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Abstract: Arid and semi-arid landscapes often show a patchwork of bare and vegetated spaces.
Their heterogeneous patterns can be of natural origin, but may also indicate soil degradation.
This study investigates the use of unmanned aerial vehicle (UAV) imagery to identify the degradation
status of soils, based on the hypothesis that vegetation cover can be used as a proxy for estimating the
soils’ health status. To assess the quality of the UAV-derived products, we compare a conventional
field-derived map (FM) with two modelled maps based on (i) vegetation cover (RGB map),
and (ii) vegetation cover, topographic information, and a flow accumulation analysis (RGB+DEM map).
All methods were able to identify areas of soil degradation but differed in the extent of classified
soil degradation, with the RGB map classifying the least amount as degraded. The RGB+DEM map
classified 12% more as degraded than the FM, due to the wider perspective of the UAV compared to
conventional field mapping. Overall, conventional UAVs provide a valuable tool for soil mapping
in heterogeneous landscapes where manual field sampling is very time consuming. Additionally,
the UAVs’ planform view from a bird’s-eye perspective can overcome the limited view from the
surveyors’ (ground-based) vantage point.
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1. Introduction

Arid and semi-arid landscapes often show a heterogeneous pattern of bare and vegetated
spaces [1–4]. Most common vegetation patterns are banded [5,6] or spotted [1,7]. This patchwork of
vegetation is also reflected in heterogeneous chemical, structural, and textural soil properties [8,9],
which introduce spatial variations in factors such as infiltration capacity [10–12], soil nutrient
content [8,13] and soil erodibility [12,14,15]. The vegetation patterns can be of natural origin [16,17],
but may also indicate soil degradation, i.e., the decline of soil functions and productivity caused by
erosion, nutrient depletion, salinization, or loss of soil structure [10].

The spatial heterogeneity of dryland landscapes indicates that underlying soil types are inherently
variable. This variability is often not depicted on soil maps. Most common soil maps for South Africa
are large scale, varying between 1:1 and 1:5 million and including the Soil and Terrain (SOTER)
database [18] and the “Soil Atlas of Africa” [19], and are not able to represent the variety of the natural
soil types. Ref. [20] used random forest models to predict common soil properties, such as organic
carbon, pH, and soil texture, at a 250 m × 250 m resolution to bridge the gap in soil information in
Africa. Although a large amount of soil investigations has been carried out in South Africa, information
access is restricted. Local or provincial soil information is often archived and not freely available to the
public due to a lack of a central repository [21]. Long-term erosion monitoring in the Karoo by [22]
showed evidence of considerable soil degradation and badlands formation but information on the
soils’ degradation status and the loss of soil functions and productivity is usually not included in
soil maps. In addition to this limited access, national or regional maps seldom reflect this degree of
heterogeneity, mainly due to the high labor, financial, and time-investment costs associated with manual
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land cover mapping, soil sampling, and analysis. However, high resolution soil maps are of growing
importance for environmental planning at regional or local scales [23] and for farmers to facilitate
decision-making on best agricultural practices [24], such as precision farming or grazing practices
aimed at land restoration [20], as well as for conservationists to implement protection measures in
the form of erosion prevention [20,24]. Digital soil mapping using mathematical models therefore
represents an alternative to the typically resource-intensive conventional methods of soil mapping [25].
Soil characteristics or soil types are usually predicted based on factors about the terrain or climate [26],
using classical machine learning methods such as classification and regression tree analyses [26,27],
neural networks [23], or geostatistical approaches [28]. But since vegetation cover is closely related
to soil properties [8], land cover maps can provide useful information to identify differences in soil
development [29].

The quality of the prediction produced by any soil mapping model strongly depends on the
spatial scale of the input data. The spatial resolution of commonly available global or continental data
products on land cover, such as open source Global Land Survey (GLS) data from NASA and the US
Geological Survey (30 m × 30 m), MODIS-based Global Land Cover Climatology (500 m × 500 m) [30],
or soil types such as the African Soil Atlas [31], is usually too coarse to reflect landscape heterogeneity
in semi-arid areas. Unmanned aerial vehicles (UAVs) can help to overcome the gap between expensive,
time-consuming ground-based assessment and insufficient data quality from coarse resolution imagery
derived from satellite systems. Capturing high resolution terrain or land cover information enables
the generation of user-specific data products, such as 2D or 3D terrain models, orthomosaics, and
normalized difference vegetation index (NDVI)-maps. Consequently, UAVs have recently gained
popularity in remote sensing studies and have been used in a variety of high resolution topographic
studies, e.g., for gully mapping [32] and quantifying gully volumes [33–35]. Compared to field mapping,
which produces rather inflexible maps once compiled and the results committed to paper, or a similarly
static digital data products due to the intense labor involved in their creation, UAV mapping can be
conducted more frequently at lower cost and with a finer resolution, which allows rapid monitoring
of changes in natural soil states such as displacement of soil after landslides [36] or monitoring the
evolution of an active volcano [37]. UAV imagery does provide limited information on the soils
themselves but can be used to infer, for example, the state of soil degradation through density and
patterns of vegetation or through capturing fine-scaled features of topography such as rills and gullies.

