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Abstract: The hadronization of a high-energy parton is described by fragmentation functions which
are introduced through QCD factorizations. While the hadronization mechanism per se remains
uknown, fragmentation functions can still be investigated qualitatively and quantitatively. The
qualitative study mainly concentrates on extracting genuine features based on the operator definition
in quantum field theory. The quantitative research focuses on describing a variety of experimental
data employing the fragmentation function given by the parameterizations or model calculations.
With the foundation of the transverse-momentum-dependent factorization, the QCD evolution of
leading twist transverse-momentum-dependent fragmentation functions has also been established.
In addition, the universality of fragmentation functions has been proven, albeit model-dependently,
so that it is possible to perform a global analysis of experimental data in different high-energy
reactions. The collective efforts may eventually reveal important information hidden in the shadow of
nonperturbative physics. This review covers the following topics: transverse-momentum-dependent
factorization and the corresponding QCD evolution, spin-dependent fragmentation functions at
leading and higher twists, several experimental measurements and corresponding phenomenological
studies, and some model calculations.

Keywords: fragmentation function; transverse-momentum-dependent factorization; QCD evolution;
spin-related effects

1. Introduction

Quantum chromodynamics (QCD) [1] is known as the fundamental theory of strong
interaction in the framework of Yang-Mills gauge field theory [2]. As a key property of QCD,
the color confinement prohibits direct detection of quarks and gluons, the fundamental
degrees of freedom, with any modern detectors. The emergence of color neutral hadrons
from colored quarks and gluons is still an unresolved problem and has received particular
interest in recent years [3]. With the progress of QCD into the precision era, unraveling the
hadronization mechanism in the high-energy scattering processes has become one of the
most active frontiers in nuclear and particle physics.

Due to the nonperturbative nature of QCD, it is still challenging to directly calculate
the hadronization process from first principles. Similar to the parton distribution functions
(PDFs) [4,5], which were originally defined as the probability density of finding a parton
inside the parent hadron, the concept of fragmentation functions (FFs) was introduced by
Berman, Bjorken, and Kogut [6] right after the parton model to describe the emergence of a
system of the hadron from a high-energy parton isolated in the phase space. An alternative
name, the parton decay function, has also frequently been used in early literature.

The modern concept of FFs in QCD was first introduced to describe the inclusive
production of a desired hadron in the e+e− annihilation [7,8], which is still the cleanest
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reaction currently available to investigate the fragmentation process. Within the QCD-
improved parton model, the FF has its foundation in the factorization theorem [9,10], in
which the differential cross section is approximated as a convolution of short-distance
hard scattering and long-distance matrix elements with corrections formally suppressed
by inverse powers of a hard scale, e.g., the center-of-mass (c.m.) energy Q =

√
s in the

e+e− annihilation. The predictive power of this theoretical framework relies on the control
of the hard probe, which can be achieved by our ability to calculate the partonic cross
section order by order in the perturbation theory, and the universality of the long-distance
functions, such as the FFs, to be tested in multiple high-energy scattering processes.

For a single-scale process, e.g., e+e− → hX, where h represents the identified hadron
in the final state and X denotes the undetected particles, the process is not sensitive to the
confined motion of quarks and gluons in the hadronization process, and one can apply the
colinear factorization with the emergence of the detected hadron described by a colinear
FF D f→h(z), where the subscript f stands for the parton flavor and z is the longitudinal
momentum fraction carried by the hadron h with respect to the fragmenting parton. If two
hadrons are identified in a process, e.g., e+e− → hAhBX, where hA and hB are detected
hadrons in the final state, the reaction becomes a double-scale problem with one scale
Q given by the hard probe and the other scale provided by the transverse momentum
imbalance, |pA⊥ + pB⊥|. When the second scale is much smaller than Q, i.e., the two
hadrons are nearly back to back, one needs to use the transverse-momentum-dependent
(TMD) factorization. The emergence of each of the hadrons is described by a TMD FF
D f→h(z, k⊥), where k⊥ is the transverse momentum of the fragmenting parton with respect
to the observed hadron [8,11]. When the two scales are compatible, the reaction effectively
becomes a single-scale process, and one can again use the colinear factorization. The
matching between the two regions has been developed. The TMD FFs defined in the
e+e− annihilation also play an important role in the study of nucleon three-dimensional
structures via the semi-inclusive deep inelastic scattering (SIDIS) process [12]. Instead of
identifying two hadrons in a reaction, one can also access TMD FFs in the single-hadron
production process by reconstructing the thrust axis, which provides the sensitivity to the
transverse momentum of the observed hadron, as proposed in recent years [13–16].

Taking the parton spin degree of freedom into account, one can define polarized or
spin-dependent TMD FFs. They essentially reflect the correlation between parton transverse
momentum and its spin during the hadronization process and result in rich phenomena
in high-energy scattering processes. For example, the Collins fragmentation function
H⊥1 (z, k⊥) [17], naively interpreted as the probability density of a transversely polarized
quark fragmenting into an unpolarized hadron, can lead to a single spin asymmetry (SSA)
in the SIDIS process with a transversely polarized target [18]. This asymmetry is a key
observable for the determination of the quark transversity distribution, the net density
of a transversely polarized quark in a transversely polarized nucleon. It also leads to
azimuthal asymmetries in e+e− annihilation as measured by Belle, BaBar, and BESIII. The
progress of experimental techniques to determine the spin state of produced hyperons,
such as Λ and Ω, and vector mesons, such as ρ and K∗, offer us the opportunity to extract
additional information from FFs. This is far beyond a trivial extension since the spin has
been proven to be a powerful quantity to test theories and models, especially in hadron
physics. The recent measurement of the spontaneous polarization of Λ from unpolarized
e+e− annihilation is such an instance [19]. This observation can be explained by a naively
time-reversal odd (T-odd) TMD FF D⊥1T(z, k⊥) and has received interests from various
groups [15,20–32].

In addition to the leading-twist FFs, which usually have probability interpretations,
the high-twist FFs have been found o be much more important than expected in recent years
for understanding precise experimental data [33–66]. Although the colinear factorization at
subleading power was demonstrated some time ago, the TMD factorization beyond the
leading power is still under exploration, and some approaches have been proposed [67–75].
Although high-twist contributions are formally power suppressed, their contributions to the
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cross section might not be negligible and may have significant effects in certain kinematics
or observables. The inclusion of high-twist FFs will also modify the evolution equation and
consequently affect the leading-twist FFs. The TMD factorization at subleading power was
recently explored with different approaches. Overall, many efforts, both theoretical and
experimental, are still required to understand the hadronization process and the upcoming
data from future electron-ion colliders.

The remainder of this review is organized as follows. In Section 2 we use e+e− → hAhBX
as an example to present the flow of deriving the TMD factorization and the QCD evo-
lution equation of TMD FFs. In Section 3, we present the FFs up to the twist-4 level for
spin-0, -1/2, and 1 hadron productions. In Section 4, we summarize the experimental
measurements towards understanding the spin-dependent FFs. In Section 5, we briefly lay
out some model calculations. A summary is given in Section 6.

2. Factorization and Evolution

The modern concept of FFs has established on the QCD factorization theorems, which
can be derived either from calculating traditional Feynman diagrams in perturbative field
theory [10,11,76–81] or in effective theories [82–86]. In the former approach, one first
identifies a collection of Feynman diagrams that offers the leading contribution through
the Libby–Sterman analysis [87,88]. In this method, the leading contribution is represented
by the reduced diagrams.

Taking e+e− → hAhBX process with hA, hB traveling along almost back-to-back direc-
tions as an example [11], the leading regions are presented in Figure 1. The cross section
is the product of various ingredients, such as the hard part H, the soft part S, and the
colinear parts JA, JB. We work in the light-cone coordinate, so that a four momentum
p can be written as follows: pµ = (p+, p−, p⊥) with p± = 1√

2
(p0 ± p3). In the kinematic

region where TMD factorization applies, the transverse momentum is considerably small
compared with that along the longitudinal direction. Therefore, the momenta of the almost
back-to-back hadrons A and B scale as pA ∼ Q(1, λ,

√
λ) and pB ∼ Q(λ, 1,

√
λ), where Q

is the large momentum scale and λ� 1 is a small parameter. The hard part H computes
the cross section of interaction among hard partons whose momenta scale as Q(1, 1, 1)
in perturbative field theory. The contribution from colinear partons whose momenta are
colinear with the final state hadrons A and B are evaluated in the colinear function JA/B.
This process results in the gauge invariant bare FFs. The soft part calculates the contri-
bution from soft gluons whose momenta typically take the form of Q(λ, λ, λ). They will
be absorbed into the definition of TMD FFs eventually and convert the bare FFs into the
renormalized ones.

...

... ...

...
...

...

S

JA

JB

H H

Figure 1. Leading regions for e+e− → hAhBX.
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The interactions between different parts can be eliminated via applying appropriate
kinematic approximations and the Ward identity. Finally, the cross section is given by a
convolution of those well-separated parts, and we arrive at the factorization theorem of
this process.

