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Abstract: Diffuse reflectance spectroscopy (DRS) is emerging as a rapid and cost-effective alternative
to routine laboratory analysis for many soil properties. However, it has primarily been applied
in project-specific contexts. Here, we provide an assessment of DRS spectroscopy at the scale of
the continental United States by utilizing the large (n > 50,000) USDA National Soil Survey Center
mid-infrared spectral library and associated soil characterization database. We tested and optimized
several advanced statistical approaches for providing routine predictions of numerous soil properties
relevant to studying carbon cycling. On independent validation sets, the machine learning algorithms
Cubist and memory-based learner (MBL) both outperformed random forest (RF) and partial least
squares regressions (PLSR) and produced excellent overall models with a mean R2 of 0.92 (mean
ratio of performance to deviation = 6.5) across all 10 soil properties. We found that the use of
root-mean-square error (RMSE) was misleading for understanding the actual uncertainty about any
particular prediction; therefore, we developed routines to assess the prediction uncertainty for all
models except Cubist. The MBL models produced much more precise predictions compared with
global PLSR and RF. Finally, we present several techniques that can be used to flag predictions of
new samples that may not be reliable because their spectra fall outside of the calibration set.

Keywords: local model; partial least squares regression; random forest; Cubist; MIR spectral library;
prediction uncertainty

1. Introduction

Soil is an essential part of the natural environment that not only influences the distribution of
plants, animals and landforms but also plays key roles in providing ecosystem services necessary for
mankind, including climate regulation, soil fertility and fiber and food production [1,2]. Anthropogenic
activities have greatly altered the composition and functioning of soils [3,4]. Quantifying the impact of
anthropogenic activities on soil carbon sequestration and loss requires at least sporadic monitoring
of soil physical, chemical and biological properties that are most relevant to controlling soil carbon
cycling rates. However, current technologies for monitoring and characterizing most soil properties
are expensive and often time-consuming. For example, the total cost of standard soil characterization
procedures at the US National Soil Survey Center is about $2500 per pedon with processing times of
6–12 months [5]. As a result, there is an increasing need to develop rapid and cost-effective techniques
to characterize soil resources.
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Diffuse reflectance spectroscopy (DRS) has been demonstrated to be a viable alternative for
rapidly characterizing and measuring soil properties compared with time-consuming and expensive
conventional soil laboratory analysis [6]. Visible (vis; 400–700 nm), near-infrared (NIR; 700–2500 nm),
and mid-infrared (MIR; 2500–25,000 nm) regions have been used widely to characterize soil minerals
and organic matter at the global [5,7,8], regional [9,10], national [11,12] and local scale [13]. Vis–NIR
can be preferable to MIR due to its low instrumental cost and potential for field deployment [14].
Therefore, for soil surveys that require high sampling density with basic soil properties measurement
(for, e.g., organic carbon, soil texture), vis–NIR may be preferable. In contrast, the MIR region contains
strong molecular vibrations of most important soil minerals and organic components [7,15]. As a result,
models built using MIR databases often perform better compared with the vis–NIR database for many
soil properties, particularly for more minor soil constituents [6,16].

Accurate quantification of soil properties requires building predictive models by selecting the most
diverse calibration set and applying the model to a new set of samples (validation set) that were not
used during the calibration process [17]. The most common calibration methods for building these
models are based on partial least squares regression (PLSR) [12,18,19]. PLSR is particularly useful for
building models that contain a large number of predictor variables by taking into account the correlation
between spectra and soil attributes [20]. The spectra are decomposed into a set of eigenvectors and
scores, followed by regression analysis of soil attributes. Since PLSR performs decomposition and
regression simultaneously, it is very useful in soil spectroscopy because it successfully deals with
collinearity and is computationally faster when dealing with large predictor variables [21].

Some difficulties appear when calibration models derived from large and spatially diverse spectral
libraries are used to predict soil properties of a small area [22]. PLSR models built using diverse spectral
libraries can introduce extraneous information when predicting soil properties from a small area, and
this subsequently results in large prediction errors [23]. The extraneous information is due to the
intrinsic nonlinearity of very heterogeneous spectral libraries [24]. As a result, linear PLSR models
are not able to effectively deal with complex and heterogeneous spectral libraries [25,26]. To address
this shortcoming, different approaches focusing on enhancement of the predictive power of local
samples have been developed [27–29]. These include adding new samples relevant to the local site,
selecting a subset of spectrally similar samples to make predictions and using a distance-weighted
matrix to impart more influence to the spectra closer to the prediction samples [30–32]. Locally based
approaches (e.g., Ramirez-Lopez et al. [24]) have been developed to specifically deal with this issue by
only selecting a small number of the most spectrally similar samples to build a PLSR calibration model.

Recently, machine learning (ML) algorithms, such as artificial neural networks (ANN), support
vector machines (SVM), Cubist, random forest (RF) and memory-based learning (MBL), have been
increasingly used to model and map soil properties at local to global scales [19,25,30,33,34]. Because
ML methods are able to deal with complex nonlinear relationships between the predictor and response
variables [35], their application to soil spectroscopy often results in improved calibration and validation
results for most soil properties compared with PLSR [36]. Among different ML methods used to make
predictions, SVM, ANN, Cubist and MBL have been found to perform better than PLSR for most of
the soil properties [16,37,38]. SVMs are kernel-based algorithms that follow data transformation into
a high-dimensional space to construct a hyperplane by maximizing the distance to the nearest data
point of any of the input classes [39]. ANNs use a supervised learning approach to fit the relationship
between predictor and response variables by adjusting the weights through an optimization process
until the error between the observed and predicted value is minimized [40]. The Cubist model is a
classification and regression tree approach, where the prediction is based on intermediate linear models
that are subsequently formed at each tree node [38,41]. MBL is a data-driven approach, conceptually
similar to Cubist, where linear (e.g., PLSR) models are built to predict each new sample on the basis of
a set of locally stable samples [42]. Although SVM, ANN, Cubist and MBL perform better compared
with other machine learning (e.g., random forest) and linear multivariate methods (PLSR, multivariate
adaptive regression splines: MARS), inconsistent results in terms of model performance have been
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reported for some soil properties. For example, Wijewardane et al. [16] used an MIR spectral library
to show superior model performance using ANN compared with PLSR for all soil properties (9 out
of 12) except clay, silt and sand. In contrast, PLSR models were superior compared with ANN when
predicting soil pH at soil moisture levels below 20% using a vis–NIR spectral library [43]. Similarly,
a comparison between PLSR and Cubist using MIR data showed that Cubist outperformed the former
in the prediction of total carbon and clay, but the prediction of cation exchange capacity was better
using a PLSR model [38]. Inconsistencies in the prediction performance of machine learning and
multivariate linear regression for some soil properties can be attributed to (1) the size of the spectral
library used to the build calibration model; (2) the lack of standardized methodology applied during
sample preparation, spectrum acquisition and pretreatment; and (3) the representativeness of the
samples used to build calibration models across heterogeneous soil conditions.

