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Abstract: Regionally restricted, hums-rich topsoils in Southwest Norway and the Baltic Sea region
of Germany and Denmark were formed by inputs of various amendments (combustion residues
and marine biomass) and, therefore, were classified as Anthrosols. For a deeper insight into the
ancient management practices, we investigated the elemental and P-composition in the upper and
underlying horizons from 12 soil profiles in the Jæren region, at the islands of Karmøy and Feøy
(Norway), at the island of Fehmarn and the peninsula of Wagrien (Germany), and at the islands of Poel
(Germany) and Sjaelland (Denmark). We used aqua regia digestion and the complementary methods
of sequential P fractionation, phosphorus K-edge X-ray absorption near edge structure (P-XANES)
spectroscopy, and 31P nuclear magnetic resonance (31P-NMR) spectroscopy. Results were compared
with the composition of differently amended and/or un-amended soils from other studies. In addition,
archaeological literature was used to confirm possible inputs of specific P-containing amendments
in ancient agriculture. The P composition from SF of the Anthrosols in Norway (44% NaOH-Pi >

18% NaOH-Po > 14% NaHCO3-Pi, 12% H2SO4-P > 7% NaHCO3-Po > 3% residual-P = 3% resin-P)
and complementary archaeological literature provided strong indication for the use of peat, sheep
manure, compost, and human excreta. The Anthrosols in the Jæren region have been formed from
peat, which had been used as alternative bedding material and had been mixed with sheep and/or
cattle manure. The P-composition in the Anthrosols at the island of Fehmarn and at the peninsula
of Wagrien (42% H2SO4-P > 25% residual-P > 10% NaOH-Po, 8% NaOH-Pi: > 6% NaHCO3-Pi and
NaHCO3-Po, 4% resin-P) resulted from the application of domestic cattle manure. This was strongly
supported by archaeological findings of cattle bones in this region, as well as high proportions of
Ca-P, as confirmed by P-XANES. The predominance of Po in the Anthrosols at the island of Poel and
Sjaelland (31% NaOH-Po > 23% NaHCO3-Po, 21% H2SO4-P > 11% NaOH-Pi > 8% NaHCO3-Pi >

4% residual-P, 3% resin-P, in agreement with results from 31P-NMR) indicated low ancient inputs
of various excrement or manure. This was supported by low livestock history at the island of Poel.
In conclusion, these agricultural techniques can be considered as sustainable P recycling and soil
amendment since they improved soil fertility for many generations.
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1. Introduction

Regionally restricted, unusually hums-rich topsoils were found in Northern Europe (the Baltic
Sea regions of Germany and Denmark, Southwestern Norway) and were classified as Anthrosols
because their formation was explained by strong inputs of organic matter from anthropogenic
activities [1–3]. Most of these Anthrosols had been amended with marine biomass from the nearby
shores, as was confirmed by δ34S values/patterns [2,3]. The above cited studies provided evidence
for burning management and/or the input of combustion residues within the past 2000 years from
benzene polycarboxylic acid (BPCA) determinations, synchrotron-based X-ray absorption near edge
structure (XANES) spectroscopy at the carbon (C) and nitrogen (N) K-edges, and pyrolysis-field
ionisation-mass spectrometry (Py-FIMS) and assigned these signatures to ancient agriculture by 14C
dating. However, the formation of these Anthrosols has not yet been clarified unequivocally because
some of these soils have high concentrations of phosphorus (P) of up to 3500 mg kg−1 [3], which cannot
be solely explained by the addition of marine biomass and black carbon (BC). Furthermore, some
Anthrosols under study did not contain markers for marine biomass and BC, and the question arises
as to which other inputs may have supported their formation. Some soil characteristics (Corg- and
BC-contents) revealed strong parallels to various other Anthrosols in Europe, e.g., in Germany [4–10],
the Netherlands [11–16], Belgium [17,18], Denmark [11,12,19–22], England [23], Ireland [24],
Scotland [11,12,23,25–33], and Russia [34–36], and to Terra Preta in South America [37–39], all formed
by various manuring practices. For example, Wiedner et al. [10] explained the formation of an
Anthrosol-spot near the Elbe riverbed in “Brünkendorf 13” in Germany (A horizon: up to 80 cm depth)
by the input of waste material (human and animal excrements) and combustion residues. Davidson
and Simpson [28] concluded that the input of a mixture of peat (after its usage as bedding for cattle)
and seaweed, as well as calcareous sand, were used in the formation of the Anthrosols (A horizons:
up to 75 cm) at Orkney (Scotland). In summary of these reports, the question arises as to which
type of organic material, other than marine biomass and combustion residues, had been used for the
amendment and amelioration of anthropogenic soils at the island of Poel and Fehmarn/Wagrien in
Germany, Sjaelland in Denmark, and Karmøy, Feøy, and the Jæren region in Norway.

One possibility for tracing the sources of soil amendments is the analytical detection of P in soils
and organic material because P enrichment is an important indicator of human activity and prehistoric
manuring [40]. Archaeological investigations demonstrated that human and animal waste/excrements;
organic waste derived from plants, fish, meat, and bones; burials; and combustion residues from
fire are general sources of P at prehistoric sites [41–44]. Furthermore, for identifying the sources of
soil amendments, it can be helpful to consider elements others than P [21]. For instance, Entwistle
and Abrahams [29] provided evidence for the application of shell sand to Scottish historical sites by
determining the Ca and Sr concentrations. Nielsen and Kristiansen [21] detected higher concentrations
of Na, Ca, K, Mn, and Sr and rare earth elements in addition to P in prehistoric sites from the late
Bronze Age and the Pre-Roman Iron Age in comparison to a control soil in Denmark. They attributed
this to the incorporation of animal manures, bones, and domestic waste, as well as unweathered
subsoil. Furthermore, the occurrence of specific elements (e.g., Fe, Al, or Ca) in various soil extracts
and their correlation to P may provide clues for the presence of specific inorganic P species (e.g., Fe-P,
Al-P, or Ca-P) [45]. The detection of specific P species in soils and amendments could play a crucial
role in decoding ancient manuring activities, because the P composition and P mobility differ in soils
depending on the kind of land-use and type of organic amendments [40,46].

One analytical approach for characterizing P in soils and amendments is the sequential P
fractionation (SF) according to Hedley et al. [47] and Tiessen and Moir [48], which often has been used
to trace the biochemical P cycling in soil [49] and investigate fertilization and management effects on
the P composition in agricultural soils [46]. For example, Leinweber et al. [50] analyzed P compounds
in animal manures and plaggen soils in Northwest Germany by SF and detected large proportions of
NaOH-P and residual-P in most soils, explaining this by reactions of manure-derived P compounds
with pedogenic Al- and Fe-oxides and humic substances. Lauer et al. [9] used the SF to describe the
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organic and inorganic P (Po, Pi) status of Chernozems in Germany in order to reconstruct ancient soil
P contents in prehistoric agriculture. Investigations of long-term field experiments with continuous
application of soil amendments have shown that various manures changed the P-composition in
soils. For example, Scherer and Sharma [51] disclosed higher proportions of moderately labile Pi

in a Luvisol after continuous addition (over 38 years) of mineral fertilizer, farmyard manure (FYM),
compost from organic household waste, and sewage sludge, as well as higher proportions of labile Pi

of FYM and compost from organic household waste. Similar results were observed in a long-term field
experiment in New Zealand with the application of sewage sludge every three years in a sandy soil
(0–25 cm) [52]. Qian et al. [53] detected significantly higher concentrations of labile P after the addition
of cattle manure in comparison to liquid swine manure in a long-term field plot. However, the SF is
limited due to possible methodological issues such as a carryover between the extraction steps, humic
acid precipitation, acid hydrolysis of Po compounds, complexation and/or occlusion of inorganic P,
and incomplete extraction [45]. Therefore, molecular-scale spectroscopic techniques such as P K-edge
XANES spectroscopy and 31P nuclear magnetic resonance (31P-NMR) spectroscopy have been applied
for the characterization of specific P species in soils (e.g., Kruse et al. [54]).

P K-edge XANES analysis has widely been used in speciation of Pi in soils and amendments (e.g.,
Abdala et al. [55]; Ajiboye et al. [56,57]; Beauchemin et al. [58]; Kar et al. [59]; Khatiwada et al. [60];
Koch et al. [61]; Liu et al. [62–64]; Lombi et al. [65]; Luo et al. [66]; Peak et al. [67]; Prietzel et al. [68];
Sato et al. [69]; Toor et al. [70]). For example, using P K-edge XANES and SF, Kar et al. [59] determined
much larger amounts of total P (Pt) dominated by dicalcium phosphate with some aluminum (Al-)
and iron phosphate (Fe-P) in a biosolid amended soil compared to an inorganic fertilized soil that was
dominated by Po and some apatite-type calcium phosphate. Ajiboye et al. [57] detected β-tricalcium
phosphate in biosolids, as well as hog and dairy cattle manured soils, while hydroxyapatite was present
in significant amounts only in the unamended soil determined by P K-edge XANES. A long-term field
experiment with a continuous application of swine and dairy manure over 40, 20, and 10 years in Brazil
showed transformation of crystalline into amorphous Fe- and Al-containing minerals determined by
ammonium oxalate extraction and P K-edge XANES [55].