Depending on the physics of interest, we may derive either colinear factorization or
transverse-momentum-dependent (TMD) factorization theorems. For the differential cross
section of e+e− → hAhBX as a function of the relative transverse momentum between hA
and hB, the TMD factorization theorem applies.

In the single-photon-exchange approximation, the differential cross section of this
process can be written as the production of a leptonic tensor and a hadronic tensor.
It reads as follows [43]:

dσ

dydzAdzBd2PA⊥
=

2πNcα2

Q4 LµνWµν, (1)

where, α is the coupling constant, Nc = 3 is the color factor, Q is the center-of-mass energy
of the colliding leptons, y = (1 + cos θ)/2 with θ the angle between incoming electron and
the outgoing hadron hA, zA and zB are light-cone momentum fractions of hA and hB, and
PA⊥ is the transverse momentum of hA with respect to the direction of the hB momentum.
For the unpolarized lepton beams, the leptonic tensor Lµν is given by the following:

Lµν = l1µl2ν + l1νl2µ − gµνl1 · l2, (2)

with l1 and l2 being the momenta of colliding leptons. The hadronic tensor Wµν contains
nonperturbative quantities and is laid out as follows:

Wµν =∑
f
|H f (Q, µ)2|µν

∫
d2kA⊥d2kB⊥δ(2)(kA⊥ + kB⊥ − q⊥)

×
[

DhA
1q (zA, pA⊥; µ, ζA)DhB

1q̄ (zB, pB⊥; µ, ζB) + . . .
]
, (3)

where q⊥ = −PA⊥/zA, and H f (Q, µ) is the hard scattering factor that can be evaluated in

the perturbative QCD. Here, DhA
1q (zA, pA⊥; µ, ζA) is the TMD FF with pA⊥ the transverse

momentum of hadron with respect to the fragmenting quark direction, µ is a renormal-
ization scale, and ζA is a variable to regularize the rapidity divergence. Notice that ki,⊥ is
the relative transverse momentum of the fragmenting parton with respect to the hadron
momentum. Therefore, we have pi,⊥ by pi,⊥ = −ziki,⊥. Please also notice the difference
between PA⊥ and pA⊥. The three-dot symbol stands for various spin-dependent terms
which are not explicitly shown.

It is more convenient to perform the TMD evolution in the coordinate space than in
the momentum space. Therefore, we need the Fourier transform,

Dh
1q(z, p⊥; µ, ζ) =

1
z2

∫
d2 p⊥ei 1

z bT ·p⊥ D̃h
1q(z, bT ; µ, ζ), (4)

to translate the TMD FF into coordinate space one. The hadronic tensor then becomes
the following:

Wµν =∑
f
|H f (Q, µ)2|µν

∫ d2bT

(2π)2 e−iq⊥ ·bT
[

D̃hA
1q (zA, bT ; µ, ζA)D̃hB

1q̄ (zB, bT ; µ, ζB) + . . .
]
. (5)

The TMD FF in the coordinate space is defined as the product of transition matrix
elements between the vacuum and the hadronic final states.
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Before presenting the final definition for the TMD FF in the coordinate space, we first
show the unsubtracted version, which appears in the LO calculation. For the production of
hadron A, it reads as follows:

D̃hA ,unsub
1q (z, bT ; ypA − yB) =

1
4Nc

TrCTrD
1
z ∑

X

∫ dx−

2π
eik+x−〈0|γ+L( x

2
;+∞, nB)

× ψq(
x
2
)|h1, X〉〈h1, X|ψ̄q(−

x
2
)L(− x

2
;+∞, nB)

†|0〉, (6)

where the position vector x = (0, x−, bT) contains only minus and transverse components,

ypA = 1
2 ln 2(p+A)

2

m2
A

is the rapidity of hadron A, TrC is a trace in the color space, and TrD

is a trace in the Dirac space. The direction of the Wilson lines in the FF of hadron A is
specified by the direction of hadron B which is denoted as nB and vice versa. Notice that the
rapidity parameters yA → +∞ and yB → −∞ are introduce, so that nA = (1,−e−2yA , 0T)
and nB = (−e2yB , 1, 0T) are slightly space-like. Please also notice the difference between
ypA and yA. The Wilson line starting from the position x is defined as follows:

L(x;+∞, n)ab = P
{

e−ig0
∫ +∞

0 dλn·Aα
(0)(x+λn)tα

}
ab

. (7)

with a and b being the color indices, and g0 and Aα
(0) the bare coupling and the bare

gluon field.
Taking the yA → +∞ and yB → −∞ limit and absorbing the soft factors into the

unsubtracted TMD FF, we arrive at the final definition of the TMD FF:

D̃hA
1q (z, bT ; µ, ζA) = D̃hA ,unsub

1q (z, bT ; ypA − (−∞))

×

√√√√ S̃(0)(bT ;+∞, yn)

S̃(0)(bT ;+∞,−∞)S̃(0)(bT ; yn,−∞)
× ZDZ2, (8)

where yn is an arbitrary rapidity introduced to separate ζA ≡ m2
A

z2
A

e2(ypA−yn) from

ζB ≡ m2
B

z2
B

e2(yn−ypB ), and ZD, Z2 are renormalization factors. The bare soft factor S̃(0) is

defined as the expectation values of Wilson lines on the vacuum, reading as follows:

S̃(0)(bT ; yA, yB) =
1

Nc
〈0|L(bT

2
;+∞, nB)

†
caL(

bT
2

;+∞, nA)ad

×L(−bT
2

;+∞, nB)bcL(−
bT
2

;+∞, nA)
†
db|0〉. (9)

2.1. Evolution Equations for TMD FFs

To regularize the ultraviolet (UV) and rapidity divergences, the energy scale µ and√
ζ are introduced. As a consequence, the TMD FFs differ at different energy scales. The

evolution effects are important for phenomenological studies. The QCD evolution for TMD
FFs with respect to ζ is controlled by the Collins–Soper (CS) equation [10,11], which is
given as follows:

∂ ln D̃h
1q(z, bT ; µ, ζ)

∂ ln
√

ζ
= K̃(bT ; µ), (10)

with K̃(bT ; µ) being the CS evolution kernel. The scale dependence of the evolution kernel
is governed by

dK̃(bT ; µ)

d ln µ
= −γK(µ), (11)
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where γK(µ) is the anomalous dimension. It is given by γK(µ) =
2CF

π αs(µ) with CF = 4/3
being the color factor and αs being the running coupling at the LO accuracy [12].

The µ dependence of the TMD FF is then given by

d ln D̃h
1q(z, bT ; µ, ζ)

∂ ln µ
= γD(µ;

ζ

µ2 ), (12)

where γD is another anomalous dimension. At the LO accuracy [12], it is given as follows:
γD(µ, ζ/µ2) = αs(µ)

CF
π ( 3

2 − ln ζ
µ2 ).

The TMD FF defined by Equation (8) is actually calculable in the colinear factorization
approach in the small-bT regime. However, at the large bT region, the discrepancy of
these two approaches grows in terms of ΛQCDbT . This region is usually referred to as
the nonperturbative regime since a large coordinate corresponds to a small energy scale.
The perturbative treatment of the QCD evolution in this region is no longer reliable. To
have a consistent formula, the b∗-prescription is usually adopted in phenomenology. By

introducing b∗ = |bT |/
√

1 + b2
T/b2

max and µb = 2e−γE /b∗, we can separate the perturbative
part from the nonperturbative part in the QCD evolution. Here, γE is the Euler constant,
and bmax is an infrared cutoff which is properly chosen to guarantee that µb � ΛQCD.
Employing the b∗ prescription, the QCD evolution is always performed in the realm of
the perturbative QCD. Therefore, this approach underestimates the contribution from the
nonperturbative regime. This part of the contribution can be reintegrated into the final
prescription by the introduction of a nonperturbative factor.

Ultimately, we arrive at [12]

Dh
1q(z, bT ; µ, ζ) = Dh

1q(z, b∗T ; µ0 = µb, ζ0 = µ2
b)

× exp
{

ln
√

ζ

µb
K̃(b∗; µb) +

∫ µ

µb

dµ′

µ′
γD(µ

′;
ζ

µ′2
)

}
× exp

{
− Snp(z, |bT |, ζ)

}
, (13)

where the last line is the nonperturbative function that returns the nonperturbative effect
that has been deliberately removed from the QCD evolution in the b∗-prescription. There is
no theoretical approach that can evaluate this nonperturbative function other than the one
that extracts it from experimental data [89–98]. Notice that [99] present a different method
to address the nonperturbative physics. Here, Dh

1q(z, b∗T ; µ0 = µb, ζ0 = µ2
b) is the FF at the

initial scale. In the phenomenology, it is usually chosen to coincide with the colinear FF
Dh

1q(z, µ f ) with the factorization scale specified by µ f = µb.
Similar to the PDF case, QCD evolution tends to broaden the kT distribution width at

higher energy scales. Both unpolarized and spin-dependent FFs show such a behavior [100].