Based on the relationship between the state of a soil and its vegetation cover [38,39], this study
investigates the use of UAV imagery to identify soil degradation. In addition, intense destruction of
soil by erosion can be associated with erosion features, such as rills or badlands, visible in digital
terrain models [40,41]. Data generated by inexpensive and commercially available UAVs were chosen
on purpose because they offer the greatest potential for wide application in soil and land management.
To assess the quality of these UAV-derived products on vegetation and topography, we compare
a conventionally derived field map with two modelled maps. One is exclusively based on vegetation
cover, assuming vegetation is indicative of low soil degradation by erosion [40,41]. The second map is
based on vegetation cover combined with terrain information, assuming that visualization of features
such as rills, gullies, and sediment deposits contribute to assessing soil degradation and redistribution.

2. Materials and Methods

2.1. Study Site

The chosen study area is located in the Klein Seekoei River basin in the Great Karoo Region of
South Africa and is situated approximately 70 km north of Graaff-Reinet. It is part of the Sneeuberg
uplands, a landscape of flat valley bottoms and gently sloping lower valley sides interspersed with
hills and mountain ranges extending from 1650 up to 2502 m above sea level (a.s.l) at the Compassberg.
According to [42], in areas of the Karoo with seasonally distributed precipitation of almost 500 mm
per year, such as the Sneeuberg uplands, in the absence of human intervention a vegetation cover of
50–70% could be expected. Land degradation is a common problem in the area and is reflected by
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frequent rill and gully erosion in the valley bottoms, as well as badland development on the footslopes
of many hills [22,43–45]. The study catchment covers 3.2 km2 and drains into the in-filled reservoir
labelled Dam 53 (31.698558◦ S, 24.588183◦ E) by [46]. The reservoir is located at approximately 1740 m
a.s.l. and is surrounded by hills up to 2080 m a.s.l. Aerial photos indicate that it was constructed in the
late 1920s and almost completely filled with sediment by the mid-1970s. A main gully up to 6 m deep
and partly up to 10 m wide follows the thalweg of the catchment, forming a breach in the dam wall
and incising backwards into the sediment. We focused on the lower part of the catchment, just behind
the former dam wall, which shows various grades of land degradation and covers roughly 289 ha.
The catchment was chosen because it shows many typical features of vegetation degradation, erosion
and deposition of soil. The relatively small size meant that detailed mapping was feasible, both on the
ground as well as with the UAV.

2.2. Field Mapping

In an on-site assessment throughout the complete study area, differences in vegetation cover
or vegetation type, as well as prominent erosion features (i.e., rills, gullies, and extended absence
of A-horizon), were visually assessed and their positions were recorded with a handheld Garmin
GPSMap60. The GPS data of the recorded land cover types and erosion features was transferred to a GIS
and transformed into the Field Map (FM). Six different types of vegetation cover and erosion could be
distinguished: shrubs, thorny shrubs, grasses, mixed vegetation, bare soil, and erosion rills. Detailed
descriptions of selection criteria and distinguished vegetation and erosion types are presented in Table 1.

2.3. Land Cover Mapping

To create a high resolution map of soil degradation in our study area, a land cover classification
was carried out using UAV imagery acquired in February 2016 using a Phantom III Professional
quadrocopter (SZ DJI Technology Co., Ltd., Shenzhen, China) equipped with a DJI FC300X camera
(GoPro Inc., San Mateo, CA, USA) for RBG-images according to [47]. Images were taken at an altitude of
70 m above the ground with an average overlap of 90% to ensure sufficient overlap for photogrammetric
processing. Compromising between a high resolution and the expenditure of image acquisition and
post-processing resulted in a ground size resolution of 3.1 cm of the orthomosaic. Image processing,
including orthorectification and production of a high-resolution orthophoto and a digital elevation
model (DEM), was done with the photogrammetry software Pix4Dmapper Pro (Pix4D SA, Lausanne,
Switzerland). The land cover classification map generated by the supervised classification of the
orthomosaic is referred to as the Land Cover (LC). In our study, land cover only refers to the actual
surface cover, such as grasses, shrubs, stones or bare soil, and disregards any additional information on
the relief. Even though we mapped six different classes on site for the FM, we combined those classes
as shown in Table 1 to simplify the land cover classification.

The LC was classified using a supervised support vector machine (SVM) classification with the
help of ArcGIS Pro 2.2.3. This classification was chosen over the very popular maximum likelihood
classification (MLC) approach because it has shown more accurate results in other studies [48–50].
The pixel-based MLC approach assigns a pixel to the corresponding class with the maximum likelihood.
It is a parametric classification that is limited by assuming a normal distribution of class signatures
which requires the users to determine the classification scheme. Unlike the MLC, the non-parametric
SVM classification employs optimization algorithms to locate optimal boundaries between classes [48].
While its strength lies in a binary classification system, the SVM has recently also been shown to reflect
accurate land cover categories in multiclass approaches [50,51]. An image analysis pre-study was
conducted to identify the segmentation parameters that yielded in the most accurate segmentation of
the orthophoto. Forty training samples per LC class (bare soil, shrubs, and grasses) were used for the
LC classification and each segmented image was tested for accuracy as described in 2.4. We found the
parameters producing the most accurate segmented image to be 20 (spectral detail), 15 (spatial detail),
and 5 (minimum segment size in pixels) and used the resulting image for the SVM analysis.
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Table 1. Description of the identified land cover types. The vegetation cover (first column) describes classes visually assessed in the field, while the LC class describes
the classification used for the image analysis of the orthophoto. The arrows indicate how individual vegetation cover classes were combined to give LC classifications.
Descriptions were based on those given in [52] and have been modified according to site-characteristics.

