Data Availability

Raw XCT data are available upon request. Data generated from the analysis of the XCT images and the available energy measurements are available under the following DOI: 10.17632/436m8s3bpm.2.

Statistics used for Supplementary Tables

A two-tailed t-test was used to determine if there were significant differences between available energy metrics within a given pore network architecture (Table S2). Tukey's honest significant difference test in RStudio [version 1.0.136, 1] was used to determine if there were significant differences between the mean values from each PNA (n = 9, p-values adjusted for multiple comparisons) for (i) the available energy metrics and (ii) the pore network metrics for each volume of interest (Tables S3 - S5).

Figure S1. Experimental set up, consisting of 9 PVC rings filled with soil and instrumented with Pt-electrodes in a fiberglass tub. Treatments are Random (top row, n=3), Large Aggregate (center row, n=3) and Small Aggregate (bottom row, n=3). Blue tarp liner for easy removal of autoclaved sand.

Figure S2. Visual timeline of water saturation conditions. Using an example XCT image, a time line of saturation conditions is shown (blue shading). The level of the blue shading indicates the level of water in the tub. Timing of changes in and duration of conditions are indicated.

Figure S3. Sub sampling process. Panel a shows the PVC ring itself being cut. Panel b shows one of the sub samples (n = 27) created from the larger PVC rings (N = 9) using acrylic glass panels to create isometric subsections for subsequent XCT analysis. The Pt-electrode was kept at the center of each sub sample to maintain sample integrity.

b

Classification ^a	Texture ^a	sand/silt/clay ^c	Porosity ^b	Pore volume ^c	$\mathbf{p}\mathbf{H}^{\mathrm{d}}$	$C_{\mathrm{org}}{}^{d}$	$N_{\mathrm{org}}{}^{d}$	$\operatorname{CEC}_{\operatorname{eff}}{}^d$
		%	%	L m ⁻²		%	%	mmol _c kg ⁻¹
Fine-silty, mixed, superactive, mesic Aquultic Argixeroll	Silt loam	5.7/79.5/15.3	48	96	5.6	1.3	0.2	237

Table S1. Woodburn series characteristics for A_p horizon, 0 - 20 cm

^aSoil classification and texture follow the US Taxonomy data [Staff, 2015].

^bPercent porosity was calculated as $100 - \left[\left(\frac{D_b}{D_p}\right) * 100\right]$, where $D_p = 2.65 \text{ g/cm}^3$

^cPore volume was calculated as % porosity * horizon thickness (in dm)

^dSoil characteristic data was collected following methods detailed in Kellogg Soil Survey Laboratory Methods Manual [2]

		,	/0						
Ε۸	R1	R1	R2	LA1	LA1	LA2	SA 1	SA1	SA2 and
LA	and SA	and	SA2 allu						
metric	R2	R3	R3	LA2	LA3	LA3	2	SA3	3A 3
а									*
b									***
с						**			
d									**
e									*
f									
g				*					
h									
i									
j									

Table S2. Significant differences (two tailed t-test) between available energy metrics within the pore network architectures. R1,2,3 = "Random + PVC mesocosm number" PNA; LA1,2,3 = "Large Aggregate" PNA; SA1,2,3 = "Small Aggregate" PNA.

