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Abstract: Density functional theory (DFT) calculations are a quantum mechanical approach that can
be used to model chemical reactions on an atomistic scale. DFT provides predictions on structures,
thermodynamics, spectroscopic parameters and kinetics that can be compared against experimentally
determined data. This paper is a primer on the basics of utilizing DFT for applications in mineral-water
interfaces. In our case-study, we use DFT to model the surface complexes of phosphate and salicylate
adsorbed onto the (101) and (210) surfaces of α-FeOOH (goethite), as an example of combining
DFT and experiment. These three components are important in the phosphorus-organic matter
interactions in soils, and by comparing the energies of the two surface complexes, the exchange
energy of salicylate for phosphate onto goethite can be estimated. The structures of the surface
complexes are predicted and the resulting vibrational frequencies calculated based on these structures
are compared to previous observations. Upon verification of reasonable surface complex models, the
potential energy of exchanging salicylate for phosphate is calculated and shown to be significantly
exothermic. This model result is consistent with observations of plant exudates, such as salicylate
freeing adsorbed phosphate in soils under P-limited conditions.
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1. Introduction

Scientists studying the Earth’s processes are often interested in the macroscopic chemical behavior
of a field site or region. For example, the problem of eutrophication of water bodies can be caused
by nutrient runoff from agricultural fields or concentrated animal feeding areas [1]. The transport of
N and P from soils into rivers, lakes and bays can be monitored via sample collection and models
(e.g., SWAT [2]; and pedon-scale behavior is ultimately influenced by pore scale (millimeters to microns),
nanoscale, and molecular-level processes. Consequently, molecular-level mineral-water interface
chemistry must be understood in a manner that can transfer information to larger scales in order to
apply it at the field scale.

Equilibrium and reaction rate constants are two critical parameters that affect the transport and
fate of elements and compounds in soils and aquifers and have molecular-level origins. In addition,
knowing aqueous and surface speciation is imperative to connect the model parameters to the chemical
species present in a given environment. Otherwise, the results are empirical fitting models that will be
less useful for prediction and designing intelligent management practices.

An excellent example of this molecular-level approach is Hanna et al. [3]. The authors used batch
and flow-through adsorption experiments and attenuated total-reflectance Fourier-transform infrared
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spectroscopy (ATR FTIR) to observe phthalic acid (C8O4H6) adsorption onto goethite (α-FeOOH)-coated
sand. Phthalic acid is a naturally occurring compound and representative of functional groups present
in fulvic and humic acids. Goethite-coatings are common on mineral surfaces due to the insoluble
nature of Fe3+ in most aerobic soil and natural water systems, and these coatings are active adsorbents,
especially for carboxylic acids and oxyanions [4]. Adsorption was measured as a function of time
to ensure equilibration and as a function of pH. ATR FTIR revealed the relative concentrations of
covalent and H-bonded species of phthalate with the goethite. Surface complexation models were
constructed and the results were applied to predict breakthrough curves in flow-through experiments.
The authors concluded that the concentrations of non-specifically adsorbed species are a function
of pH. Such non-specific (i.e., H-bonded or outer-sphere complexes) have more labile kinetics than
covalently bonded surface complexes, so knowledge of the extent of both non-specific and covalent
bonding is necessary in order to predict macroscopic adsorption/desorption behavior. The authors
point out that these results indicate that reactive transport models need to be revised to include this
complex chemistry.

The concentration of P in soil solution, the dominant factor controlling the bioavailability of
soil P [5,6], is determined in many soils by adsorption and desorption processes of P onto metal
(oxyhydr)oxides. These minerals, with their preponderance of surface hydroxyl groups, have high
affinity sorption sites for both P and OM [7,8]. Thus, the bioavailability of P is likely to be sensitive to
both the level of OM in the soil and the surface properties of the metal (oxyhydr)oxides (i.e., surface
coverage with respect to both P and OM). The presence of organic acids, such as root exudates, in
soils has been shown to increase the bioavailability of soil P [9,10]. Hue [11] reported that three low
molecular weight organic acids decreased P sorption by acidic soils and increased the yields of a lettuce
(Lactuca sativa L.) bioassay crop. Bolan et al. [12] reported that addition of organic acids typically found
in soil, leaf litter, and poultry manure decreased P sorption in soils. These findings suggest that root
exudate-derived organic acids may increase the bioavailability of soil P fertilizer.

