
Article

Proximal Mobile Gamma Spectrometry as Tool for
Precision Farming and Field Experimentation

Stefan Pätzold *, Matthias Leenen and Tobias W. Heggemann †

Institute of Crop Science and Resource Conservation (INRES)—Soil Science and Soil Ecology, University of Bonn,
Nussallee 13, 53115 Bonn, Germany; m.leenen@uni-bonn.de (M.L.); tobias.heggemann@lwk.nrw.de (T.W.H.)
* Correspondence: s.paetzold@uni-bonn.de
† Present address: Chamber of Agriculture North Rhine-Westphalia, Nevinghoff 40, 48147 Münster, Germany.

Received: 29 February 2020; Accepted: 9 May 2020; Published: 14 May 2020
����������
�������

Abstract: Soils naturally emit gamma radiation that can be recorded using gamma spectrometry.
Spectral features are correlated with soil mineralogy and texture. Recording spectra proximally and
in real-time on heterogeneous agricultural fields is an option for precision agriculture. However,
the technology has not yet been broadly introduced. This study aims to evaluate the current
state-of-the art by (i) elucidating limitations and (ii) giving application examples. Spectra were
recorded with a tractor-mounted spectrometer comprising two 4.2 L sodium iodide (NaI) crystals and
were evaluated with the regions of interest for total counts, 40Potassium, and 232Thorium. A published
site-independent multivariate calibration model was further extended, applied to the data, and
compared with site-specific calibrations that relied on linear correlation. In general, site-specific
calibration outperformed the site-independent approach. However, in specific cases, different sites
could also replace each other in the site-independent model. Transferring site-specific models to
neighbouring sites revealed highly variable success. However, even without data, post-processing
gamma surveys detected spatial texture patterns. For most sites, mean absolute error of prediction in
the test-set validation was below 5% for single texture fractions. On this basis, thematic maps for
agricultural management were derived. They showed quantitative information for lime requirement
in the range from 1068 to 3560 kg lime ha−1 a−1 (equivalent to 600–2000 kg calcium oxide (CaO)
ha−1 a−1 if converted to the legally prescribed unit) and for field capacity (26−44% v/v). In field
experimentation, spatially resolved texture data can serve (i) to optimize the experimental design or
(ii) as a complementary variable in statistical evaluation. We concluded that broadening the database
and developing universally valid prediction models is needed for introduction into agricultural
practice. Though, the current state-of-the-art allows valuable application in precision agriculture and
field experimentation, at least on the basis of site-specific or regional basis.

Keywords: soil heterogeneity; proximal soil sensing; on-the-go gamma spectroscopy; soil texture;
grain size distribution; soil mineralogy; variable rate irrigation; liming; plot trial; precision agriculture

1. Introduction

Among diverse non-invasive techniques available, mobile gamma spectrometry (GS) is evolving
towards a recognised technology in proximal soil sensing. In the past years, soil scientists have made
increasing efforts to evaluate possibilities related to gamma spectrometry and to overcome limitations
for practical applications. Proximally recorded gamma spectra provide information on soil properties
that are potentially relevant for different applications in agricultural soil use and research [1–3].

Gamma quant emitting radionuclides naturally occur in all soils. Their overlap with current soil
properties forms the basis for using gamma spectrometry in soil science and gave rise to multiple studies
surveying this relationship. Approximately 90% of the above ground measured gamma radiation
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originates from the uppermost 0.3 m of soils, i.e., the main root zone for agricultural crops [4,5].
Relationships between different features of the gamma spectrum (such as total counts, single isotopes or
isotope ratios) and sand, silt, and clay contents have been detected in several studies [6–8]. The absolute
amounts of radionuclides in a given soil are determined by the local, i.e., site-specific conditions, such
as geological, mineralogical, and pedological settings and processes. In the following, this complex
of influences is denominated as “geopedological conditions.” One major factor is the mineralogical
composition of the soil’s parent material. The sand fraction of European soils is often strongly quartz
dominated and, consequently, bears no or very little radionuclides [9,10]. In contrast, the clay fraction
is dominated by clay minerals and Fe oxides, both being richer in radionuclides [5,9–11].

Remote GS as well as proximal GS are capable of detecting spatial soil texture patterns at
various scales [12,13]. Gamma spectrometry has been proven to perform well on single fields [2], at a
very limited number of sites [14], or within geologically homogeneous landscapes [13,15]. Though,
for datasets comprising various geopedological conditions, the complexity increases. In this respect,
machine learning approaches can be superior to linear correlation models. Support vector machines
(SVM) enable calibration of site-independent texture prediction models, overcoming interferences
from different parent materials [7,8]. However, to achieve universal applicability in its proper sense,
more related studies are needed [3]. In this study, a site-independent model [8] is tested on study sites
that were not in the calibration set in order to test its universal applicability.

Mobile gamma measurements can be conducted while driving over the field (on-the-go) or
during stationary recordings (stop-and-go) [16]. Both approaches yielded similar results for different
soil textures (R2

≥ 0.96; [14]), but must consider that the gamma decay is noisy, i.e., variable over
time [17–19]. Some applications of GS such as Digital Soil Mapping (DSM) and management zoning
require or profit from data post-processing such as interpolation [12,20]. The same holds true for field
experiments on small plots where soil texture is a key soil property with various implications for
experimental results [21–23]. In contrast, for agricultural measures, immediate data availability in
real-time can be a great advantage; the necessary noise reduction can be done in real time.

Studies that show practical applications in precision agriculture and field experimentation at high
spatial resolution are still scarce. In this work, we intend to evaluate the feasibility of highly resolved
on-the-go GS to provide quantitative texture-related application data that is currently state-of-the-art.

The aim of this study is to test our published site-independent calibration model [8] for unknown
sites in comparison to site-specific calibrations. This evaluation focuses on practical applications in
agriculture and field experimentation. Two hypotheses were investigated alongside the chosen case
studies: (i) The site-independent model by Heggemann et al. [8] precisely predicts soil texture for
unknown sites, and (ii) GS yields soil texture data on-the-go and in real time, i.e., without geostatistical
data post processing, at sufficient preciseness for precision agriculture and field experimentation.

2. Materials and Methods

2.1. Sites and Sample Set

This study comprised five agricultural fields in different regions of Western Germany; two fields in
North-Eastern Germany from the precedent study [8] were included only for comparing the calibration
approaches (Table 1). A geological map of Germany with the study sites is available in the Figure 1.
The soils at the 8-ha Münster field in the North German Plain were developed from Cretaceous marls
partially covered by aeolian sand, Saalian fluvial sediments, and glacial till. In the district of Düren,
the 8-ha study field was located at the edge of the Rhenish Massif in the Northern Eifel. Here, the soils
formed from Pleistocene periglacial slope deposits (PPSD [24]) that consisted of more or less weathered
sandstones from the Upper Bunter Sandstone and loess. Texture variability arose from differing
PPSD composition and variable degrees of soil erosion in the undulated landscape. Two sites at the
Eastern edge of the Eifel (Rhenish Massif) were investigated. First, a field of 2.8 ha size was located
in the district of Ahrweiler. Second, in the municipality of Rheinbach, two neighbouring fields were
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investigated (Rheinbach-1: cropland, 2.1 ha; Rheinbach-2: permanent pasture, 2.3 ha). At both sites,
soils have developed from PPSD composed from variable amounts of intensively weathered Lower
Devonian sand, silt- and claystones and loess. The soils in the Uckermark district have developed from
Weichselian glacial till on the ground moraine. The Münster, Rheinbach-1, and the two Uckermark (35
and 25 ha) fields had already been part of the precedent study and are described in more detail by
Heggemann et al. [8].

Table 1. Investigated fields and related soil texture parameters.