2.2. TMD Factorization at the Higher Twist

In a semi-inclusive process, normally we can find two energy scales: the typical transverse
momentum q⊥ and the hardest energy scale Q. In the region of Q� q⊥ � ΛQCD, the TMD
factorization framework at the leading twist usually works very well. When q⊥ ∼ Q� ΛQCD,
we should fall back to the colinear factorization. However, in between, there is still a large phase
space where q⊥ is smaller than Q but not much smaller. This is the kinematic region where
both the TMD factorization and the colinear factorization can approximately apply. However,
the prediction from the TMD factorization deviates from the experimental measurements
when q⊥/Q becomes not very small, calling for the inclusion of higher twist corrections. The
higher twist corrections are also usually referred to as power corrections since they provide
contributions in terms of (q⊥/Q)n. In addition, twist-3 contributions usually introduce new
asymmetries that do not appear at the leading twist level. A comprehensive study on the
higher twist contributions is thus vital in phenomenology. Contributions from higher twist
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TMD PDFs and FFs were studied some time ago [42], but few advances have been made in
the systematic derivations of the TMD factorization formula at the higher twist gain. Various
theoretical methods have been applied to derive the TMD factorization scheme at the twist-3
level, such as the TMD operator expansion technique [67–69], the soft-colinear effective theory
approach [70], factorization from functional integral [71–74], and a very recent work from [75],
etc. The TMD factorization at the higher twist level is far from being completed, which requires
further theoretical efforts.

3. Spin-Dependent TMD FFs

In semi-inclusive reactions, the experimental observables are usually different az-
imuthal asymmetries. In the kinematic region of TMD factorization, they are directly linked
to TMD PDFs or FFs. The transverse momenta of partons and hadrons are often entangled
with their polarizations. As a consequence, there are abundant polarization-dependent
azimuthal asymmetries that can be measured in the experiment. This is particularly true for
the transverse polarization. It is thought to provide only subleading power contributions
compared to the longitudinal polarization at high energy; however, it often generates
leading power contributions when correlated with the transverse momenta. In this section,
we summarize the definition of the spin-dependent TMD FFs for hadrons with different
spins. The following discussion only applies at the LO level since the TMD factorization
for higher twist contributions is still far from being concluded. Therefore, we remove the
scale dependence from TMD FFs.

3.1. The Intuitive Definition of TMD FFs

FFs represent the momentum distribution of a hadron inside of a hadronic jet produced
by the fragmenting high-energy parton. We useDq→h(k; p) to denote the probability density
of producing a hadron h with momentum p from a quark with momentum k.

In the high-energy limit, we can safely neglect the quark and hadron mass. Therefore,
we have k2 = p2 = 0. In the naive parton model picture, the hadrons move colinearly with
the parent quark. We thus have p = zk where p is the hadron momentum, k is the quark
momentum, and z is the momentum fraction. In this case, the FF is only a scalar function
of z. We have

Dq→h(k; p) = Dq→h
1 (z), (14)

where Dq→h
1 (z) is simply the unpolarized FF.

With the spin degree of freedom being taken into account, the FFs will also depend
on additional parameters which characterize the polarization of the final state hadron or
the fragmenting quark. For example, for the production of spin-1/2 hadrons, we need
to introduce λq and λ to describe the helicities and introduce~sTq and ~ST to describe the
transverse polarizations of the quark and the hadron. With more available parameters, we
can construct two additional scalar structures, λqλh and~sTq · ~ST , according to the parity
conservation. Therefore, the complete decomposition of the FF is given by

Dq→h(k, Sq; p, S) = Dq→h
1 (z) + λqλGq→h

1L (z) +~sTq · ~ST Hq→h
1T (z), (15)

where G1L(z) and H1T(z) are the longitudinal and transverse spin transfers from the quark
to the hadron, respectively. The physical interpretations of these probability densities
coincide with those of the leading twist FFs in the colinear factorization approach.

In some cases, the transverse momentum of the final state hadron with respect to the
quark momentum becomes relevant to the observable of interest. The interplay between the
transverse momentum p⊥ and the polarization parameters induces considerably intriguing
phenomena. Again, we use the spin-1/2 hadron production as an example. From the
parton model, we obtain the following eight TMD probability densities:
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D(k, Sq; p, S) =D1(z, p⊥) + λqλG1L(z, p⊥) +~sTq · ~ST H1T(z, p⊥)

+
1
M

~ST · (~̂k× ~p⊥)D⊥1T(z, p⊥) +
1
M

λq(~ST · ~p⊥)G⊥1T(z, p⊥)

+
1
M
~sTq · (~̂k× ~p⊥)H⊥1 (z, p⊥) +

1
M

λ(~sTq · ~p⊥)H⊥1L(z, p⊥)

+
1

M2 (~sTq · ~p⊥)(~ST · ~p⊥)H⊥1T(z, p⊥). (16)

Here, we have dropped the q → h superscript for simplicity. These TMD FFs cor-
respond to the eight leading twist TMD FFs defined in the TMD factorization approach.
Among them, we notice in particular the famous Collins function H⊥1 [17] and the Sivers-
type FF D⊥1T [101,102]. They are usually referred to as the naive-T-odd FFs. In neglecting
the interaction among the final state hadrons and the gauge link (which will be explained
below), the time-reversal invariance demands that these two functions disappear. How-
ever, the time-reversal operation converts the “out” state to the “in” state. The interaction
among hadrons suggests that one cannot find a simple relation between the “in” and “out”
states any longer. Therefore, the time-reversal invariance actually poses no constraints
on FFs. This feature can be fully appreciated in the context of parton correlators in the
next subsection. Furthermore, we use H to denote FFs accompanied with the transverse
polarization of the fragmenting quark~sTq. They are chiral-odd FFs. The reason for this will
also be explained later.

3.2. The Definition of TMD FFs from the Parton Correlators

In the language of quantum field theory, the quark FFs are defined via the decom-
position of parton correlators, such as the quark–quark correlator and the quark–gluon
correlator. Usually, we need to define the gauge-invariant quark–quark correlators in the
very beginning. From [8,42,43,50,64], we have the following:

Ξ̂(0)
ij (k; p, S) =

1
2π ∑

X

∫
d4ξe−ikξ〈0|L†(0; ∞)ψi(0)|p, S; X〉〈p, S; X|ψ̄j(ξ)L(ξ; ∞)|0〉, (17)

where ξ is the coordinate of the quark field, k and p denote the 4-momenta of the fragment-
ing quark and the produced hadron, respectively; S denotes the hadron spin; and L(ξ; ∞)
is the gauge link that ensures the gauge invariance of the definition of the correlator. We
use i and j to represent one component of the corresponding spinor. Therefore, Ξ̂(0)

ij (k; p, S)

is actually one element in a 4× 4 matrix which is denoted by Ξ̂(0)(k; p, S).
As for the TMD FFs, we can integrate the above master correlator over the k− compo-

nent and obtain the following TMD quark–quark correlator:

Ξ̂(0)
ij (z, k⊥; p, S) = ∑

X

∫ p+dξ−

2π
d2ξ⊥e−i(p+ξ−/z−~k⊥ ·~ξ⊥)

× 〈0|L†(0; ∞)ψi(0)|p, S; X〉〈p, S; X|ψ̄j(ξ)L(ξ; ∞)|0〉, (18)

where z = p+/k+ is the longitudinal momentum fraction of the hadron, and k⊥ is the
transverse momentum of the fragmenting quark with respect to the hadron momentum.
Unlike the discussion in the previous sections, it is more convenient to express the parton
correlators as a function of k⊥ instead of p⊥. Nonetheless, since we have the approximation
k⊥ = −p⊥/z, these two methods are equivalent.

Although the TMD quark–quark correlator is a nonperturbative object, we can still
discuss some general features from the definition. For instance, it possesses hermiticity,
parity invariance, and charge-conjugation symmetry. As will be shown below, these
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properties will constrain the structures of the correlator. However, unlike the case for PDFs,
the time-reversal invariance does not mean much for FFs.

Furthermore, the quark–quark correlator is a 4× 4 matrix in the Dirac space. Therefore,
it can always be decomposed in terms of 16 Γ-matrices, i.e.,

Ξ̂(0)(z, k⊥; p, S) = Ξ(0)(z, k⊥; p, S) + iγ5Ξ̃(0)(z, k⊥; p, S) + γαΞ(0)
α (z, k⊥; p, S)

+ γ5γαΞ̃(0)
α (z, k⊥; p, S) + iσαβγ5Ξ(0)

αβ (z, k⊥; p, S). (19)

The coefficient functions Ξ(0), Ξ̃(0), Ξ(0)
α , Ξ̃(0)

α and Ξ(0)
αβ are given by the trace of the corre-

sponding Γ-matrix with the correlator. These coefficient functions can further be decom-
posed into the products of scalar functions with basic Lorentz covariants according to their
Lorentz transformation properties. The basic Lorentz covariants are constructed in terms
of the available kinematic variables used in the reaction process. The scalar functions are
the corresponding TMD FFs. We will present the detailed decomposition in the following
subsections. Notice that the TMD quark–quark correlator given by Equation (18) satisfies
the constraints of hermiticity and parity conservation. This will limit the allowed Lorentz
structures of the parton correlator.

