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Abstract: Visible matter is characterised by a single mass scale; namely, the proton mass. The
proton’s existence and structure are supposed to be described by quantum chromodynamics (QCD);
yet, absent Higgs boson couplings, chromodynamics is scale-invariant. Thus, if the Standard Model is
truly a part of the theory of Nature, then the proton mass is an emergent feature of QCD; and emergent
hadron mass (EHM) must provide the basic link between theory and observation. Nonperturbative
tools are necessary if such connections are to be made; and in this context, we sketch recent progress
in the application of continuum Schwinger function methods to an array of related problems in
hadron and particle physics. Special emphasis is given to the three pillars of EHM—namely, the
running gluon mass, process-independent effective charge, and running quark mass; their role in
stabilising QCD; and their measurable expressions in a diverse array of observables.
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1. Introduction

Our Universe exists; and even the small part that we occupy contains much which
might be considered miraculous. Nevertheless, science typically assumes that the Uni-
verse’s evolution can be explained by some collection of equations—even a single equation,
perhaps, which replaces distinct theories of many things with a single theory of everything.
Choosing not to approach that frontier, then, within the current paradigm, the Standard
Model of particle physics (SM) is given a central role; and it must account for a huge array
of observable phenomena. Herein, we focus on one especially important aspect, viz. the
fact that the mass of the vast bulk of visible material in the Universe is explained as soon
as one understands why the proton is absolutely stable and how it comes to possess a
mass mp ≈ 1 GeV. In elucidating this connection, we will argue that the theory of strong
interactions may deliver far more than was originally asked of it.

We have evidently supposed that quantum gauge field theory is the correct paradigm
for understanding Nature. In this connection, it is important to note that, in our tangible
Universe, time and space give us four noncompact dimensions. Consider, therefore, that
quantum gauge field theories in D 6= 4 dimensions are characterised by an explicit, intrinsic
mass scale: the basic couplings generated by minimal substitution are mass-dimensioned
and set the scale for all calculated quantities. For D > 4, such theories manifest uncontrol-
lable ultraviolet divergences, making them of little physical use. In contrast, for D < 4,
they are super-convergent, but are afflicted with a hierarchy problem, viz. dynamical
mass-generation effects are typically very small when compared with the theory’s explicit
scale [1–5]. Hence, perhaps unsurprisingly, D = 4 is a critical point. Removing Higgs
boson couplings, the classical gauge theory elements of the SM are scale-invariant. Taking
the step to quantum theories, they are all (at least perturbatively) renormalisable; and
that procedure introduces a mass scale. As we have noted, the scale for visible matter is
mNature ≈ mp ≈ 1 GeV. However, the size of this scale is not determined by the theory; so,
whence does it come? Further, how much tolerance does Nature give us? Is the Universe
habitable when mNature → (1± δ)mNature, with δ = 0.1 or 0.2, etc.? It is comforting to
imagine that our (ultimate?) theory of Nature will answer these questions, but the existence
of such a theory is not certain.

Returning to concrete issues, strong interactions within the SM are described by
quantum chromodynamics (QCD). Therefore, consider the classical Lagrangian density
that serves as the starting point on the road to QCD:

LQCD = ∑
f =u,d,s,...

q̄f [γ · ∂ + ig 1
2 λaγ · Aa + mf ]qf + 1

4 Ga
µνGa

µν, (1a)

Ga
µν = ∂µ Aa

ν + ∂ν Aa
µ − g f abc Ab

µ Ac
ν, (1b)

where {qf | f = u, d, s, c, b, t} are fields associated with the six known flavours of quarks;
{mf } are their current–masses, generated by the Higgs boson; {Aa

µ | a = 1, . . . , 8} represent

the gluon fields, whose matrix structure is encoded in { 1
2 λa}, the generators of SU(3)

in the fundamental representation; and g is the unique QCD coupling, using which one
conventionally defines α = g2/[4π]. As remarked above, if one removes Higgs boson
couplings into QCD, so that {mf ≡ 0} in Equation (1), then the classical action associated
with this Lagrangian is scale-invariant. A scale-invariant theory cannot produce compact
bound states; indeed, scale-invariant theories do not support dynamics, only kinematics [6].
So, if Equation (1) is really capable of explaining, amongst other things, the proton’s
mass, size, and stability, then remarkable features must emerge via the process of defining
quantum chromodynamics.

