16 (4.49) 17.48 (1.75)
C/N 0–5 cm Limed 18.12 (1.37) 17.82 (2.02) 17.73 (1.85)
C/N 5–10 cm Control 17.9 (3.97) 17.82 (5.97) 16.8 (1.85)
C/N 5–10 cm Limed 17.86 (1.73) 17.23 (1.7) 17.29 (1.91)
C/N 10–30 cm Control 15.52 (2.04) 14.63 (3.34) 14.11 (1.54)
C/N 10–30 cm Limed 14.96 (2.56) 14.86 (1.98) 14.62 (2.21)
C/N 30–60 cm Control 10.76 (1.26) 9.47 (2.73) 9.98 (2.1)
C/N 30–60 cm Limed 11.18 (1.54) 10.7 (2.78) 10.47 (3.16)
Ctot g/kg O-layer Control 402.22 (51.68) 365.85 (86.95) 335.14 (79.08)
Ctot g/kg O-layer Limed 365.33 (15.88) 304.49 (84.66) 291.65 (61.61)
Ctot g/kg 0–5 cm Control 44.42 (6.69) 49.06 (22.27) 57.97 (29.58)
Ctot g/kg 0–5 cm Limed 62.02 (13.52) 39.11 (12.21) 50.58 (18.43)
Ctot g/kg 5–10 cm Control 24.22 (3.33) 24.15 (8.28) 27.71 (9.24)
Ctot g/kg 5–10 cm Limed 27.96 (6.64) 25.02 (5.59) 27.24 (9.95)
Ctot g/kg 10–30 cm Control 13.94 (3.76) 11.81 (3.93) 13.73 (3.53)
Ctot g/kg 10–30 cm Limed 13.16 (3.91) 14.33 (5.38) 13.84 (6.01)
Ctot g/kg 30–60 cm Control 4.98 (1.28) 4.98 (3.76) 5.95 (3.88)
Ctot g/kg 30–60 cm Limed 6.58 (5.08) 6.55 (4.73) 6.46 (5.69)
Fe g/kg O-layer Control 4.03 (2.26) 5.71 (3.98) 5.35 (3.26)
Fe g/kg O-layer Limed 4.93 (1.72) 7.44 (3.53) 7.49 (3.19)

Fe3+ µmolc/g 0–5 cm Control 9.22 (6.3) 13.22 (7.92) 8.37 (4.97)
Fe3+ µmolc/g 0–5 cm Limed 15.37 (7.55) 9.64 (7.68) 3.56 (2.73)
Fe3+ µmolc/g 5–10 cm Control 3.81 (5.3) 3.7 (2.54) 2.46 (2.37)
Fe3+ µmolc/g 5–10 cm Limed 5.42 (4.82) 3.82 (2.71) 1.37 (1.15)
Fe3+ µmolc/g 10–30 cm Control 0.45 (0.43) 0.61 (0.36) 0.3 (0.2)
Fe3+ µmolc/g 10–30 cm Limed 0.44 (0.49) 1.07 (0.78) 0.3 (0.26)
Fe3+ µmolc/g 30–60 cm Control 0.05 (0.03) 0.35 (0.16) 0.08 (0.03)
Fe3+ µmolc/g 30–60 cm Limed 0.06 (0.06) 0.54 (0.46) 0.1 (0.09)
H+ µmolc/g 0–5 cm Control 11.04 (7.25) 12.8 (8.47) 13.6 (9.63)
H+ µmolc/g 0–5 cm Limed 18.26 (4.18) 5.8 (4.6) 4.89 (3.75)
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Table A2. Cont.

Parameter Unit Depth Treatment 2003 2010 2015

H+ µmolc/g 5–10 cm Control 4.84 (3.28) 3.23 (2.01) 4.6 (4.47)
H+ µmolc/g 5–10 cm Limed 6.99 (3.75) 2.84 (1.48) 2.94 (1.66)
H+ µmolc/g 10–30 cm Control 1.93 (0.97) 0.85 (0.52) 1.16 (0.68)
H+ µmolc/g 10–30 cm Limed 2 (0.97) 1.12 (0.54) 1.3 (0.67)
H+ µmolc/g 30–60 cm Control 1.34 (0.83) 0.96 (0.78) 0.67 (0.53)
H+ µmolc/g 30–60 cm Limed 1.53 (0.71) 1.08 (0.53) 1.12 (0.72)
K g/kg O-layer Control 1.41 (1.02) 1.59 (0.8) 1.24 (0.46)
K g/kg O-layer Limed 1.69 (0.67) 2.04 (0.88) 1.61 (0.72)

K+ µmolc/g 0–5 cm Control 0.8 (0.18) 1.12 (0.73) 1.46 (1.17)
K+ µmolc/g 0–5 cm Limed 1 (0.43) 1 (0.34) 1.22 (0.66)
K+ µmolc/g 5–10 cm Control 0.7 (0.31) 0.71 (0.22) 0.84 (0.2)
K+ µmolc/g 5–10 cm Limed 0.71 (0.31) 0.9 (0.32) 0.85 (0.34)
K+ µmolc/g 10–30 cm Control 0.64 (0.23) 0.78 (0.24) 0.78 (0.26)
K+ µmolc/g 10–30 cm Limed 0.78 (0.41) 0.98 (0.41) 0.89 (0.34)
K+ µmolc/g 30–60 cm Control 1.02 (0.29) 1.16 (0.31) 0.97 (0.31)
K+ µmolc/g 30–60 cm Limed 1.1 (0.61) 1.43 (0.58) 1.13 (0.43)
Mn g/kg O-layer Control 0.85 (0.81) 1.08 (0.79) 1.01 (0.94)
Mn g/kg O-layer Limed 1.35 (1.12) 2.25 (1.32) 2.28 (1.3)