1.1. Macroscopic Data—Adsorption Isotherms, pH Edges, Calorimetry, Adsorption/Desorption Kinetics

Macroscopic data such as extent of adsorption as a function of solution adsorbate concentration or
pH, calorimetry of the adsorption reaction, and adsorption/desorption rates are the primary constraints
on the molecular-level chemistry that occur in soils and aquifers. The aqueous/surface partition
constant, the enthalpy of adsorption, and the adsorption/desorption rates determine the observed
field-scale behavior of elements and compounds in soils. However, these macroscopic techniques
neither determine nor require knowledge of the molecular species involved. For example, aqueous
silica can be represented thermodynamically as SiO2(aq) or Si(OH)4, but the chemistry of these two as
written would be different. Another instance is that the toxicity of free metal ions such may be orders
of magnitude higher than the same metal ions in organic complexes [13–15]. Kinetics and biological
impacts depend heavily on the molecular speciation, so informing the larger scale models with the
appropriate species is desirable.

1.2. Molecular Data—IR/Raman, EXAFS/XANES

Molecular speciation can be determined with a variety of methods, and generally it is a best
practice to employ more than one method when practical. Each type of spectroscopy has strengths
and weaknesses, so a combination of techniques can provide for a more complete picture of chemical
bonding. Vibrational spectroscopies such as IR and Raman are sensitive to the bonds in a compound
that undergo changes in their dipole moments and polarizabilities, respectively [16]. Hence, IR and
Raman detect changes in bond strengths and the types of bonds present. Nuclear magnetic resonance
spectroscopy (NMR) is sensitive to the electronic environment around nuclei with an odd number
of spins (e.g., 13C, 27Al, 29Si) [17]. Thus, the coordination environment around selected nuclei can
be probed. Extended X-ray adsorption fine structure and X-ray adsorption near-edge spectroscopies
(EXAFS and XANES) can be used to determine interatomic distances and electronic orbital energy
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levels, respectively, that are important in soil chemistry [18]. Bonding environments and oxidation
states are derived from this type of data.

Each technique may not capture all the important aspects of the molecular structure. IR and
Raman do not detect all vibrational modes and many may be weak or result in frequencies that overlap
with other vibrational modes, making interpretation problematic. NMR works with many nuclei but
not all, and the presence of Fe in the sample can disrupt NMR spectra [19,20]. EXAFS is insensitive to
lighter elements, so H positions cannot be identified. Changes in the electronic orbital energies may be
due to various effects, so the interpretation of XANES spectra can be ambiguous. To complement these
spectroscopies, molecular simulations are commonly employed [21].

1.3. Classical Molecular Mechanics Simulations

Many studies of soil mineral surface chemistry employ classical molecular mechanics (see [22]
and references therein). By classical, we mean that Newtonian mechanics are applied to the atoms and
molecules in the system. Each atom is represented by a series of parameters, collectively termed a
“force field” or “interatomic potential”. Most parameterizations include an atomic charge (formal or
otherwise), atomic repulsion parameters, so that cations and anions do not attempt to undergo fusion,
van der Waals terms, and bonding parameters, such as harmonic force constants for bond stretches
and angle bends [23].

The advantage of classical molecular mechanics is that model systems of millions of atoms
can be simulated and the timeframe for these the simulations may be on the millisecond scale.
For complex biogeochemical systems, these are highly desirable characteristics. The limitations of
the classical approach are mainly that the accuracy depends on the parameterization and that most
parameterizations focus on reproducing structures and energies near minima. This results in higher
uncertainties when describing the tails of the Boltzmann distribution of configurations for a system
and commonly means that bond-breaking and bond-making are not allowed during the simulation.
Reactive force fields such as ReaxFF [24] exist and create a promising avenue for simulating complex
chemistry when the accuracy of the parameterization is high [25].

1.4. DFT

Another computational approach is to use quantum mechanics to calculate properties of the
system of interest. The main limitations are that models of 1000 atoms stretch the computational
capacity of today’s supercomputers and that molecular dynamics simulations are limited to hundreds
of picoseconds, rather than the milliseconds possible with classical methods. The extra computational
demand to calculate the system’s electron density distribution as opposed to using simple analytical
expressions for bonding decreases the spatial and temporal domains one may explore.