This point is placed in stark relief when one appreciates that the gluon and quark fields
used to express the one-line Lagrangian of QCD are not the degrees-of-freedom measured
in detectors. This is an empirical manifestation of confinement. Amongst other things, a
solution of QCD will reveal the meaning of confinement, predict the observable states, and
explain how they are built from the Lagrangian’s gluon and quark partons. However, the
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search for a solution presumes that QCD is actually a theory. Effective theories are tools
for use in obtaining a realistic description of phenomena perceived at a given scale. A true
theory must be rigorously defined at all scales and unify phenomena perceived at vastly
different energies. If QCD really is a well-defined quantum field theory, then it may serve
as a paradigm for physics far beyond the SM.

Having raised this possibility, then it is appropriate to provide a working definition of
“well-defined” in relation to quantum field theory. Aspects of the mathematical problem
are discussed elsewhere [7,8]. Herein, we consider that a quantum (gauge) field theory is
well-defined if its ultraviolet renormalisation can be accomplished with a finite number of
renormalisation constants, {Zj|j = 1, . . . , N}, N . 10,1 all of which can (a) be computed
nonperturbatively and (b) remain bounded real numbers as any regularisation scale is
removed. Further, that the renormalisation of ultraviolet divergences is sufficient to ensure
that any/all infrared divergences are eliminated, i.e., the theory is infrared-complete.

Quantum electrodynamics (QED) is not well-defined owing to the existence of a
Landau pole in the far ultraviolet (see, e.g., Reference [9] (Ch. 13) and References [10–13]).
Furthermore, weak interactions are essentially perturbative because the inclusion of the
Higgs scalar boson introduces an enormous infrared scale that suppresses all nonperturba-
tive effects; moreover, the Higgs boson mass is quadratically divergent, making the theory
non-renormalisable.

On the other hand, as we will explain herein, it is beginning to seem increasingly
likely that QCD satisfies the tests listed above; hence, is the first well-defined quantum
field theory that humanity has developed. QCD may thus stand alone as an internally
consistent theory, so that after quantisation of Equation (1), with nothing further added, it is
a genuinely predictive mathematical framework for the explanation of natural phenomena.

We have used a Euclidean metric and consistent Dirac matrices in writing Equation (1)
because if there is any hope of arriving at a rigorous definition of QCD, then it is by
formulating the theory in Euclidean space. There are many reasons for adopting this
perspective. Amongst the most significant being the fact that a lattice regularisation of
the theory is only possible in Euclidean space, where one can use the action associated
with Equation (1) to define a probability measure [14] (Section 2.1). Notably, a choice
must be made because any “Wick rotation” between Minkowski space and Euclidean
space is a purely formal exercise, whose validity is only guaranteed for perturbative
calculations [15,16]. If QCD really does (somehow) explain the emergence of hadron mass
and structure, then nonlinear, nonperturbative dynamics must be crucial. Consequently,
one cannot assume that any of the requirements necessary to mathematically justify a Wick
rotation are satisfied when calculating and summing the necessarily infinite collection of
processes associated with a given experimental observable.

One concrete example may serve to illustrate the point. Both continuum and lattice
analyses of the gluon two-point Schwinger function (often called the Euclidean space
gluon propagator) yield a result whose analytic properties are very different from those
one would obtain in perturbation theory at any finite order [17]. As a consequence, the
Minkowski space gluon gap equation that is obtained from the Euclidean form via the
standard transcriptions used to implement the Wick rotation [16] (Section 2.3), whilst being
similar in appearance, cannot possess the same solutions. Thus, to avoid confusion, one
should begin with all such equations formulated in Euclidean space, where the solutions
determined have a direct and unambiguous connection with results obtained using nu-
merical simulations of the lattice-regularised theory. Anything else is an unnecessary and
potentially misleading pretence. Furthermore, only those Schwinger functions correspond-
ing to observable quantities need have a continuation to Minkowski space, and that can be
accomplished following standard notions from constructive field theory ([15] (Sections 3
and 4), [16] (Section 2.3)).