The most common method for Po characterization, 31P-NMR, reveals specific Po species (e.g.,
phytic acid, DNA) or classes (orthophosphate monoesters, and diesters) in soils and amendments
depending on soil use and management (e.g., Annaheim et al. [71]; Doolette et al. [72]; Dou et al. [73];
Hansen et al. [74]; Hawkes et al. [75]; Koopmans et al. [76,77]; Leinweber et al. [50]; Li et al. [78];
McDowell et al. [79,80]; Shafqat et al. [81]). For example, Hawkes et al. [75] analyzed an increase of
inorganic orthophosphate (79%) and decreases of orthophosphate monoesters (15%), diesters (3%),
phosphonates (0.6%) and pyrophosphate (0.6%) in an old grassland soil after 125 years of continuous
inorganic phosphate application in comparison to the unfertilized grassland soil in a long-term field
experiments at Rothamsted. Guggenberger et al. [82] revealed an increase of Pi in grassland and
arable soils, a simultaneous accumulation of Po under grass and a reduction under arable soils using
31P-NMR. Solomon and Lehmann [83] used 31P-NMR and the SF to determine the effects of land-use
changes on the P-composition in tropical soils. They detected a 53% depletion of orthophosphate
diesters and 30 and 39% reduction of orthophosphate monoesters in soils after three and 15 years of
cultivation after woodland degradation, respectively. Large increases in Pi were detected in acid sandy
grassland soils amended with N-P-K fertilizer, poultry manure, and calf and pig slurry for a period
of 11 years, while Po increased only in the soil treated with pig slurry [76]. Additionally, a strong
accumulation of orthophosphate monoesters was found in upper layers of soils after the application of
pig slurry and poultry manures [77]. Apart from manures, Turrion et al. [84] determined an increase in
Pi and a decrease in monoester-P and DNA-P in a fire-affected forest Cambisol using SF and 31P-NMR.

As shown above, the SF was very often combined with 31P-NMR and sometimes with P K-edge
XANES for the determination of fertilizer effects, but the combination of all three methods for
determination of manure effects in soils is rare and so far has only been used by Liu et al. [62] and
Koch et al. [61]. Using all three methods compared to only one single method was more successful in
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disclosing the P-composition in two differently treated agricultural soils from Saskatchewan (Canada),
which received a continuous P fertilization for about 28 years followed by either P fertilization or P
cessation for about 15 years [63]. Liu et al. [63] reported a decrease in Al-P and Ca-P in unfertilized and
an increase in Fe-P in fertilized as well as unfertilized soils by P K-edge XANES and SF. Additionally, they
estimated an increase in phytic acid-P determined by P K-edge XANES and total Po and orthophosphate
diesters determined by 31P-NMR in unfertilized soils. Koch et al. [61] reported higher P stocks, slightly
altered P species composition, and a predominance of Pi in compost, triple super phosphate (TSP),
and compost + TSP amended soils in comparison to the controls. Therefore, the combination of the
described three P analytical methods appears suitable to gain deeper insights into the effects of manures
on the P-composition in soils by overcoming the limitations of each of the single methods.

In conclusion from the above-cited studies, it can be assumed that the source of the soil organic
matter (SOM) and soil amendments can be derived from the presence and amount of elements
(especially P) and of specific P species in these soils. Therefore, the aim of the present study was
to compare the elemental composition and P species of the Anthrosols in Northern Europe with
differently amended and/or unamended soils from other studies in order to deduce possible inputs of
amendments in ancient agriculture.

2. Materials and Methods

2.1. Study Areas and Soil Sampling

The sampled soil profiles are located at the island of Poel in the Wismar bay (54◦0′ N, 11◦26′

E) (P-1: Gollwitz; P-3 and P-5: Niendorf); at the islands of Fehmarn (F-8: Westermarkelsdorf; F-9:
Gahlendorf) and Wagrien (F-6: Großenbrode) in the Lübeck bay (54◦22′ N, 11◦5′ E) in Germany, at the
island of Sjaelland (55◦30′ N, 11◦49′ E) (S-7: Vordingborg) in Denmark; and at the islands of Karmøy
(59◦15′ N, 5◦15′ E, 178 m2) (Hi: Hillesland; S: Sandhåland) and Feøy (F) (59◦23′ N, 5◦9′ E, 1.3 km2)
in Rogaland County and in the Jæren region (PE1: Njærheim; PE4: Årsvol) in South West Norway
(Figure 1). Descriptions of soil characteristics, vegetation covers, geography, climate, and landscape
history of all study regions have been published previously [1–3]. The soils were classified as plaggic,
hortic, umbric and mollic Anthrosols according to the World Reference Base for Soil resources 2014
as explained in Acksel et al. [2,3]. Examples of profile photographs are shown in the Supplementary
Figure S1. The AMS 14C ages of these soils were measured in the humin fraction of the deeper-lying
humus-rich horizons [2,3]. The AMS 14C-dating and the complementary archaeological literature of
the respective region implied that these soils have been formed between the Nordic Bronze Age (3800
to 2800 BP) and the Roman Iron Age (2700 to 2000 BP) for the soils in the Baltic Sea region and between
the Roman Iron Age (2500 to 1500 BP) and the Viking Age (about 1200 to 1000 BP) for the Norwegian
soils [2,3]. Out of all profiles described in Acksel et al. [1–3], we chose profiles that best represented the
respective region for detailed P investigations because the full analytical program could not be run
for all profiles/samples assigned to Anthrosols. Selection criterial were markers for anthropogenic
influence (Corg- and black carbon-content, sulphur isotope composition), thickness, and 14C age of the
humus-rich horizons, all described in previous publications [1–3]. For each profile, one soil sample
from the upper (0–35 cm) and one from the underlying horizons (26–75 cm) were investigated. Three
to six replicates were taken from each horizon and combined for analyses.
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Figure 1. Locations of the Anthrosols at the islands of Poel and Fehmarn in Germany (P-1: Gollwitz; P-3, P-5: Niendorf; F-6: Großenbrode; F-8: Westermarkelsdorf;
F-9: Gahlendorf), at the island of Sjaelland in Denmark (S-7: Vordingborg), in the region of Jæren (PE1: Njærheim; PE4: Årsvoll), and at the island of Karmøy and Feøy
in Norway (Hi: Hillesland; S: Sandhåland; F: Feøy).
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2.2. Sample Pretreatment and Chemical Analyses

For chemical analyses, the samples were air-dried (60 ◦C), sieved < 2 mm and finely ground in a
ball mill for 10 min. For determination of total P and concentrations of elements that can be phosphate
binding partners such as Al, Ca, Fe, K, Mg, and Mn, 500 mg of milled soil was digested in a microwave
with aqua regia (AR) solution. Total elemental concentrations in the solution were measured using
an inductively coupled plasma optical emission spectrometer (ICP-OES; PerkinElmer Optima 8300,
Waltham, MA, USA) at 214.91 nm (P), 396.15 nm (Al), 317.93 nm (Ca), 238.20 nm (Fe), 766.49 nm (K),
285.21 nm (Mg), and 257.61 nm (Mn). The amount of substance (mol) of all elements within one sample
was set to 100% to calculate the relative proportion of each element for quantitative comparisons among
the profiles. The concentrations of various P species were determined by the modified sequential
extraction method after Hedley et al. [47] and Tiessen and Moir [48]. P-fractions were assigned to
labile P (resin-P + NaHCO3-P), moderately labile P (NaOH-P), and relatively stable Ca-P (H2SO4-P).
Weighed 500 mg milled soil were sequentially extracted with 30 ml of distilled water in the presence
of anion exchange resin, 0.5 M NaHCO3, 0.1 M NaOH, and 1 M H2SO4. The Pt concentration in the
solution of the respective fraction was measured by ICP OES at 214.91 nm wavelength. Residual P
was calculated by subtraction of the sum of resin-P, NaHCO3-P, NaOH-P, and H2SO4-P from total P of
the aqua regia solution. The Molybdate reactive P (Pi) was measured colorimetrically at λ = 882 nm
in the NaHCO3- and NaOH-fractions by the method of Murphy and Riley [85]. Organic P (Po) was
calculated by Po = Pt − Pi.

2.3. 31P Nuclear Magnetic Resonance Spectroscopy

For identification of Po species by 31P NMR we selected soil profiles according to their P
concentrations (Norway: S, F and PE1; Denmark: S-7; Germany: F-6 and P-3). The 31P-NMR
spectra were recorded using an inverse gated decoupled (IG) pulse sequence on a Bruker 600
Advance NMR-Spectrometer (Billerica, MA, USA) operating at 242.945 MHz. The sodium hydroxide
ethylenediaminetetraacetic acid (NaOH-EDTA) extraction and extract treatment for the recording of
31P-NMR spectra, spiking experiments, calibration procedure and peak assignments are described in
detail in Acksel et al. [86].

2.4. P K-Edge X-Ray Absorption Near Edge Structure Spectroscopy

P K-edge XANES spectra were recorded at the Soft X-ray Micro-characterization Beamline (SXRMB)
at the Canadian Light Source synchrotron, Saskatoon, SK, Canada. As described by Baumann et al. [87],
fluorescence yield of two spots of each dry, powered sample was recorded at photon energies
between 2122.5 and 2200.5 eV and a constant dwell time of 4 s. All P K-edge XANES spectra were
analysed and fitted (linear combination fitting) using the software ATHENA, Demeter 0.9.25 (Ravel
and Newville, 2005; Washington, DC 20375, USA) as described in Baumann et al. [87]. P reference
compounds included: KH2PO4, K3PO4, Ca(H2PO4)2 H2O, Ca10(PO4)6(OH)2 (= hydroxylapatite),
MgHPO4·3H2O, Mg2O7P2, Mg3(PO4)2 8H2O, NaH2PO4, (NH4)H2PO4, FePO4·4H2O, P-FeOOH
(= P adsorbed on goethite), P-Fe2O3 (= P adsorbed on ferrihydrite), AlPO4 × xH2O, Al(PO3)3,
P(Al(OH)3) (= P adsorbed on gibbsite), C6H18O24P6 xNa+ yH2O (= phytic acid sodium salt hydrate),
ATP (= adenosine-5′-triphosphate 2Na salt hydrate), and C2H8NO4P (= o-phosphorylethanolamine).
Only fits in which the share of each compound was ≥ 5% were used. The Hamilton test was employed
to test for significant differences between fits of a sample [87]. Results were given as relative proportion
of total P.
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2.5. Data Calculations and Statistical Treatment

All data were statistically evaluated and tested by the “R” software (v3.0.2, R core Team [88]).
Since not all parameters were normally distributed (Shapiro-Wilk Normality Test) differences in the
concentrations of elements, total P and P from various fractions between the horizons and the profiles
were tested for significance by Kruskal-Wallis test (p < 0.05) (R package: agricolae, command: kruskal,
which includes Fisher’s LSD post hoc test). Principal component analysis (PCA) for the separation
of the horizons and profiles were computed for the proportions of elements, P fractions from the SF,
P species from 31P-NMR and P K-edge XANES. The PCA of the relative proportion of the elemental
composition was created without Ca, since the high CaCO3 content in one profile (S) resulted in
a distortion of the PCA. The PCA and the boxplot of the relative proportions of P-fractions in the
Anthrosols under study and numerous reference values of literature were computed from the Pi

and Po concentrations of NaHCO3 + resin, NaOH, and H2SO4 fractions without residual fraction
due to missing of residual-P and/or other extraction methods for total P extraction in the literature.
The complementarity of the various P-methods and differences in the detected P-concentrations in
various extracts were described and discussed in detail by Acksel et al. [86].

