

- 1 Supplementary material
- 2

3 Hot spots and hot moments of soil moisture explain

- 4 fluctuations in iron and carbon cycling in a humid
- 5 tropical forest soil
- Diego Barcellos ¹, Christine S. O'Connell ², Whendee Silver ², Christof Meile ³, and Aaron
 Thompson ^{1,*}
- 8 ¹ Department of Crop and Soil Sciences, University of Georgia. Athens, GA 30602, USA;
- 9 diego.barcellos@yahoo.com.br (D.B.); aaront@uga.edu (A.T.)
- Department of Environmental Science, Policy, and Management, University of California-Berkeley.
 Berkeley, CA 94720, USA; coconn@berkeley.edu; wsilver@berkeley.edu
- 12 ³ Department of Marine Sciences, University of Georgia. Athens, GA 30602, USA; cmeile@uga.edu
- 13 * Correspondence: aaront@uga.edu; Tel.: +1-706-410-1293
- 14

15 FIGURES AND TABLES

17 18

Figure S1. Illustration of sampling design at one of the catenas: (a) showing ridge, slope, and valley 19 topographic positions, the 3 plots allocated within each site, the sensors distributed within the plots, and (b) 20 example of a subplot of 1.5 m x 1.5 m, sampled at 0-15 cm depth with sampling points randomly located at 21 least 20 cm apart. Luquillo CZO, Puerto Rico (2016).

3 of 16

(a)

(b)

(c)

(d)

Figure S2. Visualization of subplots in Catena-2: (a) slope, (b) ridge, and (c) valley; and (d) valley in Catena-3.
 Luquillo CZO, Puerto Rico (2016).

Figure S3. Principal Component Analysis (PCA) for the 9 sites, valleys (V1, V2, V3), slopes (S1, S2, and S3), and
 ridges (R1, R2, R3) based on the following soil characteristics: Total-Fe, SRO-Fe, Total-C, Sand, Silt, and Clay
 content. Soils from Luquillo CZO, Puerto Rico, sampled in 2016.

- 39
- 40

Figure S7. Values for pH and CH_4 fluxes (a) with and (b) without the outliers.

c or. vulue

49 **Figure S8.** Pools of Total-Fe, SRO-Fe, Fe^{III}_{RR}, and Fe^{II} for two given sampling days (left and right) for valley-1.

50 The pool of Fe^{II}_{RR} is dynamic and can be as high as the SRO-Fe pool. Soils from Luquillo CZO, Puerto Rico,

sampled in 2016.

51

Table S1. GPS coordinates of the studied site.

Catena	Topographic position	Latitude	Longitude	Altitude (m)
	Ridge	N 18.32092°	W 65.81729°	414
1	Slope	N 18.32077°	W 65.81736°	415
	Valley	N 18.32087°	W 65.81700°	411
	Ridge	N 18.32143°	W 65.81770°	400
2	Slope	N 18.32156°	W 65.81793°	392
	Valley	N 18.32191°	W 65.81818°	379
	Ridge	N 18.32121°	W 65.81736°	407
3	Slope	N 18.32142°	W 65.81754°	401
	Valley	N 18.32141°	W 65.81754°	399

Та	ble S2(a). To	otal elemental	analysis (conce	ntrations in %). Soils from Lu	quillo CZO, Pu	ierto Rico, sam	pled in 2016.	
Site	Si	Al	Fe	Ca	Mg	Na	К	Ti	Mn
Valley-1	27.44	12.35	6.43	0.14	0.21	0.06	0.09	0.61	0.06
Valley-2	29.62	10.85	7.55	0.40	0.446	0.23	0.18	0.67	0.170
Valley-3	26.44	12.91	7.87	0.10	0.241	0.05	0.07	0.62	0.085
Slope-1	26.63	13.02	7.83	0.07	0.181	0.05	0.08	0.65	0.062
Slope-2	26.31	12.75	8.39	0.04	0.211	0.04	0.07	0.66	0.031
Slope-3	26.37	12.17	8.01	0.09	0.543	0.05	0.08	0.61	0.271
Ridge-1	24.97	12.95	8.02	0.05	0.20	0.04	0.08	0.63	0.04
Ridge-2	25.16	12.01	7.45	0.04	0.217	0.05	0.08	0.62	0.046
Ridge-3	26.37	12.17	7.48	0.08	0.229	0.06	0.08	0.62	0.101

Table S2(b). Total elemental analysis (concentrations in ppm). Soils from Luquillo CZO, Puerto Rico, sampled in 2016.