Site Land Use
No. of Soil Samples;
Sampling Strategy

Sand Silt Clay
Mean Content (min-max) [%] in

Conventionally Analysed Soil Samples

Münster Cropland 45 (raster) 57 (21–80) 15 (9–21) 26 (9–55)

Düren
Cropland

whole field
experimental plots

11 (stratified)
48 (plots) 44 (34–59) 38 (26–44) 16 (11–20)

Ahrweiler Cropland 71 (raster) 12 (7–23) 57 (37–70) 30 (18–57)
Rheinbach-1 Cropland 42 (raster) 25 (12–37) 43 (40–65) 14 (21–28)
Rheinbach-2 permanent pasture 81 (raster) 38 (22–51) 40 (27–49) 20 (14–28)
Uckermark-1 Cropland 81 (stratified) 61 (36–81) 23 (11–40) 14 (5–21)
Uckermark-2 Cropland 39 (stratified) 57 (34–78) 26 (16–37) 16 (6–27)
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Figure 1. Set-up for recording gamma spectra stop-and-go as well as on-the-go. The two crystals
mounted to the steel frame are positioned 0.3 m above the soil surface. The photomultiplier console
and the computer are in the tractor cabin.

Two plot experiments at the sites Düren and Rheinbach-2 were investigated. Within the 8 ha
Düren field, a fertilizer experiment with 48 plots of 108 m2 each had been set up by the Chamber of
Agriculture of North Rhine-Westphalia (Germany) prior to the GS survey; that is, the gamma results
were not considered for designing that experiment. The example was nevertheless chosen to assess the
potential GS support for future design and positioning of plot experiments. The plots covered 5184 m2;
including the inter-plot spacings, the total area of the experiment comprised 8613 m2.

At the pasture of Rheinbach-2, revealing strongly acidified soils, a liming experiment was
established after the GS survey in November 2018. Three treatments in threefold repetition were to be
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optimally placed in a strip design. The legacy soil map for agriculture 1:5000 [25] suggested area-wide
homogeneous soil properties. However, a preliminary on-the-go survey revealed considerable texture
heterogeneity. In consequence, the experimental design was modified and treatments were placed
in strips of 6 m width that captured as much heterogeneity as possible. Afterwards, raster points
were defined and sampled for conventional analyses as well as for capturing liming effects over time
with a portable mid-infrared spectrometer (not subject to this study). Another aim of the trial is a
long-term survey on grassland vegetation changes. At the raster points, gamma spectra were recorded
stop-and-go for model calibration.

2.2. Ground Truth Sampling and Soil Analyses

Three different approaches to define sampling points were applied (Table 1). (i) To evaluate
gamma performance for soil mapping at the field scale (e.g., as basic information for management
zoning), the reference sampling points were selected upon completion of an on-the-go survey in order
to cover the whole range of gamma counts at the respective site (stratified sampling). (ii) To elucidate
the usefulness of gamma data as basic information for, e.g., lime dosage in precision farming, sampling
was conducted along a regular raster with a grid width along the tractor tracks. (iii) Soil samples in the
Düren field experiment were taken as composite samples in the centre of each plot. Each reference soil
sample was composed of three subsamples and was taken from 0–0.3 m depth with a Pürckhauer drill.

Soil samples were homogenised, air-dried, pestled, and sieved at 2 mm to remove stones.
The particle size distribution was determined with the combined sieve and pipette method [26].
Organic matter and, if present, calcium carbonate were removed prior to particle size analysis.
The grain sizes were classified, following the World Reference Base for Soil Resources [27], into sand
(2000–63 µm), silt (63–2 µm), and clay (<2 µm). Soil survey in Germany utilises the same grain
size classes. Texture classes predicted from gamma spectra were adapted to the common scheme of
GD-NRW and AG Boden [25,28] to enable direct comparison with legacy soil maps. In this study,
(i) lime dosage and (ii) field capacity (FC) are presented as examples for texture-related GS applications
in precision farming. For lime dosage, soil texture was translated into the scheme of the Association
of German Agricultural Analytical and Research Institutes (VDLUFA); for details, refer to [29]. Field
capacity was calculated via pedotransfer functions on the basis of the texture classes used in the
German soil survey [28].

2.3. Gamma Measurements

2.3.1. Principles

Gamma quants are marked by characteristic energy levels, enabling us to identify the causal
gamma-ray source. Besides the total gamma counts (TC), 40Potassium (K-40), 238Uranium (U-238), and
232Thorium (Th-232) can be detected by mobile gamma spectrometry directly in the field because these
naturally occurring radionuclides reveal a sufficient abundance and energy. To monitor these elements
by so called Regions of Interest (ROIs) with defined energies is the common approach, and this is
sometimes also denoted as the “windows method.” The ROIs range from 1.37–1.57 MeV for K-40,
1.66–1.86 MeV for U-238, and 2.41–2.81 MeV for Th-232. The ROI for TC ranges from 0.4–2.81 MeV [3].
Due to the attenuation of gamma quants originating from greater depth, gamma data mainly provide
information on topsoil [4,5]. An alternative method to evaluate gamma spectra is the Full Spectrum
Analysis (FSA) approach that requires more efforts in data post-processing and yields equivalent
results [2].

Diverse features of gamma spectra are related to soil texture [6–8]. Two main reasons for more
or less pronounced correlations must be considered. First, particle size is directly linked to specific
surface area in soil and, thus, to sorption capacity for radionuclides. Second, K-40, U-238, and Th-232
are incorporated in the lattice structure of certain minerals [3]. Nuclide quality and quantity in soil are
controlled by the mineralogy and geochemistry of the parent material as well as by geological and
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pedogenic processes [3,30,31]. Multiple interactions between mineralogical composition of the parent
material, soil texture, and the resulting gamma emission make the interpretation of gamma spectra a
complex problem. Particularly diverse weathering processes deliberate radionuclides from primary and
secondary minerals and submit them to pedogenesis, including redistribution and leaching processes.
In this study, the term “geopedological conditions” is used to summarize the complex influence of
various geological, mineralogical, and pedological settings and processes. One specific problem in
recording gamma spectra originates from the statistical distribution of radioactive decay over time [17].
This noise is relevant during stop-and-go as well as on-the-go gamma recordings [3]. Different
pre-processing methods are capable of reducing noise to improve gamma data evaluation [2,18].
However, the simple moving window approach also yielded valuable results [19].

2.3.2. Instrumentation and Data Recording

A gamma spectrometer RSX-1 (Radiation Solutions Inc., Mississauga, ON, Canada) was used.
The two 4.2 L thallium activated sodium iodide crystals were mounted on a steel frame for the tractor’s
three-point linkage to record gamma spectra directly in the field (Figure 1).

The two crystals were coupled to a digital spectrometer console to synchronously process incoming
gamma-ray pulses towards a 1024 channel spectrum. Positioning data were provided by an internal
GPS module. Field gamma spectra were recorded either stop-and-go or on-the-go, both in an identical
geometric measurement setup. All gamma recordings were conducted 0.3 m above soil surface at 1 Hz
frequency. On-the-go data were recorded at velocities of 0.7–1.4 m s−1, and were adapted to the actual
driving conditions on the respective field. Measurement lane spacing for on-the-go data acquisition
varied from 6 to 27 m with respect to the tractor tracks on the respective fields. To calibrate models
with ground truth data, spectra were taken in stop-and-go mode, i.e., the tractor was stopped at the
sampling location and spectra were recorded for 60 sec.

All gamma spectra were evaluated with the commercial RadAssist software (Radiation Solutions
Inc., Mississauga, ON, Canada). This program uses the windows approach, i.e., besides the total counts
(TC), the Regions of Interest (ROI) for K-40, U-238, and Th-232 were also analysed. For evaluating and
displaying spatial data, the ArcGIS software package (v. 10.1, ESRI Inc., Redlands, CA, USA) was used.