Although it has been suggested that, for calibration, MIR spectra outperform vis–NIR spectra
for many soil properties, the vis–NIR research community has invested more resources in developing
techniques for dealing with large and complex spectral libraries [36,42]. Relatively few studies have
used large MIR spectral libraries to predict soil and mineral properties, and fewer have tested different
statistical approaches. Madari et al. [44] used the MIR spectra of 1135 soil samples collected from
diverse locations in Brazil to predict total carbon, while Terhoeven-Urselmans et al. [8] used 971 soil
samples on the basis of globally distributed soil profiles to build calibration models for different soil
properties. Baldock et al. [11] acquired MIR spectra of 20,495 soil samples collected from 4526 locations
across Australia and found that PLSR models developed for different regions outperformed a single
national PLSR model for inorganic, organic and total carbon. Recently, Wijewardane et al. [16] used
an MIR spectral library containing 20,000 soil samples in the US and found that machine learning
approaches were necessary to build successful models for most soil properties.

Existing studies using soil spectroscopy have focused on developing accurate models by
assessing model performance with independent samples using validation statistics, such as R-square,
root-mean-square error (RMSE), bias and ratio of performance to deviation (RPD) [11,36,45]. While
these validation statistics are useful in determining the overall model performance, uncertainty
estimates of each new sample in the validation sets are often not provided [11,16,28]. Reporting
uncertainty of individual samples in the validation sets is useful for determining the precision and
trustworthiness of individual predictions and considered a good analytical practice [46]. It is also
important for many applications relevant to understanding soil carbon cycling from the carbon
accounting perspective [47]. Common approaches used to estimate uncertainty using PLSR include
U-deviation, as implemented in the Unscrambler software, and jackknifing, which is based on ordinary
least squares regression [48,49]. U-deviation is an empirically derived formula that considers the
variance in validation sets and the error in the product of scores and loadings to provide uncertainty
estimates for each new prediction [50]. Jackknife is a resampling technique aimed at retrieving a set of
regression coefficient vectors that provide information about the variability and the standard error of
regression coefficients [51,52]. Although uncertainty estimation of multivariate regression models has
been implemented in several commercial software (e.g., Unscrambler, MATLAB), relatively few studies
have reported the uncertainty estimates of each new prediction. Likewise, uncertainty estimates using
machine learning (e.g., random forest) are mostly accomplished by using quantile regression, where a
full conditional distribution of response variables is generated to retrieve the 95% confidence interval
using the range between the 2.5 and 97.5 percentiles of the distribution [53].

In this study, we utilized the USDA National Soil Survey Center’s Kellogg Soil Survey Laboratory
(NSSC KSSL) MIR spectral library and associated soil characterization database, which now includes
>50,000 MIR spectra collected on soils from the United States. We present our evaluation of the
capability of this large spectral library to make routine predictions of several soil properties that are
critical to understanding soil carbon cycling. We hypothesized that machine learning approaches,
because of their ability to find patterns in complex data, outperform traditional PLSR models. Therefore,
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three machine learning approaches (MBL, Cubist and RF) and a global PLSR model were tested for
their ability to produce accurate and precise (i.e., low uncertainty) predictions.

2. Materials and Methods

2.1. The NSSC-KSSL Spectral Library

The soil samples used in this study are extracted from the existing soil spectral library at the
USDA NSSC-KSSL. While the current NSSC-KSSL soil characterization database contains >110,000
soil samples, the current (as of June 2018) MIR spectral library consists 15,118 pedons, representing
54,211 samples that have some associated analytical data (Figure 1). The 54,211 samples represent
the wide range of land use and geologic conditions, allowing us to test several statistical approaches
relevant to developing robust calibration models. All data are publicly available via request from the
USDA National Soil Survey Center.

Figure 1. Locations of the soil pedons with mid-infrared (MIR) spectra available through the USDA
National Soil Survey Center’s Kellogg Soil Survey Laboratory (NSSC KSSL) soil database for samples
from the United States. Soil pedons with an exact GPS location = 4744; soil pedons with county
centroids = 10,302.

In this study, we focused on 10 soil physical and chemical properties, including organic carbon
(OC, %), which was measured as total carbon by elemental analysis minus any inorganic carbon
measured manometrically; calcium carbonate (CO3, %) measured by manometer; cation exchange
capacity (CEC, cmolc kg−1) and exchangeable calcium (Ca, cmolc kg−1) measured by displacement
with ammonium oxalate, buffered at pH 7; clay (%) by sedimentation, pH in 1:1 water suspension;
bulk density (BD, g/cm−3); dithionite citrate extractable aluminum (Al, %); acid oxalate extractable
iron (Fe, %); and organic carbon density (OCD, kg m−3) calculated as the product of OC × BD ×
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(1 − CF), where CF is coarse fragments (>2 mm) by volume. Detailed lab protocols can be found
elsewhere [54].

The existing soil spectral library at the USDA NSSC-KSSL consists of BD data obtained with
two different measurement techniques [55]: (1) clod and (2) core methods. The clod method involves
extraction of an intact soil clod followed by the determination of the dry weight of the soil. The volume
of the clod is measured after equilibration at 1/3 bar water tension. In contrast, the core method
involves extracting soil samples using a known volume of a metal cylinder. The extracted samples
are then oven-dried, sieved and weighed to determine the BD of the fine earth fraction. The clod has
been the standard soil survey method but is only successful in soils with a fair degree of coherence;
therefore, the method is biased away from sandy or organic-rich topsoils. In this study, we evaluated
the models using clod, core and combined (clod and core together) methods.

The MIR spectra were acquired on air-dried and ground soil samples (to pass an 80-mesh sieve)
using a Bruker Vertex 70 FTIR spectrometer with an HTS-XT high-throughput accessory. The sampling
plate in the spectrometer consists of standardized 96-well microplates. On each 96-well microplate,
23 samples were prepared in quadruplicate, while the four remaining blank spots were used for
reference readings. At each spot, 32 co-added scans were collected at a resolution of 4 cm−1. Both the
sample MIR and reference scans are available in OPUS format, which was converted to text file for
developing calibration models using an open-source programming platform [56].

2.2. Pre-Processing of MIR Spectra and Analytical Data

The four replicates of spectra corresponding to each sample were averaged to create a dataset
containing both laboratory measurements of soil properties and MIR spectra. Spectra were truncated
to 6000–600 cm−1, and regions showing atmospheric CO2 features (2389–2268 cm−1), which are not
associated with changes in soil samples [57], were removed. Spectra were then baseline corrected
using the baseline-offset transformation before developing the calibration models. Since multivariate
regression methods intrinsically require the data to be normally distributed, we assessed different
transformation approaches prior to building multivariate PLSR models. We first chose two analytical
data with normal (pH) and non-normal (OC) distributions. The normality of these two analytical
data was explored by building histograms and calculating skewness and kurtosis (Figure S1 in
Supplementary Materials). We then built PLSR models using box-cox-, square-root- and log-transformed
and untransformed analytical data by dividing the data into calibration (80%) and validation (20%) sets
to assess the prediction performance of near-normally distributed pH and non-normally distributed OC.
On the basis of this analysis, we found that PLSR models built with square-root-transformed analytical
data were, on average, superior (low RMSE and high R2) compared with box-cox-transformed and
untransformed data, particularly when PLSR calibration models were applied to independent validation
sets (Table S1; Figure S2). However, for other calibration methods (random forest, Cubist and MBL),
none of these data transformations improved the prediction performance of pH and OC (Table S1).
Although machine learning methods, such as random forest, Cubist and MBL, do not require the
data to be normally distributed, for consistency, analytical data were square-root-transformed prior to
developing calibration models using all methods (Figures S3 and S4).

