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Abstract: We compute the canonical partition functions and the Lee–Yang zeros in N f = 2 lattice
QCD at temperature T = 1.20 Tc lying above the Roberge–Weiss phase transition temperature TRW .
The phase transition is characterized by the discontinuities in the baryon number density at specific
values of imaginary baryon chemical potential. We further develop our method to compute the
canonical partition functions using the asymptotic expression for respective integral. Then, we
compute the Lee–Yang zeros and study their behavior in the limit of high baryon density.
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1. Introduction

The properties of the QCD phase diagram in the temperature-baryon chemical poten-
tial plane are studied both experimentally and theoretically very intensively; see, e.g., [1–4].
The current experiments at RHIC (BNL) and LHC (CERN), and the future experiments at
FAIR (GSI) and NICA (JINR), are devoted to such studies. Lattice QCD is a first principles
theoretical approach to study the nonperturbative properties of QCD. It proved to be a
very powerful method to study QCD at zero baryon chemical potential µB. At nonzero µB,
the standard Monte Carlo methods are not applicable due to a severe sign problem. Var-
ious approaches to bypass this problem are under development with partial successes.
These include reweighting, Taylor expansion, analytic continuation, canonical approach,
strong coupling/dual methods, the density of states, and complex Langevin; see for re-
view, e.g., [5,6]. Thanks to recent developments, one can access the regions at finite T
and µB up to µB/T ∼ 3; see, e.g., [7–9]. But the task of locating the critical endpoint still
remains unsolved.

In our work, we follow the canonical approach suggested in Ref. [10]. For imaginary
chemical potential, i.e., for µB = iµI , the sign problem is absent since the fermion deter-
minant is positive. For this reason, it is possible to use standard Monte Carlo algorithms
to compute (imaginary) baryon density ρB and other observables; see, e.g., [11–14]. Then,
the canonical partition functions ZC(n, T, V) can be computed and, as a result, the grand
partition function, ZGC, can be evaluated at any complex value of the chemical potential,
including physically relevant real values. The properties of QCD at imaginary chemical
potential were first formulated in Ref. [15]. It was shown that ZGC is a periodic func-
tion of µI and at high enough temperature (above T = TRW) the free energy has cusps
at µI/T = π + 2πk, k = 0,±1, .... This leads to discontinuities in the imaginary baryon
number density signaling the first-order phase transition.

Discontinuities in the baryon-number density emerge at the points where the pres-
sure p(θ) loses analyticity and, therefore, ZGC(ξ) vanishes. These points are accumulated
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on the lines, which tend to the cuts of the baryon-number density in the complex chemical-
potential plane; evidence for this scenario comes from the same arguments as in [16,17].

The values of ξ where ZGC(ξ) = 0 are called Lee–Yang zeros (LYZ); they were in-
troduced in Refs. [16,17] by T.D. Lee and C.-N. Yang. They discussed the idea of how
the non-analyticity of phase transitions can appear in the thermodynamic limit. The idea
was to consider the truncated series of ZGC(θ, T, V) in terms of fugacity ξB = eµB/T = eθ .
The truncated series becomes a polynomial whose zeros (Lee–Yang zeros) completely de-
termine the phase structure of the theory. For this reason, the study of LYZ in QCD is an
interesting and important task, and their properties were studied in a number of works by
means of lattice QCD approach [18,19] or in effective QCD models [20–22].

After the pioneering work by Roberge and Weiss [15], where they pointed out the
relation between imaginary chemical potential and the phases of QCD, the phase structure
of the complex chemical-potential plane was thoroughly studied numerically [11], and the
location of discontinuities of the baryon-number density as well as the consistency of the
respective canonical partition functions with the experimental data were found [23].

The underlying reason for a particular arrangement of Lee–Yang zeroes in QCD and
its dependence on the temperature is the subject of further studies.

In a number of papers [19,24,25], we developed methods to compute the canonical
partition functions ZC(n, T, V) using the lattice data for imaginary baryon density ρB at both
low and high temperatures. In particular, in Ref. [25] using the stationary phase method we
suggested the solution of the problem of computation of ZC(n, T, V) for temperatures above
the Roberge–Weiss transition [15] when the imaginary baryon density has discontinuity
and successfully applied this new method to the case of T = 1.35Tc. At this temperature,
the baryon density is described by the polynomial of degree three.

