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Abstract: Nuclear density functional theory (DFT) is able to reproduce the saturation
properties of nuclear matter, as well as properties of finite nuclei. Consequently, the DFT
calculations are applicable to nuclei across a wide range of masses on the nuclear chart.
The Gogny-type density functional, which is equivalent to the mean-field calculations with
finite-range density-dependent effective interactions, is a successful example. In contrast,
the shell model (configuration interaction) calculation is a powerful tool to describe nuclear
structure, especially spectroscopic properties. The shell model is able to take into account
correlations beyond mean-field in a truncated model space. In this work, we report an
investigation on sd-shell nuclei and Ca isotopes using a hybrid approach of the shell model
and Gogny-type DFT.

Keywords: nuclear density functional; shell model calculations; sd-shell nuclei

1. Introduction
Density functional theory (DFT) is a successful approach to describing basic properties

of nuclei and nuclear matter. The basic theorem given by Hohenberg and Kohn [1] guar-
antees the existence of the functional of one-body density. The successful functionals for
interacting fermi-particle systems are based on the Kohn–Sham scheme [2], in which the
density is represented in terms of “single-particle” (Kohn–Sham) orbitals in a potential that
is a functional of density. The problem should be solved self-consistently because the poten-
tial depends on the density and vice versa. The self-consistent solution corresponds to the
density to minimize the energy density functional (EDF), namely the ground-state energy.

The static Kohn–Sham (mean-field) calculation is not applicable to excited states.
In addition, it is difficult to describe states with large quantum fluctuations using this
calculation, such as shape coexistence phenomena. To describe these states, many theo-
retical approaches were proposed to incorporate correlations beyond the mean-field with
the superposition of different configuration states, such as the random phase approxima-
tion (RPA) [3], and the generator coordinate method (GCM) [3,4]. Among them, the shell
model calculation is one of the most successful methods to include beyond-mean-field
correlations. In the shell model method, we first define a valence model space to reduce
the vast number of states in the configuration mixing to a manageable size. The empirical
Hamiltonian (effective interaction) is determined by fitting experimental spectra with re-
sults of the configuration interaction calculation in the valence space. In most cases, the
single-particle energies are taken from the experimental data, and the two-body matrix
elements (TBMEs) are evaluated based on the G-matrix theory but are modified to repro-
duce the experimental values. The USDB interaction [5] for the sd-shell model space and
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the SDPF-MU interaction [6] for the sd–p f model space are known as examples of such
empirical interactions.

In the present study, for a non-empirical description of nuclei in a broad mass re-
gion, we determine both the single-particle energies and the TBMEs of the shell model
interactions employing a nuclear EDF. In the non-relativistic density functionals, there are
zero-range interactions of the Skyrme type [7,8] and finite-range interactions of the Gogny
type [9], both of which are successful in the mean-field calculation to describe nuclear struc-
ture. Several previous works have implemented the shell model method combined with a
density functional. The Skyrme-type effective interactions were tested for the shell model
approach in Refs. [10,11]. Some Skyrme interactions reasonably reproduce the experimental
ground-state properties and low-lying excited spectra. However, the density-dependent
interaction is treated in an approximate manner, in which the density is not calculated with
the shell model wave functions. Reference [12] uses a Gogny-type effective interaction as
the shell model effective interaction in a valence space. The density-dependent interaction
is self-consistently treated, in which the density is obtained with the shell model wave func-
tion. It shows an ability to reproduce ground-state and excited-state properties in accuracy
comparable with the empirical interactions for nuclei in the mass region of Z ∼ 8. Since the
DFT is designed to describe the nuclear properties in a broad mass region, it is important
to investigate the ability of the shell model calculation using the density functional for the
heavier mass region.

In this paper, we adopt the hybrid approach following Ref. [12] combining the Gogny-
type density functionals with the shell model calculation, and investigate O, Ne, Mg,
and Ca isotopes to examine its capability for heavier nuclei. We compare our results
with the experimental data, those obtained with the USDB interaction for O, Ne, and Mg
isotopes, and with those with the SDPF-MU in Ca isotopes.