2.3. Sample Selection, Outlier Detection and Model Performance Assessment

Large datasets invariably have erroneous data. Those errors can occur in both analytical and
spectral data. Therefore, to detect outliers in the spectral library, we followed a two-step procedure.
In the first step, we built PLSR models and tested their performance using all samples in the spectral
library. Then, we defined a criterion to detect outliers based on the predictive performance of the
model. In this study, outliers are defined as those sample points that fall outside a defined standard
deviation threshold from the fitted (one-to-one) line. The standard deviation threshold was optimized
such that it removed a maximum of 1% of the samples that fell beyond the threshold value in both the
calibration and validation datasets (Table 1; Figure S5). This method of detecting outliers is predicated
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upon being able to build reasonably reliable PLSR models but is superior to any method that focuses
only on the spectral data.

In the case of CO3, we first built a random forest classification model to detect the presence/absence
of CO3 according to results from a fizz test using 1 N HCl. Random forest performed better (out-of-bag
error rate of 12%) in classifying the presence/absence of CO3 (N = 12,205 for presence and N = 6387
for absence) than PLSR model. For further analysis, we only used samples that had detectable CO3

according to the random forest output.

Table 1. Summary statistics of soil properties available through the NSSC KSSL MIR library.

Soil Units Ntotal Noutlier Mean Median SD Q25 Q75 Skew Kurt

Al wt % 23,121 229 0.19 0.10 0.32 0.04 0.21 8.52 143.13
BDclod g cm−3 10,653 100 1.35 1.38 0.27 1.22 1.52 −1.05 5.34
BDcore g cm−3 7071 68 0.93 1.01 0.50 0.51 1.30 0.21 7.94
BDall g cm−3 17,488 173 1.18 1.29 0.43 1.00 1.47 −0.73 7.02
Ca cmol(+) kg−1 36,854 368 23.09 12.30 34.43 3.69 28.65 4.15 28.18
CEC cmol(+) kg−1 36,936 349 22.81 16.58 25.73 8.47 26.10 3.64 27.25
Clay wt % 33,156 313 22.44 20.49 15.92 9.39 32.36 0.80 3.40
CO3 wt % 12205 120 6.92 1.00 12.05 0.21 9.24 2.98 14.73
Fe wt % 21,530 212 0.44 0.26 0.63 0.10 0.57 8.84 191.11
OC wt % 42,893 404 7.72 1.33 14.15 0.42 4.95 2.14 6.28
OCD kg m−3 15,812 158 19.84 12.25 24.72 4.62 26.37 5.39 87.29
pH NA 35,297 348 6.42 6.26 1.30 5.43 7.56 0.12 2.25

BDclod and BDcore measure weight per unit volume of the <2 mm fraction, with volume measured after
equilibration at 1/3 bar water tension in the case of the clod method and at field moisture in the case of the
core method. BDall combines information from both the clod and core method, providing a much wider range
of bulk density estimates. In the case of carbonates (CO3), we first built a random forest classification model
to detect the presence/absence of CO3 (N = 18,592) according to the results of a fizz test. Then, we removed
outliers and built multivariate and machine learning models on samples that had detectable CO3 (N = 12,205).
Abbreviations—BD: bulk density; CEC: cation exchange capacity; OCD: organic carbon density.

Following outlier detection, we divided the MIR spectral library into calibration and validation
datasets using a Kennard Stone (KS) algorithm [58]. The KS algorithm is a deterministic approach that
uses Euclidean or Mahalanobis distance to select a set of samples uniformly distributed in principal
component (PC) space. Using the prospectr package in R, we selected 80% of the most representative
samples in the library to calibrate the model. The remaining 20% of the samples were assigned to
validation datasets to assess the predictive performance of the MIR models. The performance of the
MIR models was assessed using bias, R2, RMSE and RPD on independent validation sets (detailed in
Section 2.5).

2.4. Spectral Modeling

2.4.1. Partial Least Squares Regression (PLSR)

Partial least squares regression (PLSR) is a multivariate regression technique widely used in
chemometrics to study the relationship between highly collinear multi-dimensional predictor variables
and a response variable. The PLSR algorithm follows a linear multivariate model that selects orthogonal
(latent) factors to maximize the covariance between predictor (e.g., MIR data) and response (e.g., soil
properties) variables [20,59]. As we deal with 2737 predictor variables for every response variable,
the PLSR procedure helps to reduce the number of predictor (spectra) variables to a few independent
variables that explain the most variation in the MIR spectra. In this study, global PLSR models were
developed using the pls package [59], which decomposes the predictor (X) and the response (y)
variables into scores (T) and loadings (P and q) as follows:

X = TP′ + E (1)
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y = Tq + f (2)

where E and f are the residuals associated with the predictor and response variables, respectively.
The final regression model used to predict soil properties is of the following form:

yi = β0 + β1t1i + β2t2i + .............. + βntni (3)

where β0 is the intercept of the global PLSR model; β1, β2 ... βn are the regression slopes for n latent
variables (principal components); and t1i, t2i ... tni are the scores from principal component 1 to n for
response variable i.

In global PLSR, the optimal number of principal components (PC) to retain in the final model
is determined using a one-sigma heuristic approach [60]. In this approach, the number of PCs
corresponding to the initial best model (lowest RMSE) is determined using 10-fold cross-validation
by examining models with up to 20 PCs. Then, the model with the fewest components that still falls
within one standard error of the residuals (observed–predicted) of the overall best model is retained as
the optimal number of PCs. This was accomplished using the selectNcomp function in pls package [59].

2.4.2. Memory-Based Learning (MBL)

Memory-based learning (i.e., local modeling) is a lazy learning approach in which, for each new
target spectrum requiring a prediction of a given response variable, a new target function is fitted using
a relatively small subset of spectrally similar samples found in a large reference set [24]. The spectrally
similar samples (neighbors) can be found by using different similarity search methods, such as the
Pearson’s correlation coefficient between spectra or Mahalanobis distances in the principal component
(PC) space (or PC distances). Common methods to fit the local target functions include PLSR, Gaussian
process [24] and weighted-average PLSR [61]. In this study, we used PLSR models to fit the local target
functions, while neighbor searches were performed using Mahalanobis distances in the PC space. The
number of PCs to retain was selected using an optimized principal component approach (oPC-M) [24].
MBL was conducted using the resemble package in R. Modifications to the MBL were made to output
spectrally similar neighbors based on Euclidean distance in the PC space and provide uncertainty
estimates of each new prediction.