Higher twist TMD FFs also receive contributions from quark–gluon
correlators [42,43,50,64] in addition to the quark–quark correlator mentioned above. For
example, the complete decomposition of twist-3 TMD FFs also involves contributions from
the following correlator:

Ξ̂(1)
ρ,ij(k; p, S) =∑

X

∫ d4ξ

2π
e−ik·ξ〈0|L†(0; ∞)Dρ(0)ψi(0)|p, S; X〉〈p, S; X|ψ̄j(ξ)L(ξ; ∞)|0〉, (20)

where Dρ(y) ≡ −i∂ρ + gAρ(y) and Aρ(y) denote the gluon field. However, the twist-3
TMD FFs defined via these quark–gluon correlators are not independent from those defined
via the quark–quark correlator [64,65]. They are related to each other by a set of equations
derived using the QCD equation of motion γ · D(y)ψ(y) = 0. Therefore, we will only
show the explicit decomposition of the TMD FFs from the quark–quark correlator in the
following subsections.

3.3. The Spin Dependence

With the spin degree of freedom being taken into account, the basic Lorentz covariants
in the decompositions of the coefficient functions in Equation (19) depend on not only
momenta but also parameters describing the hadron polarization. The hadron polarization
is defined in the rest frame of the hadron and is described by the spin density matrix.

For spin-1/2 hadrons, the spin density matrix is given by

ρ =
1
2

(
1 + ~S ·~σ

)
, (21)

where~σ is the Pauli matrix, and ~S is the polarization vector in the rest frame of the hadron.
The covariant form of the polarization vector reads as follows:

Sµ = λ
p+

M
n̄µ + Sµ

T − λ
M

2p+
nµ. (22)

Here, M is the hadron mass, λ is the helicity, and Sµ
T is the transverse polarization

vector of the hadron. We have employed n̄µ to represent the light-cone plus direction and
nµ to denote the minus direction. For spin-1/2 hadrons, an additional pseudo-scalar λ and
an axial-vector Sµ

T are at our disposal for constructing the basic Lorentz tensors.



Particles 2023, 6 524

For spin-1 hadrons, such as the vector mesons, the polarization is described by a
3× 3 density matrix, which is usually given as [47]

ρ =
1
3
(1 +

3
2

SiΣi + 3TijΣij). (23)

Here, Σi is the spin operator of spin-1 particle. The rank-2 tensor polarization basis Σij

is defined by

Σij ≡ 1
2
(ΣiΣj + ΣjΣi)− 2

3
1δij. (24)

where the second term subtracts the diagonal elements from the product in the first term to
give the relation

Σxx + Σyy + Σzz = 0. (25)

This can be easily seen from the square of the spin-1 operator, i.e., Σ2 ≡ ΣxΣx +
ΣyΣy + ΣzΣz = s(s + 1)1 with s = 1 for spin-1. From Equation (23), we find that a
polarization tensor T is required to fully describe the polarization of a vector meson
besides the polarization vector S. The polarization vector S is similar to that of spin-1/2
hadrons. It takes the same covariant form as laid out in Equation (22). The polarization
tensor Tij = Tr(ρΣij) has five independent components that consist of a Lorentz scalar
SLL, a Lorentz vector Sµ

LT = (0, Sx
LT , Sy

LT , 0) and a Lorentz tensor Sµν
TT that has two nonzero

independent components (Sxx
TT = −Syy

TT and Sxy
TT = Syx

TT). It is parameterized as follows:

T =
1
2

 − 2
3 SLL + Sxx

TT Sxy
TT Sx

LT
Sxy

TT − 2
3 SLL − Sxx

TT Sy
LT

Sx
LT Sy

LT
4
3 SLL

. (26)

The Lorentz covariant form for the polarization tensor is expressed as [47]

Tµν =
1
2

[4
3

SLL

( p+

M

)2
n̄µn̄ν +

p+

M
n{µSν}

LT −
2
3

SLL(n̄{µnν} − gµν
T )

+ Sµν
TT −

M
2p+

n̄{µSν}
LT +

1
3

SLL

( M
p+
)2

nµnν
]
, (27)

where we have used the shorthand notation A{µBν} ≡ AµBν + AνBµ.
For spin-3/2 hadrons, such as the decuplet baryons, the polarization is described by a

4× 4 density matrix which is given by [103,104]

ρ =
1
4

(
1 +

4
5

SiΣi +
2
3

TijΣij +
8
9

RijkΣijk
)

. (28)

Here, Σi is the spin operator of the spin-3/2 particle, and Si is the corresponding
polarization vector. Similar with that for spin-1 case, (Σij) is the polarization tensor basis
which has five independent components. It can be constructed from Σi and is given by

Σij =
1
2

(
ΣiΣj + ΣjΣi

)
− 5

4
δij1, (29)

Notice that the square of the spin-3/2 operator is given by ∑i(Σi)2 = 3
2 (

3
2 + 1)1 = 15

4 1.
The rank-2 tensor polarization basis for spin-3/2, Σij, is also chosen to be traceless as laid
out by Equation (25). Therefore, the second term in Equation (29) is different from that
in Equation (24) for spin-1 hadrons. The corresponding polarization tensor Tij also has
five independent components which are the same as those for spin-1 hadrons. The rank-3



Particles 2023, 6 525

tensor polarization basis Σijk is unique for spin-3/2 hadrons. It has seven independent
components which can be constructed as follows:

Σijk =
1
6

Σ{iΣjΣk} − 41
60

(
δijΣk + δjkΣi + δkiΣj

)
=

1
3

(
ΣijΣk + ΣjkΣi + ΣkiΣj

)
− 4

15

(
δijΣk + δjkΣi + δkiΣj

)
, (30)

where the symbol {· · · } stands for the sum of all possible permutations. The corresponding
rank-3 spin tensor Rijk is defined as follows:

Rijk =
1
4



 −3Sx
LLT + Sxxx

TTT −Sy
LLT + Syxx

TTT −2SLLL + Sxx
LTT

−Sy
LLT + Syxx

TTT −Sx
LLT − Sxxx

TTT Sxy
LTT

−2SLLL + Sxx
LTT Sxy

LTT 4Sx
LLT


 −Sy

LLT + Syxx
TTT −Sx

LLT − Sxxx
TTT Sxy

LTT
−Sx

LLT − Sxxx
TTT −3Sy

LLT − Syxx
TTT −2SLLL − Sxx

LTT
Sxy

LTT −2SLLL − Sxx
LTT 4Sy

LLT


 −2SLLL + Sxx

LTT Sxy
LTT 4Sx

LLT
Sxy

LTT −2SLLL − Sxx
LTT 4Sy

LLT
4Sx

LLT 4Sy
LLT 4SLLL




, (31)

Meanwhile, the Lorentz covariant form is given as follows:

Rµνρ =
1
4

{
SLLL

[
1
2

(
M

P · n̄

)3
n̄µn̄νn̄ρ − 1

2

(
M

P · n̄

)(
n̄{µn̄νnρ} − n̄{µgνρ}

T

)
+

(
P · n̄
M

)(
n̄{µnνnρ} − n{µgνρ}

T

)
− 4
(

P · n̄
M

)3
nµnνnρ

]

+
1
2

(
M

P · n̄

)2
n̄{µn̄νSρ}

LLT + 2
(

P · n̄
M

)2
n{µnνSρ}

LLT − 2n̄{µnνSρ}
LLT +

1
2

S{µLLT gνρ}
T

+
1
4

(
M

P · n̄

)
n̄{µSνρ}

LTT −
1
2

(
P · n̄
M

)
n{µSνρ}

LTT + Sµνρ
TTT

}
. (32)

3.4. Decomposition Result for Spin-Dependent TMD FFs

The results for TMD FFs of spin-1 hadrons defined via quark–quark correlator exist
up to twist-4 level in the literature [65]. The leading twist TMD FFs for spin-3/2 hadrons
have also been presented in [104]. In this section, we summarize the general decomposition
of the quark–quark correlator in terms of TMD FFs for the unpolarized part, polarization-
vector-dependent part, rank-2-polarization-tensor-dependent part, and rank-3-polarization-
tensor-dependent parts. To describe the production of pseudoscalar mesons, we only need
the unpolarized part. To describe the production of baryons, we need to combine the
unpolarized and the polarization-vector-dependent parts. The description of the spin-3/2
hadron production requires all four parts. However, it should be noted that different
conventions are employed in different works.

The notation system for TMD FFs in this review are laid out here. We use D, G, and H
to denote FFs of unpolarized, longitudinally polarized, and transversely polarized quarks,
respectively. They are obtained from the decomposition of the γµ, γ5γµ and γ5σµν terms
of the quark–quark correlator. Those FFs defined from the decomposition of the 1 and γ5
terms are denoted as E. We use the numbers 1 and 3 in the subscripts to denote the leading
twist and twist-4 FFs, respectively. Other FFs without numbers in the subscripts are at the
twist-3 level. The polarization of the produced hadron will be specified in the subscripts,
where L and T represent longitudinal and transverse polarizations, and LL, LT, and TT
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stand for the rank-2-tensor polarizations. The symbol ⊥ in the superscript implies that the
corresponding basic Lorentz structure depends on the transverse momentum k⊥.