3. Results

3.1. Total Element Concentrations

Within each profile, the Pt concentrations of horizons differed significantly except the horizons
of profile PE1 (Norway) and S-7 (Denmark) (Table 1). In average, the Norwegian soils revealed 6.2
times larger Pt concentrations than the Danish and Germany soils. The highest Pt concentrations were
detected in the profiles from F (up to 3682 mg kg−1), Hi (up to 3196 mg kg−1), PE1 (up to 2690 mg kg−1),
PE4 (up to 2584 mg kg−1), and S (up to 1118 mg kg−1) from the Norwegian soils that were significantly
higher than in the Danish soil (318 to 323 mg kg−1) and from the German soils at Fehmarn/Wagrien
(264 to 621 mg kg−1) and Poel (244 to 477 mg kg−1). The elemental proportions of all profiles decreased
in the order Al > Fe > Mg > Ca > K > Mn and were strongly dominated by Al (up to 50%) and Fe (up to
36%). The Norwegian profile S was not included into these and the following considerations because
of its high Ca content (114,252 mg kg−1, equivalent to 83 %). If we excluded the Ca content of profile S,
its elemental composition would also have been dominated by Al (47%) and Fe (24%). The Danish and
German soil profiles had higher proportions of Al (41 to 50%) and K (6 to 8%) than the Norwegian
profiles (Al: 38 to 45%; K: 1 to 4%). Conversely, the Norwegian soils revealed higher proportions of
Fe (24 to 36%) and Mg (7 to 21%) than the other soils (Fe: 24 to 29%; Mg: 9 to 12%). The proportions
of the elements Ca (7 to 12%) and Mn (<1 to 2%) were similar among all soils. The differences of the
proportions of elements among the soils were clearly explained by PC1 and PC2 of the PCA plot (95%).
The PCA strongly separated the Norwegian soils by Fe and Mg from the Danish and German soils by
Al and K (Figure 2A).
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Table 1. Mean concentrations of Pt, Al, Ca, Fe, K, Mg, and Mn (mg kg−1). Values within the same element with the same letter are considered not significantly different.
Values in parenthesis show the relative proportion of each element as percent of the sum of elements (Al + Ca + Fe + K + Mg + Mn) and were calculated by using
amount of substance (mol).

Site Depth (cm) Pt Al Ca Fe K Mg Mn
mg kg−1 mg kg−1 soil (% of mol kg−1 Soil)

Island of Feøy (SW Norway)
F 0–30 3087 c 18967 c (38) 9163 c (12) 30374 ab (30) 714 kl (1) 7902 b (18) 1220 cd (1)

30–45 3682 a 19383 c (39) 7135 c (10) 31593 a (31) 662 l (1) 7763 b (17) 1587 ab (2)

Island of Karmøy (SW Norway)
Hi 0–30 3196 b 24735 ab (44) 8332 bc (10) 28436 c (24) 1662 efg (2) 9599 a (19) 1796 a (2)

30–45 2223 g 25363 a (43) 7848 c (9) 29809 bc (24) 1565 fgh (2) 11422 a (21) 1347 bc (1)
S 0–30 1118 h 8374 hi (13) 68987 ab (72) 8955 k (7) 1099 i (1) 3667 e (6) 595 h (<1)

30–45 869 i 6364 k (7) 114252 a (83) 7375 n (4) 1010 ij (1) 4060 d (5) 425 m (<1)

Jæren region (SW Norway)
PE1 0–30 2623 d 10998 gh (43) 3915 hi (10) 18374 fg (35) 1122 i (3) 1580 j (7) 498 i (1)

35–60 2690 d 11806 fg (45) 3125 ij (8) 19374 f (36) 1084 i (3) 1634 j (7) 651 g (1)
PE4 0–30 2584 e 13586 ef (39) 6098 d (12) 24502 e (34) 1718 def (3) 3524 f (11) 887 f (1)

35–60 2490 f 14319 e (39) 5592 de (10) 26179 d (34) 2318 bc (4) 3946 d (12) 892 ef (1)

Island of Sjaelland (Denmark)
S-7 0–10 323 q 4096 l (42) 1641 l (11) 5145 o (26) 1078 i (8) 1012 o (12) 173 q (1)

10–45 318 q 3588 l (41) 1438 m (11) 5105 o (28) 841 jk (7) 871 p (11) 211 pq (1)

Island of Fehmarn (Germany)
F-6 0–41 527 l 7544 ij (43) 2886 jk (11) 9378 j (26) 1668 efg (7) 1783 i (11) 423 m (1)

41–53 264 s 11316 gh (45) 3101 ij (8) 14895 i (29) 2057 cd (6) 2347 hi (10) 982 de (2)
F-8 0–26 567 k 17595 cd (50) 4572 fg (9) 17586 gh (24) 3547 a (7) 3325 f (10) 341 op (<1)

26–34 304 r 21186 bc (47) 4318 gh (7) 25425 de (28) 3681 a (6) 4891 c (12) 624 gh (1)
F-9 0–35 621 j 14019 e (47) 4769 ef (11) 14993 i (24) 3325 ab (8) 2447 gh (9) 459 l (1)

35–75 444 n 14946 de (47) 5442 de (12) 16551 h (25) 2857 abc (6) 2622 g (9) 471 kl (1)

Island of Poel (Germany)
P-1 0–20 349 p 6441 k (45) 1564 l (7) 8475 lm (28) 1521 gh (7) 1413 kl (11) 416 mn (1)

50–90 305 r 6387 k (46) 1998 k (10) 8151 mn (28) 1121 i (6) 1156 n (9) 478 jk (2)
P-3 0–45 477 m 6803 jk (45) 1556 l (7) 8952 k (29) 1722 de (8) 1451 k (11) 409 n (1)

45–75 404 o 6307 k (44) 1613 l (8) 8536 l (29) 1392 h (7) 1352 lm (11) 402 n (1)
P-5 0–47 437 n 6582 k (45) 1555 l (7) 8664 l (29) 1440 h (7) 1308 m (10) 496 ij (2)

47–80 244 t 4305 l (46) 1047 m (8) 5407 o (28) 786 kl (6) 824 p (10) 363 o (2)
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Figure 2. Principal component analysis (PCA) score plot of the proportions of the elements of 12
Northern European soil profiles (F, H, S, PE1, PE4, S-7, F-6, F-8, F-9, P-1, P-3, P-5) (data in Table 1) (A)
and of the proportions of the P species from the SF of 6 Northern European soil profiles (F, S, PE1, S-7,
F-6, P-3) (data in Table 2) (B). The upper horizons are represented in italics and underlying horizons
as bold symbols. Differently colored areas represent clusters of soils according to their element or P
composition; arrows indicate the presence of specific elements or P-compounds in the soil samples
(arrow direction shows direction of elements or P-compound enrichment; arrow length shows intensity
of enrichment).
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Table 2. Mean P concentrations (mg kg−1) in different extracts of the sequential P fractionation. Pt is the sum of sequentially extracted fractions, sometimes slightly
different from Pt-values in Table 1. Values within Pt and the same P-species with the same letter are considered not significantly different.

Site Depth (cm) Pt
Sequentially Extracted Fractions

Resin-P NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po H2SO4-P Residual-P
mg kg−1 mg P kg−1 (% of Pt)

Island of Feøy (SW Norway)
F 0–30 3370 b 76 ab (2) 415 cd (12) 325 a (10) 1438 ab (43) 790 a (23) 326 cd (10) 0 j (0)

30–45 3916 a 69 abc (2) 592 a (15) 312 a (8) 1919 a (49) 729 a (19) 294 ef (8) 0 j (0)

Island of Karmøy (SW Norway)
Hi 0–30 3320 b 96 a (3) 494 ab (15) 235 ab (7) 1455 ab (44) 736 a (22) 305 de (9) 0 hij (0)

30–45 2127 e 77 ab (3) 329 de (15) 142 cd (6) 945 ef (43) 431b (19) 204 ij (9) 95 bcde (4)
S 0–30 956 ef 38 ef (3) 112 gh (10) 22 kl (2) 125 fg (11) 92 gh (8) 567 a (51) 162 abcd (15)

30–45 666 f 25 ghi (3) 95 hi (11) 3 m (<1) 52 h (6) 39 lm (5) 451 bc (52) 203 ab (23)

Jæren region (SW Norway)
PE1 0–30 2708 c 98 a (4) 469 bc (17) 247 ab (9) 1189 cd (44) 424 b (16) 281 ef (10) 0 hij (0)

35–60 2760 c 72 abc (3) 534 ab (19) 168 bc (6) 1356 bc (49) 372 b (13) 259 fg (9) 0 ghi (0)
PE4 0–30 2376 d 56 bcd (2) 248 fg (10) 130 cde (5) 1020 de (39) 393 b (15) 528 ab (20) 208 ab (8)

35–0 2279 d 48 cde (2) 275 ef (11) 125 de (5) 963 ef (39) 379 b (15) 489 bc (20) 211 a (8)

Island of Sjaelland (Denmark)
S-7 0–10 344 j 13 kl (4) 32 mn (9) 109 ef (32) 22 lm (6) 108 d (32) 59 o (17) 0 ij (0)

10–45 315 k 14 jkl (4) 28 n (9) 79 gh (25) 29 k (9) 105 def (33) 61 no (19) 3 hij (1)

