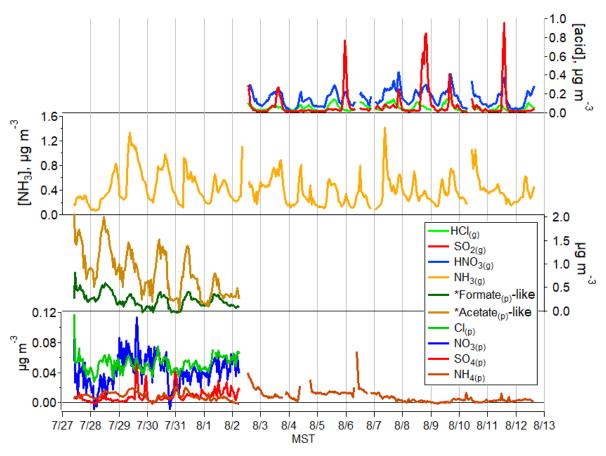


Article Supplementary Information for

Summertime Soil–Atmosphere Ammonia Exchange in the Colorado Rocky Mountain Front Range Pine Forest


Amy Hrdina ¹, Alexander Moravek ¹, Heather Schwartz-Narbonne ¹, and Jennifer Murphy ^{1,*}

¹ Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6

* Correspondence: jen.murphy@utoronto.ca; Tel.: +1-416-946 -3011

Received: date; Accepted: date; Published: date

S1. Additional measurements made by ambient ion monitoring system coupled with ion chromatographs (AIM-IC).

Figure S1. Ambient concentrations of trace gases (HCl, SO₂, HNO₃, and NH₃) and average PM_{2.5} composition (pCl, pNO₃, pSO₄, pNH₄, and *organics) observed in MEFO by the AIM-IC from 27 July to 13 August 2015.

S2. Flux calculation based on compensation point resistance model

S2.1. Soil fluxes and in-canopy transfer velocity

The variable χ represents the air concentration, either as an equilibrium point in the context of a compensation point or as a measured ambient concentration, such as a mixing ratio measured by the AIM-IC. The transport velocity represents the transport of air masses through the canopy and is composed of the in-canopy

aerodynamic resistance (R_{ac}) and the quasi-laminar boundary layer resistance at the forest ground surface

(R_{bg}):

$$v_{tr} = R_{ac} + R_{bg} \tag{S1}$$

Following the approach by Shuttleworth and Wallace (1985), R_{ac} was calculated as

$$R_{ac} = \frac{h_c \cdot \left(e^n - e^{n \cdot \left(1 - \frac{d + z_0}{h_c}\right)}\right)}{\kappa \cdot u_* \cdot n \cdot (h_c - d)}$$
(S2)

where u_* is the friction velocity measured above the forest canopy and κ is the von Kármán constant (=0.41) [2]. The parameter n is a function of the leaf area index and described further in Massad et al. (2010).

The quasi-laminar boundary layer resistance at forest ground is given by Schuepp et al. (1977) as

$$R_{bg} = \frac{Sc - ln\left(\frac{\delta_0}{z_l}\right)}{\kappa \cdot u_{*g}}$$
(S3)

where δ_0 is the distance above ground where the molecular diffusivity of NH₃ (D_{NH3}) [4] equals the eddy diffusivity and is thereby defined as $\delta_0 = D_{NH3}/\kappa \cdot u_{*g}$. The upper height of the logarithmic wind profile above the ground surface (z_l) was estimated as ~7 m from the in-canopy wind profile measurements. *Sc* is the Schmidt number, a strong function of the molecular diffusivity of the trace gas, and ~0.66 for NH₃. Assuming a logarithmic wind velocity profile, the friction velocity above the forest ground (u_{*g}) was determined as

$$u_{*g} = \frac{u_{2m} \cdot \kappa}{\ln(2 - z_{0g})} \tag{S4}$$

by using the lowest wind speed measurement available at ~2 m a.g.l. and a roughness length at the ground surface ($z_{0,g}$) of 0.01 m.