2.4.3. Random Forest (RF)

Random forest is an ensemble machine learning technique that was developed as an extension of
classification and regression trees (CART) to improve the prediction performance of the model [62].
The model-building process is the same as that for CART, where a recursive partitioning of the dataset
is done to explore the relationship between the response and predictor variables [63]. Unlike CART,
numerous trees are generated by using a subset of predictor variables, and all the responses are
aggregated to get one single prediction. While generating each tree, a bootstrap sample (samples
with a replacement) of the original data is selected, and the performance of each tree is validated
using one-third of the samples that were not used for building that tree (out-of-bag error estimate).
Random forest was implemented in R using the ranger package [64], where the number of trees to
build is provided using the num.trees parameter. The number of trees can substantially affect the
accuracy of the random forest model and depend on the number of response variables and predictor
variables. When observations are sufficiently larger than the number of predictor variables, fewer
trees are required and vice versa. For example, Hengl et al. [65] indicated that 150 trees are optimal to
achieve a stable random forest model, beyond which a trade-off between the computation time and
model accuracy offers no additional benefits. Given that the number of response variables is much
larger than the number of predictor variables, we used 150 trees as a compromise between accuracy
and computational time in this study.
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2.4.4. Cubist

Cubist is a machine learning algorithm that constructs model trees using the CART approach [63],
with linear models at each terminal nodes [66]. Unlike other decision trees (for example, random
forest) that retrieve the final model on the basis of discrete values, Cubist uses a set of multivariate
models associated with a set of rules at each terminal node. The final prediction is based on the linear
model that satisfies the set of conditions associated with the predictor variables [67]. The splitting
criteria are also slightly different between CART and Cubist, with CART using the variance and Cubist
using the standard deviation as a measure of error [68]. The Cubist model was implemented in R using
the Cubist package [67], which is an extension of Quinlan’s M5 model tree. Cubist requires setting up
a committees parameter, where iterative model trees are created in sequence according to the number
of committees using a boosting-like scheme. However, as a compromise between accuracy and the
computational time required to run the Cubist, we did not implement the boosting-like algorithm, and
we set the number of committees to 1 during the course of this study.

2.5. Assessment of Model and Individual Prediction Performance

2.5.1. Model Performance

In this study, we assessed the overall accuracy and precision of each model using the coefficient
of determination (R2), ratio of performance to deviation (RPD), root-mean-square error (RMSE) and
model bias. The R2, RPD, RMSE and bias were computed for each property and each modeling
approach according to the following equations:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (4)

RPD =
σ

RMSE
(5)

bias =
1
n

n

∑
i=1

(yi − ŷi) (6)

where yi is the observed value of the ith sample measured by conventional laboratory methods, ŷi is
the predicted value of the ith sample, n is the number of samples and σ is the standard deviation of the
observed soil property in the calibration or validation set.

We further defined criteria to assess the relative fit of the model using RPD: (1) RPD≥ 2.0 (excellent
models); (2) 1.4 ≤ RPD < 2 (fair models); and (3) RPD < 1.4 (non-reliable models) [69]. However, it is
important to note that the criteria to define excellent and poor models using RPD are rather arbitrary,
and there is no statistical basis on how these classification thresholds are determined [70]. We feel it is
more important that a user evaluates model performance with respect to the objective of the study.

2.5.2. Individual Prediction Uncertainty

In addition to overall model performance, characterizing the prediction uncertainty of each
sample is crucial in order to know the quality or reliability of each new prediction when relying purely
on spectral-based predictions [70]. Therefore, we estimated the uncertainty associated with each new
prediction in the validation sets using two different approaches. In the case of the PLSR and MBL
models, we used the U-deviation method, as implemented in the Unscrambler software package
(CAMO) and subsequently improved by De Vries and Ter Braak [50]. The U-deviation method is an
empirically derived formula that takes into account the residual variance in the validation sets and the
error in the product of scores and loadings [50]. Mathematically, PLSR and MBL make new predictions
using the following relationship:

ypred,i = ycal + tpred,i × qT (7)
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where tpred,i is the score for predicted sample i, and qT is the y-loadings from the calibration set. Thus,
U-deviation can be estimated from the error in y-mean and the error in the product of score and
loadings. The final equation for estimating U-deviation is as follows:

σpred,i =

√
σvalid × (1− A + 1

n
)× (h0 +

σX
σX,valid

+
1
n
) (8)

where σvalid is the y-residual variance in the validation set, σX is the x-residual variance in the calibration
set, σX,valid is the average x-residual variance in the validation set, H0 is the leverage of the prediction
sample and can be seen as the distance of each sample in the validation sets to all the samples in the
calibration set, A is the number of principal components used to build the model and n is the number
of samples in the validation set.

In the case of random forest, we used the infinitesimal jackknife to provide the standard error
associated with each new prediction in the validation datasets. The general approach of the jackknife
follows a resampling technique whereby prediction is computed by omitting one observation at a
time. These individual predictions are then combined to provide an estimate of the variance or bias
correction [71,72]. In contrast, rather than remove one observation at a time, the infinitesimal jackknife
approach assigns a weight to each observation to provide the estimate variance [73]. The infinitesimal
jackknife approach has been considered to give more stable predictions compared with the jackknife
approach [72]. Therefore, we used the infinitesimal jackknife approach to provide uncertainty estimates
of each new prediction using the ranger package [56]. Unfortunately, assessing the prediction uncertainty
in the Cubist model using a jackknife or other bootstrapping approach is currently computationally
prohibitive with the large datasets used in this study.

Although the model uncertainty was estimated for all soil properties and summarized as the mean
deviation of the validation set, we only show detailed uncertainty estimates for two soil properties
(OC and BD) using the validation sets. These two soil properties were selected on the basis of the best
(OC) and worst (BD) model performance in the validation sets using the local PLSR model.

2.5.3. Trustworthiness of New Predictions

Individual prediction uncertainty estimates were also used to assess the trustworthiness of new
predictions. When an MIR-based prediction model is used independently of laboratory data, there must
be a way of flagging when predictions should not be trusted because the new sample falls outside of
the calibration space [74]. To determine the trustworthiness of the predicted soil property using PLSR
and MBL models, we first determined the outliers in the spectra using F-ratios (F) [75]:

Fi =
(M− 1)(εi)

2

∑j 6=i(εj)2 (9)

where M is the number of samples in the calibration set, εi denotes the spectral residuals for the ith
sample in the calibration sets and εj denotes the spectral residuals of all samples in the calibration set
with the ith sample excluded.

The F-ratio and M − 1 degrees of freedom are used to derive the probability distribution such
that spectra with a probability of greater than 0.99 are flagged as an outlier in the analysis:

Fprob(F,1,M−1) > 0.99 (10)

In the case of the PLSR model, a prediction was considered unreliable if the spectra fell outside
the calibration space with an F-ratio greater than 0.99. However, since MBL uses spectrally similar
neighbors to make predictions for new samples, we defined an additional criterion to detect samples
yielding unreliable predictions. New predictions were considered unreliable if the new sample used
spectrally similar neighbors with an F-ratio greater than 0.99 to make the prediction. Since the RF
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model uses a different approach to make predictions and does not rely on the relative location of spectra
in orthogonal space, we detected outliers using the probability distribution of the relative deviation
(uncertainty/predicted value) from the validation sets. Samples were flagged as untrustworthy when
the probability of the relative deviation was greater than 0.99.

Data processing, analysis and prediction were carried out using high-performance Google Cloud
computing (https://cloud.google.com) with 52 GB RAM, Google bucket unlimited hard disk space
and 8 cores running on a Debian GNU/Linux 9 operating system and R 3.2.3 platform. Multiple VM
instances were created in Google Cloud to speed up data processing, analysis and prediction. Total
computational time from scratch was approximately 121 CPU hours. The script used for processing,
analysis and prediction of all soil properties is freely available in the WHRC GitHub (https://github.
com/whrc).