The decomposition for the unpolarized part is given by the following:

zΞU(0)(z, k⊥; p) = ME(z, k⊥), (33)

zΞ̃U(0)(z, k⊥; p) = 0, (34)

zΞU(0)
α (z, k⊥; p) = p+n̄αD1(z, k⊥) + k⊥αD⊥(z, k⊥) +

M2

p+
nαD3(z, k⊥), (35)

zΞ̃U(0)
α (z, k⊥; p) = −k̃⊥αG⊥(z, k⊥), (36)

zΞU(0)
ρα (z, k⊥; p) = − p+

M
n̄[ρ k̃⊥α]H

⊥
1 (z, k⊥) + Mε⊥ρα H(z, k⊥)−

M
p+

n[ρ k̃⊥α]H
⊥
3 (z, k⊥). (37)

Here, k̃⊥α ≡ ε⊥µαkµ
⊥ denotes the transverse vector orthogonal to k⊥α, with ε⊥µν being

defined as ε⊥µν ≡ εµναβn̄αnβ. There are eight TMD FFs for the unpolarized part. Among
them, the number density D1 and the Collins function H⊥1 are at the leading twist. They
both have twist-4 companions i.e., D3 and H⊥3 , respectively. The other four are twist-3
FFs. The TMD FFs D⊥1T ,G⊥, H⊥1 , H, and H⊥3 are usually referred to as the naive T-odd FFs.
The reader may have already discerned that the T-odd FFs are always associated with the
Levi-Civita tensor, εµναβ. It should be noted that T-odd PDFs can only survive thanks to
the gauge link. However, for the FFs, the final state interactions between the produced
hadrons in the hadronization process can also contribute to the T-oddness. This difference
has a more important impact on the polarization-vector-dependent T-odd PDFs and FFs,
which are discussed below.

The decomposition for the vector polarized part is given by the following:

zΞV(0)(z, k⊥; p, S) = (k̃⊥ · ST)E⊥T (z, k⊥), (38)

zΞ̃V(0)(z, k⊥; p, S) = M
[
λEL(z, k⊥) +

k⊥ · ST
M

E′⊥T (z, k⊥)
]
, (39)

zΞV(0)
α (z, k⊥; p, S) = p+n̄α

k̃⊥ · ST
M

D⊥1T(z, k⊥)−MS̃TαDT(z, k⊥)

− k̃⊥α

[
λD⊥L (z, k⊥) +

k⊥ · ST
M

D⊥T (z, k⊥)
]
+

M
p+

nα(k̃⊥ · ST)D⊥3T(z, k⊥), (40)

zΞ̃V(0)
α (z, k⊥; p, S) = p+n̄α

[
λG1L(z, k⊥) +

k⊥ · ST
M

G⊥1T(z, k⊥)
]

−MSTαGT(z, k⊥)− k⊥α

[
λG⊥L (z, k⊥) +

k⊥ · ST
M

G⊥T (z, k⊥)
]

+
M2

p+
nα

[
λG3L(z, k⊥) +

k⊥ · ST
M

G⊥3T(z, k⊥)
]
, (41)

zΞV(0)
ρα (z, k⊥; p, S) = p+n̄[ρSTα]H1T(z, k⊥) +

p+

M
n̄[ρk⊥α]

[
λH⊥1L(z, k⊥) +

k⊥ · ST
M

H⊥1T(z, k⊥)
]

+ k⊥[ρSTα]H
⊥
T (z, k⊥) + Mn̄[ρnα]

[
λHL(z, k⊥) +

k⊥ · ST
M

H′⊥T (z, k⊥)
]

+
M2

p+
n[ρSTα]H3T(z, k⊥) +

M
p+

n[ρk⊥α]

[
λH⊥3L(z, k⊥) +

k⊥ · ST
M

H⊥3T(z, k⊥)
]
. (42)

There are in total 24 polarization-vector-dependent TMD FFs. Of these, 6 contribute
at the leading twist, 12 at twist-3, and remaining 6 at twist-4. Among the six leading
twist FFs, G1L is the longitudinal spin transfer, H1T and H⊥1T are transverse spin transfers,
G⊥1T is the longitudinal to transverse spin transfer, H⊥1L is the transverse to longitudinal
spin transfer, and D⊥1T induces the transverse polarization of hadrons in the fragmentation
of an unpolarized quark. We note in particular that the D⊥1T FF resembles the Sivers
function in PDFs [101]. It is responsible for the hadron transverse polarization along the
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normal direction of the production plane in high-energy collisions. It is also a naive T-
odd FF. However, as mentioned above, the T-oddness has little meaning in the context
of hadronization. The T-odd PDFs arise solely from the gauge link. Therefore, it has
been proven theoretically that there is a sign-flip between the Sivers functions in SIDIS
and Drell-Yan [105–107]. However, the T-oddness of FFs can also be generated from the
interaction among final state hadrons. Therefore, there is no such similar relation for the
D⊥1T FF between different processes. Besides D⊥1T , there are seven other T-odd FFs, namely,
E⊥T , EL, E′⊥T , D⊥L , DT , D⊥T , and D⊥3T . The rest are T-even. All of T-odd FFs are accompanied
by the Levi-Civita tensor except for EL and E′⊥T .

The decomposition for the rank-2-polarization-tensor-dependent part is given as follows:

zΞT(0)(z, k⊥; p, S) = M
[
SLLELL(z, k⊥) +

k⊥ · SLT
M

E⊥LT(z, k⊥) +
Skk

TT
M2 E⊥TT(z, k⊥)

]
, (43)

zΞ̃T(0)(z, k⊥; p, S) = M
[ k̃⊥ · SLT

M
E′⊥LT(z, k⊥) +

Sk̃k
TT

M2 E′⊥TT(z, k⊥)
]
, (44)

zΞT(0)
α (z, k⊥; p, S) = p+n̄α

[
SLLD1LL(z, k⊥) +

k⊥ · SLT
M

D⊥1LT(z, k⊥) +
Skk

TT
M2 D⊥1TT(z, k⊥)

]
+ MSLTαDLT(z, k⊥) + Sk

TTαD′⊥TT(z, k⊥)

+ k⊥α

[
SLLD⊥LL(z, k⊥) +

k⊥ · SLT
M

D⊥LT(z, k⊥) +
Skk

TT
M2 D⊥TT(z, k⊥)

]
+

M2

p+
nα

[
SLLD3LL(z, k⊥) +

k⊥ · SLT
M

D⊥3LT(z, k⊥) +
Skk

TT
M2 D⊥3TT(z, k⊥)

]
, (45)

zΞ̃T(0)
α (z, k⊥; p, S) = p+n̄α

[ k̃⊥ · SLT
M

G⊥1LT(z, k⊥) +
Sk̃k

TT
M2 G⊥1TT(z, k⊥)

]
−MS̃LTαGLT(z, k⊥)− S̃k

TTαG′⊥TT(z, k⊥)

− k̃⊥α

[
SLLG⊥LL(z, k⊥) +

k⊥ · SLT
M

G⊥LT(z, k⊥) +
Skk

TT
M2 G⊥TT(z, k⊥)

]
+

M2

p+
nα

[ k̃⊥ · SLT
M

G⊥3LT(z, k⊥) +
Sk̃k

TT
M2 G⊥3TT(z, k⊥)

]
, (46)

zΞT(0)
ρα (z, k⊥; p, S) = −p+n̄[ρS̃LTα]H1LT(z, k⊥)−

p+

M
n̄[ρS̃k

TTα]H
′⊥
1TT(z, k⊥)

− p+

M
n̄[ρ k̃⊥α]

[
SLL H⊥1LL(z, k⊥) +

k⊥ · SLT
M

H⊥1LT(z, k⊥) +
Skk

TT
M2 H⊥1TT(z, k⊥)

]
+ Mε⊥ρα

[
SLL HLL(z, k⊥) +

k⊥ · SLT
M

H⊥LT(z, k⊥) +
Skk

TT
M2 H⊥TT(z, k⊥)

]
+ n̄[ρnα]

[
(k̃⊥ · SLT)H′⊥LT(z, k⊥) +

Sk̃k
TT
M

H′⊥TT(z, k⊥)
]

− M
p+

n[ρ k̃⊥α]

[
SLL H⊥3LL(z, k⊥) +

k⊥ · SLT
M

H⊥3LT(z, k⊥) +
Skk

TT
M2 H⊥3TT(z, k⊥)

]
− M

p+
n[ρMS̃LTα ]

[
H3LT(z, k⊥) + S̃k

TTα]H
′⊥
3TT(z, k⊥)

]
. (47)

We have used the shorthanded notations such as Skk
TT ≡ Sαβ

TTk⊥αk⊥β. There are in total
40 tensor polarization-dependent TMD FFs; of these.10 contribute at the leading twist,
20 contribute at twist-3, and the remaining 10 contribute at twist-4. The 24 TMD FFs defined
from the decomposition of Ξ̃T(0)

α and ΞT(0)
ρα are naive T-odd. Among these TMD FFs, we

notice in particularly that the SLL dependent TMD FF D1LL, which is responsible for the
spin alignment of the produced vector meson, is decoupled from the quark polarization.
This suggests that the vector meson spin alignment can also be observed in the unpolarized
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high-energy collisions [108–110]. Besides, D1LL also survives the k⊥-integral. Therefore, it
also appears in the colinear factorization.