Mn2+ µmolc/g 0–5 cm Control 2.93 (2.13) 3.5 (3.61) 3.28 (2.75)
Mn2+ µmolc/g 0–5 cm Limed 3.57 (3.49) 4.27 (3.46) 5.3 (4.16)
Mn2+ µmolc/g 5–10 cm Control 4.52 (3.41) 6.5 (4.53) 4.19 (4.22)
Mn2+ µmolc/g 5–10 cm Limed 4.04 (2.04) 5.44 (3.03) 4.61 (3.39)
Mn2+ µmolc/g 10–30 cm Control 3.7 (2.41) 4.68 (3.25) 3.16 (2.24)
Mn2+ µmolc/g 10–30 cm Limed 3.47 (1.38) 4.88 (3.06) 3.83 (2.71)
Mn2+ µmolc/g 30–60 cm Control 2 (1.44) 3.14 (2.43) 2.41 (1.92)
Mn2+ µmolc/g 30–60 cm Limed 1.78 (1.05) 3.71 (2.16) 2.45 (1.69)

Na g/kg O-layer Control 0.1 (0.06) 0.13 (0.05) 0.13 (0.05)
Na g/kg O-layer Limed 0.1 (0.06) 0.18 (0.05) 0.13 (0.05)

Na+ µmolc/g 0–5 cm Control 0.43 (0.22) 0.83 (0.57) 1.11 (0.29)
Na+ µmolc/g 0–5 cm Limed 0.41 (0.16) 0.72 (0.24) 1.04 (0.4)
Na+ µmolc/g 5–10 cm Control 0.43 (0.34) 0.68 (0.34) 0.86 (0.36)
Na+ µmolc/g 5–10 cm Limed 0.36 (0.21) 0.57 (0.21) 0.8 (0.32)
Na+ µmolc/g 10–30 cm Control 0.31 (0.14) 0.33 (0.18) 0.48 (0.15)
Na+ µmolc/g 10–30 cm Limed 0.24 (0.08) 0.44 (0.24) 0.56 (0.26)
Na+ µmolc/g 30–60 cm Control 0.4 (0.1) 0.46 (0.27) 0.37 (0.13)
Na+ µmolc/g 30–60 cm Limed 0.2 (0.12) 0.44 (0.28) 0.43 (0.2)
Ntot g/kg O-layer Control 15.98 (2.38) 14.53 (3.27) 13.88 (2.77)
Ntot g/kg O-layer Limed 14.09 (1.1) 12.92 (3.5) 12.47 (2.73)
Ntot g/kg 0–5 cm Control 2.38 (0.22) 2.57 (1.14) 3.28 (1.52)
Ntot g/kg 0–5 cm Limed 3.46 (0.91) 2.19 (0.62) 2.89 (1.11)
Ntot g/kg 5–10 cm Control 1.37 (0.14) 1.37 (0.35) 1.65 (0.53)
Ntot g/kg 5–10 cm Limed 1.57 (0.37) 1.45 (0.3) 1.58 (0.59)
Ntot g/kg 10–30 cm Control 0.9 (0.24) 0.83 (0.28) 0.98 (0.27)
Ntot g/kg 10–30 cm Limed 0.89 (0.23) 0.95 (0.3) 0.94 (0.35)
Ntot g/kg 30–60 cm Control 0.46 (0.1) 0.5 (0.22) 0.56 (0.25)
Ntot g/kg 30–60 cm Limed 0.56 (0.36) 0.57 (0.29) 0.56 (0.32)

pH-KCl O-layer Control 2.77 (0.43) 2.96 (0.39) 2.97 (0.62)
pH-KCl O-layer Limed 3.06 (0.64) 4.53 (0.79) 4.37 (0.79)
pH-KCl 0–5 cm Control 2.95 (0.29) 3.1 (0.22) 3.09 (0.32)
pH-KCl 0–5 cm Limed 2.83 (0.11) 3.42 (0.39) 3.54 (0.66)
pH-KCl 5–10 cm Control 3.29 (0.31) 3.53 (0.18) 3.42 (0.29)
pH-KCl 5–10 cm Limed 3.18 (0.28) 3.59 (0.15) 3.62 (0.22)
pH-KCl 10–30 cm Control 3.68 (0.18) 3.87 (0.14) 3.8 (0.16)
pH-KCl 10–30 cm Limed 3.63 (0.17) 3.79 (0.14) 3.8 (0.15)
pH-KCl 30–60 cm Control 3.74 (0.23) 3.8 (0.18) 3.88 (0.19)
pH-KCl 30–60 cm Limed 3.63 (0.19) 3.76 (0.14) 3.8 (0.19)
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Table A3. G1 study site parameter pH-KCl, Mg, K, Na, Fe, Mn, H, C and N response ratios (RR) to
time in 2003-2015.