However, even within these constraints, the quantum mechanical approach, most often using
density functional theory (DFT), can provide insights into soil chemistry. A key is to utilize the
experimental and spectroscopic data to constrain the possible structures one needs to examine and
define questions that DFT can shed light upon. Because the DFT approach provides electronic and
molecular structures, thermodynamic, kinetic and spectroscopic properties can all be predicted from
the calculations. The DFT method is not dependent upon fitting parameters to match the experimental
data, so when the DFT results are consistent with experimental observables, one can be reasonably
certain that the resulting DFT molecular model is reliable. This also gives the researcher the ability
to estimate the error in the computational results, so that one can distinguish among possibilities, or
recognize that two results are equivalent within error. However, we note that the DFT models are
calculating ∆Eexch values, not ∆Gexch. The calculation of ∆G values is possible (e.g., [26]) but requires
long duration MD simulations that sample configuration space to an extent not currently practical
with DFT on systems of this size. Entropy can be significant, because ∆S for desolvation reactions of
ions in solution are 70 J/mol-K [27]. This contribution to ∆G would be (70 J/mol-K)(298K) ≈ 21 kJ/mol
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at 298K. We rely on the hypothesis that the ∆Sexch is relatively small compared to ∆E, because this is an
exchange reaction. The larger ∆Eexch is, the more likely this is to be true.

This paper will illustrate a case-study of combining DFT with experimental data to better
understand an important soil chemistry reaction—the exchange of organic acids for phosphate
on goethite.

2. Methods

2.1. Adsorption and Exchange Experiments

A batch study was conducted to determine the salicylate adsorption isotherm onto α-FeOOH
(goethite). Thirty mL of solutions containing 0, 40, 80, 120, 160, 320, 480, and 640 mg L−1 salicylate
adjusted to pH 5.0 with a background matrix of 0.02 mol L−1 KCl were added to 0.50 g of goethite
in 50-mL centrifuge tubes. The tubes were placed on an orbital shaker for 4 h at 4 ◦C, to minimize
microbial degradation of the metabolite and vacuum filtered through a 0.4 µm polycarbonate filter.
The total dissolved organic carbon was determined using Shimadzu TOC-Vcsh Analyzer and the
quantity of salicylate adsorbed was determined by subtracting the salicylate concentration in the filtrate
from the initial salicylate concentration. The salicylate adsorption was fit to the Langmuir model:

Q = (QmaxKC)/(1+ KC)

where Q is the quantity adsorbed (mg kg−1), C is the equilibrium concentration (mg L−1), Qmax is
maximum monolayer adsorption, and K is the binding strength constant. The non-linear regression
fitting was conducted with MATLAB to obtain the best-fit values of Qmax and K.

2.2. DFT

For a review of basic quantum mechanics and density functional theory, see books such as [28] or
a review chapters such as [29]. This section will describe some important practical aspects about using
DFT to model mineral surface-mediated reactions. This author primarily utilizes Materials Studio
(Biovia Inc.) to build and visualize models, the Vienna Ab-initio Simulation Package (VASP; [30–34] for
periodic calculations, and Gaussian 16 [35] for vibrational frequencies and NMR chemical shieldings
on clusters. However, there are numerous other codes, such as Crystal [36], Siesta [37], Quantum
Espresso [38], and CASTEP [39], that can be used depending on the system under study and user
preferences. Desktop computers and laptops are capable of running DFT calculations, but computational
and memory limits mean that larger scale models are impractical. Generally, one would prefer to
run DFT calculations on a Linux cluster using the order of tens to thousands of processors, to model
systems of hundreds to thousands of atoms.

2.3. Basis Sets

A primary factor controlling the accuracy of the DFT results is the choice of basis set or energy
cutoff used in the calculation. The basis of the DFT approach is to mimic the actual electron density
distribution of the system, so the larger the set of functions used to model the electrons, the more
accurate the calculation can be. Unfortunately, increasing the basis set size or energy cutoff used also
increases computational demand. Thus, one must be judicious in finding the most efficient method
that can produce the accuracy necessary for the problem at hand. When there are large differences
between observables, then less model accuracy is acceptable. For example, if a wavenumber shift in
a vibrational frequency is over 100 cm−1, then an error or ±10 cm−1 is not a major concern. If subtle
changes such as a few wavenumbers are being modeled, it may be difficult to find any method that
can discern such differences. This author recommends running tests with increasing basis set size
or energy cutoff on small test systems similar to the system of interest. When results converge, the
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most computationally efficient method can be selected for modeling larger, more complex systems
of interest.