2.3.3. Noise Reduction

Gamma decay is not deterministic, but reveals statistical uncertainty over time [17], which is also
denoted as noise. The variable decay rate as recorded when measuring at 1 Hz rate is exemplary,
shown in Figure 2a. However, more sources of uncertainty have to be considered in GS. During
on-the-go surveys, data collection at 1 Hz rate when driving at, e.g., 0.7 m s−1 resulted in 1.4 spectra m−1

driving distance. The footprint (in the literature also denoted as “support”) is the area from which the
signal arises; it has no sharp boundary, but the relative signal contribution decreases with increasing
distance between the gamma emitting source and the crystal [3]. For the chosen geometric setting,
a single spectrum comes from a footprint with an approximately 2 m radius around the crystals.
In consequence, the footprints of neighboured spectra overlap to a significant extent that cannot be
specified. Furthermore, recording spectra on-the-go captures not only the variability in decay rates,
but also gamma ray emission variability that is related to soil heterogeneity over very small distances.

To cope with the different sources of uncertainty, a moving window approach was applied as a
smoothing algorithm for all on-the-go surveys (Figure 2b). This approach was chosen with respect to
the linear spectra alignment along the tractor lanes. From five subsequent spectra, the mean values for
each ROI were calculated, i.e., each spectrum was considered in five mean values and the total number
of measuring points (i.e., spatial data density) was not reduced.
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Figure 2. (a) Variable decay rates (noise) during a stop-and-go measurement of 60 s at the Düren site,
and (b) schematic visualisation of the moving window approach to smooth the noisy data recorded
on-the-go (data from Figure 2a).

2.4. Model Calibration

In a precedent study by Heggemann et al. [8], a site-independent model for texture prediction
was successfully calibrated using support vector machines (SVM). That study comprised ten sites with
largely different geopedological conditions comprising soils from fluvial and aeolian sediments, glacial
till, and PPSD. The transferability of the model to unknown sites was to be tested in this study. First,
the published model was enlarged by the Ahrweiler dataset, and a model was calibrated as described
in the earlier study [8]. The training on the calibration dataset was performed using 100 times 10-fold
cross validation in order to find the optimal prediction models (i.e., with the lowest prediction error for
sand, silt, and clay). To test model transferability, one site was excluded from the calibration set, and
the model was re-calibrated. For validation, the re-calibrated model was applied to the excluded site
(test-set validation). Finally, two pairs of fields were selected to evaluate their crosswise substitution:
datasets from (i) two sites in the Uckermark district (Weichselian ground moraine), and (ii) the fields
Ahrweiler and Rheinbach-1 (Eastern Eifel, Rhenish Massif). In the original model, soils formed from
PPSD were represented by 42 samples from the Rheinbach-1 field. This parent material is very frequent
in the Rhenish Massif (approx. 25800 km2) and prevails also in the Ahrweiler region.

Besides, in this study, site-specific models were tested and compared with the site-independent
model. Therefore, linear correlations between gamma features and grain size fractions were calculated
for the samples of each field. Site-specific models were trained with 70% randomly selected samples
and validated with the remaining 30% of the samples from that site.

In this study, the count rates for the different ROIs as provided by the software were used without
further treatment to minimise efforts for data processing in view of the envisaged real-time applications.
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2.5. Statistical Evaluation

The root mean square error (RMSE) for calibration models, the mean absolute error (MAE) for
prediction (test-set validation), and the coefficient of determination were calculated as follows:

RMSE =

√√
1
n

n∑
i=1

( fi − yi)
2 (1)

MAE =
1
n

n∑
i=1

∣∣∣ fi− yi
∣∣∣ (2)

R2 =

∑n
i=1( fi − y)∑n
i=1(yi − y)

(3)

where fi is the predicted, and yi the respective observed value. The RMSE and the MAE were considered
acceptable when the respective values were below 5% for the single fractions of sand, silt, and clay.

3. Results

3.1. Comparing Site-Independent and Site-Specific Calibration

The re-evaluation of the site-independent calibration published by Heggemann et al. [8] revealed
that this model was not generally capable of predicting soil texture at sites that were not adequately
represented in the calibration set. To evaluate model performance on totally independent sites, single
sites were completely removed from the calibration data and the model was then applied to the
eliminated site (see Section 2.4). That way, predicting soil texture for Münster led to inacceptable MAEs
(i.e., >5%; Table 2). In the original study [8], texture prediction for Münster had been successful with
the site-independent model, which was when a subset of the Münster samples were present in the
calibration set. However, in this study, the two Uckermark fields could completely replace each other
in the calibration dataset. Completely leaving out one of the fields for calibration still led to acceptable
prediction error for the remaining field. This result was expected because the two fields were located
at only 8.4 km distance and revealed the same geopedological conditions.
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Table 2. Mean absolute errors for predicting grain size classes (in % of the fine earth) using the support vector machines (SVM)-modelling approach as published by
Heggemann et al. [8]. Five separate models were calibrated, leaving out one complete site per model. That site was used for test-set validation to test transferability of
the respective model.

—————————— Calibration —————————— ————————————————– Validation ————————————————–
CAL Sites

(N)
Conventionally Measured Grain Size

Classes [%] in CAL Dataset
VAL Site (1)

(N)
Conventionally Measured Grain Size

Classes [%] in VAL Dataset
Mean Absolute Error [%] for

VAL (Prediction)
Sand Silt Clay Sand Silt Clay Sand Silt Clay

2–11
(N = 510)

Min/Max
Mean

SD

6/81
31.1
19.5

11/87
47.2
16.2

4/57
20.2
6.8

1
(N = 79)

Min/Max
Mean

SD

21/80
63.0
13.2

9/21
14.4
2.6

9/55
21.2
10.9

21 15 15

1 & 3–11
(N = 508)

Min/Max
Mean

SD

6/80
31.1
20.4

9/87
45.9
18.3

4/57
21.4
7.4

2
(N = 81)

Min/Max
Mean

SD

36/81
61.0
7.4

11/40
23.4
4.3

5/21
14.0
3.5

4 3 3

1–2 & 4–11
(N = 550)

Min/Max
Mean

SD

6/81
33.9
21.5

9/87
44.0
18.8

4/57
20.7
7.5

3
(N = 39)

Min/Max
Mean

SD

34/78
56.9
9.5

16/37
25.6
4.8

6/27
16.0
5.9

4 3 3

1–3 & 5–11
(N = 547)

Min/Max
Mean

SD

6/81
36.2
22.2

9/87
42.0
19.2

4/57
20.3
7.7

4
(N = 42)

Min/Max
Mean

SD

12/37
24.6
6.8

40/65
52.8
7.0

14/28
21.4
2.7

5 18 12

1–10
(N = 523)

Min/Max
Mean

SD

6/81
38.4
21.2

9/87
40.9
18.9

4/55
19.3
6.6

11
(N = 66)

Min/Max
Mean

SD

7/23
11.7
3.7

37/69
57.7
7.8

18/57
29.1
7.7

4 7 7

Abbreviations: VAL = validation, CAL = calibration, MAE = mean absolute error, Min/Max = range, SD = standard deviation. (1) Sites: 1 = Münster; 2 = Uckermark-1; 3 = Uckermark-2; 4
= Rheinbach-1; 11 = Ahrweiler; for sites 5–10 that are not under study here, see [8].
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In contrast, texture prediction for the Rheinbach-1 and Ahrweiler fields failed if only the respective
other field was included in the site-independent calibration (MAE > 5%). The complex composition of
PPSD probably impeded a better result. First, the amounts of loess in the PPSD were different, which
can be seen from the mean silt contents (Table 2). Second, the PPSD component derived from Lower
Devonian sand-, silt-, and claystones revealed varying weathering degree. At Rheinbach, smectite was
present, which was not the case at Ahrweiler (one X-ray diffraction (XRD) analysis per field, not shown).
These differences probably impeded model transferability between the two sites that were located
at only 7.5 km distance and in the same geological landscape. The failure of the site-independent
model at the Ahrweiler field was obvious when measured and the predicted clay contents were plotted
(Figure 3). However, the local calibration for the clay was performing sufficiently well (R2 = 0.73, MAE
= 3.5% clay).
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Figure 3. Performance of on-the-go clay prediction at the Ahrweiler field with (i) the SVM-based
site-independent model [8], originally calibrated on 10 sites, for this study extended by data from the
Ahrweiler field, and (ii) a linear local (site-specific) model.