Island of Fehmarn (Germany)
F-6 0–41 451 g 33 efg (6) 39 lm (7) 58 hi (11) 55 h (10) 46 jk (9) 220 hi (42) 76 defg (14)

41–53 204 n 6 mn (2) 12 p (5) 14 klm (5) 25 kl (10) 61 hi (23) 86 l (32) 59 defg (22)
F-8 0–26 416 h 29 fgh (5) 46 jk (8) 30 jk (5) 43 ij (8) 42 kl (7) 226 ghi (40) 151 abcd (27)

26–34 222 mn 3 n (1) 12 p (4) 8 lm (3) 5 n (2) 10 m (3) 185 jk (61) 82 cdef (27)
F-9 0–35 451 g 38 def (6) 31 n (5) 47 i (8) 50 hi (8) 55 ij (9) 230 gh (37) 170 abc (27)

35–75 307 k 17 ijk (4) 40 klm (9) 8 lm (2) 30 k (7) 41 kl (9) 172 k (39) 137 abcd (31)

Island of Poel (Germany)
P-1 0–20 343 j 8 lm (2) 27 n (8) 69 h (20) 38 j (11) 119 c (34) 81 lm (23) 6 hij (2)

50–90 276 l 7 mn (2) 14 op (5) 47 ij (15) 28 kl (9) 107 de (35) 74 mn (24) 29 efgh (9)
P-3 0–45 478 g 19 ijk (4) 66 ij (14) 122 de (26) 83 g (17) 101 efg (21) 85 l (18) 0 hij (0)

45–75 384 i 7 lm (2) 19 o (5) 101 fg (25) 52 h (13) 121 c (30) 85 l (21) 20 fghi (5)
P-5 0–47 401 hi 21 hij (5) 43 kl (10) 77 gh (18) 58 h (13) 118 c (27) 84 l (19) 36 efgh (8)

47–80 237 m 6 mn (2) 14 o (6) 46 i (19) 18 mn (7) 96 fg (39) 56 o (23) 8 hij (3)
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3.2. Sequential P Fractionation

The Pt concentrations (up to 3916 mg kg−1) of the Norwegian soils were significantly higher
than in all other soils (up to 478 mg kg−1) (Table 2). In general, in these soils the P concentrations
of the NaOH-Pi fraction (up to 1919 mg kg−1) were significantly higher than in the other soils (up
to 83 mg kg−1). The P concentrations of the H2SO4 fraction in the soils decreased in the following
order Norway (up to 567 mg kg−1) > Germany (up to 230 mg kg−1) > Denmark (up to 61 mg kg−1).
The Po concentrations (NaHCO3-Po and NaOH-Po) in the soils decreased in the following order:
Norway (up to 1115 mg kg−1) > Poel and Sjaelland (Germany, Denmark) (up to 223 mg kg−1) >

Fehmarn/Wagrien (Germany) (up to 104 mg kg−1). The average P proportions of fractions decreased for
most Norwegian soils in the order NaOH-Pi (44%) > NaOH-Po (18%) > NaHCO3-Pi (14%) > H2SO4-P
(12%) > NaHCO3-Po (7%) > resin-P (3%) and residual-P (3%). For soils at Fehmarn/Wagrien (Germany)
and the Norwegian profile S, the order was H2SO4-P (44%) > residual-P (23%) > NaOH-Po (9%) >

NaOH-Pi (8%) > NaHCO3-Pi (7%) > NaHCO3-Po (5%) > resin-P (4%) and for soils at Poel (Germany)
and the Danish profile S-7 NaOH-Po (31%) > NaHCO3-Po (23%) > H2SO4-P (21%) > NaOH-Pi (11%) >

NaHCO3-Pi (8%) > residual-P (4%) > resin-P (3%). The Norwegian soils showed highest proportions
of NaOH fraction (62%). The soils at Fehmarn/Wagrien (Germany) and Norwegian profile S were
dominated by H2SO4-P and residual-P fractions (67%) and the soils at Poel (Germany) and the Danish
profile S-7 by resin-P + NaHCO3-P (34%) and NaOH-P (42%). The PCA of the proportions of P
fractions explained 94% of differences among the soils (Figure 2B). The PC1, which explained 65% of
the variance, separated the Fehmarn/Wagrien soils (Germany) and Norwegian profile S from the other
soils. The PC2 (29%) separated the soils at Poel (Germany) and Danish profile S-7 from all other soils.

3.3. P K-Edge XANES Spectroscopy

The stacked normalized P K-edge XANES spectra of the soils (Norway: Hi, F, S, PE1, PE4;
Denmark: S7; Germany: F-6, P-5, P-3) are displayed in Figure 3. The proportions of P species were
estimated by linear combination fitting of the XANES spectra that generally revealed good qualities
reflected by r factors of 0.001 to 0.009 (Table 3). The Supplementary Figure S2 show two example
spectra including their LCF fits that/how reference compounds such as P adsorbed to Fe minerals
contribute to the LCF fits. All soils were primarily characterized by high proportions of Fe-P (average
70%), which exceeded the proportions of the other compounds. The main P species in the Norwegian
soils (Hi, F, PE1, PE4) were Fe-P (62%) and Al-P (29%), while the German soils at the island of Poel
(P-3, P-5) were dominated by 70% Fe-P and 19% Porg and at the island of Fehmarn/Wagrien (F-6, F-8
and F-9) by Fe-P (45%), Ca-P (19%), and Porg (19%). The latter were similar to the Norwegian profile S
(Fe-P: 45%, Ca-P: 33%), while the Danish soil (S-7) was similar to German soils at Poel (Fe-P: 55%, Porg:
30%). The PCA of P K-edge XANES results explained 88% of the differences among the soils (Figure
5A). The PC1 of the PCA, which explained 60% of the total variance, separated the German soils at
Fehmarn/Wagrien (F-6, F-8, F-9) and Norwegian profile S by high proportions of Ca-P and K-P from
the Norwegian profiles F, H, PE1, and PE4 (Al-P and Fe-P) but only weakly from the German soils at
Poel by Fe-P and Porg. The PC2 (28%) separated the Norwegian soils from the other soils by Al-P.



Soil Syst. 2019, 3, 72 12 of 38

Soil Syst. 2019, 3, x FOR PEER REVIEW 12 of 38 

 

Figure 3. Stacked normalized P K-edge XANES spectra of 10 Northern European Anthrosols (Hi: 

Hillesland; F: Feøy; S: Sandhåland; PE1: Njæ rheim; PE4: Å rsvoll; S7: Vordingborg; F-6: Großenbrode; 

F-9: Gahlendorf; P-5, P-3: Niendorf). 

2150 2160 2170 2180 2190

F 

PE1 

PE4 

Hi

F-6

P-3

S

P-5

F-9

S-7

N
o
rm

a
liz

e
d

a
b
s
o
rp

ti
o
n

(a
.u

.)

Energy (eV)

Upper horizon

Underlying horizon

Figure 3. Stacked normalized P K-edge XANES spectra of 10 Northern European Anthrosols (Hi:
Hillesland; F: Feøy; S: Sandhåland; PE1: Njærheim; PE4: Årsvoll; S7: Vordingborg; F-6: Großenbrode;
F-9: Gahlendorf; P-5, P-3: Niendorf).
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Table 3. Relative proportions of P species determined by P K-edge XANES spectroscopy. Goodness of
fit: r-factor = 0.001 to 0.009.

Site Depth (cm) Porg Fe Al Ca K
%

Island of Feøy (SW Norway)
F 0–30 5 65 24 0 6

30–45 9 61 26 0 0

Island of Karmøy (SW Norway)
Hi 0–30 10 55 35 0 0

30–45 8 60 32 0 0
S 0–30 12 47 0 31 11

30–45 12 44 0 36 9

Jæren region (SW Norway)
PE1 0–30 5 70 25 0 0

35–60 9 45 45 0 0
PE4 0–30 7 70 22 0 0

35–60 6 74 21 0 0

Island of Sjaelland (Denmark)
S-7 0–10 30 55 0 7 8

10–45 30 55 0 7 8

Island of Fehmarn (Germany)
F-6 0–41 13 48 0 24 15

41–53 25 44 0 16 15
F-9 0–35 18 39 0 23 20

35–75 21 48 0 13 19

Island of Poel (Germany)
P-3 0–45 17 83 0 0 0

45–75 11 89 0 0 0
P-5 0–47 21 56 17 4 3

480 28 54 7 6 4

3.4. P Species in the NaOH-EDTA Extract Identified by 31P-NMR Spectroscopy

Figure 4 shows the 31P-NMR spectra of NaOH-EDTA extracts from the upper horizon of one soil
profile per region (Norway: F, S, PE1; Denmark: S-7; Germany: F-6, P-3). The vertical scale was set to
1 based on the MDPA (methylene diphosphonic acid) peak to compare the intensities of the spectra.
The following peaks and resonance regions were detected in all spectra: orthophosphate at 5.867 to
6.002 ppm, region of orthophosphate monoesters between around 6.5 to 6.2 ppm and 5.7 to 2.5 ppm,
region of orthophosphate diesters between around 2.5 to −4.0 ppm and pyrophosphate at −4.554 to
−4.706. The dominant peak in all spectra originated from orthophosphate. The Norwegian profiles F
and PE1 revealed higher intensities and a greater variety of P compounds than the spectra of the other
soils. In these profiles, the intensity of orthophosphate peak was up to 44× higher, orthophosphate
monoester region up to 12×, orthophosphate diester region up to 2.6× and pyrophosphate peak up
to 7.5× higher than in the other soils. Additionally, in these spectra phosphonolipids/phosphonate
(18.637 to 18.572 ppm) were detected.



Soil Syst. 2019, 3, 72 14 of 38Soil Syst. 2019, 3, x FOR PEER REVIEW 14 of 38 

 

Figure 4. 31P nuclear magnetic resonance (31P-NMR) spectra of NaOH-EDTA extracts of six Northern European soils (F: Feøy; S: Sandhåland; PE1: Njæ rheim; S7: 

Vordingborg; F-6: Großenbrode; P-3: Niendorf). The vertical scale was standardized to 1 based on the MDPA peak (methylene diphosphonic acid). Detailed 

illustrations of the monoester regions (6.5 to 6.2 ppm and 5.7 to 2.5 ppm) including peak assignments are shown in Acksel et al. [86]. 