Vegetation Cover Description Implication Land Cover (LC) Identification from the Orthophoto

Bare soil
Areas (>1 m2) of exposed sand,
soil, or rock with no or very
little vegetation

Threatened by erosion due to lack
of protecting vegetation cover

Soil Syst. 2019, 3, 33 5 of 20 

Table 1. Description of the identified land cover types. The vegetation cover (first column) describes classes visually assessed in the field, while the LC class describes 
the classification used for the image analysis of the orthophoto. The arrows indicate how individual vegetation cover classes were combined to give LC 
classifications. Descriptions were based on those given in [52] and have been modified according to site-characteristics. 

Vegetation 
Cover Description Implication  Land 

Cover (LC) Identification from the Orthophoto 

Bare soil 
Areas (>1 m2) of exposed sand, 
soil, or rock with no or very little 
vegetation 

Threatened by erosion due to 
lack of protecting vegetation 
cover 

 

Bare Soil 

Higher overall reflectance (whiter appearance) → areas of 
mostly white to sandy colors (often slightly yellow or orange) 
with no apparent line structure that could indicate grasses; 
stones often very white and characterized through their 
angular shape 

Rills 
Rill structure of bare soil, no or 
little shrub vegetation 

Threatened by intensive 
erosion due to concentrated 
runoff 

 
Woody-plants dominating, 
typically broad-leaved, branching 
at or near the ground, up to 1 m 
in height 

Threatened by erosion if 
roots are exposed or shrubs 
grow on pedestals 

 

Shrubs 
In this area characterized by a light bright green to dark green 
or blueish green color 

Thorny 
Shrubs 

Woody-plants with thorns 
dominating, up to 1 m in height, 
mostly Lycium horridum 

Threatened by erosion if 
roots are exposed or shrubs 
grow on pedestals 

Mixed 
Vegetation 

Areas where neither grasses nor 
shrubs are dominant 

Threatened by erosion if 
vegetation cover <50% 

   

Grasses 

Non-woody, grass-like, 
herbaceous plants dominating, 
grass-like plants often grow as 
tussocks 

Threatened by erosion if 
vegetation cover <50% or 
tussock grasses grow on 
pedestals 

 

Grasses 

Color appearance is more faded (beige to light grey green) than 
the color of the shrubs; in a high resolution image grasses can 
be distinguished from shrubs by their long, narrow, and 
sometimes curled leaves 

 

Bare Soil

Higher overall reflectance (whiter
appearance)→ areas of mostly white to
sandy colors (often slightly yellow or
orange) with no apparent line structure
that could indicate grasses; stones
often very white and characterized
through their angular shape

Rills Rill structure of bare soil,
no or little shrub vegetation

Threatened by intensive erosion
due to concentrated runoff

Woody-plants dominating,
typically broad-leaved,
branching at or near the
ground, up to 1 m in height

Threatened by erosion if roots
are exposed or shrubs
grow on pedestals

Soil Syst. 2019, 3, 33 5 of 20 

Table 1. Description of the identified land cover types. The vegetation cover (first column) describes classes visually assessed in the field, while the LC class describes 
the classification used for the image analysis of the orthophoto. The arrows indicate how individual vegetation cover classes were combined to give LC 
classifications. Descriptions were based on those given in [52] and have been modified according to site-characteristics. 

Vegetation 
Cover Description Implication  Land 

Cover (LC) Identification from the Orthophoto 

Bare soil 
Areas (>1 m2) of exposed sand, 
soil, or rock with no or very little 
vegetation 

Threatened by erosion due to 
lack of protecting vegetation 
cover 

 

Bare Soil 

Higher overall reflectance (whiter appearance) → areas of 
mostly white to sandy colors (often slightly yellow or orange) 
with no apparent line structure that could indicate grasses; 
stones often very white and characterized through their 
angular shape 

Rills 
Rill structure of bare soil, no or 
little shrub vegetation 

Threatened by intensive 
erosion due to concentrated 
runoff 

 
Woody-plants dominating, 
typically broad-leaved, branching 
at or near the ground, up to 1 m 
in height 

Threatened by erosion if 
roots are exposed or shrubs 
grow on pedestals 

 

Shrubs 
In this area characterized by a light bright green to dark green 
or blueish green color 

Thorny 
Shrubs 

Woody-plants with thorns 
dominating, up to 1 m in height, 
mostly Lycium horridum 

Threatened by erosion if 
roots are exposed or shrubs 
grow on pedestals 

Mixed 
Vegetation 

Areas where neither grasses nor 
shrubs are dominant 

Threatened by erosion if 
vegetation cover <50% 

   

Grasses 

Non-woody, grass-like, 
herbaceous plants dominating, 
grass-like plants often grow as 
tussocks 