The rank-3-polarization-tensor-dependent TMD FFs are unique for spin-3/2 (or higher)
hadrons. A complete set of leading twist quark TMD FFs for spin-3/2 hadrons has
been given in [104]. There are in total 14 rank-3-polarization-tensor-dependent TMD
FFs that can be defined at the leading twist level. We refer interested readers to [104] for a
detailed discussion.

3.5. TMD FFs of Antiquarks and Gluons

One can define antiquark TMD FFs by replacing the fermion fields in the correlator of
quark TMD FFs with the charge-conjugated fields. Therefore, it is easy to find that the traces
of the correlator with Dirac matrices I, iγ5 and γµγ5 will have an opposite sign between
quark and antiquark cases, while the traces with γµ and iσµγ5 are the same [42,43,56]. The
definition and parameterization of the antiquark TMD FFs are then full analogous to those
of quark TMD FFs.

The gluon FFs are defined through the gluon correlator given by [8,111]

Γ̂µν;ρσ(k; p, S) = ∑
X

∫ d4ξ

(2π)4 eik·ξ〈0|Fρσ(ξ)|p, S; X〉〈p, S; X|U (ξ, 0)Fµν(0)|0〉, (48)

where Fρσ(ξ) ≡ Fρσ,aTa is the gluon field field strength tensor, and U (ξ, 0) is the Wilson
line in the adjoint representation that renders the correlator gauge invariant. Under the
assumption that the fragmenting parton moves in the plus direction, an integration over
the k− component is carried out to give the TMD gluon correlator.

At the leading twist, we need to consider

MΓ̂ij(z, k⊥; p, S) =
∫

dk− Γ+j;+i(k; p, S), (49)

where i and j are transverse Lorentz indices in the transverse directions.
For the spin-1/2 hadron production, there are eight leading twist gluon TMD FFs

which are given by the decomposition of the TMD gluon correlator [111]. We have
the following:

Γ̂ij
U(z, k⊥; p, S) =

p+

M

[
−gij

T D1g(z, k⊥) +

(
ki
⊥kj
⊥

M2 + gij
T

k2
⊥

2M2

)
H⊥1g(z, k⊥)

]
,

Γ̂ij
L(z, k⊥; p, S) =− λ

p+

M

[
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M
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]
. (50)

Γ̂U , Γ̂L, and Γ̂T stand for the unpolarized, the longitudinal, and transverse polarized
parts for the hadron production, respectively. Analogously to the quark FFs, we have
used D to represent FFs of the unpolarized gluons, G to represent the FFs of the circularly
polarized gluons, and H to represent the FFs of the linearly polarized gluons. Higher twist
gluon TMD FFs are also discussed in [111], who further detail the parameterizations.

4. Experiment and Phenomenology

In high-energy experiments, the polarization of final state hadrons is usually measured
from the angular distribution of their decay products. It is very challenging to acquire
accurate experimental data. In light of a considerably large amount of free parameters, the
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spin-dependent FFs are not well-constrained experimentally. Compared with the case for
unpolarized PDFs or FFs, the quantitative study of spin-dependent FFs is still immature.
That said, there are already quite a few phenomenological studies making full use of the
available experimental data. In this section, we summarize the available experimental data
and the corresponding phenomenological studies.

4.1. Λ Hyperons

The polarization of Λ0 hyperons is usually measured from the angular distribution of
the daughter proton in the parity-violating Λ0 → p + π− decay channel. In the rest frame
of Λ0, the normalized angular distribution of the daughter proton reads as follows:

1
N

dN
d cos θ∗

=
1
2
(1 + αP cos θ∗), (51)

where α = 0.732± 0.014 is the decay parameter of Λ [112], P is the polarization of Λ along
a specified direction, and θ∗ is the angle between the proton momentum and the specified
direction to measure the Λ polarization.

The LEP experiment is an e+e− collider at the Z0-pole. Due to the parity violation
in the weak interaction, the produced quark and antiquark are strongly polarized along
the longitudinal direction. The longitudinal polarizations of those final state quarks and
antiquarks in e+e− annihilation at different collisional energies can be easily computed at
the LO level and are explicitly shown in [113]. At the Z0-pole, the longitudinal polarization
of the final state down-type quarks can reach 0.9. That of the up-type quarks is a bit smaller
but is still about 0.6 ∼ 0.7. Based on the SU(6) spin-flavor symmetry, the polarization
of Λ0 is determined by the polarization of the s quark. It is thus proposed in [114] that
the final state Λ0 hyperons are also strongly polarized at LEP, and the measurement of
this polarization can probe interesting information on the hadronization mechanism. In
the language of QCD factorization, the LEP experiment is the ideal place to study the
longitudinal spin transfer G1L(z), which represents the number density of producing
longitudinally polarized Λ0 hyperons from longitudinally polarized quarks. It is the
pT-integrated version of the TMD FF G1L(z, p⊥).

At the leading order and leading twist, the longitudinal polarization of Λ0

reads as follows: [108,113]

PL(y, z) =
∑q λq(y)ωq(y)G1L,q(z) + {q↔ q̄; y↔ (1− y)}

∑q ωq(y)D1,q(z) + {q↔ q̄; y↔ (1− y)} , (52)

where λq(y) = ∆ωq(y)/ωq(y) is the helicity of the fragmenting quark with ∆ωq(y) and
ωq(y) being defined as follows:

∆ωq(y) = χTq
1 (y) + χ

q
int Iq

1(y), (53)

ωq(y) = χTq
0 (y) + χ

q
int Iq

0(y) + e2
q A(y), (54)

Tq
1 (y) = −2cq

Vcq
A[(c

e
V)

2 + (ce
A)

2]A(y) + 2[(cq
V)

2 + (cq
A)

2]ce
Vce

AB(y), (55)

Tq
0 (y) = [(cq

V)
2 + (cq

A)
2][(ce

V)
2 + (ce

A)
2]A(y)− 4cq

Vcq
Ace

Vce
AB(y), (56)

Iq
1(y) = −cq

Ace
V A(y) + cq

Vce
AB(y), (57)

Iq
0(y) = cq

Vce
V A(y)− cq

Ace
AB(y). (58)

Here, y = (1 + cos θ)/2 with θ is the angle between the outgoing Λ and the incoming
electron. The coefficient functions are given as A(y) = (1 − y)2 + y2, B(y) = 1 − 2y,
χ = Q4/[(Q2 − M2

Z)
2 + Γ2

Z M2
Z] sin4 2θW , and χ

q
int = −2eqQ2(Q2 − M2

Z)/[(Q
2 − M2

Z)
2 +

Γ2
Z M2

Z] sin2 2θW . cq/e
V and cq/e

A are the coupling constants of the vector current and axis-
vector current parts of the quark/electron, with Z0. MZ being the mass of Z0 and ΓZ being
the width. Notice that λq̄(y) = −λq(1− y). The quark helicity and antiquark helicity have
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the opposite sign. This is in line with the sign flip in Section 3.5. Therefore, the polarization
of Λ̄0 is expected to have the opposite sign with that of Λ0.

Since the quark helicity λq(y) and the production weight ωq(y) are calculable in quan-
tum field theory, the measurement of the longitudinal polarization of final state Λ0 as
a function of z can directly provide information of the longitudinal spin transfer. Such
experiments were eventually carried out by ALEPH and OPAL collaborations at LEP in
the 1990s [115,116]. As shown in Figure 2, the longitudinal polarization increases monoton-
ically with increasing z, which provides a hint on how to parameterize the longitudinal
spin transfer.

e+e− → Λ0 + X

√
s = 91.2 GeV

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2
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z

P L
(z
)

ALEPH, 1996

OPAL, 1997

Figure 2. Reproduction of the longitudinal polarization of Λ0 in e+e− annihilation at
√

s = 91.2 GeV
measured by the ALEPH [115] and OPAL [116] collaborations at LEP. We have combined the statistical
and systematic errors. Neglecting the mass of Λ hyperons in the high-energy limit, the definitions of z
in these two experiments are the same as those of the momentum fraction in the light-cone coordinate
currently used in the QCD factorizations.