0.1

0.2

0.3

0.4

0.5

20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8

0.02

0.04

0.06

0.08

0.05

0.10

0.15

0.20

0.02

0.04

1.0

F (0-30 cm)

0.2

0.4

0.6

0.8

0.02

0.04

0.06

0.08

20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8
0

0

0

0

0.10

0.06

up to 8.5

up to 2.1

up to 9.2

S (0-30 cm)

PE1 (0-30 cm)

1

1

1

S7 (0-10 cm)
up to 0.42

up to 1.2

up to 1.0

F-6 (0-41 cm)

P-3 (0-45 cm)

1

1

1

ppm ppm

Orthophosphate
monoesters

Orthophosphate

diesters

Pyrophosphate

Phosphonate

Orthophosphate

DNA

Phosphono-

lipids

Phospholipids

Teichoic acids

0

0.10

0

Myo-IHP

Scyllo-IHP

N
o

rm
a

li
ze

d
in

te
n

si
ty

N
o

rm
a

li
ze

d
in

te
n

si
ty

MDPA

Figure 4. 31P nuclear magnetic resonance (31P-NMR) spectra of NaOH-EDTA extracts of six Northern European soils (F: Feøy; S: Sandhåland; PE1: Njærheim;
S7: Vordingborg; F-6: Großenbrode; P-3: Niendorf). The vertical scale was standardized to 1 based on the MDPA peak (methylene diphosphonic acid). Detailed
illustrations of the monoester regions (6.5 to 6.2 ppm and 5.7 to 2.5 ppm) including peak assignments are shown in Acksel et al. [86].
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The spectra of the Norwegian profiles F and PE1 revealed the highest concentrations and
proportions of orthophosphate (1834 to 2653 mg kg−1; 56 to 73%) compared with the Norwegian profile
S and the Danish and German soils (32 to 416 mg kg−1; 12 to 46%) (Table 4). The Norwegian profiles F
and PE1 revealed greater monoester concentrations (638 to 1353 mg kg−1) than all other soils (80 to
174 mg kg−1). However, the proportions of monoesters in the Norwegian soils (in average 30%) were
similar to the Danish and German soils (in average 31%), except for Norwegian profile S (in average
15%). The concentrations of orthophosphate diesters in the Norwegian soils (in average 93 mg kg−1)
were similar to the Danish and German soils (in average 59 mg kg−1), whereas the proportions showed
the opposite.

Table 4. Concentrations of total P (mg kg−1) in the NaOH-EDTA extract and the concentrations of
organic and inorganic phosphorus compounds determined in the NaOH-EDTA extracts of soil samples
by solution 31P NMR spectroscopy. Values in parenthesis show the proportions of the P species of Pt

of AR.

Site
Depth
(cm)

P Groups in NaOH-EDTA Extract
Pt in NaOH-EDTA

Extract
Phosphonate/

PHOSPHONOLIPIDS Orthophosphate Orthophosphate
Monoester

Orthophosphate
Diester Pyrophosphate

mg P kg−1 mg P kg−1 (% of Pt)

Island of Feøy and Karmøy (SW Norway)
F 0–30 3492 15 (<1) 1958 (56) 1353 (39) 145 (4) 22 (<1)

30–45 4012 9 (<1) 2653 (66) 1308 (33) 33 (1) 10 (<1)
S 0–30 694 0 (0) 416 (37) 174 (16) 97 (9) 8 (1)

30–45 397 0 (0) 217 (25) 114 (13) 63 (7) 3 (<1)

Jæren region (SW Norway)
PE1 0–30 2634 4 (<1) 1834 (68) 670 (25) 113 (4) 12 (<1)

35–60 2759 4 (<1) 2004 (73) 638 (23) 108 (4) 5 (<1)

Island of Sjaelland (Denmark)
S-7 0–10 244 0 (0) 65 (19) 109 (32) 66 (19) 4 (1)

10—45 233 0 (0) 72 (23) 110 (35) 49 (15) 1 (<1)

Island of Fehmarn (Germany)
F-6 0–41 402 0 (0) 243 (46) 115 (22) 41 (8) 4 (1)

41–53 166 0 (0) 32 (12) 80 (30) 52 (20) 2 (1)

Island of Poel (Germany)
P-3 0–45 367 0 (0) 159 (33) 121 (25) 85 (18) 1 (<1)

45–75 313 0 (0) 87 (22) 168 (42) 58 (14) 1 (<1)

In general, the concentrations and proportions of P compounds in the Norwegian soils followed
the order orthophosphate > orthophosphate monoesters > orthophosphate diesters > pyrophosphate >

phosphonolipids/phosphonate, and in the Danish and German soils, the order was orthophosphate
monoester > orthophosphate > orthophosphate diester > pyrophosphate. The Norwegian soils did
not show any differences in the P compound proportions between horizons. In contrast, on average,
the Danish and German soils showed larger concentrations and proportions of orthophosphate at the
expense of orthophosphate monoesters in the upper horizons compared with the underlying horizons.
The concentrations and proportions of specific P monoester and/or diester species, phosphonate,
and pyrophosphate are shown in Supplementary Table S1. Spectra of the Norwegian profiles F and
PE1 had the most specific P-species. The proportions of the dominant P species in the monoesters and
diesters regions decreased in the Norwegian soils in the order myo-inositolhexakisphosphate (IHP) (5%)
> scyllo-IHP (1.7%) > unknown (1.1%) > neo/chiro-IHP (0.5%) > DNA (0.4%) > pyrophosphate (0.4%)
> phosphonolipids/phosphonate (0.2%) > 3-sn-phosphatidic acid (0.2) > D-glucose 6-phosphate (0.2).
The German soils at Poel and the Danish profile S-7 revealed the order myo-IHP (2.4%) > scyllo-IHP
(1.2%) > unknown (0.8%) > pyrophosphate (0.4%) > neo/chiro-IHP (0.4%) > 3-sn-phosphatidic
acid (0.4%) > D-glucose 6-phosphate (0.2%) > β-glycerophosphate (0.2%). The German soils at
Fehmarn/Wagrien and Norwegian profile S revealed the order pyrophosphate (0.6%) > scyllo-IHP
(0.5%) > DNA (0.4%) > myo-IHP (0.3%) > 3-sn-phosphatidic acid (0.2%) > β-glycerophosphate (0.2%)
> unknown (0.1%). Differences in the P species between the horizons of the same soil profile were
relatively small. Visible differences were only detected for proportions of the DNA and pyrophosphate
that were slightly more abundant in the upper than in the underlying horizons of all soils (Table 2).
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The PCA of the specific P-species explained 89% of the variance on PC1 and sharply separated
the soils of the German soils at Poel and Fehmarn/Wagrien from those in Norway that were rich in
orthophosphate and IHP (Figure 5B). The PC2, which explained 9% of the variance, separated the
German soils at Poel and the Danish profile S-7 by higher proportions of monoesters and diesters from
the German soils at Fehmarn/Wagrien and Norwegian profile S.
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Figure 5. PCA score plot of the proportions of the P species from P K-edge XANES of 10 Northern
European soil profiles (F, H, S, PE1, PE4, S-7, F-6, F-9, P-3, P-5) (data in Table 3) (A) and of the
proportions of the P species from 31P-NMR of 6 Northern European soil profiles (F, S, PE1, S-7, F-6, P-3)
(data in Table 4) (B). The upper horizons are represented in italics and underlying horizons as bold
symbols. Differently colored areas represent clusters of soils according to their P composition; arrows
indicate the presence of specific P-compounds in the soil samples as detected by P K-edge XANES and
31P-NMR (arrow direction shows direction of P-compound enrichment; arrow length shows intensity
of enrichment).
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4. Discussion

4.1. Total P and Other Element Concentrations

In accordance with Acksel et al. [3] and Schnepel et al. [89], we explain the high P concentrations
in the Norwegian soils of up to 4012 mg kg−1 by ancient and possibly ongoing large inputs of organic
matter from human activities. These P concentrations exceeded those of 377 samples of various soils of
the world, except for mineral-P + FYM amended soils (Figure 6). In contrast to various Anthrosols
(1000 mg P kg−1), the P concentrations of the German soils at Poel and the Danish profile S-7 (360 mg
kg−1) were rather similar to natural or household compost amended soils, thus providing no indication
for any substantial inputs of P-rich organic matter. The total P of German soils at Fehmarn/Wagrien and
Norwegian profile S were similar to natural soils; soils fertilized with mineral-P, household compost,
and sewage sludge; and various Anthrosols. Classical indicators of human activities in archeological
excavations are high concentrations of P and other elements, e.g., Ca, originating from strong manuring
in the past [40]. Therefore, the higher P concentrations in Norwegian soils compared to most Anthrosols
of the world suggest long-term inputs of P-rich amendments. Thus, the question arises as to which
other kinds of organic matter may have been applied to the soils, thereby causing such high nutrient
contents. Possible amendments are animal manure, human excrement and/or composts. Due to these
amendments a P enrichment in soil was found by Scherer and Sharma [51]. They showed an increase in
P concentration in a Luvisol after 38 years of continuous addition of mineral fertilizer (+359 mg kg−1),
FYM (+409 mg kg−1), compost from organic household waste (+442 mg kg−1), and sewage sludge
(+495 mg kg−1) in comparison to the control (222 mg kg−1). Furthermore, Koch et al. [61] reported
increased P concentrations in the topsoil of a Cambisol (0–30 cm) after a 16 years application of TSP
(+349 mg kg−1), compost + TSP (+666 mg kg−1), and compost (+814 mg kg−1) in comparison to the
control (1890 mg kg-1). Both experiments show in good agreement that the continuous application of
FYM, compost, and/or human excrement lead to higher soil P concentrations than mineral fertilizer.
This implies that the exceptionally high P concentrations of the Norwegian Anthrosols could originate
from stronger manuring with, e.g., animal manure, human excrement, and compost.
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Figure 6. Box plot of the Pt concentrations in the Anthrosols of this study, in reference soils with
different amendments, Anthrosols, and in native soils. References: A: [51]; B: [51,52,90,91]; C: [92];
D: [93–98]; E: [51,53,58,83,93–107]; F: [51,58,62,93,94,96–98,100,104,106–112]; G: [109,110]; H: [52,83,91,
93,100,103–105,110,113–123], Negassa W. (unpublished data).