2.4. Exchange-Correlation Functionals

The “functional” components of DFT are the electron exchange and correlation functionals
developed to describe these quantum phenomena that go beyond the electrostatic interactions of
electrons with nuclei and with other electrons. New functionals are continually being developed to
increase accuracy, as judged by the reproduction of experimental data. Many are developed with
dispersion corrections that account for van der Waals forces between atoms that are not accounted for
in DFT. The investigator may need to run method testing calculations with a matrix of basis sets/energy
cutoffs and exchange-correlation functionals before diving into the question of interest; however, it
would be wise to check the literature for such studies first, because this is a time-consuming project. An
excellent example is the study of Demichelis et al. [40], who examined exchange-correlation functional
methods for accuracy in reproducing silicate structures.

2.5. Model Construction

In parallel with finding a practical and accurate computational methodology, care must be given
to the construction of the model system to account for all the factors possible that may affect the results.
Final states of molecular modeling can be heavily influenced by the initial configuration constructed (i.e.,
metastable states may be predicted that are similar in structure to the starting condition). Furthermore,
the farther the initial state is from the true structure, the longer the calculations will take to achieve the
final result. Consequently, spending time to build a model or models based on as much experimental
data as possible is worthwhile. Generating a mineral surface may appear to be a trivial exercise as a
plane along a Miller index can be used to cleave the known bulk crystal structure. Where this plane is
placed within the crystal structure and any possible reconstruction should not be left to automation
within a program, however. An example of where this issue was critical can be found in Lo et al. [41],
where construction of the hematite (α-Fe2O3) (1–102) surface required study in its own right. Similar
issues can exist with complex mineral structures such as goethite [42].

Solute and adsorbate initial structures may be guided by experimental data on coordination
numbers and bond lengths in the aqueous state (see [43] for example). Although surface complexes may
deviate significantly from aqueous coordination environments [44], starting from a known solvation
structure is a reasonable choice. Many early calculations related to mineral surface chemistry avoided the
presence of water altogether, mainly for computational efficiency. Today, many researchers use polarized
continuum models for solvation (e.g., IEFPCM—[45] and references therein; COSMO—[46–48]) to
save computer time. Continuum or “implicit solvation” models are an improvement over gas-phase
calculations and can provide accurate results; however, implicit solvation does not account for explicit
H-bonding effects. When H-bonding is strong, it can have significant effects on modeled structures,
energies, vibrational frequencies and NMR chemical shifts [21].

Adding H2O molecules to the model reaction box can be problematic. One generally determines
the volume remaining in the system after the mineral slab, solutes and adsorbates have been accounted
for, then adds H2O molecules to create a density desired (typically ≈ 1 g/cm3). As mentioned above, the
initial configuration will influence the final result, so creating an initial guess for the water structure is a
step that creates uncertainty. This author creates the slab-adsorbate-solute model based on experimental
information, freezes these atoms, adds H2O to the appropriate density, and then runs classical energy
minimizations (EM) and molecular dynamics (MD) simulations to create a reasonably H-bonded
network for a starting configuration. Most force fields do not accurately reflect water structure for
complex systems with surfaces and solutes, but the configurations can be realistic enough that the DFT
calculations will optimize to a configuration close to reality. All these assumptions and approximations
must be tested in each case against experimental data on the system of interest to ensure agreement
within the needed accuracy. When large discrepancies exist, the procedure must be revisited.
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Periodic models can be created to realistically represent mineral surfaces and solution interfaces,
but often it is useful to create molecular clusters extracted from these periodic models. Selecting the
atoms of interest around the surface complex (including H2O molecules in the solvation sphere), one
can create a cluster to subject to vibrational and NMR calculations [49].

2.6. Energy Minimization and Molecular Dynamics

After an initial model is created, the atomic structure is subjected to energy minimization (EM)
and/or molecular dynamics (MD) calculations. MD has commonly been used with classical force fields,
so many non-modelers equate MD with classical methods. This is not the case, however. Both EM and
MD can be applied to classical and quantum calculations. The main difference is that the quantum
calculations are typically smaller models and run for shorter durations, as mentioned above. EM is
used to determine the most stable structure of a system. Due to the presence of local energy minima
for complex systems, finding the global energy minimum is problematic. A practical approach is to
model the system in a variety of possible configurations hypothesized from experimental data, and
then see which model has the lowest predicted energy and best matches experimental observables.