Threatened by erosion if 
vegetation cover <50% or 
tussock grasses grow on 
pedestals 

 

Grasses 

Color appearance is more faded (beige to light grey green) than 
the color of the shrubs; in a high resolution image grasses can 
be distinguished from shrubs by their long, narrow, and 
sometimes curled leaves 

 

Shrubs

In this area characterized by a light
bright green to dark green or blueish
green color

Thorny Shrubs
Woody-plants with thorns
dominating, up to 1 m in height,
mostly Lycium horridum

Threatened by erosion if roots are
exposed or shrubs grow
on pedestals

Mixed Vegetation Areas where neither grasses nor
shrubs are dominant

Threatened by erosion if
vegetation cover <50%

Grasses

Non-woody, grass-like,
herbaceous plants dominating,
grass-like plants often
grow as tussocks

Threatened by erosion if
vegetation cover <50% or tussock
grasses grow on pedestals

Soil Syst. 2019, 3, 33 5 of 20 

Table 1. Description of the identified land cover types. The vegetation cover (first column) describes classes visually assessed in the field, while the LC class describes 
the classification used for the image analysis of the orthophoto. The arrows indicate how individual vegetation cover classes were combined to give LC 
classifications. Descriptions were based on those given in [52] and have been modified according to site-characteristics. 

Vegetation 
Cover Description Implication  Land 

Cover (LC) Identification from the Orthophoto 

Bare soil 
Areas (>1 m2) of exposed sand, 
soil, or rock with no or very little 
vegetation 

Threatened by erosion due to 
lack of protecting vegetation 
cover 

 

Bare Soil 

Higher overall reflectance (whiter appearance) → areas of 
mostly white to sandy colors (often slightly yellow or orange) 
with no apparent line structure that could indicate grasses; 
stones often very white and characterized through their 
angular shape 

Rills 
Rill structure of bare soil, no or 
little shrub vegetation 

Threatened by intensive 
erosion due to concentrated 
runoff 

 
Woody-plants dominating, 
typically broad-leaved, branching 
at or near the ground, up to 1 m 
in height 

Threatened by erosion if 
roots are exposed or shrubs 
grow on pedestals 

 

Shrubs 
In this area characterized by a light bright green to dark green 
or blueish green color 

Thorny 
Shrubs 

Woody-plants with thorns 
dominating, up to 1 m in height, 
mostly Lycium horridum 

Threatened by erosion if 
roots are exposed or shrubs 
grow on pedestals 

Mixed 
Vegetation 

Areas where neither grasses nor 
shrubs are dominant 

Threatened by erosion if 
vegetation cover <50% 

   

Grasses 

Non-woody, grass-like, 
herbaceous plants dominating, 
grass-like plants often grow as 
tussocks 

Threatened by erosion if 
vegetation cover <50% or 
tussock grasses grow on 
pedestals 

 

Grasses 

Color appearance is more faded (beige to light grey green) than 
the color of the shrubs; in a high resolution image grasses can 
be distinguished from shrubs by their long, narrow, and 
sometimes curled leaves 

 

Grasses

Color appearance is more faded
(beige to light grey green) than the
color of the shrubs; in a high resolution
image grasses can be distinguished
from shrubs by their long, narrow,
and sometimes curled leaves



Soil Syst. 2019, 3, 33 5 of 19

2.4. Accuracy Assessment

To assess the LC map accuracy, and thus compare the LC classes expressed in the UAV-derived map
to reference data collected, 150 randomly stratified points per LC class were generated on the classified
LC map. These were then validated visually point by point using the orthophoto and field knowledge
to create a classified point dataset, which was used for further accuracy analysis. A confusion matrix
representing the overall accuracy, producer’s and user’s accuracy, and the kappa index [53,54] was
calculated using ArcGIS. The kappa index is a measure for the accuracy of the classified map compared
to the reference map. It is computed as follows

K =
N
∑n

i=1 mi,i −
∑n

i=1(RiCi)

N2 −
∑n

i=1(RiCi)
(1)

Definitions for the variables used in Equation (1) may be given as:

i—class number
N—total number of classified values compared to reference values
mi,i—number of values belonging to reference class I that have also been classified as class i
Ci—total number of predicted (classified) values belonging to class i
R—total number of reference values belonging to class i

Producer’s accuracy refers to the probability that land cover on the ground is classified as is given
on the map. It is calculated by dividing the number of correctly classified reference points by the total
number of reference points for a land cover class. User’s accuracy, on the other hand, indicates how
often a class on the map will actually be present on the ground. For user’s accuracy the total amount of
correct classifications for a particular class is divided by the total number of sampling points of the
referring LC class, which in our case was 150.