To find out from which of these amendments P concentrations originate, it may also be
helpful to consider other elements, especially possible binding partners of P. Table 5 shows
elemental concentrations in human excrements, sewage sludge, swine, cattle, and poultry manure,
as well as elemental concentrations in various composts. Human excrements have especially
high Fe concentrations in comparison to all other amendments, which are more enriched in Ca.
High concentrations of Ca, Fe, and Al in the excrements can lead to the accumulation of P due to the
adsorption reactions of elements with soluble phosphate ions [124]. This, in turn, leads to P enrichment
in soils amended with large amounts and/or continuous additions of excrements. Comparing elemental
concentrations of our investigated Anthrosols with those of surrounding soils in the respective region
indicated inputs of various amendments (Table 5). For example, the Norwegian soil profiles F and
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H were enriched in Ca by factor 2.5, in Al by factor 2. and in Fe by factor 1.7; profile S in Ca by
factor 28.6 and in Mg by factor 2.6. Similar elemental enrichments were found in the German soils at
Fehmarn/Wagrien, showing, for example, higher concentrations of Ca by factor 1.3 and Al by factor 2.1
in comparison to their surrounding soils in NGermany (Table 5). Since animal and/or human excreta
increase the content of nutrient and organic matter in soils [125] the simultaneous high concentrations
of P, Ca, and Fe, as well as Mg and Mn, along with high Corg contents in the Norwegian Anthrosols
and those at Fehmarn/Wagrien indicate the application of excrements or manure. Wiedner et al. [10]
also concluded earlier inputs of animal and/or human faeces to an Anthrosol from high concentrations
of Ca, Mn, Mg, and Fe in addition to enriched faecal lipid biomarkers in the soil profile. Correlating Pt

concentrations and elemental concentrations from Wiedner et al. [10] showed significantly positive
relationships of Ca (r2 = 0.91 ***), Mn (r2 = 0.82 **), Mg (r2 = 0.76 **), and Fe (r2 = 0.63 *). These
correlations were also found for our investigated Anthrosols. Here, significant positive correlations
between Pt and Fe (r2 = 0.65 ***), Mn (r2 = 0.62 ***), Ca (r2 = 0.59 ***), and Mg (r2 = 0.44 ***) were
observed. A further aspect for the element enrichment is the application of peat as a common method
of soil amelioration in ancient times [126]. Data compiled in Table 5 show that peat is highly enriched
in P, Ca, Fe, and Al in comparison to many other amendments. Therefore, it can be assumed that the
Anthrosols with such high element concentrations may have been manured with a mixture of animal
manure and peat-like plaggen materials. This has also been reported by Schnepel et al. [89] for the
plaggic Anthrosols in the Jæren region (Norway). The low element concentrations of the German soils
at Poel and the Danish profile S-7 in comparison to all studied Anthrosols and their surrounding soils
revealed no indications of specific amendments and probably reflect the soil parent materials.

Table 5. Total element concentrations as reported in literature for various soil amendments, peat,
Anthrosols, and surrounding agriculture soils of the respective region of the Anthrosols under study.

Amendments/Soils Pt Ca Al Fe Mg K Mn References
mg kg−1 (Dry Basis)

Various Organic Amendments
Human excrement 4300–16000 2680–4270 - 200000 930–2860 1780–7160 [127–130]

Swine manure 32950 33225 1375 1950 12950 - 400 [56,131]
Cattle manure 5125 24100 8800 4525 16200 - 200 [56,79,105,131]
Sheep manure 8000 13000 3500 1300 - - - [79]

Sewage sludge manure 15550 51850 23900 13600 - - - [56]
Deer manure 7400 11700 5300 2600 - - - [79]

Poultry manure 9500 29000 600 2850 8800 11000 265 [124,131]
Farm yard manure 4000 77000 - 6000 9000 8400 320 [124]

Cattle compost 4000–18200 24000 3400 2500 5000 22000 - [132,133]
Sheep compost 19100 [133]
Swine compost 7000 35000 800 2000 7000 6000 - [132]

Poultry (litter) compost 14000–29700 12000 2000 3100 5900 17000 - [132,133]
Sewage sludge compost 7000 25000 3100 8350 5900 8650 410 [124,132]

Seaweed of Norway,
Baltic sea and France 600–2500 5300–17500 40 70–2000 800–21400 9400–35700 −3900 [134–136]

Peat and Anthrosols
Dry peat of NO Germany 14000 100000 56000 266000 9400 11300 1100 [137]
Anthrosol of Amazonia 2400 13000 - 140 4000 17300 210 [138]
Anthrosol of Amazonia 3600 4200 30000 - 460 860 240 [139]
Anthrosol of Germany 1000 6600 - 6700 890 710 650 [10]

Agriculture Soils of SW Norway
(Ap: 0–20 cm, n = 2218, 1

site 2500 km2) 900–1600 1700–3200 6900–11300 10200–17600 370–1500 240–720 80–250 [140]

Agriculture Soils of NO Germany
(Ap: 0–20 cm, n = 2218, 1

site 2500 km2) 207–460 1701–3200 2500–6900 10201–17600 371–1500 720–1300 250–460 [140]
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4.2. Sequential Phosphorus Fractions

Potential input of amendments based on elemental concentrations is supported by clear differences
in the sequential P fractions between our Anthrosols. The PCA of the SF clustered these soils according
to their geographical region indicating a similar input of organic matter type and/or pedogenesis
in the soils of a certain region (Figure 2B). For further information on organic matter type within a
cluster the proportions of P-fractions from the Anthrosols were compared with analogous data of
soils worldwide (fertilized and unfertilized arable, grass and forest soils, natural soils, Anthrosols
and peats) by means of PCA (Figure 7). This PCA showed a clear separation of P composition of the
reference soils by applied manure and usage. The PC1 explained 63% of the variance and sharply
separated 88 of 108 animal manure amended reference soils by higher proportions of H2SO4-P from
the other reference soils (mineral-P or + FYM, sewage sludge and compost amended soils, natural
soils, and Anthrosols). The PC2 (24%) generally separated 80 of 103 natural grass/forest/peat soils
and pasture soils by higher proportions of Po (NaHCO3 + NaOH) from some soils amended with
composts, sewage sludge, and animal manure that were enriched in Pi (NaHCO3 + NaOH) (Figure 7).
Generally, the PCA of the P speciation revealed different inputs in our investigated Anthrosols due
to their clustering to amended and unamended reference soils. The similarities of the P speciation
from the Norwegian soils, especially the NaOH (63%) and NaHCO3 (24%) fractions were similar to
composts, sewage sludge, and mineral P + FYM amended soils (Figure 8). In detail, the high NaOH-Pi

proportions from the Norwegian soils (in average 45%) significantly exceeded all measured NaOH-Pi

proportions in manured soils, native soils and in the German and Danish Anthrosols (in average 10
to 26%). The same similarities were found for proportions of NaHCO3-Pi (in average 17%) in the
Norwegian soils.
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Sewage sludge manure itself is high in moderately labile P [56,124,132] and fresh animal manures
are high in labile P [79,131]. It is shown in Figure 9 that, in average sewage sludge, manure has up to 4×
higher proportions of NaOH-Pi (28%) and up to 1.8× less NaHCO3-Pi (30%) in comparison to animal
manure (cattle, swine, poultry: NaOH-Pi: 6.6%; NaHCO3-Pi: 55%). Various long-term experiments
showed that the high proportions of NaOH-Pi in sewage sludge and/or compost manures could be
traced in amended soils [51,52,90]. Chang et al. [142] reported a general shift from the mainly occurring
Ca-P in a calcareous soil to Al-P and Fe-P after the application of sewage sludge for about five years.
Although sewage sludge is not directly comparable to human excrements from ancient times (due to
the modern additions of Fe and Al in the treatment plant), it can be assumed that the P-composition
of the Norwegian Anthrosols is the result of the input of composts that were enriched in NaOH-Pi.
Furthermore, the addition of human excrements is also possible due to their extraordinary higher
Fe-content (15×) compared to sewage sludge (Table 5). Enrichment of NaOH-Pi after application of
such amendments may be due to high concentrations of Al and Fe, which adsorb and thus accumulate
soluble phosphate ions [124]. The clear enrichment of NaOH-Pi and the extremely high concentrations
of P, Al, and Fe in the Norwegian soils indicate an application of compost and/or human excrements
rather than animal manure and/or mineral fertilizer.