Even if one determines a global minimum using EM, real systems at finite temperature sample
configurations around minima and metastable minima if they exist without crossing prohibitive
activation energy barriers. In these cases, MD is useful for exploring configuration space and sampling
structural variations around the minimum. MD is run at a finite temperature so the atoms take on
a Boltzmann distribution of energies [50] and can overcome potential energy barriers that are small
compared to the kinetic energy available. MD is run with small time steps (e.g., 0.1 to 1 × 10−15 s), so
the duration of these simulations in DFT-MD may be on the order of tens of picoseconds (1 × 10−11 s).
The modeler must recognize that this is a severe constraint on sampling the system, so comparison of
the final results to experimentally observable quantities is encouraged wherever possible.

2.7. Frequency Analysis

MD simulations can be used to calculate vibrational densities of states (VDOS) through the velocity
autocorrelation function [51]. The VDOS is not directly comparable to IR and Raman spectra, however,
because it does not include the IR and Raman intensity of each vibrational mode. Therefore, this author
prefers to use energy-minimized structures and subject them to harmonic frequency analysis [52].
Anharmonic frequency calculations are possible, and in some cases necessary; however, often the faster
harmonic frequency approximation and correction for DFT method and anharmonicity is sufficient to
interpret spectra. Gaussian 16 [35] has the capability of calculating the IR and Raman intensities of
each vibrational frequency, as well as the vibrational mode associated with each frequency (see [53] for
more details). The comparison of modeled with observed frequencies is straightforward, so discerning
which model best matches experiment is a relatively simple exercise. Vibrational frequencies can also
be calculated for periodic systems, but IR and Raman intensities are not always produced. In addition,
the numerical procedures for calculating vibrational frequencies in large periodic systems may make
this approach impractical. In this paper, we will show how periodic models are used to generate
molecular cluster models that are then subjected to frequency analyses.

2.8. Model and Computational Details

In this study, the (210) and (101) surfaces of goethite were cleaved from the experimental crystal
structure using the “Cleave Surface” tool of Materials Studio 2016 (Biovia Inc., San Diego, CA, USA)
The unsatisfied valences of the surface Fe atoms created by this cleavage were satisfied by adding H2O
molecules, such that Fe-OH2 bonds completed the octahedral coordination, except for one surface Fe
atom, where the valence was satisfied by an O atom of the phosphate or salicylate ligand. The goethite
slab was three Fe layers’ thick, to create a symmetric representation of the surface. A vacuum space
of 2 nm was added to the slab to provide space for the phosphate and salicylate groups, as well as
solvating H2O molecules. The resulting periodic simulation cells were 9.24 × 11.63 × 30.26 Å for
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(210) and 10.97 × 9.03 × 28.36 Å for (101), respectively. This surface area ensures that each adsorbed
ligand is approximately 1 nm away from an image of itself, in order to minimize self-interaction effects.
H2O molecules were added to the remaining volume of the model to approximate a 1 g/cm3 density
after the volume of the goethite slab, phosphate and salicylate had been subtracted from the periodic
cell volume. The resulting stoichiometry was 24FeOOH, HPO4

2−, C7H5O3
−, 65H2O, and 3H3O+ for

the (210) model and 24 FeOOH, HPO4
2−, C7H5O3

−, 57 H2O, and 3 H3O+, respectively. Two models
configurations were constructed: one with HPO4

2−, bonded to the surface and salicylate in the middle
of the H2Os, and the other with salicylate bound to the surface and phosphate surrounded by H2Os.

After construction of the model, the atoms in the goethite, phosphate and salicylate were fixed
and the H2O molecules were subjected to energy minimization and 100 ps MD simulation at 300K,
using the universal force field [54], and energy re-minimization, to obtain an initial structure for
energy minimization using VASP [30]. The initial structure of the goethite (210)-phosphate surface
complex was based on the structure produced in [49]. The salicylate structure was taken from previous
calculations on salicylate by Trout and Kubicki [55]. These initial structures were converted to VASP
input (POSCAR) format via a perl script written by A.V. Bandura (St. Petersburg State University).
Energy minimizations in VASP were then performed using the PBE functional, a 500 eV energy cutoff

and the Grimme D2 dispersion correction [56]. A single k-point at the point in the Brillouin zone
was used with the Monkhorst-Pack scheme, and energy convergence criteria of 1.0 × 10−7 eV and
−0.02 eV/Å were used for the electron density and geometry convergence cutoffs, respectively.