3.2. Recognition of Spatial Patterns

At the pasture of Rheinbach-2, the 4666 on-the-go spectra revealed a bimodal frequency distribution
(Figure 4a). A clear spatial pattern became obvious when the dataset was separated in two classes at the
local minimum of 825 cps (Figure 4b). This data distribution originates from a complex geopedological
situation that frequently occurs in the Eifel region. Lower Devonian sedimentary sand-, silt- and
claystones (shales) have been folded during the Hercynian orogenesis, forming ridges and troughs [32].
Therefore, sandstone and shale can be found side-by-side within a few meters distance. During the
Mesozoic and Tertiary, intensive and deep weathering left behind softened rocks and clay-rich layers.
Solifluction during the Pleistocene transported and mixed the weathering products to a certain degree,
forming PPSD that are finally the parent material of Holocene soil formation [24]. As could be seen
here, the soils still may mirror the character of the underlying rocks.

The legacy soil map, shown as the background in Figure 4b, did not reflect the observed field
zones as defined by the TC classes. This was not a simple scale problem as can be seen from even
smaller map units (abbreviated by capital letters in the map unit ID) in a close neighbourhood north
and east of the studied plot. Topsoil texture was regarded as rather homogeneous by the mapping
pedologist (first digit of the map unit ID); the texture class was group 3 with 8–30% clay and >50% silt
(clayey silt according to GD-NRW [25]). In fact, conventional laboratory texture analyses (N = 109)
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revealed clay and silt contents from 14 to 28% and from 27 to 49%, respectively, in the north-western
part of the plot. A correct classification would consequently have led to the groups 2 (clayey loam), 4
(sandy loam), and 5 (heavy loamy sand).
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Figure 4. (a) Frequency distribution and (b) spatial pattern of the total gamma counts (in orange and
blue) on the 2-ha permanent pasture Rheinbach-2 (n = 4666). Spectra were recorded on-the-go and
smoothed as explained in Section 2.3.3. The background map is the legacy soil map for agriculture
1:5000 [25]; forested areas are not mapped.

3.3. Texture Prediction

Figure 5 shows the relationship between clay and gamma TC at the study sites Münster and
Ahrweiler. In both cases, TC and clay were closely related, but with opposite orientation. While simple
pattern recognition, as shown in Section 3.2, was not concerned by differences in clay mineralogy, this
result shows that quantitative texture prediction must take local geopedological conditions into account.

While Münster and Ahrweiler were located at approximately 150 km distance and in different
geological landscapes, the three study sites in the Eastern Rhenish Massif (Table 3) were assumed to
be similar. However, even within this region, contrasting relationships between the total counts and
clay occurred. For the two Rheinbach fields, R2 for clay prediction was not satisfactory. With respect
to the small range of clay contents, this result was not surprising and can further be explained with
the landscape relief as discussed below. The negative correlation between clay and the total counts at
Ahrweiler correspond to the result presented in Section 3.4.1.
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Figure 5. Correlation between clay content and total gamma counts (TC) at the study fields Münster
and Ahrweiler. Fundamental differences in clay mineralogy led to the contrasting relationship between
clay content and TC.

Table 3. Relationship between measured clay contents and total gamma counts at three test fields in
the Eastern Rhenish Massif.

Site Clay [%]
min–max

Total Counts
[cps] min–max Correlation Equation R2 RMSE N

Ahrweiler 18–57 1069–1359 TC = −6.7 × clay + 1478 0.81 3.7 71
Rheinbach-1, cropland 14–28 868–1143 TC = −6.3 × clay + 1181 0.06 2.5 42
Rheinbach-2, pasture 14–29 834–1133 TC = 21.6 × clay + 549 0.60 2.2 108

More precise texture information for the two Rheinbach fields was achieved from the correlation
between K-40 counts and the sand content (Figure 6).Soil Syst. 2020, 4, x FOR PEER REVIEW 12 of 23 
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The correlation equations on the two fields were almost identical when separately calculated
(slope -1.68 for the Rheinbach-1 and -1.67 for the Rheinbach-2 field). Therefore, a common model was
calibrated for the subsequent sand prediction from on-the-go spectra.

3.4. Gamma Spectrometry as a Tool for Precision Farming

Precise texture prediction on-the-go, as shown above, potentially provides options for precision
agriculture. The following paragraph gives application examples on how considering site-specific
conditions helps to optimize soil management. Therefore, site-specific models were calibrated with the
gamma feature that performed best at the respective site.

3.4.1. Considering in-Field Heterogeneity for Estimation of Lime Requirement

For the Ahrweiler field, a clay model was calibrated on the K-40 counts of 48 samples (2/3 of
the total sample number; Clay = −0.45 × K-40 [cps] + 91). Test-set validation of this model for the
predicted clay contents in the remaining 23 samples is shown in Figure 7a. The calibration resulted in
R2 = 0.82 and RMSE = 3.3% clay. Consequently, the model was seen as appropriate for clay prediction
on-the-go as illustrated in Figure 7b. Annotation to one of the two clay content classes was correct in
most cases. Aberration occurred notably in the transition zone between the areas with large and small
clay content; this problem will be discussed below. For the entire field, the mean value of all measured
clay contents accounted for 29.5%, while the mean clay content predicted on-the-go accounted for
24.1%. The discrepancy reveals that the large number conventional analyses (N = 71) did not match
the mean clay content derived from on-the-go spectra (N = 2494). Clay content as derived from GS
provides a larger spatial information density that is supposed to form a reliable basis for, e.g., lime
dosage in precision agriculture.
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Figure 7. (a) Independent test-set validation of clay prediction for the Ahrweiler field (site-specific
model calibrated on K-40 counts at 48 sampling points) and (b) field scheme with clay contents along
the tractor lanes at the Ahrweiler field as conventionally measured and as predicted from K-40 counts.
Small circles along the tractor lanes show the class of clay content predicted on-the-go after calibrating
(N = 48) and validating (N = 23) the site-specific model (N = 2494). Numbers in large circles give the
conventionally measured clay content at the sampling points. The colours symbolize the annotation to
one of the relevant clay content classes [29].
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Recommended lime dosage for maintaining optimal pH values depends directly on clay content in
the topsoil if organic matter content is below 40 g kg−1 [29]. Given these premises, Table 4 lists the lime
rate for the fields at Ahrweiler and Münster. The two zones of the Ahrweiler field (Figure 7b) should
receive 1700 and 2000 kg CaO ha−1 a−3, respectively. At Münster, four different lime requirement
classes occurred within the field, leading to recommended lime rates within the field ranging from 600
to 1700 kg CaO ha−1 a−3 (Table 4).

Table 4. Management parameters with direct relation to soil texture at the test sites Ahrweiler and
Münster. Recommended lime dosage refers to arable soils with optimal pH status and soil organic
matter contents ≤ 40 g kg−1. Field capacity in undisturbed soil as derived from texture class at low bulk
density; water content in pores ≤ 50 µm (n.p. = not predicted because only clay yielded satisfactory
prediction).

Clay Content (1) Texture Class According to . . . . Lime Requirement Field Capacity
[% w/w] Soil Survey (2) Advisory Service (3) [kg CaO ha−1 a−3] (4) [% v/v] (5)

Ahrweiler
45–65 n.p. 5 2000 n.p.
30–45 n.p. 5 2000 n.p.
25–35 n.p. 5 2000 n.p.
17–25 n.p. 4 1700 n.p.

Münster
25–45 Lts 4 1700 44
17–25 Ls4 4 1700 39
12–17 Sl4 3 1400 36
8–12 Sl3 2 1000 34
5–8 Sl2 2 1000 28
< 5 Su2 1 600 26

(1) Conventionally measured. (2) According to [28]: Lts = sandy clay loam, Ls4 = heavy sandy loam, Sl4 = heavy
loamy sand, Sl3 = medium loamy sand, Sl2 = light loamy sand, and Su2 = light silty sand. (3) According to [29],
based solely on the clay content. (4) CaO is the legal dimension for lime; conversion to CaCO3 by factor 0.7147.
(5) According to [28].