Following the release of these experimental data, many phenomenological
studies [108,117–124] were carried out to understand the longitudinal spin transfer G1L(z).
Among them, the de Florian–Stratmann–Vogelsang (DSV) parameterization [118] offers three
scenarios. The first scenario is based on the naive parton model, which assumes that only
the s quark contributes to the longitudinal spin transfer at the initial scale. The second
scenario assumes that the u and d quarks contribute to negative G1L(z) at the initial scale.
The third scenario assumes that u, d, and s contribute equally. All three can describe
the experimental data reasonably well. A more recent Chen–Yang–Zhou–Liang (CYZL)
analysis [108] also obtained a good description of the experimental data utilizing the LO
formula. The ambiguity again highlights the difficulties in the quantitative study of FFs. It
can only be removed through a global analysis of the experimental data in various high-
energy reactions. Therefore, many works have also made predictions for the longitudinal
polarization of Λ produced in polarized SIDIS [117,125–127] and pp collisions [128–131].

The inclusive DIS process with the polarized lepton beam has been used to probe
the spin structure of the nucleon [132–134]. In this process, only the momentum of the
final state lepton was measured. Therefore, we can gain information on the nucleon
structure but lose those on the hadronization. To restore the access to (spin-dependent)
FFs, we have to rely on the semi-inclusive process and measure (the polarization of) one
final state hadron (There are two fragmentation regimes in SIDIS, namely the current
fragmentation and the target fragmentation. Although the target fragmentation function is
also currently a hot topic, it is beyond the scope of this review. We only focus on the study
of the current fragmentation function). However, it is not a simple task to do so in the
real world. Despite the difficulties, early attempts from the E665 [135] and HERMES [136]
collaborations were still successfully performed. Recent measurements from HERMES [137]
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and COMPASS [138] collaborations have also elevated the quality of experimental data to a
level that sheds light on phenomenological studies. These experiments measure the spin
transfer coefficient DLL(z) (it is important to not get confused with the spin-alignment-
dependent FF D1LL(z) of vector mesons) which, at the leading order and leading twist
approximation, is given by [42]

DLL(xB, z) =
∑q e2

qxB f1,q(xB)G1,q(z)

∑q e2
qxB f1,q(xB)D1,q(z)

, (59)

with f1,q(xB) being the unpolarized PDF. Due to the presence of the unpolarized PDF of
proton/nucleus, the polarized SIDIS experiment favors more contributions from the u and d
quarks at large xB than from the e+e− collider. We show the HERMES data set as a function
of z (integrating over xB) and the COMPASS data set as a function of xB (integrating over z)
in Figure 3.
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Figure 3. Spin transfer coefficient DLL as a function of z and xB in polarized SIDIS measured by the
HERMES [136] and COMPASS [138] collaborations. Only the statistic errors are shown in both plots.
Axes 1 and 2 refer to two different definitions of the longitudinal direction of Λ in the experiment.
They are approximately the same at the high-energy limit. However, at the HERMES energy, they are
not parallel to each other.

The experimental data from E665 [135] suggested a difference between DLL for
the Λ0 production and that for the Λ̄0 production. This was later confirmed by the
COMPASS [138] experiment. In [139–141], it was shown that such a difference serves as a
flavor tag in the study of the G1L FF. More studies on the flavor dependence of PDFs/FFs
have been performed [122,142–149]. The NOMAD collaboration also carried out similar
measurements in the neutrino SIDIS experiment [150,151]. Because of the flavor-changing
feature of the charged weak interaction, this experiment opens more opportunities for
quantitative research on the flavor dependence of spin-dependent FFs. A sophisticated
investigation was presented in [152].

RHIC is the first and, so far, the only polarized proton–proton collider. The helicity of
the incident protons can be transferred to that of the partons through the longitudinal spin
transfer g1L(x) of PDFs. Therefore, it also has the capability of probing G1L(z) of the frag-
mentation. The first measurement was performed in 2009 [153], while an improved analysis
was presented in 2018 [154]. These experiments measure the spin transfer coefficient DLL
which is defined as follows:

DLL ≡
σp+p→Λ++X − σp+p→Λ−+X

σp+p→Λ++X + σp+p→Λ−+X
. (60)
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The + symbol in the superscript denotes the helicity of the corresponding proton or Λ
hyperon. The updated experimental data from the STAR collaboration [154] at RHIC are
shown in Figure 4. This experimental data tend to favor the first and second scenarios in
the DSV parameterization [118]. However, it cannot concretely rule out any scenario yet
due to the large uncertainties. Moreover, the Xu–Liang–Sichtermann approach [131] based
on the SU(6) spin-flavor symmetry can also describe this data well. Moreover, RHIC also
measured the transverse spin transfer coefficient DTT , which is sensitive to the convolution
of the transversity PDF and the transversity FF [155].

p+ p→ Λ +X at
√
s = 200 GeV
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Figure 4. The spin transfer coefficient DLL in polarized pp collisions at
√

s = 200 GeV measured by
the STAR collaboration at RHIC [154]. Data points are taken from [154]. The systematic error and the
statistical error have been combined.

The polarizations of partons participating the same hard scattering are strongly cor-
related. The helicity amplitudes of different partonic processes have been evaluated and
summarized in [156]. Thus, [157] proposes the dihadron polarization correlation as a
probe to the longitudinal spin transfer G1L in e+e− annihilations at low energy where the
fragmenting quarks are not polarized. Recently, this idea was further investigated and ap-
plied to the unpolarized pp collisions in [158]. By measuring the longitudinal polarization
correlation of two almost back-to-back hadrons, we also gain access to the longitudinal
spin transfer in unpolarized pp collisions. Since this observable avoids the contamination
from the longitudinal spin transfer g1L in PDFs. which is also poorly known, [158] inno-
vated a means to investigating the longitudinal spin transfer G1L in FFs at RHIC, Tevatron,
and the LHC. Furthermore, this work can also be used to constrain the FF of circularly
polarized gluons.

Recently, the Belle collaboration measured the transverse polarization of Λ hyperons
in e+e− annihilations [19], sparking considerable theoretical interest [15,20–32]. In this
experiment, one first defines the hadron production plane and then measures the transverse
polarization along its normal direction. Since there are two transverse directions, we refer to
the polarization along one as PN and the other one as PT . The hadron production plane can
be defined in two ways. The first one is defined by the thrust axis and the Λ momentum. In
the second, the thrust axis is replaced by the momentum of a reference hadron (in the back-
to-back side). Therefore, this experiment is dedicated to probing the D⊥1T(z, p⊥) FF. While
the pT-differential experimental data of PN contain sizable uncertainties, the pT-integrated



Particles 2023, 6 533

version is quite precise, as shown in Figure 5. Employing the Trento convention [159] for the
definition of D⊥1T(z, p⊥), the p⊥ integrated transverse polarization is given by [24,25,28,160]

PN(zΛ) =
∑q e2

q
∫

d2 p⊥d2 ph⊥
−P̂⊥Λ ·p⊥

zΛ MΛ
Dh

1,q(zh, ph⊥)D⊥Λ
1T,q(zΛ, p⊥)

∑q e2
q
∫

d2 p⊥d2 ph⊥Dh
1,q(zh, ph⊥)DΛ

1,q(zΛ, p⊥)

∣∣∣∣∣
P⊥Λ=

zΛ
zh

ph⊥+p⊥

, (61)

where P̂⊥Λ is the unit vector along the direction of P⊥Λ. The integral in the denominator
simply reduces to the product of two colinear FFs. However, to evaluate the numerator,
we need to first parameterize the p⊥ and ph⊥ dependence at the initial scale, which then
evolves to the TMD factorization scale through use of the Collins–Soper–Sterman evolution
equation. Nonetheless, since the collisional energy at Belle is not very high, a Gaussian
ansatz is already a good approximation. More sophisticated approaches incorporating the
p⊥ dependence can be found in [29,31,32].
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Figure 5. Transverse polarization of Λ in e+e− annihilation measured by the Belle collaboration [19].
Data points are taken from [19]. Statistical and systematic errors are combined in quadrature.

As shown in Figure 5, the distinct difference between PN measured in the Λ + π+(or K+)
and Λ+π−(or K−) processes offers an opportunity to explore the flavor dependence. Early
attempts, such as the D’Alesio–Murgia–Zaccheddu (DMZ) [24] and Callos-Kang–Terry
(CKT) [25] parameterizations, adopted the strategy that valence parton FFs differ from each
other and that parton FFs are the same, i.e., D⊥Λ

1T,u 6= D⊥Λ
1T,d 6= D⊥Λ

1T,s 6= D⊥Λ
1T,sea. However,

this approach violates the isospin symmetry, which is one of the most important features
of strong interaction. Furthermore, a model calculation [27] based on the strict SU(6)
spin-flavor symmetry failed to describe the experimental data. However, it was first shown
in [28] that the isospin symmetric Chen–Liang–Pan–Song–Wei (CLPSW) parameterization
can still describe the experimental data well as long as the artificial constraint on sea parton
FFs is released. This perspective was further investigated in Ref. [31] recently, which
concluded that one can obtain good fit to the Belle data with and without implementing
the isospin symmetry constraint after taking into account the charm contribution. This
confirms that the current Belle dataset does not represent an isospin symmetry violation in
the hadronization. Furthermore, [160] proposed to test the isospin symmetry at the future
EIC experiment. By comparing the transverse polarizations in ep and eA scatterings at
large x, we can ultimately check the difference between D⊥1T,u and D⊥1T,d.