The molecular cluster models were extracted from the energy-minimized periodic models by
selecting the surface complex atoms of interest (i.e., the surface Fe, phosphate or salicylate); the
O atoms bonded to these atoms and any H2O molecules within 2 Å of these atoms to account for
H-bonding. This was done for both the surface and aqueous species. These molecular clusters were then
subjected to energy minimization and frequency analyses in Gaussian 16 [35]. The B3LYP/6-31G(d,p)
exchange-correlation functional and basis set were used [57,58]. The frequencies were scaled by 0.96 to
account for basis set and anharmonicity effects to compare to observed frequencies [49].

3. Results

Adsorption Data

The adsorption isotherm relating the quantity of salicylate adsorbed, as a function of the equilibrium
concentration in solution, is shown in Figure 1. The isotherm fits the L-type classification where the
slope decreases with increasing salicylate concentration in the equilibrium solution [59]. The decreasing
high initial slope characteristic of the isotherm reflects the high affinity of salicylate for the goethite
surface, coupled with decreasing adsorptive sites with increasing adsorption [60]. The salicylate
adsorption maximum on the goethite was calculated using a one-site Langmuir model was calculated
to be 8641 mg kg−1 goethite. The affinity of organic acids, such as salicylate, for goethite can be due to
“non-specific” electrostatic interactions or through “specific” interactions involving the formation of
covalent bonding between the organic molecule and Fe atom of the mineral. Computational chemistry
and FT-IR spectroscopy can be used to help establish the nature of the bonding mechanism present in
the system under investigation [61].
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Figure 1. Langmuir adsorption isotherm of 0 to 640 mg L−1 salicylate onto goethite at pH 5. The Qmax

and K values are the statistical fit values for the Langmuir parameters.

4. DFT Results

4.1. Energetics

Adsorption to minerals will be controlled by the type of surface groups present which, for a
given mineral, is controlled by the habit of the particle (i.e., the crystal faces present). Some faces are
likely to be more reactive towards certain compounds than others. This was demonstrated clearly
by Villalobos and coworkers [62,63] for the adsorption of various ions onto goethite. Based on this
work and a previous DFT modeling study of phosphate adsorption onto goethite [49], two of the more
reactive faces are the (210) and (101) surfaces. Consequently, rather than modeling all possible goethite
surfaces, this study reports on phosphate and salicylate adsorption on goethite (210) and (101) only.

Previous studies have used cluster models to estimate adsorption enthalpies (e.g., [64], and others
have used periodic models of a single adsorbate in various configurations (e.g., [49]). Periodic models
should be more realistic in terms of modeling the adsorption reaction as it actually occurs. Compared
to clusters, the periodic model surface is a better representation of real surfaces, and the solvation of
compounds in solution is more complete. However, periodic DFT calculations are not without their
limitations. A major issue is the calculation of the potential energy differences without calculating
Gibbs free energies of adsorption (∆Gads). To circumvent this issue, this study modeled systems, with
the salicylate and phosphate included simultaneously. Thus, the relative energy differences reflect
the surface bonding and solvation, and the ∆S terms should be minimized, because they will tend to
cancel each other out when the two configurations are compared.

The four models for the (210) and (101) surfaces with phosphate and salicylate adsorbed and
in solution respectively are shown in Figure 2. The (210) model consists of 24 FeOOH, HPO4

2−,
C7H5O3

− (salicylate) and 68 H2O and 3 H+. Either the HPO4
2− or the salicylate are bonded to the

surface in a monodentate configuration with the other anion in solution. The (101) model consists
of 24 FeOOH, HPO4

2−, C7H5O3
− (salicylate) and 57 H2O and 3 H3O+, with the anions as bidentate

bridging inner-sphere complexes. The choice for phosphate surface complex bonding was guided by
the lowest energy configurations found in Kubicki et al. [49]. The small number of H2O molecules
means that the anion concentrations are high and the pH low compared to a real system, but the
current computational facilities make increasing the number of atoms in the system substantially
impractical. Similar simulations on larger scale systems using an accurate, reactive force field could
address this issue.
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Nevertheless, the DFT results are consistent with observation of salicylate replacing phosphate on
goethite. For the (210) monodentate configuration, a ∆Eads = −93 kJ/mol is predicted and for the (101)
bidentate bridging model, ∆Eads = −45 kJ/mol. As mentioned above, entropic factors could affect the
equilibrium for salicylate-phosphate exchange on goethite, but these relatively large negative ∆Eads

values should still dominate the ∆Gads, because the ∆Sads is expected to be significantly smaller as
they largely cancel out when the salicylate-phosphate exchange occurs. Figure 3 illustrates how the
energy changes for each configuration from the initial to the final step when the system is at a potential
energy minimum. The curves show the convergence for each model and the discernible differences in
energies between the phosphate and salicylate surface complexes.
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4.2. Vibrational Frequencies