1 Here, the value “10” is arbitrary. More generally, the number should be small enough to ensure that predictive
power is not lost through a need to fit too many renormalised observables to measured quantities.
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We proceed then by supposing that QCD is defined by the Euclidean-space generating
functional built using the Lagrangian density in Equation (1). Here, a new choice presents
itself. One might attempt to solve the thus-quantised theory using a lattice regularisa-
tion [18,19]. Lattice-regularised QCD (lQCD) is a popular framework, which, owing to
growth in computer power and algorithm improvements, is becoming more effective—see,
e.g., Reference [20]. On the other hand, continuum Schwinger function methods (CSMs)
are also available [14,16,21–25]. Much has been achieved using this approach, especially
during the past decade [26–31] and particularly in connection with elucidating the origins
and wide-ranging expressions of emergent hadron mass (EHM) [32–37]. It is upon those
advances that we focus herein.

2. Hadron Mass Budgets

There is one generally recognised mass-generating mechanism in the SM; namely, that
associated with Higgs boson couplings [38,39]. Insofar as QCD is concerned, there are
six distinct such couplings, each of which generates the current–mass of a different quark
flavour. Those current–quark masses exhibit a remarkable hierarchy of scales, ranging from
an electron-like size for the u and d quarks up to a value five-orders-of-magnitude larger for
the t quark ([40] (p. 32)). Faced with such discordance, we choose to begin our discussion
of mass by considering the proton and its closest relatives, viz. the π- and ρ-mesons.

The proton is defined as the lightest state constituted from the valence quark com-
bination u + u + d. π+ is a pseudoscalar meson built from u + d̄ valence quarks, and the
ρ+ is its kindred vector meson partner: in quark models, the π and ρ are identified as 1S0
and 3S1 states, respectively ([40] (Section 63)). Table 1 presents a breakdown of the masses
of these states into three contributions: the simplest to count is that associated with the
Higgs-generated current–masses of the valence quarks (HB); the least well understood is
that part which has no connection with the Higgs boson (EHM); and the remainder is that
arising from constructive interference between these two sources of mass (EHM+HB).

Table 1. Mass budgets of a collection of hadrons, with each panel ordered according to the
contribution from Higgs boson couplings into QCD (HB) and including the component that is
entirely unrelated to the Higgs (EHM) and that arising from constructive interference between
these two mass sources (EHM+HB) (separation at ζ = 2 GeV, produced using information from
References [35,40–43]).

Mass Fraction (%)
Hadron (Mass/GeV) HB EHM+HB EHM

p (0.938) 1 6 93
ρ (0.775) 1 2 97

D∗ (2.010) 63 30 7
B∗ (5.325) 78 21 1

π (0.140) 5 95 0
K (0.494) 20 80 0
D (1.870) 68 32 0
B (5.279) 79 21 0

The information listed in Rows 1, 2, 5, and 6 of Table 1 is represented pictorially in
Figure 1: plainly, there are significant differences between the upper and lower panels.
Regarding the proton and ρ-meson, the HB-alone component of their masses is just 1% in
each case. Notwithstanding that, their masses are large and remain so even in the absence
of Higgs boson couplings into QCD, i.e., in the chiral limit. This overwhelmingly dominant
component is a manifestation of EHM in the SM. It produces roughly 95% of the measured
mass. Evidently, baryons and vector mesons are similar in these respects.
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A B

C D

Figure 1. Mass budgets: (A) proton; (B) ρ-meson; (C) pion; (D) kaon. Each is drawn using a
Poincaré-invariant decomposition and the numerical values listed in Table 1 (separation at ζ = 2 GeV,
calculated using information from References [40–43]).