2.5. Landscape Unit (LU) Mapping

The second map generated from the UAV data is referred to as the Landscape Unit (LU) map
because it also contains information on topography. The rationale for distinguishing landscape units is
the relationship of soil, soil erosion, and deposition to terrain. Areas of interest were, in particular, bare
soil areas with visible erosion features such as rills and areas with exposed shrub roots, since these
are indicators of erosion and soil degradation [55]. Vegetation cover greater than 50% was used as
an index for healthy soil [42]. A transformation of the Land Cover (LC) raster to a LC density map
to assess the percentage of bare soil cover was needed. Therefore, the LC raster was converted to
a point dataset, where each raster cell represented a point with its specific land cover (bare soil, shrub
or grass). Using a Kernel density function the density of bare soil points in the neighbourhood was.
Two bare soil threshold maps were generated from the Kernel density map: (i) bare soil larger than
50% representing moderately degraded areas and (ii) bare soil larger than 70% representing severely
degraded areas. Areas smaller than 10 m2 and fully enclosed by an area of different degradation status
were appointed to the surrounding area. We assumed that the different classification of these tiny
patches was mainly attributed to uncertainties in a distinct LC class allocation of transitional areas and
therefore allocated these areas to the surrounding LU. For the final LU maps we used two approaches
(Figure 1, Figure 2. For the RGB map, which is based on land cover, the orthophoto (Figure 4A), the LC
map (Figure 4B), and the derived bare soil density map were exclusively used. For simplification and
because the map is based on a true colour image (the orthophoto), we named it RGB map based on the
additive primary colours red, green and blue that are typically used for the display of images in digital
cameras. For the RGB+DEM map, LUs were categorized based on visual and elevation differences
combining information from the orthophoto, the LC map, the density map, the high-resolution DEM
(Figure 4C), and the DEM derivatives, such as slope and flow direction. The extent of the different LUs
was then mapped using an overlay analysis in ArcGIS. The depositional area was in both approaches
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mapped based on field observations and historical aerial imagery that showed the spatial extent of the
former reservoir.Soil Syst. 2019, 3, 33 7 of 20 
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2.6. Incorporating Terrain Attributes in LU Mapping

Soils and landscapes co-evolve and are inherently related to each other [56,57]. Therefore, we used
the DEM and DEM derivatives to identify areas of similar states of soil degradation. The most
frequent terrain attributes used for digital soil mapping are elevation, slope, aspect, and curvature,
often combined with hydrological features, such as flow accumulation [23]. Aspect was found to have
a low predictive value for estimating soil attributes by [58]. Since our study area is fairly small and
differences in aspect or curvature of the foot slope are small, we decided to focus on flow direction,
flow accumulation, and the topographic position index (TPI).



Soil Syst. 2019, 3, 33 7 of 19

Flow accumulation analysis of DEMs can be used to identify rills which are indicative of erosion
and/or transport of sediment from an eroding upslope area [59]. To test the quality of this analysis,
the result was compared to actual rills mapped in the field. An unweighted (accumulation with equal
cell weights) single-flow path model was used in ArcGIS to identify flow accumulation paths in the
study area (Figure 2). Identified paths were then compared with on-site observations of erosion rills.
A single-flow path model was chosen because it identifies parallel and converging water and sediment
fluxes, which is ideal to study connected rill systems and mass fluxes that are trapped and stored behind
dams [60]. The resulting image from the initial flow accumulation analyses was reclassified using
a threshold value to highlight the pathways of high flow and to create a stream network raster, in which
all streams are represented by the value 1 and background data by NoData values. The reclassification
was done iteratively until a sufficient amount of flow accumulation pathways were eliminated and
first artefacts occurred.

The TPI, introduced by [61], can be used to determine the ruggedness of the terrain. Rough
surfaces concentrate flow, promote rill formation, and consequently lead to higher sediment yields [62].
TPI is usually used for landform classifications such as hilltops, upper/mid/lower slopes, flat areas,
or valleys. Its calculation as the difference between a cell value and the average cell value of the
neighborhood around the cell also enables micro topographic analysis on high-resolution DEMs,
and, thus, an identification of badland areas or rill systems. We calculated TPI from a smoothed DEM
to reduce the noise of micro topography, such as surface morphological changes caused by stones,
or small hollows detected by high-resolution DEM.

For the final RGB+DEM map the areas classified as moderately or severely degraded based on
the bare soil density were further analysed and combined with the terrain attributes. Vegetated areas
with more than 50% of the area having a negative TPI and fully enclosed by a degraded LU where
attributed to the corresponding degraded LU. Vegetated or moderately degraded areas where more
than 50% of the area had a negative TPI were attributed to the moderately degraded LU or the severely
degraded LU, respectively.

3. Results

3.1. Field Mapping

A Field Map showing the results of the conventional land cover mapping is shown in Figure 3.
The composition of shrub species differs throughout the studied area. The thorny shrub Lycium horridum
was only found close to the former reservoir, whereas in the catchment area a mix of different
shrub species occurred, these being mainly Chrysocoma ciliata, Dicerothamnus rhinocerotis, Felicia spp.,
Helichrysum spp., and Selago spp. Grasses are found throughout the whole study area, mostly
interspersed with shrubs. Most of the catchment was covered with tussock grass, while short grass
dominated the former reservoir area. Seven, partly bifurcated, erosion rills covering a length of 1.08 km
were also identified.

3.2. Land Cover Classification and Accuracy

The LC classification (Figure 4B) identified 37.5% (3.64 ha) of the study area as not vegetated
(bare soil or stones), 53.9% (5.25 ha) as grasses, and 8.6% (0.83 ha) as shrubs. As the FM and LC map
shows, shrubs occur mainly in the northern part of the study area along the main gully and close
to the former edges of the reservoir that is now fully silted-up. Additionally, they grow in higher
densities alongside or within the bed of larger erosion rills. Differences in grass species, as in the field
assessment, were not detected by the LC map. Non-vegetated (bare soil and stone cover) areas show
some rills that were also observed on-site.