We demonstrated in Ref. [25] that ZC(n, T, V) computed using this method allow one
to reproduce the input expression for the baryon number density and, moreover, allow one
to obtain the correct Lee–Yang zeros pattern corresponding to the first-order Roberge–Weiss
transition. Here, we improve our method using higher-order approximation for the station-
ary phase method to compute ZC(n, T, V) and apply it to the case of T = 1.20 Tc > TRW
when one needs to use a higher degree polynomial to describe lattice data for imaginary
baryon density.

In this work, we study the arrangement of the Lee–Yang zeroes in the complex fugacity
plane and the respective discontinuities of the net baryon-number density in the complex
chemical-potential plane (along the lines θI = 2πn, n ∈ Z) in more detail.

The paper is organized as follows. In Section 2, we describe the improvements in
computation of ZC(n, T, V) and demonstrate their effect. In Section 3, the results for the
Lee–Yang zeros are presented. We discuss the difference in their behavior compared to the
higher temperature case. In Section 4, we present our conclusions.

2. Computation of the Canonical Partition Functions

It is useful to introduce notation Zn for the normalized canonical partition function,
ZC(n, T, V)/ZC(0, T, V). The pressure p and the baryon number density ρ are defined
as follows:

p =
T
V

ln ZGC(θ, T, V), (1)

ρ =
NB
V

=
1
T

∂p
∂θ

, (2)

where θ = µB/T, NB is the net baryon number in the lattice volume. In the complex θ
plane, it is convenient to use notations θ = θR + ıθI and ρ = ρR + ıρI . We also need the
dimensionless variables ρ̂ = ρ/T3 = ρ̂R + ıρ̂I .

It is known that T > TRW ρI(θI) can be well approximated by an odd-power poly-
nomial [24,26]. In this paper, we use numerical results for imaginary baryon number
density at T = 1.20 Tc > TRW . These numerical results are slightly different from those we
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presented before in Ref. [24] due to increased statistics. In Ref. [24], we fitted the lattice
data for imaginary baryon number density by the polynomial of degree five

ρ̂I(θI) ' a1θI − a3θ3
I + a5θ5

I , |θI | < π . (3)

For this fit, we find a1 = 0.4901(6), a3 = 0.0132(3), a5 = −0.00016(2). For real chemical
potential, Equation (3) implies

ρ̂R = a1θR + a3θ3
R + a5θ5

R . (4)

Negative a5 implies unphysical behavior at large chemical potential if higher terms
in (4) are absent. For this reason, we decided to also use another fit of the lattice data:

ρ̂I(θI) ' a1θI − a3θ3
I − a7θ7

I , |θI | < π. (5)

corresponding to
ρ̂R = a1θR + a3θ3

R + a7θ7
R. (6)

We obtained positive a7 = 1.43× 10−5(13) for the fit (5) and slightly different a1 and
a3: a1 = 0.49006(42), a3 = 0.01360(13).

For this fit, the real baryon number density in Equation (6) is positive for all values
of θR. Below, we present our results for the fit (5) and make a brief comparison with the
results obtained for the fit (3). We show our data for the imaginary baryon number density,
which fit (3) and (5) in Figure 1. The difference between the fits is not seen by eye. Let us
note that the behavior of ρI seen in Figure 1 implies that it has discontinuity at θI = π since
it is an odd periodic function of θI with period 2π, as we discussed in the Introduction.

Figure 1. Lattice numerical data for imaginary baryon number density ρ̂I(θI) at T = 1.20 Tc and fitting
functions Equations (3) and (5). The coefficients ai are presented in the text below the corresponding
explicit expressions (3) and (5).

