Supplementary Materials

Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface

Ranju R. Karna ^{1,2,*}, Ganga M. Hettiarachchi ¹, Joy Van Nostrand ³, Tong Yuan ³, Charles W. Rice ⁴, Yared Assefa ¹ and Jizhong Zhou ^{3,5,6}

- ¹ Soil and Environmental Chemistry Laboratory, Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; <u>ganga@ksu.edu</u> (G.M.H.); <u>yareda@ksu.edu</u> (Y.A.)
- ² Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
- ³ Institute of Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; joy.vannostrand@ou.edu (J.V.N.); <u>15838348600@163.com</u> (T.Y.); jzhou@rccc.ou.edu (J.Z.)
- ⁴ Soil Microbial Ecology Laboratory, Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; <u>cwrice@ksu.edu</u>
- ⁵ Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ⁶ School of Environment, Tsinghua University, Beijing 100084, China
- * Correspondence: <u>karna.ranju@epa.gov</u>; Tel.: +1-513-487-2449

The supplementary information includes 6 figures and 3 tables.

1

Figure S1: Detrended correspondence analysis (DCA) for the total number of detected genes under medium- (119-day) and long-term (252-day) submergence indicating community structure changes. All the treatments; C0S0, C0S1, C1S0, and C1S1 (solid filled markers) from medium-term submergence, and only C0S0, and C1S1 (pattern filled markers) from long-term submergence are plotted.

Figure S2: Detrended correspondence analysis (DCA) of functional genes in the metal resistance category showing change in community structure under medium- (119-day) and long-term (252-day) submergence. All the treatments; C0S0, C0S1, C1S0, and C1S1 (solid filled markers) from medium-term submergence, and only C0S0, and C1S1 (pattern filled markers) from long-term submergence are plotted.

Figure S3: Detrended correspondence analysis (DCA) of functional genes in the C-cycling category showing change in community structure under medium- (119day) and long-term (252-day) submergence. All the treatments; C0S0, C0S1, C1S0, and C1S1 (solid filled markers) from medium-term submergence, and only C0S0, and C1S1 (pattern filled markers) from long-term submergence are plotted.

Figure S4: Detrended correspondence analysis (DCA) of functional genes in the sulfur category showing change in community structure under medium- (119day), and long-term (252-day) submergence. All the treatments; C0S0, C0S1, C1S0, and C1S1 (solid filled markers) from medium-term submergence, and only C0S0, and C1S1 (pattern filled markers) from long-term submergence are plotted.

Figure S5: Detrended correspondence analysis (DCA) of dsrB showing a change in community structure under medium- (119-day), and long-term (252-day) submergence. All the treatments; C0S0, C0S1, C1S0, and C1S1 (solid filled markers) from medium-term submergence, and only C0S0, and C1S1 (pattern filled markers) from long-term submergence are plotted.

Figure S6: Detrended correspondence analysis (statistics) of **dsrA** showing a change in community structure under medium- (119-day), and long-term (252-day) submergence. All the treatments; C0S0, C0S1, C1S0, and C1S1 (solid filled markers) from medium-term submergence, and only C0S0, and C1S1 (pattern filled markers) from long-term submergence are plotted.

7

 Table S1: Total element concentration in the mine waste fraction of <2mm collected from the Tri-State mining district.</th>

Element	Cd	Pb	Zn	Fe	Mn	S
mg kg-1	67	5048	23468	6834	97	9458

8

Table S2: Summary of total phospholipid fatty acid analysis (PLFA) biomarkers detected in original mine tailings, submerged control, and submerged treated

materials under 119-day (medium-term) submergence

_	Common microbial group	Gram positive Bacteria	Gram negative Bacteria	Desulfovibrio	Fungi	Fungi Arbuscular Mycorrhiza	Actinomycetes	Total PLFA (nmole/g)
Mine tailings	0.76	0.42	0.29	0.02	0.73	0.13	0.08	2.42
Submerged sediment (Inoculum)	1.91	1.15	1.84	0.09	0.86	0.31	0.02	6.18
C0S0	0.82 ± 0.004	0.67±0.001	0.35±0.005	0.02 ± 0.002	0.35 ± 0.008	0.06±0.001	0.04 ± 0.002	2.31
C1S1	4.03±0.12	3.10±0.14	1.39±0.20	3.22±0.10	0.62±0.006	0.05±0.002	0.05 ± 0.005	12.47

Table S3: Bray Curtis dissimilarity test giving Q-value for each treatment during medium- (119-day) and long-term (252-day) submergence.

Group	Adonis Bray	
Whole	0.001	
C0S0 119-day vs C0S0 252-day	0.001	
C0S0 119-day vs C1S1 119-day	0.001	
C0S0 119-day vs C1S1 252-day	0.001	
C0S0 119-day vs C0S1 119-day	0.001	
C0S0 119-day vs C1S0 119-day	0.132	
C0S0 252-day vs C1S1 119-day	0.11	
C0S0 252-day vs C1S1 252-day	0.039	
C0S0 252-day vs C0S1 119-day	0.09	
C0S0 252-day vs C1S0 119-day	0.013	
C1S1 119-day vs C1S1 252-day	0.068	
C1S1 119day vs C0S1 119-day	0.001	
C1S1 119-day vs C1S0 119-day	0.001	
C1S1 252-day vs C0S1 119-day	0.497	
C1S1 252-day vs C1S0 119-day	0.001	
C0S1 119-day vs C1S0 119-day	0.305	

The $\rho\text{-values}$ were calculated based on total number of detected genes.