3. Results

3.1. Exploratory Analysis of the KSSL MIR Library

Many of the soil properties in this study deviate substantially from the normal distribution, as
indicated by their high skewness values (a measure of symmetry) and kurtosis (a measure of heavy or
light tail relative to the normal distribution) (Table 1). Clay content, bulk density and pH appear to be
normally distributed, as their skewness values are close to 0, and their kurtosis values are close to 3.
On the other hand, CO3, CEC, exchangeable Ca and the extractable phases of Al and Fe are skewed
and heavily tailed, indicating a non-normal distribution. Across different soil horizons, OC was found
to be the highest in the O horizon with a mean value of 35.7 wt %, while carbonates (CO3) were the
highest in the B, B/C and C horizons with mean values of 7.8, 8.5 and 9.2 wt %, respectively. While
half of the samples did not have a recorded soil order, all soil orders except oxisols (n = 6) and gelisols
(n = 214) are represented by >500 samples (Table 2).

Table 2. Distribution of samples in the NSSC KSSL MIR library as a function of soil order and horizon.

Soil Horizons

Order O A E B C R Undefined Total

Alfisols 65 727 195 1918 216 1 289 3411
Andisols 157 368 13 616 116 2 20 1292
Aridsols 0 222 4 674 155 0 46 1101
Entisols 52 380 61 238 631 0 289 1651
Gelisols 72 13 0 32 59 0 38 214

Histosols 507 9 4 10 114 0 80 724
Inceptisols 191 729 42 1229 618 4 332 3145
Mollisols 47 2571 59 3608 823 0 1010 8118
Oxisols 0 1 0 5 0 0 0 6

Spodosols 129 116 212 744 221 1 20 1443
Ultisols 55 409 85 1002 130 0 235 1916
Vertisols 0 72 1 275 37 0 133 518

Undefined 514 1023 58 1243 371 0 24,145 27,354

Total 1789 6640 734 11,594 3491 8 26,637 50,893

3.2. Overall Model Performance

Results show that excellent calibration models were obtained with RPD≥ 2.0 for all soil properties
using the Cubist and RF models (Table 3). Global PLSR also produced excellent calibration models for
all soil properties except Fe (fair model; RPD = 1.5). When the performance of the calibration models
was assessed using R2, RF produced calibration models with R2 ≥ 0.95 for all properties. Cubist also
produced calibration models with R2 ≥ 0.95 for all properties except Fe (R2 = 0.88) and BD (R2 = 0.88,
0.87 and 0.88 using clod, core and combined clod and core approaches, respectively). The global

https://cloud.google.com
https://github.com/whrc
https://github.com/whrc
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PLSR models produced calibration models with R2 ≥ 0.94 for OC, CO3 and CEC, while it had slightly
lower R2 for clay, OCD, Ca, Al, pH and BD (using core and combined approach) (0.80 ≤ R2 < 0.90).
The calibration models with the lowest R2 were obtained for BD (R2 = 0.77 using the clod approach)
and Fe (R2 = 0.58), respectively. The optimal number of principal components selected in the global
PLSR models using the one-sigma approach was 20 for all soil properties except BD, for which 19 and
16 components were selected for the clod and core methods, respectively, and 18 components were
used for the combined BD model. Since MBL produces new calibration models for the prediction of
each sample, there are no calibration statistics for the local model.

Table 3. Calibration and validation results of nine soil properties using partial least squares regression
(PLSR) and machine learning (memory-based learner (MBL), Cubist and random forest (RF)) models.

Soil Property Method Calibration Validation

N Bias R2 RPD RMSE N Bias R2 RPD RMSE MeanDev

OC

Cubist 33,991 0 1.0 16.9 0.85 8498 0.01 1.0 16.9 0.69
MBL 0.03 1.0 18.2 0.64 0.08
PLSR 0.05 0.98 8.0 1.8 0.12 0.99 9.8 1.19 0.26

RF 0.05 1.0 20.7 0.69 0.11 0.99 12.5 0.93 0.39

CO3

Cubist 9668 0.04 0.99 11.1 1.18 2417 −0.01 0.98 8.0 1.35
MBL 0.14 0.98 7.6 1.41 0.33
PLSR 0.09 0.97 6.1 2.17 0.04 0.97 5.9 1.81 0.70

RF 0.17 1.0 15.3 0.86 0.36 0.97 5.9 1.82 0.64

CEC

Cubist 29,270 0.16 0.98 7.3 3.45 7317 0.24 0.99 8.3 2.38
MBL 0.07 0.99 8.6 2.3 0.33
PLSR 0.25 0.94 4.1 6.1 0.45 0.96 4.9 4.02 1.38

RF 0.26 0.99 10.2 2.48 0.51 0.97 5.8 3.44 1.52

Clay

Cubist 26,274 0.07 0.97 5.5 2.92 6569 0 0.96 5.1 2.69
MBL 0.03 0.97 5.5 2.47 0.41
PLSR 0.34 0.89 3.0 5.43 −0.24 0.92 3.5 3.95 1.86

RF 0.41 0.98 7.2 2.25 0.2 0.93 3.8 3.57 3.79

Ca

Cubist 29,189 0.34 0.96 5.2 5.65 7297 0.27 0.95 4.7 4.41
MBL 0.12 0.95 4.6 4.49 0.47
PLSR 0.68 0.86 2.7 10.79 0.64 0.89 3.0 6.85 2.07

RF 0.69 0.98 7.2 4.03 0.67 0.93 3.8 5.43 4.06

Al

Cubist 18,314 0 0.95 4.7 0.05 4578 0 0.9 3.1 0.08
MBL 0 0.97 5.4 0.04 0.01
PLSR 0.01 0.83 2.5 0.1 0.01 0.85 2.6 0.09 0.03

RF 0.01 0.97 5.9 0.04 0.02 0.83 2.4 0.1 0.03

OCD

Cubist 12,523 0.42 0.89 3 6.2 3131 0.39 0.89 3.0 5.23
MBL 0.95 0.89 3.0 5.17 0.61
PLSR 0.49 0.82 2.3 8.09 1.19 0.86 2.6 5.93 1.96

RF 0.42 0.97 6.0 3.13 0.8 0.87 2.8 5.6 1.66

pH

Cubist 27,959 0 0.95 4.4 0.31 6990 0.01 0.88 2.9 0.36
MBL 0 0.89 3.1 0.34 0.05
PLSR 0.01 0.8 2.3 0.59 0.04 0.74 1.9 0.54 0.27

RF 0.01 0.98 6.4 0.21 0 0.82 2.4 0.45 0.21

Fe

Cubist 17,054 0.02 0.88 2.9 0.18 4264 0.01 0.71 1.9 0.27
MBL 0.02 0.81 2.3 0.22 0.02
PLSR 0.04 0.58 1.5 0.34 0.03 0.66 1.7 0.29 0.09

RF 0.03 0.95 4.4 0.12 0.04 0.69 1.8 0.28 0.06

Ratio of performance to deviation (RPD) is calculated as the ratio of standard deviation of the observed
soil property to the root-mean-square error in the prediction, and mean deviation (MeanDev) is the
average of the uncertainty estimates for all samples in the validation sets. All predictions were
back-transformed prior to calculating goodness-of-fit statistics.