2. Theoretical Framework
A shell model Hamiltonian without assuming an inert core consists of the one-body

and two-body interactions as

H = ∑
i,j

tija†
i aj +

1
4 ∑

i,j,k,l
vijkla†

i a†
j alak, (1)

where a†
i and ai are the creation and annihilation operators of the single-particle state i, and tij

and vijkl are the antisymmetrized matrix elements of one-body and two-body terms, respectively.
In the no-core case, the one-body matrix element is the kinetic energy and the two-body matrix
element is given by an interaction potential between two nucleons which is density-dependent
in the present case. When we solve the Schrödinger equation in the conventional shell model
calculations, we assume a frozen inert core and the active particles are present only in the valence
space. The shell model Hamiltonian in the valence space is given by the following equation:

HSM = TSPE +
1
4 ∑

i,j,k,l∈Valence
vijkla†

i a†
j alak. (2)

The second term in the right-hand side of Equation (2) is the interaction between two
nucleons in the valence space. The first term, TSPE, denotes the one-body term given by the
normal ordering with respect to the inert core. The single-particle energy of the orbit i is
evaluated as a sum of the kinetic energy and the two-body interaction between a nucleon
in the core and one in the valence space as
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TSPE = ∑
i∈Valance

(tii + ∑
j∈Core

vijij)a†
i ai.

Here, off-diagonal one-body matrix elements are omitted since we take the 0h̄ω model
space in the present study. We further assume that they can be approximated by the
spherical harmonic-oscillator basis.

In conventional shell model studies, the single-particle energies and the two-body
matrix elements (TBMEs) are phenomenologically determined to reproduce the experimen-
tal data. In the present work, we adopt Gogny-type density functionals [9] as an effective
interaction in shell model calculations. The Gogny potential between nucleons 1 and 2
based on the functional is written as

V(r1, r2) = ∑
i=1,2

e−(r2
1−r2

2)/µ2
i (Wi − BiPσ − HiPτ − MiPστ)

+ iWLS(σ1 + σ2) · k′ × δ(r1 − r2)k

+ t3(1 + x0Pσ)δ(r1 − r2)

[
ρ

(
r1 + r2

2

)]α

, (3)

where the positions of the two interacting nucleons are r1 and r2, and k and k′ are the
relative wave vectors. The quantities µi, Wi, Bi, Hi, Mi (i = 1, 2), WLS, t3, x0, and α

are parameters of Gogny functionals. Pσ and Pτ are spin- and isospin-exchange opera-
tors. The first term corresponds to a central potential, the second term to a spin-orbit
potential, and the third term is a density-dependent potential. This central force is a
two-range Gaussian potential depending on spin and isospin with the widths µ1 and µ2.
The density-dependent force is widely used in nuclear DFT that is important for the nuclear
saturation and incompressibility. In the present study, we evaluate the matrix element
Vijkl in Equation (1) using this functional with the harmonic-oscillator single-particle wave
functions and perform shell model calculations to obtain the ground-state and low-lying
excited states. The harmonic-oscillator frequency is determined by an empirical formula
h̄ω = 45A−1/3 − 25A−2/3 MeV [13] to be in good agreement with the charge radii of
spherical nuclei.

To compute the TBMEs of the Gogny interaction, the nuclear density ρ(r) in
Equation (3) is required. In the present study, it is determined by performing the shell
model calculations iteratively in a similar way to self-consistent mean-field methods. We
start the Woods–Saxon density distribution as an initial nuclear density and compute the
TBMEs of the Gogny interaction of Equation (3). In the subsequent steps, we use a renewed
ground-state density given by the shell model wave function and perform the shell model
calculations iteratively. This iterative procedure continues until the energy converges
sufficiently. The Coulomb interaction is not considered in the shell model calculations for
simplicity, but taken into account for the ground-state energy as in Equation (4).