3.4.2. Estimation of FC as Basic Data for Irrigation Management

At the Münster study site, the geopedological situation was less complex than at Ahrweiler.
Therefore, the site-specific model for TC revealed a good correlation with both the sand and clay
contents (Sand: TC = − 7.5728 × sand + 1200.5 (N = 47; R2 = 0.95; RMSE = 3.3); Clay: TC = 8.4991
× clay + 543.4 (N = 47; R2 = 0.85; RMSE = 5.0); see Figure 5). In consequence, texture classes and
FC—the latter via looking-up tables in the German soil survey handbook [28]—could be derived from
on-the-go spectra (Figure 8). For this grid cell map, a mean TC value from all on-the-go spectra within
a grid cell was calculated. In other words, each pixel represents the mean value of all spectra recorded
in its 20*20 m area. No further interpolation or geostatistical data treatment were conducted in view of
the aim to provide quantitative texture data on-the-go and in real-time.
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Figure 8. Texture classes (represented by different colours) and field capacity (numbers in grid cells, [%
v/v]) at the Münster study site as derived from TC recorded on-the-go (Lts = sandy clay loam, Ls4 =

heavy sandy loam, Sl4 = heavy loamy sand, Sl3 = medium loamy sand, Sl2 = light loamy sand, and
Su2 = light silty sand). Grid cells out of field boundary were cut off.

3.5. Gamma Spectrometry as A Tool to Support Field Experimentation

Two running field experiments were selected to demonstrate GS usefulness in field experimentation.
In both cases, neither data post-processing (apart from smoothing) nor geostatistical data treatment
was conducted.

3.5.1. Choosing the Optimal Position of the Plot Experiment Within the Field

The statistical parameters characterising soil heterogeneity for different positions of the experiment
are shown in Table 5. All values rely on a gamma survey of the whole field at 27 m lane spacing.
The K-40 measurements were chosen for evaluation of soil heterogeneity because they provided good
correlation with soil texture (see Section 3.5.2). The coefficient of variation (CV) for K-40 amounted to
11.2% at the chosen position, while CV for the whole field was 15.1%.

Table 5. Statistical parameters for the K-40 counts at the Düren site. The whole field covered an area of
8.0 ha. The plot experiment comprised of 0.86 ha. Small letters indicate significant statistical differences
(p = 0.005) between four tested positions of the experimental plots (CV = coefficient of variation).

Whole Field
Realised Position of

Experiment
Alternative Positions of Experiment

A B C

N 3591 256 380 321 360
Min-Max [cps] 86–243 107–189 86–200 96–188 110–181

Mean [cps] 146 146 a 145 a 147 a 141 b
CV % 15.1 11.2 13.2 9.9 9.3

The mean values for the K-40 counts reveal small differences that were, however, significant
(p = 0.005) between alternative C and the other plot positions. Choosing the positions B or C would have
led to smaller coefficients of variation, i.e., to less heterogeneity within the plots, without modifying
the plot plan.
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3.5.2. Supporting Field Experimentation with Texture Prediction at High Spatial Resolution

However, the potential of GS to precisely determine within-field texture heterogeneity can also
be utilised at the scale of small experimental plots within a larger field. The chosen plot position of
a running experiment on the Düren field (each plot of 108 m2 size) was evaluated with respect to
texture heterogeneity. Based on randomly selected soil samples from 12 of the plots and the respective
on-the-go K-40 values (averaged over the plots), model calibration revealed satisfactory correlation
between K-40 counts and clay and sand contents, respectively, despite the small sample number
(measured clay (%) = 0.181 × K-40(cps) − 11.3; R2 = 0.65, RMSE = 1.3; measured sand (%) = − 0.521 ×
K-40(cps) + 119; R2 = 0.88, RMSE = 3.4). Subsequent test-set validation performed well for clay and
sand in the remaining 36 plots (Figure 9).
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Figure 9. On-the-go prediction (test-set validation) for (a) clay and (b) sand contents in small
experimental plots at the Düren field. The dotted lines are the 1:1 lines.

From predicted clay and sand content (for prediction error, refer to MAE, Figure 9), silt was
calculated. This allowed the derivation of soil texture class according to AG Boden [28] for each single
gamma point and for all plots. Figure 10 shows the texture classes as predicted on-the-go (small
circles) in comparison to the conventionally measured values in classical composite samples of the 48
experimental plots.

With small efforts for conventional analyses (n = 12), valuable data on soil texture class in the
entire experiment were derived. This comprehensive information can be used as a co-variable for
future statistical evaluation.
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Figure 10. Scheme of the running plot experiment Düren. Small circles show predicted soil texture class
for all data points of the on-the-go gamma survey. For prediction error, see Figure 9. The background
colour in each plot shows the conventionally measured texture class in a composite sample of the
respective plot.

3.5.3. Providing Texture Information as Co-Variable for Future Vegetation Monitoring in a New
Experiment

Figure 11 shows the spatial coincidence between stop-and-go K-40 counts and sand contents at
the grid points at the study site Rheinbach-2. The negative correlation reflects the geopedological
situation; the sand fraction is dominated by quartz grains originating from the underlying sedimentary
sandstone [9,32] that is part of the PPSD. Test-set-validation with 30% of the sample set yielded reliable
sand prediction (MAE = 3.1% sand). High spatial resolution of texture information allowed us to
establish a dense sampling raster that captured the entire span of sand content variation as already
presented in Table 1.

Finally, the most heterogeneous part of the plot was selected on the basis of the TC map (Figure 4)
in order to capture as much texture variability as possible.
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Figure 11. Plan of the Rheinbach-2 (pasture) experimental sub-plot. The model shown in Figure 6 was
used to predict sand content from the on-the-go spectra (coloured circles). The rectangles show the
conventionally measured sand content at 81 out of the 150 sampling points.

4. Discussion

4.1. Universal Applicability of the Site-Independent Model by Heggemann et al. [8]

This study revealed clear evidence that the site-independent calibration model proposed by
Heggemann et al. [8] cannot be considered universally valid. Texture was not precisely predicted
for sites with geopedological conditions that were not adequately represented in the calibration
set. In such cases, site-specific calibration (i.e., model building directly on the respective site)
outperformed the site-independent model. Geographic distance and attribution to a distinct geological
map unit are important criteria, but not decisive. This became obvious with the two exemplary site
pairs. The site-independent model revealed good transferability between the two Uckermark fields.
In contrast, transferability was poor for the fields at Rheinbach and Ahrweiler that were located at
only a 7.5 km distance and in the same geopedological region. Minor differences in mineralogical
composition of the parent material, weathering degree, and/or the accessory presence of smectite
inhibited a better result. Accordingly, van der Klooster et al. [13] reported that models can successfully
be transferred between plots or even regions as long as the surveyed soils reveal similar geopedological
conditions. Van der Klooster et al. [13] as well as Coulouma et al. [33] state that, in most cases, Th-232
yielded the best correlation to clay content. When the geopedological conditions within the survey
differ, more complex relationships between gamma features and soil texture arise, and other gamma
features yield best results [8]. Soils developed from PPSD, like in Ahrweiler and Rheinbach, often
reflect the very complex geopedological conditions leading to their formation. Previous studies have
shown the potential of machine learning algorithms to integrate complex input data in one model [7,8].
In the cases shown here, linear site-specific models still outperformed the site-independent SVM model.
Deep insight into geopedological conditions, at least in landscapes with complex parent material and
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soil genesis, it is necessary to build appropriate calibration sets. However, a truly universal model is
still desirable to further reduce efforts and costs of gamma surveys.