Given coefficients ai, we can find the pressure up to the integration constant and,
therefore, ZGC(θ, T, V) up to a factor. Then, we can compute the canonical partition
functions by performing the Fourier transform

ZC(n, T, V) =
∫ π

−π

dθI
2π

eınθI ZGC(θ = ıθI , T, V) (7)

numerically.
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Before we proceed, we need to introduce some notations. We introduce the dimension-
less quantity ν = VT3 characterizing the volume (the expression for ν in terms of lattice

parameters has the form ν = N3
s N−3

t ). We also introduce the variable $ =
n

VT3 , where
n is the net baryon number of a particular physical state. This variable can help one to
remember that the canonical partition functions ZC(n, T, V) correspond to the respective
baryon number density $. In what follows, $ is called a particular density, in contrast to the
grand-canonical ensemble average density ρ.

In Ref. [24], we demonstrated that using Equations (1)–(7) it is possible to compute Zn
at temperature above TRW only for n below some nmax. The value of nmax is estimated from
the following condition: the sign of the canonical partition functions ZC(n, T, V) calculated
by Formula (7) alternates at n > nmax. Negative values of ZC(n, T, V) (and, therefore,
Zn) are unphysical and indicate that our fit-function is not suitable. That is, it cannot
describe high-density (n/ν > $max = nmax/ν) contributions to ZGC(θ, T, V). It should be
noticed that nmax depends significantly on the volume, whereas the respective density $max
depends on the volume only weakly and is in the region of 1.6 at T = 1.35Tc.

In Ref. [25], we explained the reason for this problem and found its solution. The un-
physical negative values of Zn stem from the unphysical condition that the finite-volume
system under study undergoes during a phase transition, implicitly imposed by combining
the 2π−periodicity of ρI(θI) with the Equation (3). Actually, the function (3) is discontin-
uous at θI = π + 2π k, k = ±1,±2, ... . It should be emphasized that with Zn, n < nmax
evaluated in [24], we reproduced the dependence of the net baryon-number density ρ̂I on
θI for all θI except for small neighborhoods of the points θI = 2πn, n ∈ Z.

For this reason, the right-hand side of Equation (3) has to be modified near the
Roberge–Weiss transition at θI = π. This modification should depend on the volume
and involve discontinuities of the type (3) in the infinite-volume limit only. To evaluate
the net baryon-number density ρ in a very close vicinity of the transition point θI = π
presents a challenge. In Ref. [25], we suggested another approach. We employed an
approximate analytical expression for Zn originally introduced in [15]. In this study, we
further develop our ideas formulated in Ref. [25] and demonstrate that the improved
approximation has the needed behavior near θI = π and adequately reproduces density (3)
in the infinite-volume limit.

It should be emphasized that the problem of negative canonical partition functions
ZC(n, T, V) < 0 is associated with the asymptotic regime when ν is fixed, n→ ∞ ($→ ∞);
however, a detailed study of high densities in the finite-volume case should be the subject
of a separate study. Here, we consider two other asymptotic regimes: (i) ν→ ∞, n is fixed
($→ 0) and (ii) ν→ ∞, n→ ∞ ($ is fixed).

In the latter regime, the approach to obtain approximate expressions for the canonical
partition functions in the case when ai = 0 for i > 3 was formulated in Ref. [15]. Here, we
consider the case when a1 6= 0, a3 6= 0, and a7 6= 0. Thus, we evaluate the quantities

ZnA =

∫ ıπ
−ıπ dθeνFn(θ)∫ ıπ
−ıπ dθeνF0(θ)

, where Fn(θ) = −$θ +
1
2

a1θ2 +
1
4

a3θ4 +
1
8

a7θ8 , (8)

applying the stationary phase method [27]. Let us note that the integrals in Equation (8)
are computed along the imaginary axis, while the saddle point θs is real, as is shown in
Figure 2. For this reason, we deform contour AD to ABCD.
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Figure 2. Integration contour for evaluating values of ZnA (8) in the complex θ plane. Explicit
partitioning into the sum of integrals over different parts is presented in expression (10) .

In our case, we use the stationary phase method for ν → ∞. The saddle point
θ = θs = θs($) is determined from the equation

a7θ7 + a3θ3 + a1θ − $ = 0 . (9)

We note that dependence of θs on $ is implied below though not explicitly indicated.
That is, we rearrange the integral in the numerator of (8) as follows:∫ D

A
eνFn(θ)dθ →

∫ B

A
eνFn(θ)dθ +

∫ C

B
eνFn(θ)dθ +

∫ D

C
eνFn(θ)dθ (10)

=
∫ θs

0
eνh−(θR ,$)dθR +

∫ π

−π
eν f (θI ,$)dθI −

∫ θs

0
eνh+(θR ,$)dθR .