S2.1. Stomatal and cuticular fluxes

The stomatal resistance (R_s) was derived after Weseley et al. (1989) as

$$R_{s} = \frac{400 \cdot R_{s_{min}} \cdot \left(\frac{200}{0.1 + G}\right)^{2} \cdot \frac{D_{H2O}}{D_{NH3}}}{T_{c} \cdot (40 - T_{c})}$$
(S5)

where *G* is the global radiation measured above the forest canopy and D_{H20} and D_{NH3} are the molecular diffusivities of water and NH₃ in air, respectively [4]. The canopy temperature (T_c) was estimated by the average of ambient air temperatures measured at 1.8 m, 7.0 m, and 14.1 m a.g.l.. The minimal stomatal conductance (R_{s_min}) was set to 130 s m⁻¹, which is suggested by Weseley et al. (1989) for a coniferous forest in midsummer .

The deposition of NH₃ to the pine needles' cuticles (F_{cut}) was determined by the ratio of χ_c and the cuticular resistance R_{cut} :

$$F_{cut} = -\frac{\chi_c}{R_{cut}}$$
(S6)

According to Massad et al. (2010), R_{cut} can be described as a function of the relative humidity and the ratio of acids and bases in ambient air:

$$R_{cut} = \frac{31.5 \cdot e^{a \cdot (100 - rH_c)}}{AR}.$$
(S7)

The acid ratio (AR) was calculated as

$$AR = \frac{2 \cdot \chi_{SO2} + \chi_{HNO3} + \chi_{HCL}}{\chi_{NH3}}$$
(S8)

using the mixing ratios measured by the AIM-IC within the forest canopy. In Equation (S7), the in-canopy relative humidity (rH_c) was determined by the average of the relative humidity measured at 1.8 m, 7.0 m, and 14.1 m a.g.l.. The parameter a is given as 0.0318 for forests [2].

The canopy compensation point (χ_c) is needed in both Equation (6) in the main text and Equation (S6) for the determination of the stomatal and cuticular canopy fluxes, respectively. It represents the NH₃ mixing ratio at the pine needle surface, which governs the uptake or release of NH₃ by the stomata and the deposition of NH₃ to the cuticle. Following the compensation point approach described by Nemitz et al.

(2001), we reformulated the equation for χ_c to be independent from NH₃ measured above the canopy and the above canopy aerodynamic resistance as

$$\chi_c = \frac{\chi_{zo+d} + \chi_s \cdot \frac{R_b}{R_s}}{1 + \frac{R_b}{R_s} + \frac{R_b}{R_{cut}}}$$
(S9)

We assumed that the mixing ratio at the canopy top due (χ_{z0+d}) was similar to the NH₃ mixing ratio measured by the AIM-IC due to the relatively open forest canopy structure. While all other terms in Eq.

(S9) are described above, the quasi-laminar boundary layer resistance (R_b) which limits the exchange at the pine needle surface was determined as

$$R_b = \frac{2 \cdot \left(\frac{Sc}{Pr}\right)^{\frac{2}{3}}}{\kappa \cdot u_*} \tag{S10}$$

where Pr is the Prandtl number, defined as the ratio between momentum and thermal diffusivities (for air ≈ 0.72).

References

- [1] W. J. Shuttleworth and J. S. Wallace, "Evaporation from sparse crops-an energy combination theory," *Q. J. R. Meteorol. Soc.*, vol. 111, no. 465, pp. 839–855, 1985.
- [2] R. S. Massad, E. Nemitz, and M. A. Sutton, "Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere," *Atmos. Chem. Phys.*, vol. 10, no. 21, pp. 10359–10386, 2010.
- [3] P. H. Schuepp, "Turbulent transfer at the ground: On verification of a simple predictive model," *Boundary-Layer Meteorol.*, vol. 12, no. 2, pp. 171–186, 1977.
- W. J. Massman, "A review of the molecular diffusivities of H2O, CO2, CH4, CO, O-3, SO2, NH3, N2O, NO, AND NO2 in air, O-2 AND N-2 near STP," *Atmos. Environ.*, vol. 32, no. 6, pp. 1111–1127, 1998.
- [5] E. Nemitz, C. Milford, and M. A. Sutton, "A two-layer canopy compensation point model for describing bi-directional biosphere-atmosphere exchange of ammonia," *Q. J. R. Meteorol. Soc.*, vol. 127, no. 573, pp. 815–833, Apr. 2001.
- [6] M. L. Wesely, "Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical-models," *Atmos. Environ.*, vol. 23, no. 6, pp. 1293–1304, 1989.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).