The D1S parameter set is commonly used and successful in the Gogny-type EDFs. It
was designed to fit experimental values of finite nuclei and reproduce the properties of
nuclear matter. In this work, we use the Gogny D1S [14] in the shell model calculations
and investigate sd-shell nuclei and Ca isotopes. We perform the shell model calculations
using the KSHELL code [15].

3. Results and Discussion
We examined the validity of the present hybrid model by comparing the results with

those of the phenomenological shell model interactions and experimental data. The valence
space was taken as sd shell for sd-shell nuclei and p f shell for Ca isotopes.
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First, we compared the TBMEs of the Gogny-D1S interaction with those of the empirical
shell model interactions. We calculated the TBMEs with the harmonic-oscillator wave function
for 18O, 20Ne, 24Mg, and 40Ca using the Gogny-D1S interaction and compared them with the
USDB and SDPF-MU interactions. Figure 1a–d show the correlation between the TBMEs of
the Gogny-D1S interaction and those of the empirical interactions. The points are somewhat
scattered but close to the diagonal line, and the Gogny-D1S TBMEs agree with the empirical
ones roughly within 2 MeV. This means that the Gogny-D1S TBMEs are close to those of USDB
in the sd shell and of SDPF-MU in the sd–p f shell. The density-dependent term in Gogny
D1S only has the T = 0 channel because of x0 = 1 in Equation (3). Almost all the T = 0
TBMEs of the central force and those of the density-dependent force have opposite signs,
leading to some cancellation in the magnitude of TBMEs. The Gogny functional is written
as the finite-range Gaussian functions and the high-momentum component is renormalized
into the low-momentum space, which is advantageous for the application to the shell model
calculations. The USDB interaction is based on the G-matrix theory; however, the matrix
elements were fitted to reproduce the experimental values of A = 16–40 nuclei. Note that the
TBMEs of the USDB interaction have the mass dependence factor (A/18)−0.3, which is well
described by the Gogny ones. In Figure 1d, we can see that a large portion of the TBMEs of
40Ca are concentrated in a range of [−3, 3] MeV.

Figures 2 and 3 show the ground-state energies of the Gogny-D1S shell model calcu-
lation, the mean-field calculations, and the experimental data [16] for even–even sd-shell
nuclei and Ca isotopes. The ground-state energies (Eg.s.) are given by the sum of the shell
model energy (ESM), the energy of the inert core (ECore), the Coulomb energy (ECoul.), and
the correction associated with the kinetic energy of the center-of-mass motion (ECoM) as

Eg.s. = ESM + ECore + ECoul. − ECoM (4)

For simplicity, we assume the isospin symmetry and the Coulomb energy is estimated by
an empirical formula [17].
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Figure 1. Cont.
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Figure 1. Comparison of the two-body matrix elements (TBMEs) given by the Gogny-D1S functional
and those of the empirical interactions (USDB, SDPF-MU). Figures (a–c) show the TBMEs for 18O,
20Ne, and 24Mg, respectively, for the sd shell. Figure (d) shows the TBMEs of 40Ca in the sd–p f shell.
The shell model calculations for Ca isotopes in the following adopt only the p f shell as the valence
space. The dashed lines correspond to the diagonal lines, on which the TBMEs of the Gogny-D1S and
the empirical interactions are identical.

The mean-field results shown in Figures 2 and 3 are obtained using the Hartree–
Fock–Bogoliubov (HFB) method [3]. We performed these mean-field calculations using
the HFBTHO code [18]. These HFB results of O, Ne, Mg, and Ca isotopes overestimate
the experimental binding energies. The two-body center-of-mass correction removes a
major part of this discrepancy, which will be discussed later. In the Ne and Mg isotopes,
the deviation of the HFB results increases as the neutron number increases away from the
N = 8 magic number.