In contrast to the Norwegian profiles, the 5× lower P concentrations of the German soils at
Fehmarn and the Norwegian profile S were mainly characterized by the stable P fractions (H2SO4-P
+ residual-P: 81%) (Tables 1 and 2). Especially the proportions of H2SO4-P in these soils (58%) were
highly similar to H2SO4-P of animal manure– (46%) and biochar-amended soils (49%) and were
significantly different to natural soil and other fertilized soils (Figure 8). This as well as the clear
clustering of these soils in the PCA indicates an input of animal manure and/or biochar to the German
soils at Fehmarn and Norwegian profile S (Figure 7). Possible manures are e.g., cattle, swine and
poultry manure. These manures primarily contained NaHCO3-Pi (48 to 63%) and H2SO4-P (20 to
32%) but were also similar to biochar (NaHCO3-Pi: 33; H2SO4-P: 31%) (Figure 9). After cattle manure
application to soils for five years, higher proportions of NaHCO3-Pi (+9%) and HCl-Pi (+7%) were
detected, whereas swine manure application only changed the residual-P fraction (+7%) in comparison
to the control [53]. Further, various other studies also observed a general enrichment of NaHCO3-Pi

and/or H2SO4-Pi after long-term cattle and/or poultry manure application [53,102,105], in contrast to
swine manure–amended soils that revealed only enrichments of P in the H2SO4-P and/or residual-P
fractions [53,105,143]. These facts suggest an input of cattle and/or swine manure to German soils
at Fehmarn and the Norwegian profile S. However, Hao et al. [102] detected a strong increase in P
concentrations (in average up to +2298 mg kg−1) after different rates of cattle manure application to
Canadian soils suggesting a low manuring level in German soils at Fehmarn due to their relatively
low Pt concentrations (455 mg kg−1). Biochars can be another possible source of P suggested by high
proportions of H2SO4-P in the soils (Table 5). It can be assumed that the high proportion of Ca-P in
the Fehmarn soils as well as the moderate proportions in the Norwegian soils in Jæren may originate
from inputs of combustion residues. Indeed, the high presence of combustion residues were confirmed
by high proportions of BC in these soils (Fehmarn 15% and Jæren 12% BC in Corg) [1–3]. Further, a
significantly positive correlation for the proportions of H2SO4-P and BC + Ca-P was detected (data not
shown). Since the Fehmarn soils were only slightly acidic (pH 6.8, Acksel et al. [1,2]) and enriched in
Ca-P, it could be possible that application of biochar transformed these soils from stronger acidic to
less acidic conditions because biochar application to soils increases the pH value [144,145].
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In summary, the comparison of the P composition (especially H2SO4-P) provided indication for
the input of animal manure in Norwegian profile S and animal manure and biochar in the German
soils at Fehmarn. In contrast, the low concentrations of Pt (360 mg kg−1) and high Po proportions
(56%) of the German soils at Poel and the Danish profile S-7 indicated a rather natural P origin. This is
supported by Guggenberger et al. [82], who reported similar Po proportions of around 66% in grassland
and forest soils of Germany.

4.3. P Speciation by P K-Edge XANES

Differences and similarities in P composition between the Anthrosols of Norway, Denmark and
Germany can be seen from the PCA of specific P species derived from P K-edge XANES (Figure 5A),
which shows similar separation of the soils compared with the PCAs of the P fractions and the
element composition, respectively (Figure 2A,B). The P K-edge XANES spectra revealed that high
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proportions of Al-P and Fe-P in the Norwegian soils corresponded to high NaOH-Pi proportions from
SF. This corresponds to enrichments of Al-P, Fe-P, and NaOH-Pi, which were obtained (by P K-edge
XANES and SF) in long-term field experiments with continuous application of compost and mineral
P [61]. Furthermore, the detected high proportions of Ca-P by P K-edge XANES in the German soils
at Fehmarn and Norwegian profile S correspond to the proportions of H2SO4-P from SF (Tables 2
and 3). A simultaneous enrichment of these compounds was also detected (by P K-edge XANES and
SF) in a long-term field experiment after continuous application of animal manure [69]. The detected
proportions of Porg (by P K-edge XANES) were generally lower than the proportions of NaHCO3-Po

and NaOH-Po (by SF) but nevertheless also demonstrated an enrichment of Po in the German soils
at Poel and the Danish profile S-7 in comparison to the other Anthrosols (Tables 2 and 3). These Po

enrichments in the German soils at Poel and the Danish profile S-7 were similar to native and tame
grassland soils as reflected by P K-edge XANES and 31P-NMR [64], indicating a natural P-source.
Generally, the detected P-species of P K-edge XANES yielded complementary results to the SF and
thus provided compelling evidence for an application of manures/composts in the Anthrosols from
Norway and from Germany at the island of Fehmarn rather than in those from Germany at the islands
of Poel and the Danish profile S-7.

4.4. P Speciation by 31P-NMR

In the Norwegian Anthrosols, high concentrations of monoesters and orthophosphates as well as
the ratios of monoesters to diesters (up to 40) were detected (Table 4), which were comparable to those
of intensively amended soils that received various organic amendments [61,71–73]. This suggests
strong application of P-rich amendments to the Norwegian soils. By comparing our 31P-NMR spectra
with spectra of other studies, further amendment classification was elucidated. For example, from
31P-NMR spectra of a Danish long-term field experiment with animal manure, Guggenberger et al. [82]
reported a different P-composition in the amended in comparison to the control soil. They found that
animal manure amended soils showed increased proportions of orthophosphate (49%), decreased
proportions of monoesters (35%) and diesters (10%), as well as constant proportions of pyrophosphates
and phosphonates, in comparison to a control soil (orthophosphates 26%; monoesters 47%; diesters
13%) [82]. Further, Hinedi et al. [152] demonstrated an incubation experiment of sludge-amended soil
with complete hydrolyzation of monoesters and diesters after 140 days of incubation in alkaline soil
while monoesters, as well as pyrophosphate, were still detected after that time. They also detected
hydroxyapatite and pyrophospates in sludge-amended soils by solid-state 31P-NMR [153]. From this,
it can be deduced that the high proportions of orthophosphate and monoesters, in the Norwegian soils
(except profile S) resulted from the application of various animal and/or human excrements. This was
in good agreement with the SF and P K-edge XANES results (Sections 4.2 and 4.3).

Also, a detailed look into the monoester region revealed similarities between the Norwegian soil
spectra (except profile S) and the mineral and compost amended soil spectra shown in Koch et al. [61].
In particular, the characteristic 1:2:2:1 ratio of the four main peaks of myo-IHP was detected in similar
proportions in the Anthrosols (4 to 6% of Pt) compared with the soils from Koch et al. (2018) (3 to 5%
of Pt). Additionally, the presence of neo-, chiro- and scyllo-IHP in the Norwegian Anthrosols agreed
with those of Koch et al. [61] suggesting mineral and/or compost amendment of the Norwegian soils.
However, the concentrations of myo-IHP and scyllo-IHP in the Norwegian Anthrosols (except profile
S) were clearly higher than the mineral and compost amended soils from Koch et al. [61] questioning
this amendment for Norwegian soils.

A significant source of IHP-compounds in soils are plants and manures [154]. Typically, myo-IHP
in soils originates from swine, poultry and diary manures, various seeds, roots, and microorganisms,
while neo-IHP mainly originates from microbes [64] and amoebas [155]. Chiro-IHP can originate
from epimerization of myo-IHP [156] and scyllo-IHP from epimerization of myo-IHP or from
microorganisms [157,158]. Further, chiro- and neo-IHP were found in aerobic sewage sludge [159]
and parasitic amoebae as well as in human intestinal parasites [160]. From the high proportions of
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IHP in the Norwegian Anthrosols (Table S1) it thus can be assumed that these soils were amended
with various excrements. Manure originating from monogastric animals could be possible because
it represents a significant source of IHP [155], while ruminant manure is rather poor in IHP because
these animals digest vegetative plant material of their diets by phytase enzymes [161,162]. However,
ruminant manures cannot be excluded due to the similarities of the myo-IHP concentration in the
Norwegian Anthrosols with those of various pastures in England and Wales [163], New Zealand [80],
and Irish grassland soils [164] that received P from excrements.

In addition to excrements, microorganisms may have also contributed to the high accumulation
of myo-IHP in the Norwegian soils which is supported by the simultaneous accumulation of the
stereoisomers of myo-IHP, DNA, pyrophosphate, and phosphonolipids/phosphonates. Significant
increases of IHP (especially neo-IHP) in native grassland in comparison to cropland soils in Canada were
particularly attributed to microbes [64]. P-compounds such as DNA, pyrophosphate, and phosphonates
were also linked to microorganisms [163,165]. Further, slightly higher proportions of DNA and
pyrophosphate in the upper compared to the underlying horizons of all Anthrosols may point toward
a microbial origin of these compounds because the microbial activity is generally higher in topsoils
than in subsoils [166]. Thus, the accumulation of the monoesters in our Anthrosols cannot solely be
assigned to manure application but may also be assigned to natural microbial processes that, however,
may have been supported by the excremental amendment of soils [167,168].

The Po composition of the German and Danish Anthrosols and the Norwegian profile S were
characterized by low proportions of orthophosphates (12 to 46%), high proportions of diesters (7–20%)
and low monoesters/diesters ratios (in average 2, maximum 3). This indicates a natural origin of
these P pools because natural soils were shown to be more enriched in diesters and monoesters,
whereas agricultural soils were dominated by monoesters [75,169,170]. This is in accordance with
various 31P-NMR analyses of native forest and grassland soils in Germany, forest soils in Sweden and
grassland soils in New Zealand, which revealed high proportions of monoesters (47%) and diesters
(11%), low monoesters/diesters ratios (4.6), and only 33% orthophosphates [82,165,171,172]. It implies
that especially the P composition in the German Anthrosols at Poel and the Danish profile S-7 likely
originates from natural conditions and/or inputs of Pt- and Pi-poor amendments rather than from
animal manures, human excrements, and/or composts. An alternative soil amendment is marine
biomass such as seaweed that has a long history as soil conditioner [173]. Seaweed such as Fucus
vesiculosus from the Scottish beach is poor in Pt (2800 mg kg−1) and has high Po proportions (38 to
53%) in comparison to compost (Pt: up to 3100 mg kg−1; Po: 9 to 33%), sewage sludge (Pt: 20800 mg
kg−1; Po: 5 to 12%) [174], and various animal manures (Pt: up to 8000 mg kg−1; Po: 12 to 20%) [79].
Supported by S-isotope data, which provided clear evidence for the input of marine biomass in these
soils [2], it can be assumed that the P-composition in the German Anthrosols at Poel and the Danish
profile S-7 was affected by inputs of marine biomass. Furthermore, a purely natural origin of the
soil P in the German Anthrosols at Fehmarn and in the Norwegian profile S can be excluded due to
the very high proportions of Ca-P detected by the SF (up to 61%) and P K-edge XANES (up to 36%),
which were probably more likely caused by the addition of animal manure, as discussed with the SF
results. In contrast, the sole considerations of the proportions of the monoesters provided no hints of
manuring activities due to only slight differences between the Anthrosols (except of profile S) and
the similarities to forest and grassland soils of the compiled references. In summary, the results of
31P-NMR complement the results of the SF and P K-edge XANES all showing strong indications for the
input of animal manure, compost and human excrements in the Norwegian Anthrosols and animal
manure in the German Anthrosols at Fehmarn, while the German Anthrosols at Poel and the Danish
profile S-7 were most likely amended with seaweed.