4.2. Recognition of Spatial Patterns of Gamma Features

This study revealed the relevance of on-the-go gamma spectrometry for practical application in
precision agriculture. In that branch, data availability in real-time during on-the-go gamma surveys is
an interesting option. When ROIs are displayed while driving or immediately after the survey, spatial
soil patterns become readily visible. This makes rapid decisions possible concerning soil mapping,
definition of sampling points, or management zone margins. For such applications, quantitative spectra
evaluation is not mandatory, and sophisticated data processing steps [2,12] are dispensable. However,
depending on the geopedological context, different spectral features may show optimal correlation
with soil texture [14,33,34]. Therefore, if only pattern recognition is required, TC as stand-alone proxies
are sufficient and, at the same time, less prone to errors than single ROI.

4.3. Quantitative Texture Prediction: Chances and Limitations

Rapid and precise topsoil texture estimation is possible via GS as shown for some examples in
this study. The MAE was generally in the same range as the laboratory inaccuracy for conventional
texture analyses [35]. Between the different sites and site-specific models, the prediction error (MAE)
varied. The same applies to the contribution of noise (see Figure 2) to the overall uncertainty of the
method. Elucidation of these methodological problems requires and merits more in-depth studies.

At Münster, the close positive correlation between TC and the clay content (Figure 5) matched
the expectations as reported in literature [13–16]. In this region, the sand fraction in the prevalent
glaciofluvial Saalian sediments is dominated by quartz and, consequently, reveals very low TC, while
the clay fraction is dominated by montmorillonite and illite [36]. Under such conditions, the abundance
of radionuclides depends to a major extent on the clay content. In contrast, at the Ahrweiler site, the
clay fraction likely contained kaolinite as described for soils in this region [24]. This two-layer clay
mineral reveals very small K contents with respect to its lattice structure and small cation exchange
capacity. In consequence, the close negative correlation between clay and TC (Figure 5) is plausible.
It is assumed that directly under the sampled loess-containing Ap horizon, the proportion of kaolinite
increased. This was probably the reason for the prediction offset in the transition zone between loamy
and clayey soils at Ahrweiler. In general, ground truth samples can never exactly reflect the depth the
gamma signals were captured from, because it is not precisely delimited. This result again showed
that layered soils as well as soils from PPSD must be carefully regarded when planning and evaluating
gamma surveys.

Spatial variability of soils and their parent material is often related to the landscape position,
notably in periglacial regions [24]. The variable PPSD composition impacted the performance of GS
at the two Rheinbach fields (Table 3). The cropland covered the steeper centreslope and footslope
while the grassland was located at the more or less flat hilltop. This went along with a dominating
loess proportion in the PPSD at the lower landscape positions and a larger proportion of weathered
Devonian rocks in the higher positions.

4.4. Application Examples in Precision Agriculture and Field Experimentation

Precision agriculture: as far as possible, we refrained from geostatistical operations (e.g.,
interpolation) as proposed in the digital soil mapping approach. Here, the aim was to evaluate
the suitability of mobile GS for texture prediction on-the-go that was as unadulterated as possible using
suitable reference data for validation. Geostatistical processing can lead to distortions that are not
causally related to the gamma data or the related predictions. Of course, gamma data and predictions
can undergo further geostatistical processing afterwards [12,15].

On the basis of validated quantitative texture prediction, application examples were presented.
Variable rate liming is a recognised approach in precision agriculture that bears economic potential [37];
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beyond that, agronomic benefits such as crop health or nutrient availability that are linked to soil
pH must be considered [38]. For liming purposes, the detailed texture classes according to the soil
survey handbook [28] as shown for Münster are not mandatory because the handbook of fertiliser
advisory services [29] classifies only clay contents. In the example from Ahrweiler, the mean value
of the measured clay contents of the entire field accounted for 29.5%, while the predicted mean was
24.1% (N = 2494). Uniform liming following the standard approach, i.e., a representative composite
soil sample and conventional texture analysis, would consequently have led to lime over-dosage on
large parts of the field. If pH values are known to be outside the recommended range, other sensing
approaches than GS are advantageous for variable rate liming, but they still require soil sampling [39]
or a separate tractor-driven work step [40]. Future lime or fertiliser dosage algorithms could leave
behind wide texture classes; instead, stepless recommendations with regard to continuously predicted
texture could be developed [39]. However, GS is not capable of directly detecting pH or available
nutrients. Therefore, GS should be combined with sensors such as mid-infrared spectrometers that
yield nutrient data or related proxies [39,41].

At the Münster study, field geopedological conditions allowed us to predict not only clay, but also
sand content. Therefore, texture classes and, via pedotransfer functions [28], FC were derived. Field
capacity is considered in irrigation management to adapt water amounts; related maps are, therefore,
requested in precision irrigation management [42–44]. Water application that exceeds FC leads to
unproductive seepage losses [43]. In the same way as FC, plant available water (PAW) can easily be
derived from the texture class [28,44]. However, techniques to map soil hydraulic properties in high
resolution are scarce [42]. Other sensing approaches than GS to delineate variable-rate irrigation-zones,
namely EMI, provide meaningful information as reviewed by Hagverdi and Leib [42]. An advantage
of the presented GS approach is that it yields values for the FC of the topsoil as needed for irrigation
management in shallow rooting crops (e.g., potatoes, vegetables). Further, GS is not disturbed by
metallic irrigation devices in the vicinity of the sensor.

Field experimentation: two case-studies for implementing GS-based texture information into
field experimentation were demonstrated. Reducing unexplained variance is mandatory to optimise
the output of cost-intensive field experiments. In this respect, soil texture is a key soil property with
implications for, e.g., soil hydrology, organic matter content, nutrient supply, and crop and weed
growth. This has been proven by several studies, revealing coincident patterns of soil properties and
biomass [21], grain yield [22], or weed patterns [23]. Introducing environmental data into a dataset
and enhancing the statistical power during statistical evaluation of a plot experiment can even be
realised a-posteriori. The Düren example showed that additional and precise data on soil texture can
be provided at the plot scale with reduced analytical effort. Further, GS can help to find the optimal
emplacement of a plot experiment within a larger field. Choosing another position for the plots
would have minimised the unexplained variance in the statistical evaluation of the Düren experiment.
In consequence, rapid on-the-go gamma recordings prior to deciding upon the final plot position can
contribute to better experiment results.

At the stage of planning or designing a field experiment, pattern recognition without data
post-processing may be sufficient. In the Rheinbach-2 liming experiment, selecting the most
heterogeneous part of the field gave a chance to increase the expected output with respect to the
specific aims and hypotheses of the trial. Species composition of the grassland sward and changes of
mid-infrared spectra will be monitored at the large number of observation points over time. In the
Rengen grassland experiment [45] with similar soil properties, 61.7% of the species composition were
explained by soil properties and 62% by different fertilisation [45]. Close interaction between changes
in grassland species distribution and soil are expected at the Rheinbach-2 field as well. Most probably,
maximising soil heterogeneity in the Rheinbach-2 trial will enhance the significance of the results.
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4.5. Complementarity with Electromagnetic Induction

Other sensor technologies than GS rely on different signal sources and soil depths. Electromagnetic
induction (EMI) integrates mainly clay and soil moisture content, but more soil properties such as bulk
density have an influence on the EMI signal [46]. Multiple soil depths can be surveyed depending on
the instrument [47]. Therefore, EMI is established as an appropriate tool to delineate field zones of
plant growth and crop yield [22]. However, for some applications, influence of soil moisture during
the survey or metallic field installations reduces EMI survey significance [42]. However, both soil
texture and moisture together—mostly correlated because linked over the FC [21,44]—determine the
EMI signal and cannot be separated without greater efforts. In contrast to EMI that captures proxies
for soil properties, GS is considered a direct method [48]. In this respect, GS has advantages over EMI.
First, GS is only to a minor degree influenced by soil moisture content if the survey is conducted at dry
topsoil, because signal attenuation is known to be 1% per % soil moisture content and can, therefore, be
corrected [5,17]. Second, GS allows direct derivation of soil texture as shown in this study. However,
GS yields only soil information about approximately 0.3–0.5 m depth [48], while diverse EMI sensors
capture different soil depths [47]. The combination of the advantages of GS and EMI is, therefore,
probably the most promising [20].