In order to verify that the model surface complexes represent the configurations present on
goethite, molecular clusters representing the short-range bonding of these surface complexes were
created and subjected to energy minimization and frequency analyses using Gaussian 16 [35] (Frisch et
al., 2016). The extracted molecular cluster method results in similar structural parameters between the
periodic and molecular models studied in Paul et al. [65]. In this case, P—Fe distances are 3.25 Å in
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the bidentate bridging periodic model and 3.13 Å in the molecular model consistent with observation
(3.2 to 3.3 Å; [66]). For the monodentate model of the (210) surface complex, the P—Fe distance is
3.15 and 3.14 Å in the periodic and molecular cluster, respectively, however, which is significantly
shorter than the interpreted EXAFS result of 3.6 [66]. These authors do state “The shortest P–Fe
distance of 2.83–2.87 Å was indicative of a bidentate mononuclear bonding configuration.” So, it may
be that monodentate configurations can have shorter P—Fe distances than commonly thought [67].
This method has worked well in the past to produce good correlations of calculated and observed
frequencies, but the comparisons can be complicated due to the possibility that numerous surface
complexes form giving rise to various vibrational modes [49]. Nonetheless, model complexes that give
rise to vibrational frequencies similar to those observed in IR spectra are likely to be present at some
concentration in the samples.

After correcting the calculated harmonic frequencies for anharmonicity and basis set effects using
the 0.96 factor obtain from NIST (https://cccbdb.nist.gov/vibscale.asp), the correlations of modeled and
observed vibrational frequencies in the range 800 to 1800 cm−1 are plotted in Figure 4. Correlation
statistics are good for both the phosphate- and salicylate-goethite clusters. These results do not preclude
other complexes (e.g., outer-sphere) existing on other surfaces of goethite, but they do suggest that the
modeled complexes have a finite concentration on the surface.
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Figure 4. Linear correlations of calculated versus observed frequencies for phosphate and salicylate
complexes in (210) monodentate (a,b) and (101) bidentate bridging (c,d) configurations in clusters of
Fe2(OH)4(OH2)5

2+ and Fe2(OH)4(OH2)4
2+. (a) Slope = 1.14, Intercept = −160, R2 = 0.93, (b) Slope =

0.90, Intercept = 96, R2 = 0.98, (c) Slope = 0.85, Intercept = 166, R2 = 0.94, (d) Slope = 1.02, Intercept =

11, R2 = 0.99.

5. Implications and Conclusions

DFT serves to complement the experimental data in this case-study. By providing an independent
test on proposed species and reactions, DFT eliminates ambiguity in analyzing complex datasets

https://cccbdb.nist.gov/vibscale.asp
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regarding surface adsorption reactions. Because the DFT method results in predictions that can be
directly compared to experimentally observed spectroscopic and thermodynamic data, the accuracy of
the model results can be estimated. Limitations in the system size and length of molecular dynamics
simulations using DFT hinder application of DFT to complex soil systems. However, deconstruction
into simpler components in combined experimental/computational studies can provide insights into
the molecular-level processes that are critical in soils.

The adsorption of phosphate by Fe and Al oxy(hydr)oxide minerals affects P solubility in soils [7,8].
These minerals also adsorb organic molecules, suggesting that competition between phosphate and
organic acids affects soil P availability. Plants have evolved the ability to manipulate the chemical
environment surrounding the root to enhance its ability to obtain the essential elements needed for
growth, by expending up to 30% of its assimilated C in the release of root exudates [68]. It is difficult to
experimentally evaluate individually the large suite of compounds identified as root exudates, because
the compounds may occur at low concentrations and may have short half-lives, with microbes using
them as a C source [69]. Our results show that DFT can be used to calculate the free energy of adsorption
of root exudates known to compete with phosphate for adsorption to goethite. Computation methods
provide the opportunity to predict the potential of plant metabolites to increase the bioavailability of
soil P.
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