Site	Ba	Ce	Cr	Cs	Dy	Er	Eu	Ga	Gd	Hf	Ho	La	Lu	Nb	Nd	Pr	Rb	Sm	Sn	Sr	Ta	Tb	Th	Tm	U	V	W	Y	Yb	Zr
Valley-1	111	24.6	150	0.4	2.68	1.54	0.96	24.7	2.84	3.4	0.56	10.1	0.24	4.5	12.8	2.97	3.2	2.98	2	52.8	0.3	0.44	1.89	0.21	0.89	297	1	12.9	1.58	126
Valley-2	137	20.3	180	0.7	1.84	1.11	0.65	23.1	1.98	3.5	0.39	7.5	0.19	4.5	8.8	2.09	5	2.04	1	85.4	0.3	0.31	1.98	0.17	0.89	342	1	9.3	1.16	129
Valley-3	119	14.3	130	0.5	1.37	0.79	0.42	26.8	1.24	3.6	0.27	5.9	0.15	4.2	6.2	1.45	2.8	1.39	3	26.5	0.3	0.2	1.84	0.14	0.9	311	1	6.9	0.97	127
Slope-1	80	9.7	130	0.7	0.9	0.61	0.27	26.6	0.86	3.7	0.2	5.7	0.14	5.1	4.6	1.18	3.8	1.01	1	28.6	0.3	0.14	2.29	0.1	0.99	317	1	5.0	0.78	136
Slope-2	99	8.4	130	0.6	0.79	0.53	0.23	26.7	0.75	3.6	0.18	4.1	0.11	4.4	3.5	0.85	3.2	0.78	1	19.9	0.3	0.11	2.00	0.1	0.82	334	1	4.1	0.67	125
Slope-3	316	22.6	150	0.3	3.37	1.90	1.11	24.4	3.32	2.8	0.7	8.6	0.3	3.2	12.7	2.72	1.9	3.42	1	19.1	0.2	0.53	0.95	0.29	0.56	309	1	18.5	1.98	102
Ridge-1	97	13.4	120	0.6	1.06	0.64	0.36	26.4	1.00	3.5	0.23	5.5	0.14	4.3	5.4	1.3	3.3	1.18	2	24.9	0.3	0.18	2.00	0.14	0.9	331	1	5.5	0.91	123
Ridge-2	72	9.5	120	0.6	0.94	0.65	0.27	24.5	0.85	3.3	0.22	4.7	0.12	4.5	4.2	1.05	3.6	1.02	1	20.8	0.3	0.15	1.98	0.1	0.85	291	1	4.8	0.76	121
Ridge-3	96	10.1	120	0.6	1.00	0.68	0.29	25.0	0.87	3.5	0.23	5.1	0.13	5.0	4.4	1.12	3.4	0.97	2	23.9	0.3	0.15	2.04	0.12	0.96	301	1	5.2	0.85	127

Table S3. Turnover Times for HCl-extractable Fe^{II} Production and HCl-extractable Fe^{II} Consumption: highest

60			frequence	cy, median	and mean.						
	Sites	Fe ^{II} Proc	duction		Fe ^{II} Consumption						
		Highest frequency	Median	Mean	Highest frequency	Median	Mean				
					days						
	All Sites	4	7	23	3 to 4	8	36				
	Valley-1	3	5	12	4	8	15				
	Valley-2	5 to 10	25	23	6	8	40				
	Valley-3	5 to 10	9	10	3 to 11	28	55				
	Slope-1	8	6	8	5 to 6	12	96				
	Slope-2	5 to 10	16	16	4	8	15				
	Slope-3	4	2	10	3 to 4	8	22				
	Ridge-1	4	5	38	3	10	86				
	Ridge-2	4 to 18	16	46	4	3	8				
_	Ridge-3	3	2	4	4	4	17				