In order to investigate the discrepancy between the HFBTHO results and the experi-
mental values, we here discuss the center-of-mass correction since the HFBTHO code does
not include the two-body part of this correction. The total energy of the nucleus should be
evaluated by subtracting the kinetic energy of the center-of-mass motion. The center-of-
mass energy is given as

ECoM =
1

2AmN

(
∑
ij
⟨i|p|j⟩a†

i aj

)2

=
1

2AmN
∑
ij
⟨i|p2|j⟩a†

i aj +
1

2AmN
∑
ijkl

⟨i|p|k⟩ · ⟨j|p|l⟩a†
i a†

j alak, (5)

where A corresponds to the mass number, mN to the nucleon mass, and p to the nucleon’s
momentum. The first and second terms of Equation (5) are often called the one-body and
two-body center-of-mass corrections, respectively. In the current hybrid approach with
the 0h̄ω model space, the contribution of the two-body correction vanishes, and the total
correction is estimated as 3

4 h̄ω [12]. In the mean-field calculations including the HFB results
with the HFBTHO code in Figures 2 and 3, the two-body corrections exist in general but are
neglected. We compute the contribution of the two-body correction in the HFB calculations
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using the HFBSPH code [19]. Since the spherical symmetry is assumed in this code, we
show the results for the O and Ca isotopes in Figure 4. As we expect, the total contribution
of the corrections is always negative since the kinetic energy of the center-of-mass motion
is positive. However, the contribution of the two-body correction is positive in most cases,
and is around 8 MeV for the Ca isotopes. Thus, the ground-state energies given by the
HFBTHO code in Figure 3 are expected to be lifted up roughly by 8 MeV by introducing
the two-body center-of-mass correction and to approach the experimental values.
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Figure 2. Ground-state energies of the O, Ne, and Mg isotopes against the neutron number. The solid
line, dotted line, and filled squares denote the energies provided by the present shell model calcula-
tions, the HFB, and the experiments [16], respectively. 26O is unbound and the open square denotes
experimental data of the resonance state.
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Figure 3. Ground-state energies of even-mass Ca isotopes. See the caption of Figure 2 for details.

The shell model results successfully reproduce the experimental values of the sd-shell
nuclei up to N = 16 and 40–48Ca. In the neutron-rich region of 50–60Ca, the binding energy
is underestimated and the deviation from the experimental data increases with the neutron
number. Our shell model results tend to underestimate the experimental binding energies.
There may be two possible improvements on the current model: To enlarge the model
space and to optimize the harmonic-oscillator frequency h̄ω. The 0h̄ω valence model space
is adopted in the present paper, but the cross-shell excitations could be important near the
end of the shell. Although we use the empirical formula [13] for the harmonic-oscillator
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frequency ω, it may not be adequate for ground-state energy in the neutron-rich regions.
Nevertheless, 24O is the last bound nucleus at the the neutron dripline, which is correctly
predicted by the Gogny shell model results, while the HFB result fails to reproduce it.
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Figure 4. Contribution of the center-of-mass correction for the O isotopes (a) and Ca isotopes (b) against
the neutron number. The blue (red) bars show the values of the one-body (two-body) corrections.

Figures 5–8 show the energy spectra for the Gogny-D1S shell model calculations
with the experimental data [20–31], together with the USDB calculations (O, Ne, and Mg
isotopes) and with the SDPF-MU calculations (Ca isotopes). Figure 5 demonstrates that the
Gogny-D1S result matches the excitation energies, spin, and parity of the experimental data
of 24O and 26O. The large 2+ excitation energy of 24O indicates the N = 16 sub-shell gap,
which is reproduced by both the USDB interaction and the Gogny-D1S interaction. The shell
model result with Gogny D1S underestimates the experimental excitation energies of 18O,
20O, and 22O, possibly due to the assumption of the inert core 16O. In Figures 6 and 7, the
Gogny-D1S results for the Ne and Mg isotopes agree with the experimental data, with the
accuracy comparable to the USDB. These results contrast with the O isotopes. For nuclei
with N = 10 and 12, for instance, the 2+1 energies are well reproduced for 20,22Ne but
significantly underestimated for 18,20O. There is a significant drop in the excitation energy
of the 2+2 state in 26Mg, which is reproduced in the calculation. In summary, the low-lying
excited states for these nuclei are well described using the sd-shell model space.