Parameter Unit Depth Period Treatment RR Mean RR SD RR Range

C/N O-layer 2003–2010 Control −1.88 1.88 −3.97–0.74
C/N O-layer 2003–2010 Limed 0.29 3.28 −3.61–5.23
C/N O-layer 2010–2015 Control −0.19 1.77 −2.96–1.7
C/N O-layer 2010–2015 Limed 2.89 3.84 0.04–9.08
C/N 0–5 cm 2003–2010 Control 0.22 2.25 −1.9–3.92
C/N 0–5 cm 2003–2010 Limed −0.59 1.52 −3.18–0.8
C/N 0–5 cm 2010–2015 Control 0.45 4.24 −2.28–7.9
C/N 0–5 cm 2010–2015 Limed −1.37 2.63 −4.89–2.1
C/N 5–10 cm 2003–2010 Control −0.08 2.43 −2.25–3.35
C/N 5–10 cm 2003–2010 Limed 1.59 2.06 −0.35–4.25
C/N 5–10 cm 2010–2015 Control −0.01 3.74 −4.63–5.45
C/N 5–10 cm 2010–2015 Limed −0.95 1.87 −3.13–1.85
C/N 10–30 cm 2003–2010 Control −2.5 4.15 −8.8–0.7
C/N 10–30 cm 2003–2010 Limed 1.65 2.09 −1.98–3.07
C/N 10–30 cm 2010–2015 Control 0.39 2.04 −1.92–2.81
C/N 10–30 cm 2010–2015 Limed −0.94 2.6 −3.54–2.72
C/N 30–60 cm 2003–2010 Control −4.3 6.68 −14.57–2.6
C/N 30–60 cm 2003–2010 Limed 2.41 4.18 −2.9–7.32
C/N 30–60 cm 2010–2015 Control −0.07 3.08 −3.51–4.6
C/N 30–60 cm 2010–2015 Limed −1.68 2.3 −4.3–1.2
Ctot g/kg O-layer 2003–2010 Control 0 0.26 −0.24–0.38
Ctot g/kg O-layer 2003–2010 Limed 0.28 0.81 −0.36–1.52
Ctot g/kg O-layer 2010–2015 Control −0.12 0.09 −0.22–−0.01
Ctot g/kg O-layer 2010–2015 Limed 0.12 0.3 −0.25–0.58
Ctot g/kg 0–5 cm 2003–2010 Control 0.31 0.46 −0.33–0.97
Ctot g/kg 0–5 cm 2003–2010 Limed 0.61 0.51 0.1–1.35
Ctot g/kg 0–5 cm 2010–2015 Control 0.28 0.52 −0.22–1.11
Ctot g/kg 0–5 cm 2010–2015 Limed 0.08 0.17 −0.08–0.34
Ctot g/kg 5–10 cm 2003–2010 Control 0.19 0.36 −0.22–0.64
Ctot g/kg 5–10 cm 2003–2010 Limed 0.28 0.23 0.01–0.64
Ctot g/kg 5–10 cm 2010–2015 Control 0.24 0.64 −0.27–1.33
Ctot g/kg 5–10 cm 2010–2015 Limed 0.19 0.23 −0.03–0.54
Ctot g/kg 10–30 cm 2003–2010 Control 0.17 0.4 −0.28–0.8
Ctot g/kg 10–30 cm 2003–2010 Limed 0.11 0.26 −0.23–0.34
Ctot g/kg 10–30 cm 2010–2015 Control −0.01 0.22 −0.21–0.3
Ctot g/kg 10–30 cm 2010–2015 Limed 0.07 0.37 −0.33–0.67
Ctot g/kg 30–60 cm 2003–2010 Control 0.28 0.43 −0.13–0.97
Ctot g/kg 30–60 cm 2003–2010 Limed 0.23 0.64 −0.27–1.34
Ctot g/kg 30–60 cm 2010–2015 Control −0.08 0.27 −0.46–0.24
Ctot g/kg 30–60 cm 2010–2015 Limed 0.06 0.4 −0.34–0.63
Fe g/kg O-layer 2003–2010 Control 0.53 0.85 −0.2–1.81
Fe g/kg O-layer 2003–2010 Limed 0.17 0.67 −0.66–0.84
Fe g/kg O-layer 2010–2015 Control 0.39 0.65 −0.06–1.5
Fe g/kg O-layer 2010–2015 Limed −0.2 0.28 −0.39–0.29

Fe3+ µmolc/g 0–5 cm 2003–2010 Control 0.79 0.92 −0.01–1.92
Fe3+ µmolc/g 0–5 cm 2003–2010 Limed −0.26 0.52 −0.88–0.3
Fe3+ µmolc/g 0–5 cm 2010–2015 Control 0.38 1.84 −0.6–3.67
Fe3+ µmolc/g 0–5 cm 2010–2015 Limed −0.44 0.6 −0.87–0.59
Fe3+ µmolc/g 5–10 cm 2003–2010 Control 4.06 4.22 −0.18–9.36
Fe3+ µmolc/g 5–10 cm 2003–2010 Limed 1.47 2.36 −0.36–5.51
Fe3+ µmolc/g 5–10 cm 2010–2015 Control −0.35 0.39 −0.61–0.33
Fe3+ µmolc/g 5–10 cm 2010–2015 Limed −0.49 0.61 −0.85–0.58
Fe3+ µmolc/g 10–30 cm 2003–2010 Control 5.71 10.38 −0.34–23.98
Fe3+ µmolc/g 10–30 cm 2003–2010 Limed 1.66 1.51 −0.01–3.93
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Table A3. Cont.

Parameter Unit Depth Period Treatment RR Mean RR SD RR Range

Fe3+ µmolc/g 10–30 cm 2010–2015 Control −0.42 0.13 −0.52–−0.26
Fe3+ µmolc/g 10–30 cm 2010–2015 Limed −0.41 0.59 −0.91–0.59
Fe3+ µmolc/g 30–60 cm 2003–2010 Control 21.11 27.42 −0.26–67.57
Fe3+ µmolc/g 30–60 cm 2003–2010 Limed 17.86 13.04 1.53–37.78
Fe3+ µmolc/g 30–60 cm 2010–2015 Control −0.66 0.28 −0.95–−0.26
Fe3+ µmolc/g 30–60 cm 2010–2015 Limed −0.56 0.49 −0.93–0.28
H+ µmolc/g 0–5 cm 2003–2010 Control 0.54 0.61 −0.05–1.44
H+ µmolc/g 0–5 cm 2003–2010 Limed −0.64 0.35 −1–−0.13
H+ µmolc/g 0–5 cm 2010–2015 Control 0.07 0.33 −0.39–0.51
H+ µmolc/g 0–5 cm 2010–2015 Limed 6.1 14.51 −0.9–32.04
H+ µmolc/g 5–10 cm 2003–2010 Control 0.23 0.58 −0.4–1.05
H+ µmolc/g 5–10 cm 2003–2010 Limed −0.15 0.55 −0.62–0.8
H+ µmolc/g 5–10 cm 2010–2015 Control 0.34 0.68 −0.26–1.5
H+ µmolc/g 5–10 cm 2010–2015 Limed −0.05 0.79 −0.75–1.14
H+ µmolc/g 10–30 cm 2003–2010 Control −0.28 0.63 −0.93–0.38
H+ µmolc/g 10–30 cm 2003–2010 Limed −0.27 0.5 −0.75–0.49
H+ µmolc/g 10–30 cm 2010–2015 Control 2.41 3.63 −0.42–8.15
H+ µmolc/g 10–30 cm 2010–2015 Limed 1.24 2.63 −0.35–5.91
H+ µmolc/g 30–60 cm 2003–2010 Control −0.5 0.4 −0.96–−0.05
H+ µmolc/g 30–60 cm 2003–2010 Limed 1.16 3.69 −0.73–7.75
H+ µmolc/g 30–60 cm 2010–2015 Control 2.76 5.44 −0.37–12.4
H+ µmolc/g 30–60 cm 2010–2015 Limed 0.57 0.68 −0.5–1.07
K g/kg O-layer 2003–2010 Control 0.22 0.38 −0.1–0.86
K g/kg O-layer 2003–2010 Limed 0.13 0.23 −0.08–0.48
K g/kg O-layer 2010–2015 Control 0.07 0.21 −0.16–0.34
K g/kg O-layer 2010–2015 Limed −0.04 0.24 −0.25–0.34