Significance levels: * = p < 0.05; ** = p < 0.01; *** = p < 0.001

		Pore	network archite	Significant differences between PNAs			
PNM	Units	"Random" (R)	"Large Aggregate" (LA)	"Small Aggregate" (SA)	R : LA	R : SA	SA : LA
		\overline{x} (CV)	\overline{x} (CV)	\overline{x} (CV)			
1	count	3.8 (31)	5.0 (87)	3.9 (37)			
2	count	1.5 (36)	2.0 (101)	1.5 (45)			
3	mm	0.03 (20)	0.04 (21)	0.04 (13)	**	**	
4	mm	1.0 (41)	1.4 (92)	1.0 (40)			
5	count/ml	0.3 (33)	0.5 (116)	0.4 (53)			
6	count/ml	0.03 (22)	0.04 (20)	0.04 (14)	*	**	
7	count	7987.8 (37)	10199.5 (25)	16586.7 (25)		***	***
8	count	357.9 (30)	656.5 (34)	1158.4 (24)	*	***	***
9		1.3 (10)	1.4 (26)	1.4 (14)			
10	mm ³	1.6 (67)	1.6 (93)	0.8 (54)			
11	mm ²	5.1 (57)	6.3 (89)	2.4 (130)			
12	mm ³	1.5 (69)	1.4 (106)	0.3 (164)		(p = 0.076)	
13	mm	0.3 (11)	0.3 (23)	0.3 (13)	(p = 0.053)		
14	mm	0.014 (29)	0.022 (19)	0.023 (18)	**	***	
15	mm ⁻¹	3.2 (21)	4.5 (35)	2.3 (70)			**
16	count	9015.9 (37)	12702.3 (31)	18581.7 (17)		***	**
17	count	4414.5 (33)	8188.3 (34)	12215.3 (19)	**	***	**
18	%	12.8 (37)	13.6 (47)	12.7 (31)			

Table S3. Significant differences in pore network metrics across pore network architectures for **VoI**₁₀₀, values are mean and (coefficients of variation) with n = 9.

PNM = pore network metric

Significance levels * = p < 0.05; ** = p < 0.01; *** = p < 0.001

		Pore	network archite	Significant differences between PNAs			
PNM	Units	"Random" (R)	"Large Aggregate" (LA)	"Small Aggregate" (SA)	R : LA	R : SA	SA : LA
	-	$\overline{\mathbf{x}}$ (CV)	$\overline{\mathbf{x}}$ (CV)	$\overline{\mathbf{x}}$ (CV)			
1	count	4.2 (38)	2.7 (48)	2.2 (74)		*	
2	count	1.7 (46)	1.0 (66)	0.7 (106)		*	
3	mm	0.04 (17)	0.04 (18)	0.03 (13)		(p = 0.056)	**
4	mm	1.2 (44)	0.7 (61)	0.5 (94)		*	
5	count/ml	0.3 (54)	0.2 (79)	0.1 (126)		*	
6	count/ml	0.05 (23)	0.05 (19)	0.04 (15)		*	*
7	count	825.7 (37)	1786.3 (32)	4695.4 (26)	*	***	***
8	count	43.3 (45)	143.4 (43)	313.7 (37)	*	***	***
9		1.3 (3)	1.3 (1)	1.3 (2)			
10	mm ³	3.1 (46)	1.1 (71)	0.5 (84)	***	***	
11	mm ²	9.2 (35)	5.0 (52)	0.9 (70)	**	***	**
12	mm ³	3.0 (48)	1.0 (76)	0.1 (110)	***	***	
13	mm	0.3 (12)	0.4 (12)	0.3 (8)	*		*
14	mm	0.022 (36)	0.030 (22)	0.023 (24)	*		(p = 0.078)
15	mm ⁻¹	3.2 (18)	4.7 (14)	2.3 (77)	*		***
16	count	1018.8 (53)	2095.6 (36)	5243.6 (27)	(p = 0.067)	***	***
17	count	566.5 (36)	1555.4 (32)	3457.9 (29)	**	***	***
18	%	9.8 (0.5)	8.7 (0.5)	8.7 (0.7)			

Table S4. Significant differences in pore network metrics across pore network architectures for **VoI**₂₅, values are mean and (coefficients of variation) with n = 9

 $\label{eq:powerserv} \begin{array}{l} PNM = pore \ network \ metric \\ Significance \ levels \ ^* = p < 0.05; \ ^{**} = p < 0.01; \ ^{***} = p < 0.001 \end{array}$