The future EIC is a polarized electron–proton/ion collider with unprecedentedly high
luminosity. It will open a new window for the quantitative study of spin-dependent FFs.
Several works [161–164] have proposed and made predictions for different observables at
the future EIC with polarized proton beams. These observables are sensitive to various
combinations of spin-dependent PDFs and FFs. Therefore, the future measurement will
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reveal information on both hadron structure and hadronization. A recent work [160]
also proposed a method to study spin-dependent PDFs/FFs in unpolarized experiments.
The key idea is that the polarizations of the final state quark and initial state parton
are correlated. Thanks to the Boer–Mulders function in the PDFs, the initial state quark
are transversely polarized although the polarization depends on the azimuthal angle.
This transverse polarization can further propagate into final state observables through
chiral-odd FFs. By measuring the azimuthal-angle-dependent longitudinal and transverse
polarizations of final state Λ, we can probe H⊥1L and H⊥1T even in the unpolarized SIDIS
process. Moreover, we can also measure the azimuthal-angle-dependent polarizations
in e+e− annihilations to probe combinations of the Collins function and spin-dependent
chiral-odd FFs [160]. This idea is akin to those explored in [30,165].

4.2. Vector Mesons

Most vector mesons decay through parity-conserving strong interactions. Their polar-
ization vector does not enter the angular distribution of the daughter hadrons. Therefore,
it is not possible to measure their polarization vector. In contrast, the tensor polarization
does play a role in the angular distribution and therefore can be measured. Among them,
spin alignment, which quantifies the deviation from 1/3 of ρ00 in the spin-density matrix,
has received the most attention.

Several collaborations [166–169] at LEP have measured the spin alignment of differ-
ent vector mesons produced in the e+e− annihilation at the Z0-pole. We show the spin
alignment of K∗0 and ρ0 measured by the OPAL [166] and DELPHI [167] collaborations
in Figure 6. The off-diagonal matrix elements were also measured in some of the experi-
ments. Thereafter, the NOMAD collaboration measured the vector meson spin alignment
for the first time in the neutrino DIS experiment [170]. These measurements offer more
information on the hadronization mechanism and have led to several phenomenological
studies [171–179].
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Figure 6. Spin alignment of K∗0 and ρ0 measured by the OPAL [166] and DELPHI [167] collaborations
at LEP. Data points are taken from [166,167].

Figure 6 shows that ρ00 is consistent with 1/3 (i.e., no spin alignment) at the small-z
region. However, at large z, a clear spin alignment is observed. This pattern is similar
to that for the longitudinal polarization of Λ also measured at LEP [115,116] (shown
in Figure 2).

As mentioned above, the quarks produced at LEP and also those at NOMAD are
strongly polarized. Therefore, it is tempting to attribute the tensor polarization of final
state vector mesons to the longitudinal polarization of the fragmenting quarks. However,
a simple tensor structure analysis [47,63,64,175] shows that this is not the case. The spin
alignment of the final state mesons is not coupled with the quark polarization. Instead,
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it is coupled with the quark-polarization-summed cross section. The vector meson spin
alignment in e+e− collisions is given by

ρ00 =
1
3
− 1

3
∑q ωq(y)D1LL,q(z)

∑q ωq(y)D1,q(z)
, (62)

where, ωq is defined to be the same as that for the Λ production in the previous section, and
D1LL(z) is the corresponding FF that is responsible for the vector meson spin alignment. As
shown in the above equation, the longitudinal polarization of the fragmenting quark does
not play a role here. It was thus first proposed in [63] that the vector meson spin alignment
can also be observed in other high-energy collisions with unpolarized quarks fragmenting.
Fitting to the experimental data from LEP, other work [108,109] extracted D1LL(z) and made
predictions for the spin alignment of high pT vector mesons in unpolarized pp collisions at
RHIC and the LHC [109]. Furthermore, from the same mechanism, there will be a significant
spin alignment for vector mesons produced in the unpolarized SIDIS. Measuring vector
meson spin alignment at the future EIC will cast new light on the quantitative study of the
D1LL(z) FF.

Notice that the spin alignment of low-pT vector mesons in AA collisions has also been
measured at RHIC [110,180] and LHC [181] recently. These low-pT hadrons in relativistic
heavy-ion collisions are produced through a different hadronization mechanism than those
of fragmentation. Their tensor polarization originates from a different source.

5. Model Calculation

The PDFs and FFs are defined in terms of quark–gluon correlators as laid out in
Section 3. Owing to the nonperturbative nature of the hadron state, we cannot directly
evaluate them theoretically. Thus far, several proposals for computing quantities that can be
related to the PDFs in the lattice QCD approach have been put forward [182–186]. However,
it is not possible to study FFs in the lattice QCD yet. In the current stage, the quantitative
information is mainly extracted from the experimental data.

However, due to the limited amount of experimental data, the TMD PDFs and FFs
are not yet well constrained. As a complementary tool, model calculations have usually
been employed to compute different PDFs over the past decades [106,187–219]. These
investigations offer quantitative insight into the hadron structure and therefore are indis-
pensable for phenomenological study. The same also goes for the FFs. Most of the models
can be used to evaluate both PDFs and FFs. We make a nonexclusive brief summary on
FF calculations.

There are quite a few models that can be categorized as a spectator model [220,221].
Among them, the quark–diquark model is a simple one which provides the quark–baryon–
diantiquark vertex, so that the baryon FFs can be easily evaluated. In [222], the colinear
baryon FFs were calculated at the leading twist using the quark–diquark model, while
in [189,223–226], the TMD FFs were further computed at the leading and subleading twists.
To compute the meson FFs or the gluon FFs, we need an improved version which offers the
vertex among the fragmenting parton, hadron, and spectator. In [227], the Collins function
was calculated for pions and kaons in this method. Recently, in [228], approach to calculate
leading twist gluon TMD FFs was presented. The chiral invariant model [229] investigated
the chiral symmetry and the spontaneous breaking with an effective Lagrangian of quarks,
gluons, and goldstone bosons. It can also be classified into the spectator model category.
Utilizing this model, several authors [230–235] calculated the pion and kaon FFs. In [236],
an extended version was also developed to compute the vector meson FFs. Furthermore,
several works [237–240] have evaluated the FFs of different hadrons using a parameterized
quark–hadron coupling.

The Nambu–Jona–Lasinio (NJL) model originates from [241,242] who developed an
effective theory describing the quark–hadron interaction. It has been employed to evaluate
PDFs of different hadrons [191,243–248]. Incorporating with the Feynman–Field model
(also known as the quark–jet model) established in [249,250], the NJL=-jet model has been
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employed to calculate both colinear and TMD FFs of different hadrons [235,251–257]. Recent
works have also computed FFs of gluon [258] and charm quark [259] with this approach.
The Feynman–Field model relates the total FF to the first rank FF. However, it does not
specify how to compute the first rank FF. Therefore, in principle, it can be hybridized with
another model which provides with the first rank FF to prolong the applicability of the
corresponding model.

We make a final remark on the model calculation to conclude this section. All the
above-mentioned models compute FFs employing the effective Lagrangian of partons and
hadrons of interest. While these calculations offer quantitative insight into the hadroniza-
tion scheme, we should draw a line between conclusions that are model-dependent and
those that are model-independent.

6. Summary

There are a multitude of topics within the subject of FFs. In this review, we constrain
ourselves in a very limited scope that we are familiar with. First, we briefly summarized the
derivation of the TMD factorization and the establishment of the QCD evolution equation
at the leading twist level. The TMD factorization and the corresponding evolution at the
higher twist level are still ongoing topics. Second, we are particularly interested in the
spin-related effects. With the spin degree of freedom being taken into account, the interplay
between the transverse momentum and the hadron/quark polarization presents a highly
intriguing phenomena that can be investigated in experiments. As a result, we need to
define more TMD FFs to fully describe the fragmentation process. In quantum field theory,
TMD FFs are introduced in the decomposition of parton correlators. We summarized the
final results up to the twist-4 level for spin-0, spin-1/2, and spin-1 hadron productions.
Finally, although all the TMD FFs have clear definitions in terms of parton fields and hadron
states, they are nonperturbative quantities that cannot be directly evaluated from quantum
field theory. In contrast to TMD PDFs, FFs cannot be computed even in the lattice QCD
approach. The quantitative investigation thus mainly concentrates on the extraction from
experimental measurements and model calculations. We summarized several spin-related
experiments conducted over the past decades and the corresponding phenomenological
studies. In the last section, we also briefly presented several model calculations.

The study of TMD FFs is still a very active field, and many mysteries remain to be
explored. The Electron-Ion Collider (EIC) and the Electron-Ion Collider in China (EicC)
have been proposed to be built as the new high-energy colliders in the next generation.
They will provide new experimental data for the quantitative study of TMD FFs and can
significantly boost our understanding of the hadronization mechanism.
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