K+ µmolc/g 0–5 cm 2003–2010 Control 0.15 0.66 −0.4–1.18
K+ µmolc/g 0–5 cm 2003–2010 Limed 0.69 0.98 −0.19–1.95
K+ µmolc/g 0–5 cm 2010–2015 Control 0.46 0.34 −0.02–0.82
K+ µmolc/g 0–5 cm 2010–2015 Limed 0 0.25 −0.36–0.29
K+ µmolc/g 5–10 cm 2003–2010 Control 0.07 0.39 −0.31–0.68
K+ µmolc/g 5–10 cm 2003–2010 Limed 0.27 0.45 −0.15–0.89
K+ µmolc/g 5–10 cm 2010–2015 Control 0.26 0.44 −0.12–1.02
K+ µmolc/g 5–10 cm 2010–2015 Limed −0.03 0.23 −0.24–0.34
K+ µmolc/g 10–30 cm 2003–2010 Control 0.39 0.69 −0.33–1.1
K+ µmolc/g 10–30 cm 2003–2010 Limed 0.1 0.41 −0.34–0.77
K+ µmolc/g 10–30 cm 2010–2015 Control 0.1 0.27 −0.17–0.45
K+ µmolc/g 10–30 cm 2010–2015 Limed 0.04 0.14 −0.2–0.15
K+ µmolc/g 30–60 cm 2003–2010 Control 0.53 0.95 −0.38–1.57
K+ µmolc/g 30–60 cm 2003–2010 Limed 0.25 0.53 −0.33–0.93
K+ µmolc/g 30–60 cm 2010–2015 Control 0.08 0.24 −0.27–0.32
K+ µmolc/g 30–60 cm 2010–2015 Limed −0.12 0.16 −0.2–0.16
Mn g/kg O-layer 2003–2010 Control 0.5 1.03 −0.2–2.26
Mn g/kg O-layer 2003–2010 Limed 1.25 0.56 0.41–1.85
Mn g/kg O-layer 2010–2015 Control 0.62 0.56 −0.01–1.45
Mn g/kg O-layer 2010–2015 Limed 0.01 0.56 −0.37–1

Mn2+ µmolc/g 0–5 cm 2003–2010 Control 1.56 1.81 −0.21–4.42
Mn2+ µmolc/g 0–5 cm 2003–2010 Limed 1.3 1.84 −0.61–4.32
Mn2+ µmolc/g 0–5 cm 2010–2015 Control 7.57 15.79 −0.56–35.76
Mn2+ µmolc/g 0–5 cm 2010–2015 Limed 2.79 5.69 −0.21–12.95
Mn2+ µmolc/g 5–10 cm 2003–2010 Control 6.19 9.18 −0.64–20.46
Mn2+ µmolc/g 5–10 cm 2003–2010 Limed 0.46 0.83 −0.56–1.18
Mn2+ µmolc/g 5–10 cm 2010–2015 Control 1.15 3.01 −0.52–6.52
Mn2+ µmolc/g 5–10 cm 2010–2015 Limed 0.84 1.81 −0.64–3.98
Mn2+ µmolc/g 10–30 cm 2003–2010 Control 49.57 106.0 −0.15–239.18



Soil Syst. 2020, 4, 38 27 of 33

Table A3. Cont.

Parameter Unit Depth Period Treatment RR Mean RR SD RR Range

Mn2+ µmolc/g 10–30 cm 2003–2010 Limed 0.54 0.31 0.14–0.87
Mn2+ µmolc/g 10–30 cm 2010–2015 Control −0.29 0.47 −0.6–0.55
Mn2+ µmolc/g 10–30 cm 2010–2015 Limed −0.05 0.51 −0.51–0.79
Mn2+ µmolc/g 30–60 cm 2003–2010 Control 6.07 8.7 −0.17–21.37
Mn2+ µmolc/g 30–60 cm 2003–2010 Limed 1.79 1.73 0.36–3.92
Mn2+ µmolc/g 30–60 cm 2010–2015 Control −0.44 0.15 −0.55–−0.22
Mn2+ µmolc/g 30–60 cm 2010–2015 Limed −0.13 0.46 −0.68–0.42

Na g/kg O-layer 2003–2010 Control 0.68 0.56 0.27–1.65
Na g/kg O-layer 2003–2010 Limed 0.65 0.54 −0.06–1.33
Na g/kg O-layer 2010–2015 Control −0.16 0.31 −0.55–0.17
Na g/kg O-layer 2010–2015 Limed −0.05 0.68 −0.66–0.78