		Pore net	work architectu	Significant differences between PNAs			
PNM	Units	"Random" (R)	"Large Aggregate" (LA)	"Small Aggregate" (SA)	R : LA	R : SA	SA : LA
		$\overline{\mathbf{x}}(\mathbf{CV})$	$\overline{\mathbf{x}}$ (CV)	$\overline{\mathbf{x}}(\mathbf{CV})$			
1	count	2.1 (45)	2.4 (43)	1.6 (43)			
2	count	0.7 (58)	0.8 (61)	0.4 (70)			
3	mm	0.3 (31)	0.4 (32)	0.4 (29)	*		
4	mm	0.5 (27)	0.7 (35)	0.6 (32)	(p = 0.065)		
5	count/ml	0.4 (82)	0.6 (68)	0.3 (61)			(p = 0.075)
6	count/ml	0.2 (81)	0.1 (55)	0.1 (110)			
7	count	60.6 (32)	64.2 (69)	69 (67)			
8	count	8.4 (29)	8.6 (58)	7.4 (58)			
9		1.3 (8)	1.3 (7)	1.2 (6)			
10	mm ³	0.4 (99)	0.6 (70)	0.5 (81)			
11	mm ²	1.0 (82)	1.4 (63)	1.3 (92)			
12	mm ³	0.1 (111)	0.2 (91)	0.2 (125)			
13	mm	0.2 (23)	0.3 (12)	0.3 (23)	*		
14	mm	0.03 (38)	0.03 (30)	0.03 (38)			
15	mm ⁻¹	2.8 (73)	3.0 (75)	2.7 (74)			
16	count	68.4 (30)	60.5 (55)	75.9 (61)			
17	count	28.5 (21)	30.2 (41)	37.8 (21)			
18	%	10.6 (61)	14.2 (34)	11.7 (49)			

Table S5. Significant differences in pore network metrics across pore network architectures for **VoI**_{0.2}, values are mean and (coefficients of variation) with n = 9

PNM = pore network metric

Significance levels * = p < 0.05; ** = p < 0.01; *** = p < 0.001

			Pore netw	ork architectu	ure (PNA)	Significar	nt difference PNAs	es between
EA metric	Parameter	Unit	Random	Large Aggregate	Small Aggregate	R : LA	R : SA	SA : LA
			\overline{x} (CV)	\overline{x} (CV)	\overline{x} (CV)			
а	- slope	mV/hr	-10.4 (42)	-18.0 (18)	-14.5 (33)	**		
b	- slope	mV/hr	-3.5 (66)	-24.8 (53)	-18.3 (96)	**	(p = 0.053)	
с	min	mV	-48.0 (195)	-166.1 (17)	-156.6 (17)	***	**	
d	time	hr	292.4 (26)	59.4 (22)	154.6 (82)	***	**	(p = 0.066)
e	elapsed time	hr	22.8 (51)	12.0 (154)	22.6 (98)			
f	+ slope	mV/hr	4.2 (24)	2.3 (25)	3.5 (61)	*		
g	max	mV	709.3 (16)	669.4 (23)	614.4 (21)			
h	elapsed time	hr	480.8 (6)	437.1 (14)	440.2 (17)			
i	- slope	mV/hr	-2.8 (76)	-0.5 (242)	-1.1 (93)	*		
j	+ slope	mV/hr	2.3 (133)	0.2 (148)	0.6 (196)	(p = 0.073)		

Table S6. Significant differences in available energy metrics across pore network architectures, values are mean and (coefficients of variation) with n = 9

Tukey's honest significant difference test (n = 9 per pore network architecture) was used to determine significant differences between available energy metrics. P-values were adjusted for multiple comparisons.

Significance levels: * = p < 0.05; ** = p < 0.01; *** = p < 0.001.

References

- 1. RStudio, T. *Rstudio: Integrated development for r. Rstudio, inc.*, Boston, MA 2015.
- 2. Staff, S.S. Kellogg soil survey laboratory methods manual. Soil survey investigations report no. 42. Burt, R.; Staff, S.S., Eds. U.S. Department of Agriculture, Natural Resources Conservation Service: 2014.