When these models were tested on an independent validation set, MBL (Figure 2) demonstrated
excellent performance, with RPD ≥ 2.0 for all soil properties. Cubist (Figure S6) and RF (Figure S7)
also showed excellent model performance, with RPD ≥ 2.0 for all soil properties except Fe and BD
using the combined clod and core methods (fair models; 1.7 ≤ RPD ≤ 1.9). The global PLSR (Figure S8)
produced fair models when tested on an independent validation set for pH (RPD = 1.9), Fe (RPD = 1.7)
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and BD using the clod-only and combined clod and core methods (RPD = 1.8 and 1.7, respectively).
When model R2 was used to test the predictive performance of all models, Cubist (Figure S6) and
MBL (Figure 2) predicted all soil properties with R2 ≥ 0.90 except OCD, pH, Fe and BD (Tables 3
and 4). The random forest models (Figure S7) showed the greatest drop in performance between
calibration and validation sets, with R2 values dropping by 0.16 and 0.26 for the more difficult to
predict properties (pH and Fe, respectively). In the case of BD, model fit (R2) dropped by 0.19, 0.18 and
0.25 using the random forest models (clod, core and combined approaches, respectively). Cubist also
demonstrated a tendency to overfit for these three properties (pH, Fe and BD using all three methods).
On the other hand, the global PLSR models (Figure S8) held up to the independent validation data
and produced very similar performance statistics (Tables 3 and 4). For the properties with the best
predictions (OC, CO3, CEC and clay)—i.e., properties for which all models produced R2 > 0.92—the
RMSE values suggested that MBL outperformed the Cubist, PLSR and RF models. The RMSE values
for RF and PLSR were 35–86% higher, while those of Cubist were 3–9% higher than the RMSE values
for MBL for the top four properties (with R2 > 0.92). For other soil properties, such as Ca, Al, pH and
Fe, the RMSE values for the RF and PLSR models were 23–150% higher than the RMSE values using
the MBL and Cubist models.

Figure 2. Comparison of the memory-based learner (MBL) model predictions with an independent
validation set of laboratory-measured Al, Ca, CEC, clay, CO3, Fe, OC, OCD and pH.

For bulk density, which is a more difficult to predict soil property, evaluation of model
performance on independent validation sets indicated that MBL (Figure 3) and RF (Figure S9) were
slightly superior compared with the Cubist and PLSR models (RMSE improved by 7–21%) using
combined samples (clod and core) (Tables 2 and 3). However, the MBL, Cubist and RF models showed
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a similar performance (RMSE = 0.21) in the case of BD estimated using the core method. For BD
estimated using the clod method, MBL and RF slightly outperformed the Cubist and PLSR models
(10–20% improvement in RMSE).

Figure 3. Comparison of the MBL model predictions from an independent validation set with observations
obtained using combined clod and core (a), clod-only (b) and core-only (c) methods for measuring bulk
density (BD).

Table 4. Calibration and validation results of soil bulk density using PLSR and machine learning
(memory-based learner (MBL), Cubist and random forest (RF)) models. Prediction of soil bulk density
was assessed by fitting the model using data from two analytical methods (clod—volume measured
at 1/3 bar water tension and core—volume measured at field soil moisture condition) and the two
analytical methods combined (BDall). All predictions were back-transformed prior to calculating
goodness-of-fit statistics.

Soil Property Method Calibration Validation

N Bias R2 RPD RMSE N Bias R2 RPD RMSE MeanDev

BDclod

Cubist 8442 0 0.88 2.9 0.1 2111 −0.01 0.75 2.0 0.11
MBL 0 0.81 2.3 0.1 0.01
PLSR 0 0.77 2.1 0.14 0.01 0.71 1.8 0.12 0.05

RF 0 0.97 5.7 0.05 0 0.78 2.1 0.1 0.04

BDcore

Cubist 5602 0 0.87 2.8 0.17 1401 0.02 0.78 2.1 0.21
MBL 0.02 0.79 2.2 0.21 0.02
PLSR 0.01 0.82 2.4 0.21 0.06 0.77 2.1 0.22 0.1

RF 0.01 0.97 5.9 0.08 0.05 0.79 2.2 0.21 0.06

BDall

Cubist 13,852 0 0.88 2.9 0.16 3463 0 0.67 1.8 0.16
MBL 0.01 0.76 2.0 0.14 0.02
PLSR 0.01 0.81 2.3 0.19 0.02 0.64 1.7 0.17 0.08

RF 0.01 0.97 6.0 0.07 0.03 0.72 1.9 0.15 0.08

3.3. Absolute Model Error and Prediction Uncertainty

While the RPD, R2 and RMSE values give an indication of overall model performance, examination
of the absolute error (observed–predicted values) in the validation sets is particularly diagnostic.
A comparison of absolute model error for OC shows that MBL predicted 77% and 94% of the samples,
with absolute model error ≥ 0.2 wt % and ≥ 1.0 wt %, respectively (Figure 4a). Cubist produced
very similar results, with 79 and 94% of the samples below the two thresholds. In the case of poorly
predicted BD, MBL was still the superior model, predicting 58% and 85% of the samples with absolute
model error ≥ 0.1 g/cm3 and ≥ 0.2 g/cm3, but was comparable to the absolute model error based on
Cubist and RF (Figure S10). Despite an R2 > 0.98 for the OC validation set using MBL and Cubist,
about 6% of these samples were still predicted with poor accuracy (defined as absolute error > 1.0%).
Figure S11 illustrates that these poor predictions can occur for almost any measured value of OC,
but the relative error (model error/observed) was generally much lower for higher values.
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Figure 4. Absolute model error and uncertainty estimates (deviation) of independent validation sets
for OC using the MBL, PLSR, RF and Cubist models. The plot in the top panel (a) shows the cumulative
rank of the absolute difference between the predicted and observed values (N = 8512). The numbers
in parentheses are the % of samples above 0.2 and 1.0 wt % of absolute error. Only absolute error is
shown for Cubist. The figures in the bottom panel (b–d) show the relationship between absolute model
error and deviation using the MBL, PLSR and RF models. The black cross symbols are the samples that
were flagged as untrustworthy predictions using the MBL, PLSR and RF models.

Assessment of the prediction uncertainty for these soil properties indicated that the MBL model
consistently provided a low prediction error compared with the PLSR and RF models. The mean
prediction ± prediction error for OC in the independent validation sets was 5.17 ± 0.08, 5.06 ± 0.26
and 5.07 ± 0.39 (wt %) using the MBL, PLSR and RF models, respectively. Likewise, in the case of BD,
mean prediction ± prediction error was 1.30 ± 0.02, 1.30 ± 0.08, 1.29 ± 0.08 (g/cm3) using the MBL,
PLSR and RF models, respectively. Overall, our results show that the uncertainty estimates for OC
using MBL (observed mean = 5.18 wt %) and BD (observed mean = 1.32 g/cm3) were within 1.5% and
2.3% of the predicted mean (5.17 wt % for OC and 1.3 g/cm3 for BD), respectively. Unfortunately, there
is currently no method to assess the prediction uncertainty in Cubist. In the case of MBL, we further
determined the samples with the highest and lowest prediction error for OC from the independent
validation sets (N = 8498). The largest prediction error in the local model was often associated with
picking neighboring samples that are farther apart in orthogonal space (Figure S12). For example,
results show that the average distance between the neighbors and the prediction sample was 0.15 units
for the sample with the largest prediction error. In contrast, the average distance in the case of the
prediction sample with least prediction error was 0.10 units, indicating that prediction errors are low
when samples that are spectrally similar are used to make predictions of any new samples.