Na+ µmolc/g 0–5 cm 2003–2010 Control 2.42 1.45 1–4.35
Na+ µmolc/g 0–5 cm 2003–2010 Limed 2.93 4.18 −0.06–10.04
Na+ µmolc/g 0–5 cm 2010–2015 Control 0.52 0.9 −0.08–2.09
Na+ µmolc/g 0–5 cm 2010–2015 Limed 0.86 0.46 0.21–1.21
Na+ µmolc/g 5–10 cm 2003–2010 Control 1.66 0.55 1.1–2.5
Na+ µmolc/g 5–10 cm 2003–2010 Limed 2.58 2.4 0.42–6.53
Na+ µmolc/g 5–10 cm 2010–2015 Control 0.25 0.48 −0.31–0.97
Na+ µmolc/g 5–10 cm 2010–2015 Limed 0.52 0.49 −0.03–1.21
Na+ µmolc/g 10–30 cm 2003–2010 Control 3.39 3.3 −0.05–7.56
Na+ µmolc/g 10–30 cm 2003–2010 Limed 2.71 4.08 0.41–9.95
Na+ µmolc/g 10–30 cm 2010–2015 Control 0.14 0.42 −0.27–0.72
Na+ µmolc/g 10–30 cm 2010–2015 Limed 0.94 1.77 −0.21–4.08
Na+ µmolc/g 30–60 cm 2003–2010 Control 1.29 2.46 −0.38–5.64
Na+ µmolc/g 30–60 cm 2003–2010 Limed 4.27 5.05 0.03–12.48
Na+ µmolc/g 30–60 cm 2010–2015 Control 0.24 0.63 −0.33–1.24
Na+ µmolc/g 30–60 cm 2010–2015 Limed 0.02 0.61 −0.42–1.08
Ntot g/kg O-layer 2003–2010 Control 0.07 0.24 −0.16–0.34
Ntot g/kg O-layer 2003–2010 Limed 0.18 0.62 −0.33–1.03
Ntot g/kg O-layer 2010–2015 Control −0.12 0.07 −0.23–−0.07
Ntot g/kg O-layer 2010–2015 Limed 0.03 0.21 −0.25–0.28
Ntot g/kg 0–5 cm 2003–2010 Control 0.27 0.44 −0.29–0.89
Ntot g/kg 0–5 cm 2003–2010 Limed 0.65 0.53 0.11–1.23
Ntot g/kg 0–5 cm 2010–2015 Control 0.26 0.33 −0.14–0.6
Ntot g/kg 0–5 cm 2010–2015 Limed 0.16 0.31 −0.1–0.66
Ntot g/kg 5–10 cm 2003–2010 Control 0.17 0.38 −0.14–0.8
Ntot g/kg 5–10 cm 2003–2010 Limed 0.17 0.2 −0.05–0.35
Ntot g/kg 5–10 cm 2010–2015 Control 0.22 0.44 −0.21–0.95
Ntot g/kg 5–10 cm 2010–2015 Limed 0.24 0.25 −0.03–0.62
Ntot g/kg 10–30 cm 2003–2010 Control 0.35 0.71 −0.11–1.61
Ntot g/kg 10–30 cm 2003–2010 Limed 0 0.18 −0.29–0.16
Ntot g/kg 10–30 cm 2010–2015 Control −0.01 0.16 −0.12–0.25
Ntot g/kg 10–30 cm 2010–2015 Limed 0.09 0.22 −0.2–0.39
Ntot g/kg 30–60 cm 2003–2010 Control 0.76 1.27 −0.06–2.89
Ntot g/kg 30–60 cm 2003–2010 Limed −0.01 0.27 −0.39–0.31
Ntot g/kg 30–60 cm 2010–2015 Control −0.05 0.12 −0.18–0.13
Ntot g/kg 30–60 cm 2010–2015 Limed 0.13 0.23 −0.13–0.45

pH-KCl O-layer 2003–2010 Control 0.03 0.25 −0.31–0.31
pH-KCl O-layer 2003–2010 Limed 2.46 0.53 1.54–2.85
pH-KCl O-layer 2010–2015 Control 0.29 0.22 0.08–0.65
pH-KCl O-layer 2010–2015 Limed −1.09 0.59 −1.67–−0.11
pH-KCl 0–5 cm 2003–2010 Control 0.08 0.13 −0.15–0.19
pH-KCl 0–5 cm 2003–2010 Limed 1.11 0.73 0.57–2.25
pH-KCl 0–5 cm 2010–2015 Control −0.01 0.16 −0.18–0.17
pH-KCl 0–5 cm 2010–2015 Limed −0.1 0.74 −1.06–0.99
pH-KCl 5–10 cm 2003–2010 Control 0.09 0.13 −0.13–0.22
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Table A3. Cont.

Parameter Unit Depth Period Treatment RR Mean RR SD RR Range

pH-KCl 5–10 cm 2003–2010 Limed 0.28 0.24 −0.06–0.59
pH-KCl 5–10 cm 2010–2015 Control −0.08 0.16 −0.34–0.06
pH-KCl 5–10 cm 2010–2015 Limed 0.17 0.4 −0.32–0.65
pH-KCl 10–30 cm 2003–2010 Control 0.16 0.13 −0.01–0.29
pH-KCl 10–30 cm 2003–2010 Limed 0.15 0.11 −0.01–0.25
pH-KCl 10–30 cm 2010–2015 Control −0.04 0.17 −0.23–0.19
pH-KCl 10–30 cm 2010–2015 Limed −0.07 0.17 −0.34–0.1
pH-KCl 30–60 cm 2003–2010 Control 0.15 0.2 −0.02–0.49
pH-KCl 30–60 cm 2003–2010 Limed 0.07 0.17 −0.22–0.24
pH-KCl 30–60 cm 2010–2015 Control −0.07 0.2 −0.3–0.14
pH-KCl 30–60 cm 2010–2015 Limed −0.01 0.09 −0.07–0.15

Table A4. G2 study site parameter pH-KCl, Mg, K, Na, Fe, Mn, H, C and N response ratios (RR) to
time in 2003–2015.