5. Conclusions

Even within a distinct geopedological unit, differences in geology, mineralogy, and slope position
impeded the universal use of a site-independent model for texture prediction based on on-the-go
GS. Nevertheless, support to soil mapping and sampling was possible by detecting spatial soil
heterogeneity. For such pattern recognition, data post-processing was dispensable. Case studies
from field experimentation showed that on-the-go GS yields valuable information for optimised
plot positioning and statistical evaluation. Site-specific, i.e., local calibrations, allowed quantitative
predictions for single grain size fractions or entire texture classes. Prediction errors below 5% for
single texture fractions were possible when the calibration data revealed sufficient texture variability.
Quantitative texture data provided relevant input data for precision agriculture applications as shown
in case studies for lime requirement and FC estimations. Such information can be used by users such
as agricultural service providers.

The major obstacle for the widespread application—at least in a geologically diverse country—is
the lack of a universal model. Still, advanced pedological-mineralogical knowledge is mandatory for
representative reference sampling, model building, and interpretation of calibration and validation
results. Creating a comprehensive spectral library for gamma spectrometry is desirable to enable
universally (sensu strictu) valid calibration. Therefore, building such a database should include a
standardisation for devices, spectra recording, calibration sample set, reference sampling and analyses,
data processing, and evaluation. Once available, universal prediction models would be an important
tool for agricultural service providers. This would mark a major step towards broad introduction into
precision agriculture.

Author Contributions: Conceptualization: S.P. and T.W.H.; Methodology: T.W.H.; Investigation & Data Curation:
T.W.H. and M.L.; Visualization: S.P. and T.W.H.; Writing: S.P., T.W.H. and M.L.; Project Administration and
Funding Acquisition: S.P. All authors have read and agreed to the published version of the manuscript.

Funding: The study was funded by the German Federal Ministry of Education and Research (BMBF) within the
BonaRes program, project I4S, subproject F (Grant No. 031B0513F).

Acknowledgments: We are grateful to Ralf Wehrle for English editing. Andreas Veller carefully conducted
numerous texture analyses. Authorisation to access the fields and support by the private farmers is acknowledged.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.



Soil Syst. 2020, 4, 31 21 of 23

References

1. Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; van Henten, E.J. Sensing Soil
Properties in the Laboratory, In Situ, and On-Line: A Review. Adv. Agron. 2012, 114, 155–223. [CrossRef]

2. Mahmood, H.S.; Hoogmoed, W.B.; van Henten, E.J. Proximal gamma-ray spectroscopy to predict soil
properties using windows and full-spectrum analysis methods. Sensors 2013, 13, 16263–16280. [CrossRef]

3. Reinhardt, N.; Herrmann, L. Gamma-ray spectrometry as versatile tool in soil science: A critical review.
J. Plant Nutr. Soil Sci. 2019, 182, 9–27. [CrossRef]

4. Cook, S.E.; Corner, R.J.; Groves, P.R.; Grealish, G.J. Use of airborne gamma radiometric data for soil mapping.
Aust. J. Soil Res. 1996, 34, 183–194. [CrossRef]

5. IAEA, International Atomic Energy Agency. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry
Data; IAEA-TECDOC-1363; IAEA: Vienna, Austria, 2003.

6. Megumi, K.; Mamuro, T. Concentration of uranium series nuclides in soil particles in relation to their size.
J. Geophys. Res. 1977, 82, 353–356. [CrossRef]

7. Priori, S.; Bioanconi, N.; Costantini, E.A.C. Can γ-radiometrics predict soil textural data and stoniness
in different parent materials? A comparison of two machine-learning methods. Geoderma 2014, 226–227,
354–364. [CrossRef]

8. Heggemann, T.; Welp, G.; Amelung, W.; Angst, G.; Franz, S.O.; Koszinski, S.; Schmidt, K.; Pätzold, S. Proximal
gamma-ray spectrometry for site-independent in situ prediction of soil texture on ten heterogeneous fields in
Germany using support vector machines. Soil Till. Res. 2017, 99–109. [CrossRef]

9. Stahr, K. Mineralbestand von Böden. In Scheffer/Schachtschabel Lehrbuch der Bodenkunde; Amelung, W.,
Blume., H.-P., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.-M.,
Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2018; pp. 59–60.

10. Welp, G. Radionuklide. In Scheffer/Schachtschabel Lehrbuch der Bodenkunde; Amelung, W., Blume, H.-P.,
Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.-M., Eds.; Springer
Spektrum: Berlin/Heidelberg, Germany, 2018; pp. 614–622.

11. Wonik, T. Gamma-ray measurements in the Kirchrode I and II boreholes. Palaeogeogr. Palaeoclimatol. Palaeoecol.
2001, 174, 97–105. [CrossRef]

12. Piikki, K.; Söderström, M. Digital soil mapping of arable land in Sweden – Validation of performance at
multiple scales. Geoderma 2019, 352, 342–350. [CrossRef]

13. van der Klooster, E.; van Egmond, F.M.; Sonneveld, M.P.W. Mapping soil clay contents in Dutch marine
districts using gamma-ray spectrometry. Europ. J. Soil Sci. 2011, 62, 743–753. [CrossRef]

14. Petersen, H.; Wunderlich, T.; al Hagrey, S.A.; Rabbel, W. Characterization of some Middle European soil
textures by gamma-spectrometry. J. Plant Nutr. Soil Sci. 2012, 175, 651–660. [CrossRef]

15. van Egmond, F.M.; Loonstra, E.H.; Limburg, J. Gamma ray sensor for topsoil mapping: The Mole. In Proximal
Soil Sensing; Viscarra Rossel, R.A., McBratney, A.B., Minasny, B., Eds.; Springer: Dordrecht, The Netherlands;
Heidelberg, Germany; London, UK; New York, NY, USA, 2010; pp. 323–332.

16. Loonstra, E.; van Egmond, F. On-the-go measurement of soil gamma radiation. In Precision Agriculture
‘—Papers Presented at the 7th European Conference on Precision Agriculture; van Henten, E.J., Goense, D.,
Lokhorst, C., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 415–422.

17. Gilmore, G. Practical Gamma Ray Spectrometry, 2nd ed.; repr. with corr.; Wiley: Chichester, UK, 2011; 387p.
18. Dickson, B.L.; Taylor, G.M. Quietening the noise: An evaluation of noise reduction methods applied to aerial

gamma-ray survey data. Explor. Geophys. 2003, 34, 97–102. [CrossRef]
19. Pätzold, S.; Heggemann, T.; Welp, G.; Leenen, M. Small plot field experiments and proximal soil

sensing (gamma and mid-infrared spectroscopy) provide reciprocal services. In Proceedings of the 12th
European Conference on Precision Agriculture, Montpellier, France, 8–11 July 2019; pp. 146–147, (Book of
Poster Abstracts). Available online: http://ecpa2019.agrotic.org/wp-content/uploads/2019/07/ECPA2019_
Proceedings_Poster.pdf (accessed on 4 February 2020).