The overall accuracy of the LC classification, representing the proportion of reference sites that
were mapped correctly according to the orthophoto, is 78% (Table 2). User’s accuracy was highest for the
bare soil (85%) and lowest for the shrubs (74%). Producer’s accuracy was lowest for the grasses (66%).
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Table 2. Confusion matrix representing accuracy assessment results for the supervised land cover
classification using the SVM algorithm. Accuracy assessment was performed using 150 randomly
selected sample points per LC class.

Reference Data
LC Class Shrubs Grasses Bare Soil Total User’s Accuracy

Classified Data

Shrubs 111 37 2 150 74%
Grasses 20 114 16 150 76%
Bare Soil 2 21 127 150 85%

Total 133 172 145 450
Producer’s Accuracy 83% 66% 88% 78%

Kappa 0.67
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Figure 4. The orthophoto (A) was used for supervised land cover classification (B) (LC map). The DEM (C) was used for flow accumulation analysis to identify 
potential erosion rills and for the TPI (D) as a basis for landscape unit classification. The study area is marked in red. All maps are at the same scale. 
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potential erosion rills and for the TPI (D) as a basis for landscape unit classification. The study area is marked in red. All maps are at the same scale.
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3.3. Mapping Landscape Units

The high level of patchiness in this landscape is shown in the orthophoto (Figure 4A). Five different
LUs could be identified and are described in Table 3. Visual impressions of LUs in the field and on
the orthophoto are shown in Figure 5. The RGB classification (Figure 6, Table 3) attributes 0.72 ha
to the severely degraded LU, 1.6 ha to the moderately degraded LU, and 6.47 ha to the vegetated
LU; the RGB+DEM (Figure 7) classification accounted for 1.23 ha, 1.55 ha, and 6.15 ha, respectively.
Two states of degradation could be identified: moderately and severely degraded. The latter of the
two consisted of lower vegetation cover (<30%) and shrubs or grasses were smaller and sparsely
distributed throughout, whereas moderately degraded areas, by contrast, were either characterized
by a low vegetation cover or negative TPI. The RGB map attributed a lower amount of area to the
moderately and severely degraded area (both combined made up 24%) than the RGB+DEM map
(29%), and it identified fewer erosion rills (Table 3). Both the RGB and RGB+DEM maps identified all
degraded areas that were mapped on the FM.

The lowest negative TPI characterizes rills or gully bottoms, which in our case can be regarded as
equal to rill bottoms. Hence, erosion rills are mostly overlapping with either of the degraded LUs,
or they link different areas of degradation. Most erosion rills are connected to the main gully or, as for
the most rills in the west of the study area, directly to the reservoir. The area of deposition, which is
characterized by the flat area behind the former dam wall, has an extent of 1.02 ha. This includes the
former depositional area of the reservoir within the study area and an area severely affected by erosion
located just behind the dam breach.

Table 3. Characteristics of landscape units for their identification in the field and on the orthophoto and
their area on the classified maps. A threshold value of at least 50% vegetation cover for the vegetated
LU was chosen according to the Karoo Veld assessment form in (Esler et al., 2006), where an excellent
veld condition was characterized by, among other things, >50% vegetation cover. Total length of all
erosion rills is given in km and marked with *.

Landscape Unit
(LU)

Identification Area (ha)
In Field On UAV Imagery/DEM/Derivative RGB Map RGB+DEM Map

Depositional Flat terrain behind the
former dam wall

Former reservoir area on historical
aerial images, sharp elevation
change at the dam wall

1.02 1.02

Severely degraded
Crusted soils 0.72 1.23
Contiguous area of bare soil with little vegetation (individual
shrubs or tussock grass) and large gaps between individual
plants, vegetation cover <30%
Clearly developed rills

Moderately
degraded

Very low TPI 1.6 1.55
Contiguous area of bare soil more regularly interspersed with
vegetation but vegetation cover <50%
Some rills

Erosion rill Rill structure
Line structure of bare soil, possibly
flow accumulation paths on DEM 0.95 * 2.12 *
Very low TPI

Vegetated Contiguous vegetation cover interspersed with patches of bare
soil or stones, at least 50% covered with vegetation 6.47 6.15
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The authors wish to make the following corrections to this paper [1]: 

1. Change in Figures 6 and 7 

In the results section of the paper [1], Figures 6 and 7 from a previous version of the manuscript 
using no vegetation density analysis were published mistakenly. The correct figures are shown below: 

 

Figure 6. Modelled map showing identified landscape units based on classified land cover (RGB map). Figure 6. Modelled map showing identified landscape units based on classified land cover (RGB map)
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Figure 7. Modelled map showing identified landscape units based on classified land cover and
derivatives of the digital elevation model (RGB + DEM map).