We also assessed the trustworthiness of each new prediction in the validation sets by detecting
outliers using the probability distribution of the relative deviation for RF and F-ratio (Equations (9)
and (10)) for the MBL and PLSR models. The RF model flagged 86 samples, while the MBL and PLSR
models flagged 33 and 7 samples, respectively, out of 8512 samples in the validation sets for OC
(Figures 4 and S13). In the case of BD, the RF model flagged 34 samples, while the MBL and PLSR
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models flagged 33 and 10 samples, respectively, out of 3306 samples in the validation sets (Figures S10
and S13). The samples flagged as having been unreliably predicted were distributed across the entire
distribution of the absolute error and prediction uncertainty (Figures 4 and S10), indicating that poorly
predicted samples (high absolute error) were not flagged as outliers and did not have large prediction
errors using all three models. Additionally, results show that the absolute error was significantly
related to prediction uncertainty for OC but not for BD (Figures 4 and S10).

4. Discussion

4.1. KSSL MIR Library and Its Non-Normal Distribution

In this study, we utilized a large nationally comprehensive soil MIR library (Figure 1)
available through the USDA NSSC-KSSL soil database, which contains 15,118 unique pedons
representing 50,893 samples with varying amounts of associated analytical data. As emphasized
by Wijewardane et al. [16], the soil properties in the database mostly follow a non-normal distribution
(Table 1). One way to improve the prediction of soil properties with data that follow a non-normal
distribution is to transform the data using a variety of approaches, such as box-cox, natural log and
square root transformation [8,11,30,45,76,77]. For example, Waruru et al. [77] applied natural log
and square root transformation to highly skewed and slightly skewed soil properties, respectively.
Baldock et al. [11] showed that square-root-transformed OC performed better than log-transformed OC
by improving R2 and reducing the model bias in both the calibration and validation sets. In this study,
since some soil properties were highly skewed compared with others, we developed calibration models
and tested their performance on independent validation sets using three different transformations
(square root, box-cox and log) for two soil properties representing high skewness (OC) and near-normal
distribution (pH) (Figures S1 and S2). The results from this exercise indicate that, for skewed data (OC),
square root transformation produced the best PLSR model performance. For normally distributed
data (pH), there was no improvement in performance. Additionally, for the machine learning (RF and
Cubist) and local models (MBL), transformation was not necessary (Table S1).

4.2. Model Performance for a Range of Soil Properties

Our results indicate that MIR spectroscopy combined with a highly heterogeneous database can
provide excellent predictions of most soil properties, with validation RPD ≥ 2.0, using both machine
learning and regression approaches (Tables 3 and 4). Only a few soil properties have RPD < 2.0
using the Cubist, RF and global PLSR models (Fe and BDall for Cubist and RF models; Fe, BDcore and
BDall for PLSR model). Using R2 to assess the prediction performance also produced similar results,
with validation R2 ≥ 0.98 for OC and CO3 and validation R2 ≥ 0.83 for CEC, clay, OCD, Ca and Al,
regardless of the methodology used to develop the calibration models. For pH, Fe and BD (particularly
for the clod and combined methods), the model choice made a significant difference in the quality of
predictions (Tables 3 and 4). Better prediction results were attributed particularly to strong absorption
bands associated with soil mineral and organic bonds in the MIR region [6,7]. Additionally, due to
the large spatial variation in soil properties, the relationship between spectra and soil attributes can
be complex, requiring a large sample size to adequately represent the distribution of samples across
space [5]. Models built using a large spectral database can help to minimize calibration errors and
better predict soil attributes from independent datasets [45]. However, only a few large-scale vis–NIR
databases and even fewer MIR libraries are available [78]. In addition, these spectral libraries have
rarely been considered as an operational tool for the assessment and prediction of soil properties [10].

When the entire spectral library was used to build a single global model (global PLSR),
soil properties such as OC and CO3 were accurately predicted with an R2 ≥ 0.98 (Table 3). Other studies
using an MIR library to build global PLSR models have reported similar results for these properties.
Baldock et al. [11] found a good prediction of OC (R2 = 0.93) and CO3 (R2 = 0.93) in Australian soils.
Similarly, McCarty et al. [15] reported a better prediction of OC (R2 = 0.82) and CO3 (R2 = 0.87) using



Soil Syst. 2019, 3, 11 16 of 23

273 samples from diverse locations in the central United States, while Grinand et al. [79] predicted
OC with an R2 of 0.89 and CO3 with an R2 of 0.97 in European soils using >1700 samples. The better
PLSR performance in this current study in the prediction of OC and CO3 is likely associated with
the number of samples used to build the calibration models [25]. For example, using 10 different
calibration intensities (from 10 to 100%), Clairotte et al. [25] found that the standard error of the
validation samples decreased when the size of samples used to build the calibration model increased
from 10 to 100%. Given the size of the MIR library used in this study, it is not surprising that the
calibration models performed better when predicting OC and CO3 compared with previous studies.

Assessment of the models on the basis of RMSE values presents a more nuanced picture, with
greater discrepancies between different models (Table 3). While OC in an independent validation
set was predicted with an R2 of 0.99 by all models, the RMSE was 80% higher for the global PLSR
model compared with Cubist and MBL. This increase in RMSE for the global model is most likely
attributed to the fact that, for the prediction of any particular sample, there is a lot of extraneous
information (i.e., samples with highly dissimilar properties) contained in the global PLSR model [76].
MBL, a nonlinear modeling approach, was designed to handle this exact problem [24] and had lower
RMSE values for all properties compared with the global PLSR (Table S3). The superior performance
of local PLSR compared with global PLSR is a result of local PLSR searching for spectrally similar
neighbors in the PC space [24,80], thereby allowing the effective removal of uninformative and less
relevant samples for each new prediction in the large spectral library. Using local regression, previous
studies have found typically better prediction compared with global PLSR [24,25], although this is not
always the case [26]. For example, the addition of new samples improved the prediction performance of
CO3 but led to the inaccurate prediction of other soil properties [26]. The improved model performance
of CO3 was due to the addition of new samples that were rich in carbonates.

Machine learning models can also handle this extraneous (nonlinear) information shortcoming in
global PLSR models by finding patterns in the spectral library and sub-setting the data accordingly [37].
The Cubist and RF models generally outperformed the global PLSR models. Cubist consistently
produced better prediction results with higher fitting R2 and lower RMSE than RF for all soil properties
except BD. Previous studies have demonstrated that the Cubist modeling approach is slightly superior
in the prediction of soil properties compared with other machine learning approaches, such as support
vector machines [10]. This is because Cubist is a form of piecewise linear decision trees that are able to
make very efficient spectral variable selections and handle nonlinear relationships between dependent
and independent variables [81]. The Cubist model constructs a regression tree in which each terminal
node contains multivariate linear models instead of discrete values. The prediction of a soil property
of a new sample is achieved first by identifying where the sample falls in the tree node, and then a
linear model is fitted using all combinations of the samples within that node [82]. However, several
studies have demonstrated that calibration models developed using Cubist tend to show a good model
fit at low values, while the residuals increase at higher values [38,66]. Doetterl et al. [66] suggested
that large residuals at high values are not a general feature of Cubist but are associated with a limited
sampling density at high concentration values. In this study, we did not find any large residuals at
higher values for all soil properties, which is possibly related to the inclusion of enough samples with
high values. Interestingly, RF developed superior calibration models for all soil properties compared
with Cubist, but the application of the calibration models to independent validation sets resulted
in a significant decrease in performance compared with the Cubist model. This might possibly be
associated with more continuous predicted values in the case of the Cubist algorithm, because each
linear model at the terminal node in Cubist allows for a smoother transition in the prediction between
trees [67]. However, in RF, a random subset of training data are selected through bagging, and the
final prediction is the average of all individual tree outputs [62].