20. Dennerley, C.; Huang, J.; Nielson, R.; Sefton, M.; Triantafilis, J. Identifying soil management zones in a
sugarcane field using proximal sensed electromagnetic induction and gamma-ray spectrometry data. Soil
Use Manag. 2018, 34, 219–235. [CrossRef]

21. Mertens, F.M.; Pätzold, S.; Welp, G. Spatial heterogeneity of soil properties and its mapping with apparent
electrical conductivity. J. Plant Nutr. Soil Sci. 2008, 171, 146–154. [CrossRef]

http://dx.doi.org/10.1016/B978-0-12-394275-3.00003-1
http://dx.doi.org/10.3390/s131216263
http://dx.doi.org/10.1002/jpln.201700447
http://dx.doi.org/10.1071/SR9960183
http://dx.doi.org/10.1029/JB082i002p00353
http://dx.doi.org/10.1016/j.geoderma.2014.03.012
http://dx.doi.org/10.1016/j.still.2016.10.008
http://dx.doi.org/10.1016/S0031-0182(01)00288-7
http://dx.doi.org/10.1016/j.geoderma.2017.10.049
http://dx.doi.org/10.1111/j.1365-2389.2011.01381.x
http://dx.doi.org/10.1002/jpln.201100408
http://dx.doi.org/10.1071/EG03097
http://ecpa2019.agrotic.org/wp-content/uploads/2019/07/ECPA2019_Proceedings_Poster.pdf
http://ecpa2019.agrotic.org/wp-content/uploads/2019/07/ECPA2019_Proceedings_Poster.pdf
http://dx.doi.org/10.1111/sum.12410
http://dx.doi.org/10.1002/jpln.200625130


Soil Syst. 2020, 4, 31 22 of 23

22. Sun, Y.; Druecker, H.; Hartung, E.; Hueging, H.; Cheng, Q.; Zeng, Q.; Sheng, W.; Lin, J.; Roller, O.; Paetzold, S.;
et al. Map-based investigation of soil physical conditions and crop yield using diverse sensor techniques.
Soil Till. Res. 2011, 112, 149–158. [CrossRef]

23. Pätzold, S.; Hbirkou, C.; Dicke, D.; Gerhards, R.; Welp, G. Linking weed patterns with soil sensing data – a
long-term case study. Precis. Agric. 2020, 21, 569–588. [CrossRef]

24. Sauer, D.; Felix-Henningsen, P. Saprolite, soils, and sediments in the Rhenish Massif as records of climate
and landscape history. Quatern. Int. 2006, 156, 4–12. [CrossRef]

25. GD-NRW, Geologischer Dienst Nordrhein-Westfalen. Bodenkarte zur Landwirtschaftlichen Standorterkundung
1:5000, m. Erl; [Auszug aus dem digitalen Fachinformationssystem Bodenkunde], Verfahren
Meckenheim-Rheinbach-Swisttal, LP (Landwirtschaft); Geologischer Dienst NRW: Krefeld, Germany,
2008; Available online: https://www.geoportal.nrw/themenkarten (accessed on 25 February 2020).

26. van Reeuwijk, L.P. Procedures for Soil Analysis; Technical paper No. 9; International Soil Reference and
Information Centre: Wageningen, The Netherlands, 2002; Available online: https://www.isric.org/explore/

library (accessed on 16 October 2019).
27. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015; International soil

classification system for naming soils and creating legends for soil maps; World Soil Resources Reports No.
106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/soils-portal/soil-survey/soil-classification/

world-reference-base/en/ (accessed on 10 October 2019).
28. AG Boden, Ad-hoc-Arbeitsgruppe Boden. Bodenkundliche Kartieranleitung, 5th ed.; Schweizerbart’sche

Verlagsbuchhandlung: Stuttgart, Germany, 2005; 438p.
29. VDLUFA, Verband der Landwirtschaftlichen Untersuchungs- und Forschungsanstalten. Bestimmung des

Kalkbedarfs von Acker- und Grünlandböden. 2000. Available online: https://www.vdlufa.de/Dokumente/

Veroeffentlichungen/Standpunkte/0-9-kalk.pdf (accessed on 25 November 2019).
30. Dickson, B.L.; Scott, K.M. Interpretation of aerial gamma-ray surveys—adding the geochemical factors.

AGSO J. Aust. Geol. Geophys. 1997, 17, 187–200.
31. Wilford, J.R.; Bierwirth, P.N.; Craig, M.A. Application of airborne gamma-ray spectrometry in soil/regolith

mapping and applied geomorphology. AGSO J. Aust. Geol. Geophys. 1997, 17, 201–216.
32. Meyer, W. Geologie der Eifel, 4th ed.; Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller):

Stuttgart, Germany, 2011; 704p.
33. Coulouma, G.; Caner, L.; Loonstra, E.H.; Lagacherie, P. Analysing the proximal gamma radiometry in

contrasting Mediterranean landscapes: Towards a regional prediction of clay content. Geoderma 2016, 266,
127–135. [CrossRef]

34. Becegato, V.A.; Becegato, V.R.; Baum, C.A.; Lavnitcki, L.; Paulino, A.T. Multivariate statistical analysis
correlating 238U, 232Th, and 40K equivalent activities in soil to geochemical data from an agricultural area.
J. Soils Sediments 2019, 19, 1901–1910. [CrossRef]

35. Vos, C.; Don, A.; Prietz, R.; Heidkamp, A.; Freibauer, A. Field-based soil-texture estimates could replace
laboratory analysis. Geoderma 2016, 267, 215–219. [CrossRef]

36. Stancu-Kristoff, G.; Vogel, A. Exkursion D—Zentrales Münsterland. In: Exkursionsführer Jahrestagung
1989 in Münster. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 58, 259–315. Available online:
https://www.dbges.de/de/system/files/mitteilungen_dbg/MitteilungenderDBG1989_58.pdf (accessed on 24
January 2020).

37. Mills, B.E.; Brorsen, B.W.; Arnall, D.B. The profitability of variable rate lime in wheat. Precis. Agric. 2019.
online first. [CrossRef]

38. Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain.
Dev. 2008, 28, 33–46. [CrossRef]

39. Leenen, M.; Welp, G.; Gebbers, R.; Pätzold, S. Rapid determination of lime requirement by mid-infrared
spectroscopy: A promising approach for precision agriculture. J. Plant Nutr. Soil Sci. 2019, 182, 953–963.
[CrossRef]

40. Vogel, S.; Gebbers, R.; Oertel, M.; Kramer, E. Evaluating Soil-Borne Causes of Biomass Variability in Grassland
by Remote and Proximal Sensing. Sensors 2019, 19, 4593. [CrossRef]

41. Pätzold, S.; Leenen, M.; Frizen, P.; Heggemann, T.; Wagner, P.; Rodionov, A. Predicting plant available
phosphorus using infrared spectroscopy with consideration for future mobile sensing applications in
precision farming. Precis. Agric. 2019. Online First. [CrossRef]

http://dx.doi.org/10.1016/j.still.2010.12.002
http://dx.doi.org/10.1007/s11119-019-09682-6
http://dx.doi.org/10.1016/j.quaint.2006.05.001
https://www.geoportal.nrw/themenkarten
https://www.isric.org/explore/library
https://www.isric.org/explore/library
http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/
http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/
https://www.vdlufa.de/Dokumente/Veroeffentlichungen/Standpunkte/0-9-kalk.pdf
https://www.vdlufa.de/Dokumente/Veroeffentlichungen/Standpunkte/0-9-kalk.pdf
http://dx.doi.org/10.1016/j.geoderma.2015.12.006
http://dx.doi.org/10.1007/s11368-018-2161-6
http://dx.doi.org/10.1016/j.geoderma.2015.12.022
https://www.dbges.de/de/system/files/mitteilungen_dbg/Mitteilungen der DBG 1989_58.pdf
http://dx.doi.org/10.1007/s11119-019-09674-6
http://dx.doi.org/10.1051/agro:2007051
http://dx.doi.org/10.1002/jpln.201800670
http://dx.doi.org/10.3390/s19204593
http://dx.doi.org/10.1007/s11119-019-09693-3


Soil Syst. 2020, 4, 31 23 of 23

42. Hagverdi, A.; Leib, B.G. Site specific irrigation systems. In Precision agriculture for sustainability; Stafford, J.,
Ed.; Burleigh Dodds series in agricultural science 52; Burleigh Dodds Science Publishing: Cambridge, UK,
2019; pp. 323–346.

43. Bondesan, L.; Ortiz, B.V.; Morata, G.T.; Damianidis, D.; Jimenez, A.F.; Vellidis, A.F.; Morari, F. Evaluating
and improving soil sensor-based variable irrigation scheduling on farmers’ fields in Alabama. In Precision
Agriculture ‘19—Papers Presented at the 12th European Conference on Precision Agriculture; Stafford, J., Ed.;
Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 649–664.

44. Hedley, C.B.; Yule, I.J. Soil water status mapping and two variable-rate irrigation scenarios. Precis. Agric.
2009, 10, 342–355. [CrossRef]
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