4. Discussion

4.1. Comparison of Field Mapping and RGB Map

Both methods were able to identify areas of soil degradation. However, their spatial extent differed
slightly (Figure 8). Assuming that all bare soil areas of the FM are indicative of soil degradation in
the UAV-derived digital RGB map, the extent of degradation mapped in the field was 5% lower than
that mapped using UAV imagery. Severely degraded areas could be clearly distinguished from their
surrounding by their lower vegetation cover and were identified using both approaches. However,
two problems occurred. Firstly, digital mapping based on the orthophoto did not identify areas
of soil degradation that had a vegetation cover larger than 50%, such as vegetated erosion rills or
rills surrounded by vegetation. This lower percentage of correct identification is attributed to the
vegetation cover of the rills, which leaves them partially invisible on the UAV imagery. Secondly,
the UAV-based mapping revealed areas of degradation which were not identified in the field. This was
probably due to a difficult delineation of cover types in the field due to (i) smooth transitions between
increasing/decreasing vegetation cover or type, (ii) the spatial heterogeneity, and (iii) a limited straight
down view by the surveyor as opposed to the planform overview from the UAVs’ perspective.
Consequently, such visual delineation of LUs in the field depends on their spatial heterogeneity and can
be influenced by subjectively introducing a random mapping error, as is mentioned by [23]. In addition,
smaller degraded areas that are surrounded by vegetated areas might be invisible from the surveyors’
vantage point and might be missed due to time constraints during field mapping. Degraded areas that
were not identified on the FM but during digital mapping are marked in white in Figure 8.
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Figure 8. A map indicating areas that were identified as degraded with either method: manual field
mapping or digital mapping.

4.2. Comparison of Field Mapping and RGB+DEM Map

Similarly to the digital RGB mapping, the RGB+DEM mapping also identified areas of soil
degradation. The RGB+DEM map identified areas of medium vegetation cover with disturbed soil
surfaces much better than the field mapping approach, leading to an additional 12% of soil assessed as
moderately or severely degraded. The moderately degraded areas were largely identified with the
help of the DEM and the TPI. As [57] stated in 1993, including terrain attributes and thereby increasing
the information input can enhance spatial modelling. The small-scale topographic information of
the roughness index (TPI) enabled the identification of areas with disturbed soil surface structure in
our study area. Accordingly, small erosion rills that were not connected to larger rills were readily
identifiable on the digital map. In heterogeneous landscapes, small features are more difficult to depict
than large features and afford more time-investment. They can be missed by conventional mapping,
illustrating a benefit of using UAVs which enable complete spatial coverage.

4.3. Comparison of RGB and RGB+DEM Map

Degraded, vegetated, and depositional LUs could be detected from the aerial image. However,
we identified two key differences between the RGB and RGB+DEM classifications. Firstly, the RGB+DEM
classification classified a larger proportion of the area as degraded, which we attribute to incorporating
topography data and DEM derivates. Incorporating DEM derivates enabled the identification of
moderately degraded areas that still had a high vegetation cover but already showed a high terrain
roughness, which can lead to concentrated flow and rill formation if connectivity is high.

A second key difference is the greater number of rills that were identified on the RGB+DEM map
than on the RGB map. In our study area, approximately 40% of the rills were covered with vegetation
and thus not identified when land cover was the only parameter for identification. In particular, deeply
incised rills showed some vegetation cover (Figure 9), attributed to probably a higher water availability
through runoff accumulation in the rills. Vegetation in the rills also indicates that they primarily act
as transport pathways for water and sediment and are not eroding actively anymore. Such erosion
related features are ignored when just using RGB data. These results show that vegetation cover on
aerial pictures cannot exclusively be used as a soil health indicator but emphasizes that topographic
information should also be incorporated.
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Figure 9. (A) An overgrown gully. The bottom is covered in shrubs. This will not be detected as
degraded on the RGB map if vegetation cover is used only as a proxy for digital mapping. (B) Typical
earth mound around stem/roots of shrubs in eroding areas indicate the “original” height of the soil
surface. The difference between the ground to the left and right of the shrub is approximately 4 cm.

4.4. Potential and Limitations of Using UAV Imagery for Assessing Soil Degradation

UAV imagery served as a base for mapping landscape units. An exact classification of bare soil
and vegetated areas was therefore crucial for further landscape analysis (Fiugre 4B) and degradation
mapping. The kappa coefficient of 0.67 (Table 2) indicates that the classified map moderately agrees with
the associated reference data [53]. It is important to emphasize that the accuracy of the classification
strongly depends on the resolution of the input data used for the image analyses [25] and the selection of
training data. Our training dataset used for the SVM classification was chosen very carefully. Training
polygons were only assigned to a certain class if there was no doubt on the class affiliation. As a result,
transitional areas between shrubs and grasses or grasses and bare soil are probably underrepresented
in the training data introducing uncertainties in the distinction of boundaries between these classes.
For the accuracy assessment, all randomly stratified points for the accuracy assessment could be
attributed to a distinct land cover class. However, this required some ground knowledge of the
differences in shapes and colours of shrubs and grasses in the study area.