Parameter Unit Depth Period Treatment RR Mean RR SD RR Range

C/N O-layer 2003–2010 Control −0.13 1.53 −2.04–1.86
C/N O-layer 2003–2010 Limed −2.5 3.54 −7.1–2.02
C/N O-layer 2010–2015 Control −1.25 1.02 −2.44–0.34
C/N O-layer 2010–2015 Limed 0.07 1.7 −2.51–2.2
C/N 0–5 cm 2003–2010 Control 0.3 1.63 −1.03–2.98
C/N 0–5 cm 2003–2010 Limed −0.3 2.24 −2.7–3.38
C/N 0–5 cm 2010–2015 Control −1.68 3.39 −6.88–2.45
C/N 0–5 cm 2010–2015 Limed −0.09 1.99 −3.11–2.32
C/N 5–10 cm 2003–2010 Control −0.08 1.21 −1.05–1.85
C/N 5–10 cm 2003–2010 Limed −0.63 2.28 −3.67–1.93
C/N 5–10 cm 2010–2015 Control −1.02 2.92 −5.69–2.3
C/N 5–10 cm 2010–2015 Limed 0.06 1.8 −1.62–2.78
C/N 10–30 cm 2003–2010 Control −0.89 1.91 −3.28–1.88
C/N 10–30 cm 2003–2010 Limed −0.1 2.12 −2.98–1.97
C/N 10–30 cm 2010–2015 Control −0.53 1.85 −3.68–1.13
C/N 10–30 cm 2010–2015 Limed −0.24 0.54 −0.91–0.48
C/N 30–60 cm 2003–2010 Control −1.29 2.97 −5.17–1.78
C/N 30–60 cm 2003–2010 Limed −0.48 1.64 −2.9–0.97
C/N 30–60 cm 2010–2015 Control 0.51 1.55 −1.33–2.17
C/N 30–60 cm 2010–2015 Limed −0.23 1.12 −2.09–0.82
Ctot g/kg O-layer 2003–2010 Control −0.1 0.11 −0.28–0
Ctot g/kg O-layer 2003–2010 Limed −0.16 0.25 −0.42–0.21
Ctot g/kg O-layer 2010–2015 Control −0.04 0.28 −0.33–0.41
Ctot g/kg O-layer 2010–2015 Limed −0.01 0.2 −0.25–0.29
Ctot g/kg 0–5 cm 2003–2010 Control 0.11 0.27 −0.19–0.47
Ctot g/kg 0–5 cm 2003–2010 Limed −0.34 0.24 −0.71–−0.04
Ctot g/kg 0–5 cm 2010–2015 Control 0.3 0.66 −0.21–1.42
Ctot g/kg 0–5 cm 2010–2015 Limed 0.31 0.2 −0.01–0.5
Ctot g/kg 5–10 cm 2003–2010 Control 0 0.15 −0.18–0.24
Ctot g/kg 5–10 cm 2003–2010 Limed −0.04 0.34 −0.41–0.44
Ctot g/kg 5–10 cm 2010–2015 Control 0.2 0.37 −0.18–0.74
Ctot g/kg 5–10 cm 2010–2015 Limed 0.08 0.17 −0.08–0.34
Ctot g/kg 10–30 cm 2003–2010 Control −0.12 0.27 −0.42–0.19
Ctot g/kg 10–30 cm 2003–2010 Limed 0.13 0.4 −0.24–0.76
Ctot g/kg 10–30 cm 2010–2015 Control 0.2 0.24 −0.05–0.6
Ctot g/kg 10–30 cm 2010–2015 Limed 0 0.25 −0.35–0.26
Ctot g/kg 30–60 cm 2003–2010 Control −0.01 0.39 −0.54–0.54
Ctot g/kg 30–60 cm 2003–2010 Limed 0 0.27 −0.39–0.29
Ctot g/kg 30–60 cm 2010–2015 Control 0.31 0.49 −0.07–1.16
Ctot g/kg 30–60 cm 2010–2015 Limed 0.03 0.24 −0.36–0.2
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Table A4. Cont.

Parameter Unit Depth Period Treatment RR Mean RR SD RR Range

Fe g/kg O-layer 2003–2010 Control 0.37 0.25 0.07–0.64
Fe g/kg O-layer 2003–2010 Limed 0.73 1.03 −0.59–2.04
Fe g/kg O-layer 2010–2015 Control 0.2 0.62 −0.54–1.06
Fe g/kg O-layer 2010–2015 Limed 0.17 0.52 −0.32–1

Fe3+ µmolc/g 0–5 cm 2003–2010 Control 0.88 1.49 −0.23–3.49
Fe3+ µmolc/g 0–5 cm 2003–2010 Limed −0.36 0.33 −0.92–−0.11
Fe3+ µmolc/g 0–5 cm 2010–2015 Control −0.18 0.56 −0.61–0.78
Fe3+ µmolc/g 0–5 cm 2010–2015 Limed −0.5 0.3 −0.72–0.01
Fe3+ µmolc/g 5–10 cm 2003–2010 Control 2.22 3.89 −0.64–9.05
Fe3+ µmolc/g 5–10 cm 2003–2010 Limed 1.16 2.59 −0.77–4.9
Fe3+ µmolc/g 5–10 cm 2010–2015 Control −0.01 0.97 −0.87–1.53
Fe3+ µmolc/g 5–10 cm 2010–2015 Limed −0.62 0.16 −0.82–−0.45
Fe3+ µmolc/g 10–30 cm 2003–2010 Control 5.43 7.77 −0.38–16.3
Fe3+ µmolc/g 10–30 cm 2003–2010 Limed 5.31 7.67 0.19–18.7
Fe3+ µmolc/g 10–30 cm 2010–2015 Control −0.38 0.46 −0.8–0.38
Fe3+ µmolc/g 10–30 cm 2010–2015 Limed −0.67 0.21 −0.86–−0.33
Fe3+ µmolc/g 30–60 cm 2003–2010 Control 8.69 5.22 1.55–15.6
Fe3+ µmolc/g 30–60 cm 2003–2010 Limed 12.46 11.42 3.06–31.27
Fe3+ µmolc/g 30–60 cm 2010–2015 Control −0.73 0.12 −0.91–−0.61
Fe3+ µmolc/g 30–60 cm 2010–2015 Limed −0.76 0.13 −0.93–−0.61
H+ µmolc/g 0–5 cm 2003–2010 Control 0.31 0.46 −0.17–1.05
H+ µmolc/g 0–5 cm 2003–2010 Limed −0.65 0.26 −0.94–−0.36
H+ µmolc/g 0–5 cm 2010–2015 Control 0.24 0.62 −0.34–1.23
H+ µmolc/g 0–5 cm 2010–2015 Limed 0.33 0.95 −0.44–1.62
H+ µmolc/g 5–10 cm 2003–2010 Control −0.1 0.55 −0.54–0.85
H+ µmolc/g 5–10 cm 2003–2010 Limed −0.45 0.4 −0.83–0.1
H+ µmolc/g 5–10 cm 2010–2015 Control 0.44 0.72 −0.33–1.54
H+ µmolc/g 5–10 cm 2010–2015 Limed 0.06 0.2 −0.09–0.41
H+ µmolc/g 10–30 cm 2003–2010 Control −0.51 0.23 −0.72–−0.26
H+ µmolc/g 10–30 cm 2003–2010 Limed −0.4 0.14 −0.55–−0.19
H+ µmolc/g 10–30 cm 2010–2015 Control 0.48 0.34 −0.06–0.77
H+ µmolc/g 10–30 cm 2010–2015 Limed 0.22 0.43 −0.39–0.71
H+ µmolc/g 30–60 cm 2003–2010 Control −0.27 0.38 −0.62–0.37
H+ µmolc/g 30–60 cm 2003–2010 Limed −0.24 0.37 −0.6–0.35
H+ µmolc/g 30–60 cm 2010–2015 Control −0.01 0.57 −0.87–0.53
H+ µmolc/g 30–60 cm 2010–2015 Limed 0.09 0.6 −0.47–0.96
K g/kg O-layer 2003–2010 Control 0.22 0.21 −0.06–0.47
K g/kg O-layer 2003–2010 Limed 0.19 0.25 −0.25–0.37
K g/kg O-layer 2010–2015 Control −0.15 0.2 −0.44–0.12
K g/kg O-layer 2010–2015 Limed −0.16 0.19 −0.32–0.16