We use the substitution θ = θs + ıθI to rearrange the integral over BC into the second
term in the lower row of formula (10), where the function f (θI , $) has the form

f (θI , $) = −$θs +
1
2

a1θ2
s +

1
4

a3θ4
s +

1
8

a7θ8
s + b2θ2

I + b4θ4
I + b6θ6

I + b8θ8
I + iα , (11)

with

b2 = −1
2

(
a1 + 3a3θ2

s + 7a7θ6
s

)
,

b4 =
1
4

(
a3 + 35a7θ4

s

)
,

b6 = −1
2

7a7θ2
s ,

b8 =
a7

8
,

α = −θ3
I θs

(
a3 + a7

(
θ4

I − 7θ2
I θ2

s + 7θ4
s
))

. (12)

Furthermore, we transform the integrals over AB and CD using, respectively, the sub-
stitutions θ = θR − ıπ and θ = θR + ıπ and obtain for functions h±(θR, $)

h±(θR, $) =
a1

2

(
θ2

R − π2
)
+

a3

4

(
θ4

R − 6θ2
Rπ2 + π4

)
(13)

+
a7

8

(
θ8

R − 28π2θ6
R + 70π4θ4

R − 28π6θ2
R + π8

)
− $θR ∓ iπ$± iπθR

(
a1 + a3

(
θ2

R − π2)+ a7
(
θ6

R − 7π2θ4
R + 7π4θ2

R − π6)) .
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The sum of the first and the third terms in Equation (10) should be omitted for the
following reason. The baryon number density and, therefore, Fn(θ) are holomorphic
functions over the interior of the rectangle ABCD and, to employ the stationary phase
method, we should keep them continuous over the rectangle ABCD with its boundary (the
periodicity of the baryon-number density under consideration requires that discontinuities
emerge along the lines AB and CD). Thus, we have to choose the values Fn(θ) on the
segments AB and CD as limiting values when θ tends to the boundaries AB and CD from
the interior of the rectangle ABCD so that Fn(θ) is continuous and thus non-periodic. This
being so, Fn(θ) = h+(θR, $) on CD and Fn(θ) = h−(θR, $) on AB, where h±(θR, $) are
given by formula (13). It is evident from Equation (13) that Re h+(θR, $) = Re h−(θR, $).
This means that the first and the third terms in the upper row of formula (10) do not cancel
each other, their sum is the product of the exponent exp(νRe h+(θR, $)) and the rapidly
oscillating function 2ı sin(νIm h+(θR, $)). Thus, the sum of integrals

∫ B
A +

∫ D
C is purely

imaginary and can be omitted since the integrals both in the numerator and denominator
of formula (8) are real. Therefore, the sum

∫ B
A +

∫ D
C just cancels the imaginary part of the

integral
∫ C

B .
The second term in Equation (10) can be estimated using the asymptotic expansion of

the integral

I =
∫ a

−a
exp(−λx2)ϕ(x; λ) dx , (14)

in the limit λ→ ∞:∫ a

−a
exp(−λx2)ϕ(x; λ) dx ' 1√

λ

∞

∑
k=0

c2k(λ)
Γ(k + 1/2)

λk , (15)

where in some neighborhood of the origin the function ϕ(x; λ) meets the Taylor expansion
ϕ(x; λ) = ∑∞

n=0 cn(λ)xn , with coefficients cn(λ) remaining finite in the limit λ→ ∞. The
validity of Equation (15) for the estimate under consideration can be proven by replacing
θI = xν−1/3. This substitution gives rise to∫ π