Additionally, heterogeneous landscapes or land cover classes complicate a successful classification,
because the landscape is composed of a mosaic of different land covers, such as shrubs, grasses, and
bare soil that do not always show distinct boundaries [63]. The moderate overall accuracy of 78%,
resulting in an inaccuracy of 22%, can be largely attributed to misclassified vegetation. Grass had the
lowest producer’s accuracy (Table 2) with two thirds of the accuracy assessment points incorrectly
assigned to shrubs or bare soil. Taking a closer look at the misclassified pixels and aligning them with
the field observations revealed that the edges of bushes were often misclassified as grasses (Figure 10).
Additionally, misclassified shrub pixels were often accounted as Dicerothamnus rhinocerotis. This shrub
has a dull greyish green color which was often incorrectly classified as grass. Grasses, which cover a
variety of different shades of green, including very low brightness, were also misinterpreted as shrubs
or bare soil (Figure 10). Using a density map to identify healthy landscape areas with a vegetation
cover larger 50%, revealed many lower vegetated patches smaller 20 m2 that were not detected during
the field mapping. These patches could be the first indicator of arising degraded areas. However,
their extent should be treated with caution due to uncertainties in boundary regions.
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Figure 10. Examples of misclassification on the LC map (A) compared to the orthophoto (B): edges
of shrubs were often misclassified as grasses (solid line). Small patches of grasses were incorrectly
classified bare soil (dashed line).

Due to missing near-infrared spectra, which contain much information on vegetation, a separation
between different shrub types and areas with mixed vegetation, as in the FM, was not successful. If more
detailed information on vegetation cover and types of vegetation is needed, or a distinct separation
between grasses and shrubs is necessary, multispectral data should be used [64–67]. Since the aim of
our study was the mapping of soil degradation, we condensed shrub-dominated and grass-dominated
areas into one LU (vegetated) and dispensed with the detailed classes as for the field mapping.
Condensing these two LUs into one showed that roughly 60% of the study area is covered with
vegetation. This agreed with our initial expectation based on [42] of 50–70% vegetation cover in these
climatic conditions.

4.5. Can Field Mapping Deliver the Status Quo?

Both digitally-derived maps classified a larger area as degraded than the field mapping. However,
fewer rills were visible in the RGB map than in the FM. The RGB+DEM map, using the UAV imagery
and topographic data, revealed the highest percentage of degraded areas. We attribute the improved
quality of the map to the identification of features such as rills which were otherwise masked by even
sparse shrub cover.

The final question of our study is whether field mapping can be considered as a benchmark.
Depending on the homogeneity of the landscapes, field maps can deliver a precise standard map
of a study area. However, with increased heterogeneity, the time required for data collection will
increase, as well as the transfer time to a geographic information system and map creation. Comparing
UAV-based maps and our field map revealed that conventional mapping has further shortcomings:
(i) vegetation acts as a cover and inhibits the detection of smaller patches without vegetation and soil
degradation from the surveyors’ position; (ii) smaller topographic features such as rills, especially
if they are not connected to larger systems, might be missed because they are hidden from view by
overhanging branches of shrubs; and (iii) the smooth transition between moderately degraded and
non-degraded areas makes a delineation difficult in the field and introduces a subjective individual
error source.

A final argument for the use of conventional UAV mapping, particularly for land management,
is the fast acquisition and processing of the data compared to conventional field mapping. Even if
some misclassification occurs, land cover, and implicitly soil quality changes, can be detected more
regularly, which over time leads to a quality similar to or better than an out-of-date conventionally
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produced map. Furthermore, the spatial resolution of UAV-derived products is higher, though their
level of detail of the classification depends on input data [25] and on the spatial prediction method
used [27]. However, if the vegetation type is of research interest, then a complimentary field survey is
necessary, ideally also being amended with the use of multispectral data.

5. Conclusions

In this study, the suitability of UAV data to map soil degradation was investigated and compared
to conventional field mapping. The results show that UAV imagery and data products generated
with them can contribute to identifying soil degradation with similar accuracy to conventional field
mapping. Most notably, UAV-based degradation mapping enabled the most severely degraded areas
to be identified in a feasible manner based on their limited vegetation cover. The LC classification
performed well for bare soil areas (producer’s accuracy: 92%, user’s accuracy: 85%), illustrating
that UAV imagery delivers sufficient information for soil degradation mapping on a catchment scale.
However, our results indicate that digital mapping still potentially underestimates the area of soil
degradation. This may be mainly attributed to small-scale heterogeneity of land cover, a difficult
distinction between bare soil ground cover and fading green tussock grasses, and shrubs inhibiting
a clear view of the ground and its actual condition. Tussocks growing on pedestals or exposed shrub
roots cannot be detected with UAV imagery at the catchment scale in a time-efficient way. In this case,
ground-truthing would add valuable information.

Major improvements to RGB-based and vegetation density-based mapping were able to be
achieved when fine-scaled topographic information derived from DEM generated from UAV data
was used to identify different landscape units. Therefore, we recommend combining an orthophoto at
least with a DEM and a flow accumulation model to gain information on erosion rills and moderately
degraded areas.

The results of our study demonstrate that UAVs provide a valuable tool for rapid assessment
of soil degradation, in particular in heterogeneous landscapes where manual field sampling is very
time consuming and subject to subjective assessments by the surveyor. When exact information on
vegetation cover is required and for land cover analysis in savanna-like landscapes, where RGB colors
represent different shades of beige to light greyish green, multispectral cameras should be used.
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