4.3. The Importance of Estimating Prediction Uncertainty

While the RMSE values reported in Table 3 give an indication of the overall model performance
over a large range of each soil property (Table S3), those RMSE values do not give an indication of
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the uncertainty in individual predictions [68]. For example, all models produced excellent fits for OC
(R2 = 0.99), but the RMSE values were 0.70–1.27 wt %, which would be considered unacceptably high
for most management applications. Therefore, we used approaches to provide uncertainty estimates
for each prediction using the global PLSR, MBL and RF models. Here, there is a clear difference in
model performance, with MBL producing significantly narrower prediction intervals compared with
global PLSR and RF (Table 3, Figure 4).

Both the MBL and PLSR models use a similar approach to uncertainty estimation, but the
models using MBL yielded a much narrower range of uncertainty estimates. This is because MBL
searches for the most spectrally similar neighbors corresponding to each new prediction sample in
the spectral library, thus introducing low residual variance to the calibration subset. The U-deviation
uses four major parameters to estimate the prediction uncertainty: (1) x-residuals in the calibration set;
(2) x-residuals in the validation set; (3) y-residuals in the validation set; and (4) the average distance of
the validation samples to all the samples in the calibration sets used to make predictions [50]. Of the
four parameters, the y-residuals in the validation set are the most difficult to estimate in the case of
MBL, because this model uses different calibration subsets for predicting samples in the validation
sets. As a result, the y-residual variance was estimated using a leave-group-out cross-validation. In the
case of global PLSR, estimating the prediction uncertainty using U-deviation is fairly simple, because
there is only one single model to make predictions for all samples in the validation sets. Therefore,
y-residual variance is simply the variance in the response variable of the validation sets.

Prediction uncertainty using RF was higher than the global PLSR for OC but similar to the PLSR
model for BD (Figures 2 and 3). This difference may be due to the use of a different approach to
estimating the prediction uncertainty. In the case of RF, we used the non-parametric infinitesimal
jackknife approach, which is a modified jackknife approach [72]. In the jackknife approach, each
observation is omitted to recompute the prediction of the remaining observations. This process is
repeated for all the observations to produce an estimate of the variance. In the infinitesimal jackknife
approach, rather than omitting one observation at a time, the observation is given a slightly lower
weight compared with the other observations. Compared with the global PLSR and MBL uncertainty
estimates, the infinitesimal jackknife approach relies more on the variance between the prediction and
the observation.

Prediction uncertainty and outlier detection have two important functions in operationalizing
soil spectroscopy as a routine analysis tool: (1) they give a true estimate of the uncertainty of
new predictions and (2) they allow for an assessment of the trustworthiness of a new prediction.
This second function is critical in that there needs to be a way to assess when a new sample has
not been predicted well and should be sent to the lab for regular analysis [81]. In this study, a new
prediction was defined as trustworthy when the spectra corresponding to each new prediction had
an F-ratio ≤ 0.99 using the MBL and PLSR models. In the case of the RF model, the trustworthiness
was assessed using the probability distribution of the relative deviation (uncertainty/predicted value),
with values ≤ 0.99 considered representative of a reliable prediction. Typically, MBL model predictions
were the most trustworthy on the basis of analyzing the absolute error in validation set prediction
(Figures 4 and S12). High trustworthiness in the case of MBL is likely associated with picking up k
spectrally similar neighbors in the reference sets that are highly relevant to a sample in the validation
sets. In contrast, prediction developed using the PLSR models was less trustworthy, particularly when
the spectral library used to build the calibration models contained samples that cover a wide range
of geographic and climatic conditions, thereby introducing high variance and bias to the calibration
spectra. For example, using the PLSR model, only 51% of the samples were predicted with absolute
error ≥ 0.2 wt % (Figure 4). In the case of RF, the jackknifing approach provides estimates of bias and
variance by removing each sample at a time from the dataset, and therefore uses less information (fewer
samples) than other bootstrapping techniques [83]. As a result, the prediction uncertainty estimated
using jackknifing is more conservative and provides estimates with larger uncertainties compared
with other approaches [84], but it is typically considered unbiased [85]. Additionally, since random
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forest uses an ensemble learning method for the prediction of a new sample, the trustworthiness of
each new prediction is independent of the location of the samples in the calibration space (Figure S13).

4.4. Best Model Performance

Overall, our results indicate that MBL and Cubist outperformed the global PLSR and RF models.
In large and complex datasets, the relationship between soil properties and spectra can be highly
nonlinear [14,86]. As a result, both MBL and Cubist were able to better predict soil physical and
chemical properties. The results of this study are consistent with previous studies reporting their
best model performance using local models or Cubist [25,87,88]. In particular, MBL models are able
to better manage nonlinearity and extraneous information in the spectra by using spectrally similar
neighbors in the reference sets to fit a new target function for each sample in the validation set [89].
This allows MBL to remove unrelated and extraneous samples during calibrations [87].

While the performance of Cubist and MBL on independent validation sets was essentially a draw
across all properties (Table 3, Figure 4a), MBL has two advantages, which we believe make this model
a superior choice for developing soil spectroscopy into a robust and routine predictive tool. First,
there is no unique calibration model, meaning that as the spectral library grows, there is no need to
periodically update calibration models. Second, an estimate of uncertainty can be calculated for each
prediction, and this is something that has not yet been implemented in Cubist. A prediction interval
provides both a true estimate of the precision of an individual prediction and a way of assessing the
trustworthiness of that new prediction when there are no lab data.

Although MBL and Cubist outperformed the global PLSR and RF models, the high computational
demands for building MBL and Cubist can impede the application of these models, particularly
when dealing with large and complex datasets. The PLSR model was approximately 9.0 and 5.0 times
faster than MBL and Cubist, respectively, while the PLSR and RF models have similar computational
times. The higher computational time associated with MBL is not surprising, because the MBL function
requires locating spectrally similar neighbors in PC space to fit a local target function for each sample
in the validation sets [24]. Regardless of the high computational demand associated with MBL, the
improvement in RMSE and narrow prediction interval compared with the global PLSR and RF
models indicates that the MBL should be used as a predictive tool when dealing with large and
complex datasets.

5. Conclusions

The MIR library used in this study primarily comprises samples from the US soil survey conducted
over broad geographic locations, representing a range of climate, land use and geologic conditions
from the United States. We demonstrated that, when combined with sophisticated chemometric tools,
this MIR spectral library can provide accurate and precise predictions of numerous soil properties of
new samples collected from at least the broad soil distribution of the USA. These results are particularly
promising given how labor-intensive many of the traditional methodologies are for the properties
examined in this study. The results of this paper form a basis for moving forward with an operational
system to provide routine predictions with uncertainty estimates of these soil properties. In order
to turn DRS into a routine operational tool, we suggest that three sets of information be provided:
(1) overall model accuracy assessment (R2 and RMSE) on an independent validation set; (2) precision
or confidence intervals about a new prediction and (3) an outlier assessment for flagging new samples
that fall outside of the calibration space and predictions that might be untrustworthy. Importantly,
this system, as validated in this study, is only appropriate for new samples scanned on the same
instrument used to create the spectral library. For this tool to be of general use to any soil scientist with
a diffuse reflectance FTIR spectrometer, additional research is necessary to establish the need for and
the approach to effectively implementing calibration transfer between spectrometers.
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