4.5. Complementary Archeological Evidence for the Northern European Agricultural History

For interpreting the P speciation of our Anthrosols, it can be helpful to consider knowledge from
archeological and historical sources for the respective region of the soils. The regions of Karmøy and
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Jæren (Norway) have a long land use history and it is assumed that the agricultural usage started
about 5500 BP, since in old settlements from the Paleolithic there was no evidence for agricultural
practices [175]. Currently, 25% of the region of Karmøy is agricultural land [176] that is dominated
by grassland/pasture [177]. The Norwegian side at Feøy (profile F) was used as pasture for sheep
grazing during sample collection, while Hillesland (profile Hi) and Sandhåland (profile S) were used
as grassland [3]. The deforestation at Feøy started more than 2000 years ago [178], thus having a
long history of livestock grazing. A farm at Hillesland started in the 1700s, and in the second part
of the century, the manuring technique was based on composting waste from slaughtering and fish
cleaning [179]. In the 1800s, marine biomass, peat, mould, and heather were also composted [179].
The oldest farm in Sandhåland (profile S) dates back to the 17th century and had been fertilized with
deposits of decomposing marine biomass and peat mixed with organic materials (heather and fish
residues) since the 1800s until the 1960s [180]. However, Lundberg [180] assumed that the establishment
may even date back to the older Iron Age. The earlier cultivation of the soils at the farm of Sandhåland
and the other Anthrosols in SW Norway is supported by AMS 14C dating of their underlying horizons
(30 to 65 cm) [3]. Acksel et al. [3] reported that the soils in Karmøy (profile F, Hi, and S) and Jæren
(profile PE1 and PE4) formed between the Viking Age (about AD 800 to AD 1000) and the Roman Iron
Age (500 BC to AD 500), respectively. Therefore, it seems that these regions have a longer agricultural
history than reported. From this, the question arises which kind of agricultural usage had been applied
before the 17th century. For a long time, it has been known that in Western Norway peat was brought
into the stables and mixed with animal manure and later used as soil amendment [126,181–184].
It can be assumed that these manuring techniques had been applied long before the 17th century
due to the horizon thickness of up to 90 cm in the plaggen profiles PE1–PE4. Correspondingly, the
oldest dated AMS 14C age in the profile PE1 was 1542 ± 20 BP of the plaggic Anthrosols in Jæren [3].
Dalsgaard et al. [19] reported a similar plaggen technique as the usage of sods from heathlands mixed
with manure in anthropogenic soils at an old farm in Denmark and assumed that this cultivation
started 2300 years BP. It is also assumed that seaweed and peat had been mixed with cattle manure
before adding to fields in this region [19]. The P-composition of the Norwegian profiles PE1 and PE4 is
in accordance with archaeological data [179,180] and deliver clear evidence for the usage of peat and
animal manure in these Anthrosols in addition to seaweed and combustion residues. Furthermore, it
can be assumed that sheep and cattle manure have been used for the plaggic management rather than
various others (e.g., swine and/or poultry) due to the current extensive use of grazing sheep and the
long history of sheep, cattle, and horse grazing derived from Lundberg [178]. However, it seems that,
in particular, sheep manure has been used for soil amelioration because the sheep farming at Karmøy
increased in the last 300 years, with a cattle/sheep ratio from 1 (in the year 1723) to 3.5 to 6.8 (in the
year 1865) [179]. Lundberg and Handegård [179] reported that the farmers even further increased the
numbers of sheep in the 1900s. From the composition of sheep manure, which is higher in P (8000 mg
P kg−1), H2SO4-P (28%), and Ca (12900 mg kg−1) than cattle manure [79], it should be assumed that
the Norwegian Anthrosols would be more enriched in Ca-P (P-composition of various animal manure
are shown in Figure 9). However, high proportions of NaOH-Pi in the Norwegian Anthrosols (with
exception of profile S) were detected, which can be explained by the usage of peat because peat is high
in Fe and Al (Table 5) and can react with the soluble P of the sheep manure. The usage of peat and
its mixing with animal manures in the Karmøy region (profile F, Hi, and S) was very low or was not
practice, which can be derived from the low horizon thickness. Additionally, that can also be derived
from the limited occurrence of peat, especially at the small island of Feøy (1.3 km2), and much more
rock outcrops in comparison to the Jæren region. The P-composition and the archaeological data from
this region indicate the usage of composting materials and their mixing with marine biomass, organic
household waste (human excreta), sheep excrements, and possibly some peat.

The high proportions and concentrations of Ca-P in the Norwegian Anthrosol of Sandhåland
(profile S) may have been caused due to its location directly at the beach. Direct application of shell sand
or indirect Ca inputs by marine biomass along with inputs of sheep manure plausibly explain binding of



Soil Syst. 2019, 3, 72 28 of 38

soluble manure-P by Ca-containing minerals in the soil after application. Evidence of the application of
shell sand to soils as fertilizer was found at many historical sites such as in Scotland [29] or Ireland [24].
Further mixing of sand with sheep excrements in stables and later application to fields [185], which
seems to have been a general ancient practice at coastal areas. The lower P concentration of this profile
in comparison to the other Norwegian soils indicates less manuring and/or a time-period of application.
From this we summarize that the profile S had strongly been amended with seaweed and moderately
with sheep manure. Another important question is the aspect of quantity of soil amendments which is
difficult to calculate. For example, we estimated an input of dried seaweed around 14 t ha−1 and/or
46 t ha−1 fresh seaweed per year in Hillesland, 16 and/or 52 t ha−1 at Feøy, 4 t ha−1 and/or 13 t ha−1 at
Sandhåland, and 13 t ha−1 and/or 43 t ha−1 at Jæren for about 1000 years of cultivation [3].

Archaeological data supported also the usage of animal manures at the German island of Fehmarn.
The cultural development at the Baltic Sea coast of Germany changed between 6100 and 6000 years BP
from the use of marine resources to a productive agriculture [186]. It is assumed that farming started
with the Funnelbeaker culture (6200 to 4800 BP) in the Baltic Sea region [187,188]. AMS 14C dating and
complementary literature strongly indicate a formation of Baltic Anthrosols between the Nordic Bronze
Age (3800 to 2800 BP) and the Roman Iron Age (2700 to 2000 BP) [2]. An archaeological site called
Wangels (4400 to 3800 calBC) is directly situated close to the profile F-6 at the peninsula of Wagrien,
in the direct vicinity of the island of Fehmarn. At this site many animal bones were found in a soil
horizon and were assigned to 446 mammal bones, 12 bird bones, and 31 fish bones [189]. The majority
of these animal bones was assigned to domestic animals [186]. Lübke et al. [186] showed many findings
of domestic cattle bones (4838 to 3703 calBC) and a lower occurrence of sheep, goat, and swine bones
at the archaeological site of Rosenhof, directly located at the profile F-6. Therefore, we assume that
the German Anthrosols at the island of Fehmarn and at the peninsula of Wagrien were amended
most likely with cattle excrements, which was also supported by the P-composition (Sections 4.2–4.4).
In contrast, domestic animal bones were not found at the archaeological site Timmendorf-Nordmole
1 (6400 to 6100 BP) at the island of Poel [190]. Instead, mainly fish residues that accounted for 95%
of all material was detected [190]. Seventy-eight percent of the total area of the island of Poel were
agriculture land and pasture and grassland were rare in 1698 [191]. Greenage and roughage were
very scarce due to the small abundance of pastures, and this limited the livestock husbandry so that
animal manures were scarcely available for soil amendment [191]. At the island of Poel, a low livestock
abundance in earlier times points to a low manuring practice with various excrements or manures in
those Anthrosols. That can also be assumed for the Danish profile S-7 supported by high proportions
of Po in this profile. It seems that the German Anthrosols at the island of Poel and the Danish profile
S-7 were amended mainly with marine biomass, as supported by the S-isotope data [2].

5. Conclusions

The extensive comparisons of the complementary results from total elemental concentration
in aqua regia extracts, SF, P K-edge XANES, and 31P-NMR of the Anthrosols under study with
those from differently used and managed soils from literature and the alignment to archaeological
references indicated input of various amendments to the Anthrosols. In detail, the P-composition
and the archaeological data delivered clear evidence for the usage of peat, sheep manure, composts,
and human excreta in addition to marine biomass and combustion residues in the Norwegian
Anthrosols. Our investigations support the hypotheses from past studies that the Anthrosols in the
Jæren region have been formed by the usage of peat, which was brought into stables as alternative
bedding material, mixed with sheep manure, and later incorporated into these soils. The element
composition and specific P species in the Norwegian Anthrosols at the islands of Karmøy and Feøy
implied the incorporating of composts including materials such as seasand, organic household waste
(human excreta), and sheep excrements in addition to marine biomass. Furthermore, we assume that
the P-composition in the German Anthrosols at the island of Fehmarn and at the peninsula of Wagrien
resulted from the application of domestic cattle manure as strongly supported by the archaeological
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findings of cattle bones in this region and the high proportions of Ca-P. In addition, the P-composition
supports the input of combustion residues. Based on the low livestock history at the German island of
Poel and the high proportions of Po in those Anthrosols, we assume that these soils were little manured
with various excrements or manures but rather received marine biomass, which can be concluded for
the Danish Anthrosol profile S-7 as well.

The ancient soil amendments, which are now sustained for more than 2000 years, by adding marine
biomass, excrement, and compost from almost all regionally available organic matter sources, have
greatly improved the ecological soil functions. Therefore, we can learn from the ancient agricultural
practice that recycling organic matter and P from humans and local, area-adapted livestock improves
soils and sustainably builds-up soil fertility for many generations. Today, adaptations of these old
culture techniques are strongly recommended to feed a growing human population along with saving
mineable P resources in order to combat climate change effects and maintain ecosystem health.
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