−π
eν f (θI ,$)dθI =

1

ν
1
3

exp
(

ν
(
− $θs +

1
2

a1θ2
s +

1
4

a3θ4
s +

1
8

a7θ8
s
))
R($, ν), (16)

where

R($, ν) =
∫ π 3√ν

−π 3√ν
dx exp

{
−ν1/3

2

(
a1 + 3a3θ2

s + 7a7θ6
s

)
x2

}

× exp
{

1
ν1/3

1
4

(
a3 + 35a7θ4

s

)
x4 − 1

ν

7
2

a7θ2
s x6 +

1
ν5/3

1
8

a7x8
}

× cos
{(

a3 + a7

( 1
ν4/3 x4 − 1

ν2/3 7x2θ2
s + 7θ4

s

))
θsx3

}
, (17)

and the function ϕ from Equation (15) is provided by the second and third rows of
Equation (17).

Now, it is a straightforward matter to obtain the sought-for asymptotic expansion.

R($, ν) =

√
π

`ν1/3

(
1 +

3
16ν`2

(
a3 + 35a7θ4

s −
5θ2

s
`

(a3 + 7a7θ4
s )

2
)
+ O

(
1
ν2

))
, (18)

where

` =
1
2
(
a1 + 3a3θ2

s + 7a7θ6
s
)

. (19)
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Finally, our approximation ZnA for the normalized canonical partition functions is

ZnA =
eν f (0,$)

eν f (0,0)
R($, ν)

R(0, ν)
. (20)

Equation (20) corresponds to the next-to-next-to-leading approximation in the asymp-
totic expansion (16). It provides better approximation for ZnA than the values obtained in
the leading approximation (first factor in Equation (20)) or in the next-to-leading approxima-
tion (first term in Equation (18)), as follows from the results for the baryon number density
presented below. These approximations are denoted below as third-order, second-order,
and first-order approximations.

To demonstrate the quality of the approximation ZnA, we computed the real and
imaginary baryon number density using expressions

ρ̂R =
1
ν

2 ∑n>0 nZnA sinh(nθR)

1 + 2 ∑n>0 ZnA cosh(nθR)
, (21)

ρ̂I =
1
ν

2 ∑n>0 nZnA sin(nθI)

1 + 2 ∑n>0 ZnA cos(nθI)
, (22)

and compared them with input densities (6) and (5). We present respective relative devia-
tions in Figures 3–5. One can see from the left panels of Figures 3 and 4 that the relative
deviation of ρ̂I is substantially reduced when we improve the approximation for ZnA
from the first approximation to the third approximation. We should note that we did
not include the very vicinity of θI = π in these figures. When θI is very close to π, the
functions (5) and (22) are intrinsically different for any finite volume. The agreement be-
tween the input ρ̂I and approximated ρ̂I becomes even better when we move from V = 163

to V = 403, as follows from comparison of Figures 3 and 4. This effect is emphasized in the
left panel of Figure 5.

Figure 3. Relative deviation of the baryon number density evaluated via Equations (5) and (22) for
θ = ıθI (left panel) and via Equations (6) and (21) for θ = θR (right panel) for fixed volume V = 163.
Three approximations for ZnA are used in Equations (22) and (21), as explained after Equation (20).

Figure 4. Relative deviation of the baryon number density as in Figure 3 but for volume V = 403.
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Figure 5. Relative deviation of the baryon number density for θ = ıθI (left panel) and for θ = θR

(right panel) for three volumes V = 163, 203, 403 and best (third) approximation for ZnA.

For the relative deviation of ρ̂R shown in the right panels of same figures, we see qual-
itatively the same behavior with some differences. The second and third approximations
provide more or less the same precision, which is much better than the precision of the first
approximation. Increasing the volume also improves precision very much.

In the Figure 6, we show the approximated ρ̂I in the vicinity of θI = π to emphasize
its strong dependence on the volume V.

Figure 6. Behavior of the baryon number density for the imaginary chemical potential computed via
Equation (22) near the θI = π for three volumes V = 163, 203, 403 and best (third) approximation
for ZnA.

3. Evaluation of Lee–Yang Zeros

The grand partition function ZGC(θ, T, V) in the finite volume V can be represented as
a polynomial of the baryon fugacity ξB = eµB/T = eθ

ZGC(θ, T, V) =
Ntot

∑
n=−Ntot

ZC(n, T, V)ξn
B = e−Ntotθ

2Ntot

∑
n=0

ZC(n− Ntot, T, V)ξn
B , (23)

where Ntot = 2N f N3
s Lt for Wilson fermions. Zeros of Equation (23) are Lee–Yang zeros.