K+ µmolc/g 0–5 cm 2003–2010 Control 0.48 0.55 −0.41–1.09
K+ µmolc/g 0–5 cm 2003–2010 Limed 0.04 0.21 −0.16–0.37
K+ µmolc/g 0–5 cm 2010–2015 Control 0.33 0.48 −0.18–1.08
K+ µmolc/g 0–5 cm 2010–2015 Limed 0.29 0.63 −0.21–1.28
K+ µmolc/g 5–10 cm 2003–2010 Control 0.15 0.5 −0.32–0.92
K+ µmolc/g 5–10 cm 2003–2010 Limed 0.33 0.21 0.1–0.53
K+ µmolc/g 5–10 cm 2010–2015 Control 0.22 0.27 −0.04–0.67
K+ µmolc/g 5–10 cm 2010–2015 Limed −0.04 0.28 −0.4–0.24
K+ µmolc/g 10–30 cm 2003–2010 Control 0.27 0.26 −0.01–0.68
K+ µmolc/g 10–30 cm 2003–2010 Limed 0.35 0.31 0.11–0.85
K+ µmolc/g 10–30 cm 2010–2015 Control 0.01 0.09 −0.11–0.13
K+ µmolc/g 10–30 cm 2010–2015 Limed −0.05 0.13 −0.25–0.06
K+ µmolc/g 30–60 cm 2003–2010 Control 0.18 0.22 −0.11–0.38
K+ µmolc/g 30–60 cm 2003–2010 Limed 0.39 0.44 −0.01–1.11
K+ µmolc/g 30–60 cm 2010–2015 Control −0.17 0.13 −0.34–−0.01
K+ µmolc/g 30–60 cm 2010–2015 Limed −0.15 0.18 −0.46–−0.02
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Table A4. Cont.

Parameter Unit Depth Period Treatment RR Mean RR SD RR Range

Mn g/kg O-layer 2003–2010 Control 0.99 1.36 0.06–3.25
Mn g/kg O-layer 2003–2010 Limed 2 3.79 −0.2–8.75
Mn g/kg O-layer 2010–2015 Control −0.01 0.33 −0.35–0.38
Mn g/kg O-layer 2010–2015 Limed 0.06 0.32 −0.33–0.41

Mn2+ µmolc/g 0–5 cm 2003–2010 Control 2.59 5.64 −0.56–12.62
Mn2+ µmolc/g 0–5 cm 2003–2010 Limed 3.39 7.8 −0.54–17.32
Mn2+ µmolc/g 0–5 cm 2010–2015 Control 0.14 0.78 −0.43–1.49
Mn2+ µmolc/g 0–5 cm 2010–2015 Limed 0.37 0.38 −0.16–0.77
Mn2+ µmolc/g 5–10 cm 2003–2010 Control 2.07 4.77 −0.4–10.59
Mn2+ µmolc/g 5–10 cm 2003–2010 Limed 0.53 0.6 −0.51–0.94
Mn2+ µmolc/g 5–10 cm 2010–2015 Control −0.35 0.06 −0.43–−0.28
Mn2+ µmolc/g 5–10 cm 2010–2015 Limed −0.16 0.23 −0.47–0.13
Mn2+ µmolc/g 10–30 cm 2003–2010 Control 0.73 1.7 −0.58–3.67
Mn2+ µmolc/g 10–30 cm 2003–2010 Limed 0.48 0.79 −0.3–1.71
Mn2+ µmolc/g 10–30 cm 2010–2015 Control −0.28 0.25 −0.47–0.15
Mn2+ µmolc/g 10–30 cm 2010–2015 Limed −0.23 0.22 −0.5–0.11
Mn2+ µmolc/g 30–60 cm 2003–2010 Control 1.02 1.49 −0.52–3.39
Mn2+ µmolc/g 30–60 cm 2003–2010 Limed 1.97 2.55 −0.3–6.17
Mn2+ µmolc/g 30–60 cm 2010–2015 Control −0.12 0.49 −0.56–0.72
Mn2+ µmolc/g 30–60 cm 2010–2015 Limed −0.38 0.18 −0.68–−0.18

Na g/kg O-layer 2003–2010 Control 2.71 5.62 −0.44–12.69
Na g/kg O-layer 2003–2010 Limed 1.14 0.92 −0.38–2.08
Na g/kg O-layer 2010–2015 Control 0.06 0.31 −0.41–0.35
Na g/kg O-layer 2010–2015 Limed −0.18 0.35 −0.59–0.33