Figure 8 shows that the Gogny-D1S shell model calculations in the p f shell with an
inert core 40Ca reasonably agree with the experimental data in 48Ca and 50Ca. The large
2+ excitation energy of 48Ca indicates the doubly magic nature, although the Gogny-D1S
shell model calculation underestimates its magnitude. The results of the 2+1 energies are
systematically smaller than the experimental data in the Ca isotopes, which is analogous to
the case for the O isotopes. This may also be due to the core excitations neglected in the
present calculations.
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Figure 5. Calculated excitation spectra with Gogny D1S and USDB, compared with the experimental
data [20–31] for even–even O isotopes. The black, blue, and red lines denote excitation spectra
provided by Gogny D1S, USDB, and experimental data, respectively. The energy levels are labeled
by Jπ .
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Figure 6. The same as Figure 5, but for even–even Ne isotopes.
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Figure 8. The same as Figure 5, but for even–even Ca isotopes. The valence space is the p f shell and
the phenomenological interaction is SDPF-MU instead of USDB.

To confirm the validity of the present approach further, we computed the B(E2; 0+1 → 2+1 )
transition probabilities of the Mg isotopes. Figure 9 shows the shell model results of the
Mg isotopes using the Gogny-D1S and USDB interactions with the sd-shell model space
compared to the experimental data [32]. Note that the results of the Ne isotopes have been
shown in Ref. [12]. The Gogny-D1S results are systematically smaller than the USDB results
with the same effective charges, (ep, en) = (1.36, 0.45)e, which were determined by the
chi-squared fit for the USDB interaction, and tend to underestimate the experimental B(E2)
values. The agreement is improved to some extent by introducing typical effective charges,
(ep, en) = (1.5, 0.5)e. Enlarging the model space may improve the agreement, which will be
investigated as future work.
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Figure 9. B(E2; 0+1 → 2+1 ) values of Mg isotopes against the neutron number. These values are
compared with USDB, Gogny D1S, and experimental data [32]. The shell model calculations were per-
formed with the sd-shell model space. The blue triangles, the red circles, and the black squares denote
the USDB results, the Gogny-D1S results, and the experimental values, respectively. All USDB results
are given by the effective charges (ep, en) = (1.36, 0.45)e. The Gogny-D1S results are shown with
the two different effective charges, (ep, en) = (1.36, 0.45)e (open red circles) and (ep, en) = (1.5, 0.5)e
(filled red circles).
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4. Summary
We have investigated sd-shell nuclei and Ca isotopes using a hybrid approach of the

shell model and Gogny-type density functionals. The model reproduces the experimental
results of energy spectra with an accuracy comparable to the existing empirical interactions
in O, Ne, Mg, and Ca isotopes. It is demonstrated that the B(E2) transition probabilities
of the Mg isotopes given by the present approach show reasonable agreement with the
experimental values using the standard effective charges as well as the conventional shell
model study. While the empirical interaction consisting of single-particle energies and
TBMEs must be prepared by fitting to experimental data in each valence model space, in the
present hybrid model, the interaction is constructed using an EDF determined to reproduce
the ground-state properties of several nuclei in the nuclear chart and the nuclear matter.
We expect this model to be applicable not only to O, Ne, Mg, and Ca isotopes but also to
nuclei in a broad mass region. The model could be a powerful tool for describing heavy
unknown nuclei including correlations beyond mean-field with good accuracy. On the
other hand, the present model underestimates the ground-state energies in the neutron-rich
region and the excitation energies near the closed-shell configurations. It may indicate the
importance of the core excitations. In future work, we plan to include further configuration
mixing by extending the valence model space, and to employ other types of EDFs.

For future applications of the current model to the heavier-mass nuclei, the shell
model dimension often becomes too large to be treated. In such a case, we plan to employ
numerical methods such as the Monte Carlo shell model [33] and quasi-particle vacua
shell model [34], which enable us to perform shell model studies in heavy-mass deformed
nuclei [35].
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