The computation of zeros of the high degree polynomial, Equation (23), is in general a
very difficult task. In this work, we employ a very efficient package, MPSolve v.3.1.8
(Multiprecision Polynomial Solver) [28,29], which provides the calculation of polynomial
roots with arbitrary precision. In our case, it was enough to use ZnA with an accuracy
12,000 digits to correctly find all LYZ.

Before discussing the results obtained for Equation (5), we would like to describe the
observations made for Equation (3). We compare the results obtained for different volumes
for the same values of $max = Nmax/(VT3). We start with $max ≈ 0.39 (corresponding to
Nmax = 25 for Ns = 16) and increase it to $max ≈ 5.47. The latter density value corresponds
to the maximal value that we can obtain at T/Tc = 1.20 with a5 6= 0 since respective ZnA
become negative for a high enough density, which is related to the fact that ρ̂R becomes
negative for high density in the case of Equation (3). Examining LYZ distribution in detail,
we observed a distribution of LYZ similar to that we reported in [25] for T/Tc = 1.35. It
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should be noted that the first LYZ on the negative real axes appears at T/Tc = 1.20 at
$max ≈ 1.47 in comparison with $max ≈ 1.60 for T/Tc = 1.35. It is also worth to note that
for fixed Ns, all LYZ located on the real negative axis for given value of Nmax will keep the
same position when Nmax is increased, with new real LYZ appearing closer to ξB = 0. This
behavior of LYZ is observed for both temperatures T/Tc = 1.35 and T/Tc = 1.20.

The approximation with Equation (5) gives us the opportunity to study the behavior
of the system in the limit of large values of Nmax since the density ρ̂R is positive for all
values of θR.

In Figure 7, the results for LYZ are presented in the complex fugacity plane for two
volumes with Ns = 16, 40 and several values of Nmax for each volume. The general features
of the LYZ distribution are very similar to those observed before in Ref. [25] for temperature
T/Tc = 1.35. In the bottom insertion of this figure, ξcl show real LYZ nearest to ξB = −1.
One can see that the positions of these LYZ do not depend on ρmax but depend on Ns. The
main difference from the results obtained for T/Tc = 1.35 is the appearance of additional
LYZ branches for $max ≈ 8 for Ns = 40 and a bit later for smaller volumes; they can be
seen in the right insertion of Figure 7. The reason for the branches is not yet completely
clear. We can see few such reasons: the insufficient numerical precision in the computation
of LYZ, the approximation made in Equation (20) for ZnA, or the approximation for the
baryon density in Equation (5).
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Figure 7. LYZ distribution in the fugacity plane at T/Tc = 1.20. ξcl in the bottom insertion show real
LYZ nearest to ξB = −1. In the right insertion, we show the vicinity of ξB = 0.

In Ref. [25], we derived the relation connecting the discontinuity of the baryon number
density ∆ρ̂I to the density of LYZ on the real negative semiaxis:

∆ρ̂I = 2πN3
t g(θR) . (24)

where g(θR) is the density of the LYZ at θI = π. This relation is correct in the limit of an
infinite volume. g(θR) is defined as

g(θR) =
1

N3
s

dNLYZ(θR)

dθR
, (25)
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where NLYZ(θR) is the number of LYZ at θ = θR + iπ. We approximate g(θR) as

g(θR) =
1

N3
s ∆θR

, (26)

where ∆θR is the distance between adjacent LYZ on the real negative semiaxis. We found
that Equation (24) is nicely satisfied at T/Tc = 1.35 [25] when only terms up to θ3

I were
used in the approximation of the density ρ̂I . Here, we check it for T/Tc = 1.20 with ρ̂I
approximated by Equation (5). Using Equation (5) we derive for ∆ρ̂I

∆ρ̂I = 2π
(

a1 − a3

(
π2 − 3θ2

R

)
− a7

(
π6 − 7

(
3π4θ2

R − 5π2θ4
R + θ6

R

)))
. (27)