Na+ µmolc/g 0–5 cm 2003–2010 Control 3.02 5.85 −0.12–13.45
Na+ µmolc/g 0–5 cm 2003–2010 Limed 1.13 1.27 −0.26–2.94
Na+ µmolc/g 0–5 cm 2010–2015 Control 0.59 0.73 −0.31–1.56
Na+ µmolc/g 0–5 cm 2010–2015 Limed 0.54 0.5 0.02–1.23
Na+ µmolc/g 5–10 cm 2003–2010 Control 2.22 3.63 −0.3–8.51
Na+ µmolc/g 5–10 cm 2003–2010 Limed 1.25 1.62 −0.38–3.54
Na+ µmolc/g 5–10 cm 2010–2015 Control 0.41 0.61 −0.24–1.18
Na+ µmolc/g 5–10 cm 2010–2015 Limed 0.51 0.52 −0.05–1.18
Na+ µmolc/g 10–30 cm 2003–2010 Control 0.34 1.04 −0.44–2.1
Na+ µmolc/g 10–30 cm 2003–2010 Limed 1.13 1.47 0.08–3.24
Na+ µmolc/g 10–30 cm 2010–2015 Control 0.88 1.37 −0.04–3.3
Na+ µmolc/g 10–30 cm 2010–2015 Limed 0.54 0.99 −0.49–2.12
Na+ µmolc/g 30–60 cm 2003–2010 Control 0.15 0.41 −0.32–0.7
Na+ µmolc/g 30–60 cm 2003–2010 Limed 2.11 2.37 −0.38–5.7
Na+ µmolc/g 30–60 cm 2010–2015 Control 0 0.67 −0.55–1.14
Na+ µmolc/g 30–60 cm 2010–2015 Limed 0.21 0.73 −0.48–1.31
Ntot g/kg O-layer 2003–2010 Control −0.09 0.15 −0.33–0.05
Ntot g/kg O-layer 2003–2010 Limed −0.09 0.19 −0.25–0.22
Ntot g/kg O-layer 2010–2015 Control 0 0.27 −0.27–0.46
Ntot g/kg O-layer 2010–2015 Limed −0.01 0.14 −0.16–0.18
Ntot g/kg 0–5 cm 2003–2010 Control 0.08 0.24 −0.16–0.41
Ntot g/kg 0–5 cm 2003–2010 Limed −0.32 0.26 −0.69–0.01
Ntot g/kg 0–5 cm 2010–2015 Control 0.34 0.44 −0.14–1.02
Ntot g/kg 0–5 cm 2010–2015 Limed 0.32 0.26 0.03–0.69
Ntot g/kg 5–10 cm 2003–2010 Control 0 0.12 −0.13–0.19
Ntot g/kg 5–10 cm 2003–2010 Limed −0.02 0.32 −0.38–0.33
Ntot g/kg 5–10 cm 2010–2015 Control 0.24 0.28 −0.17–0.5
Ntot g/kg 5–10 cm 2010–2015 Limed 0.09 0.23 −0.22–0.34
Ntot g/kg 10–30 cm 2003–2010 Control −0.07 0.24 −0.31–0.2
Ntot g/kg 10–30 cm 2003–2010 Limed 0.1 0.33 −0.23–0.64
Ntot g/kg 10–30 cm 2010–2015 Control 0.23 0.2 −0.02–0.49
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Table A4. Cont.

Parameter Unit Depth Period Treatment RR Mean RR SD RR Range

Ntot g/kg 10–30 cm 2010–2015 Limed 0.02 0.26 −0.34–0.32
Ntot g/kg 30–60 cm 2003–2010 Control 0.1 0.33 −0.18–0.61
Ntot g/kg 30–60 cm 2003–2010 Limed 0.04 0.15 −0.14–0.19
Ntot g/kg 30–60 cm 2010–2015 Control 0.14 0.28 −0.11–0.58
Ntot g/kg 30–60 cm 2010–2015 Limed −0.01 0.15 −0.24–0.18

pH-KCl O-layer 2003–2010 Control 0.16 0.2 −0.01–0.5
pH-KCl O-layer 2003–2010 Limed 1.79 0.76 0.68–2.78
pH-KCl O-layer 2010–2015 Control −0.03 0.21 −0.3–0.26
pH-KCl O-layer 2010–2015 Limed −0.32 0.78 −1.11–0.84
pH-KCl 0–5 cm 2003–2010 Control 0.11 0.14 −0.06–0.24
pH-KCl 0–5 cm 2003–2010 Limed 0.65 0.36 0.29–1.2
pH-KCl 0–5 cm 2010–2015 Control −0.04 0.15 −0.22–0.17
pH-KCl 0–5 cm 2010–2015 Limed 0.07 0.23 −0.19–0.27
pH-KCl 5–10 cm 2003–2010 Control 0.15 0.23 −0.13–0.48
pH-KCl 5–10 cm 2003–2010 Limed 0.35 0.29 0.04–0.67
pH-KCl 5–10 cm 2010–2015 Control −0.08 0.17 −0.27–0.16
pH-KCl 5–10 cm 2010–2015 Limed 0.03 0.04 −0.03–0.07
pH-KCl 10–30 cm 2003–2010 Control 0.18 0.14 −0.02–0.31
pH-KCl 10–30 cm 2003–2010 Limed 0.14 0.07 0.07–0.24
pH-KCl 10–30 cm 2010–2015 Control −0.07 0.1 −0.17–0.06
pH-KCl 10–30 cm 2010–2015 Limed 0.01 0.06 −0.07–0.08
pH-KCl 30–60 cm 2003–2010 Control 0.04 0.15 −0.1–0.26
pH-KCl 30–60 cm 2003–2010 Limed 0.12 0.14 −0.08–0.27
pH-KCl 30–60 cm 2010–2015 Control 0.07 0.17 −0.08–0.35
pH-KCl 30–60 cm 2010–2015 Limed 0.05 0.09 −0.08–0.16
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