Catenas	Initial Model (before stepwise backward elimination)
All	Eh ~ Precipitation, O ₂ , θ_V
1	$O_2 \sim$ Precipitation, θ_V
1	$\theta_{\rm V} \sim Precipitation$
All	Fe ^{II} ~ DOC, Media-Fe ^{III} _{RR} , pH, θ_G , Precipitation_48h
1	Fe ^{II} ~ DOC, Media-Fe ^{III} _{RR} , pH, Precipitation_48h, O ₂ _48h, θ v_12h
All	DOC ~ Fe ^{II} , Media-Fe ^{III} _{RR} , pH, θ_G , Precipitation_48h, Eh_2h
1	DOC ~ Fe ^{II} , Media-Fe ^{III} _{RR} , pH, Precipitation_48h, Eh_48h, O ₂ _48h, θ v_36h
All	Media-Fe ^{III} _{RR} ~ Fe ^{II} , DOC, pH, θ_G , Precipitation_48h, Eh_6h
1	Media-Fe ^{III} _{RR} ~ Fe ^{II} , DOC, pH, Precipitation_48h, Eh_6h, O ₂ _6h, θ v_24h
All	Shewa-Fe ^{III} _{RR} ~ Fe ^{II} , DOC, pH, θ G, Precipitation_48h, Eh_6h
1	Shewa-Fe ^{III} _{RR} ~ Fe ^{II} , DOC, pH, Precipitation_48h, Eh_6h, O ₂ _3h, θ v_12h
1	$F(CO_2) \sim Fe^{II}, Media-Fe^{III}_{RR}, DOC, pH, Precipitation_{48h}, Eh_{12h}, O_2_{48h}, \theta_{V}_{24h}, F(CH_4)$
1	F(CH4) ~ Fe ^{II} , Media-Fe ^{III} RR, DOC, pH, Precipitation_48h, Eh_1h, O2_48h, θv_1h, F(CO2)

64 Table S5. Number of hours before soil sampling the environmental factors are averaged that yielded	the
--	-----

65 lowest AIC (best model). It represents the best averaging window to predict each variable in the mixed linear

	models (from 1 to 48	h of soil sampling).	
Variable modeled	Eh	θv	O 2
Fe ^{II}	-	12	48
DOC	2	36	48
Media-Fe ^{III} rr	6	24	6
Shewa-Fe ^{III} RR	6	12	3
F(CO ₂)	12	24	48
F(CH4)	1	1	48

68 Table S6. Comparison of reactive iron pool (SRO-Fe) extracted by Citrate-Ascorbate and the Fe reduced within

69 7 days by incubations with Shewa-Fe^{III}_{RR} and Media-Fe^{III}_{RR}: (a) for the actual values in mmol kg⁻¹ for the 7 day-

incubation, and **(b)** for ratio between Fe^{III}RR pool and the SRO-Fe pool (in percent).

- 70
- 71
- 72

				Table 4 (a)								
	SRO-Fe		Shewa-			Media-Fe ^{III} RR						
Site		Min	Mean	(St Error)	Max	Min	Mean	(St Error)	Max			
					mmol kg	-1						
Valley-1	336	140	221	(19)	344	128	214	(17)	342			
Valley-2	305	8	80	(13)	139	6	73	(12)	120			
Valley-3	195	8	63	(11)	113	3	60	(11)	104			
Slope-1	178	3	53	(12)	144	3	33	(6)	68			
Slope-2	213	5	52	(9)	89	6	34	(8)	76			
Slope-3	131	3	35	(8)	81	5	20	(5)	62			
Ridge-1	190	4	49	(7)	87	5	33	(7)	88			
Ridge-2	227	8	49	(7)	95	12	34	(4)	51			
Ridge-3	206	5	36	(6)	91	4	24	(4)	49			

73

74

Table 4 (b)

	SRO-Fe		Shewa	I-Fe ^{III} RR		Media-Fe ^{III} RR				
Site		Min	Mean	(St Error)	Max	Min	Mean	(St Error)	Max	
	mmol kg-1				% (Fe ^{III}	rr/SRO-Fe)			
Valley-1	336	42	66	(6)	102	38	64	(5)	101	
Valley-2	305	3	26	(4)	46	2	24	(4)	39	
Valley-3	195	4	32	(6)	58	1	31	(5)	53	
Slope-1	178	2	30	(7)	81	1	18	(3)	38	
Slope-2	213	2	24	(4)	42	3	16	(4)	36	
Slope-3	131	3	27	(6)	62	4	16	(4)	47	
Ridge-1	190	2	26	(4)	46	3	17	(4)	46	
Ridge-2	227	3	21	(3)	42	5	15	(2)	22	
Ridge-3	206	2	17	(3)	44	2	12	(2)	24	

75

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).