Our results for the lhs and rhs of Equation (24) are presented in the Figure 8. One can
see that the numerical value of the discontinuity ∆ρ̂I agrees quite well with the analytical
prediction at small and large |θR|. In the intermediate region, we observe a discrepancy
with the analytical prediction in the form of oscillations. The maximum of this discrepancy
is observed near |θR| = 0.5. By comparing the results for two volumes, one can conclude
that with increasing volume the amplitude of the oscillations is increasing but the range of
|θR| where they are observed is decreasing. Let us note that we observed similar behavior
for the density g(θR), though less pronounced, for the case of Equation (3), but in the limit
of large volumes such oscillations disappeared. The reason for these oscillations is still to
be clarified.
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Figure 8. Check of relation (24) between the LYZ density g(θR) defined in Equation (26) and the
discontinuity ∆ρ̂I in the average particle-number density at θI = π.

We also studied the behavior of complex LYZ forming small collapsing loop, see
Figure 7. In Figure 9, we show the maximal real part of the complex LYZ for Ns = 40
as a function of $max for both T/Tc = 1.2 and T/Tc = 1.35. For both temperatures, this
value goes to zero, indicating that complex LYZ are collapsing to a point ξB = 0, but at
T/Tc = 1.2 this happens slower than for T/Tc = 1.35. In Figure 9, we also show the fit by
the function

f (x) =
α

xγ
e−βx . (28)
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Figure 9. Behavior of the real value of the most right complex LYZ located on a small loop near
ξB = 0 as a function of the maximum density $max for temperatures T/Tc = 1.35 and 1.20. The lines
show results of the fit to the function (28).

For both temperatures, this fit works quite well. We observed qualitatively similar
features of other sides of the loop of complex LYZ, supporting the conclusion that they
collapse to a point ξB = 0 in the limit of large $max.

4. Conclusions

We computed the canonical partition functions ZnA and LYZ in N f = 2 lattice QCD
with Wilson fermion action in the deconfinement phase at T/Tc = 1.20 above TRW and
compared our new results with the results for T/Tc = 1.35 presented in Ref. [25]. In this
paper, we further developed our method to compute the canonical partition functions.
The stationary phase method used in computation of ZnA was extended to the third order,
see Equation (20).

The method was applied to the case of the imaginary baryon density described by
Equation (5), with coefficients ai determined by fits of the lattice results as shown in Figure 1.
We demonstrated that this method to compute ZnA works correctly by reconstructing the
input baryon densities. We observed that the relative deviation δρ̂I/ρ̂I of the approximated
ρ̂I from the input ρ̂I becomes substantially better when we improve the approximation
for ZnA from the first approximation to the second approximation and then to the third
approximation. This agreement improves further when we increase the spatial volume
from V = 163 to V = 403, as can be seen in the left panel of Figure 5. For the respective
relative deviation of ρ̂R shown in the right panels of same figures, we found that the second
and the third approximations provide qualitatively similar precision, which is much better
than the precision of the first approximation. In this case, the spatial volume increasing
also improves precision quite substantially.

Using the canonical partition functions ZnA, we computed LYZ. We found that the
general features of LYZ are the same as at T/Tc = 1.35. Most importantly, there are LYZ on
the negative real semi-axes, signaling the first-order Roberge–Weiss transition. In Figure 8,
we depict LYZ density g(θR) defined in Equation (26) and the discontinuity ∆ρ̂I in the
average particle-number density at θI = π and show that the derived relation (24) is
satisfied. This figure confirms the reliability of our numerical results for LYZ. In this work,
we completed computations at very high densities $max, reaching values 8.0 (for Ns = 40)
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or even 16 (for Ns = 16), and observed some deviations from regular behavior in the
properties of LYZ, indicating the limits of applicability of our method.

We think that the approach to compute the canonical partition functions via the
stationary phase method, which we presented in Ref. [25] and developed further in this
paper, as well as the results obtained for ZnA and LYZ at high temperatures, will be useful
for the computation of these important quantities at lower temperatures where a phase
transition or cross-over is present at real values of the chemical potential.
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