Conversely and yet still owing to EHM via its dynamical chiral symmetry breaking
(DCSB) corollary, the pion is massless in the chiral limit—it is the SM’s Nambu–Goldstone
(NG) mode [27,44–52]. Returning to the quark model picture, the only difference between
ρ- and π-mesons is a spin-flip: in the ρ, the constituent quark spins are aligned, whereas
they are antialigned in π. Yet, their mass budgets are fundamentally different: Figure 1B; cf.
Figure 1C. An inability to explain this difference is a conspicuous failure of quark models:
whilst it is easy to obtain a satisfactory mass for the ρ, a low-mass pion can only be obtained
by fine-tuning the quark model’s potential. Nature, however, does not fine-tune the pion:
in the absence of Higgs boson couplings, it is massless irrespective of the size of mρ and, in
fact, the mass of any other hadron.

The kaon mass budget is also drawn—see Figure 1D. In the chiral limit, then, like the π,
the K-meson is an NG boson. However, with realistic values of Higgs boson couplings into
QCD, the s quark current–mass is approximately 27-times the average of the u and d current–
masses [40]: 2ms ≈ 27(mu + md). Consequently, the HB wedge in Figure 1D accounts for
20% of mK. The remaining 80% is generated by constructive EHM+HB interference. It fol-
lows that comparisons between π and K properties present good opportunities for studying
Higgs boson modulation of EHM, because the HB mass fraction is four-times larger in kaons
than in pions. Moreover, the array of images in Figure 1 highlights that additional, comple-
mentary information can be obtained from comparisons between baryons/vector mesons
and the set of kindred pseudoscalar mesons. For instance, studies of spectra (Section 6),
transitions between vector mesons and pseudoscalar mesons (Section 10), and comparative
analyses of proton and pion parton distribution functions (DFs) (see Section 11). In all
cases, predominantly EHM systems, on the one hand, are contrasted/overlapped with final
states that possess varying degrees of EHM+HB interference.

These observations highlight that EHM—whatever it is—can be accessed via experi-
ment. The task for theory is to identify and explain its source, then elucidate a broad range
of observable consequences so that the origins and explanations can be validated.
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3. Gluons and the Emergence of Mass

The requirement of gauge invariance ensures that the Higgs boson does not couple to
gluons and precludes any other means of generating an explicit mass term for the gluon
fields in Equation (1). Consequently, it is widely believed that gluons are massless; and this
is recorded by the Particle Data Group (PDG) [40] (p. 25). (We stress that gluon partons are
massless).

In QCD, this “gauge invariance” statement is properly translated into a property of
the two-point gluon Schwinger function. Namely, using the class of covariant gauges as an
illustrative tool, characterised by a gauge-fixing parameter ξ, the inverse of the gluon two-
point function can be expressed in terms of a gluon vacuum polarisation (or self-energy):

D−1
µν (k) = δµνk2 − kµkν(1− ξ) + Πµν(k) =: 0D−1

µν (k) + Πµν(k) + ξkµkν , (2)

where k is the gluon momentum. (Regarding ξ, common choices in perturbation theory
are ξ = 0, 1, viz. Landau and Feynman gauges, respectively.) Gauge invariance (BRST
symmetry of the quantised theory [53] (Ch. II)) is expressed in the following Slavnov–Taylor
identity [54,55]:

kµΠµν(k) = 0 = Πµν(k)kν . (3)

This restrictive, yet generous, constraint states that interactions cannot affect the four-
longitudinal component of the gluon two-point function, but leaves room for modifications
of the propagation characteristics of the three four-transverse degrees-of-freedom.

Equation (3) means

Πµν(k) = [δµνk2 − kµkν]Π(k2) =: Tk
µνk2Π(k2) , (4)

where Π(k2) is the dimensionless gluon self-energy; hence, the gauge invariance constraint
entails

Dµν(k) = Tk
µν

1
k2[1 + Π(k2)]

+ ξ
kµkν

k4 =: Tk
µνD(k2) + ξ

kµkν

k4 . (5)

This is the propagator of a massless vector boson, unless

Π(k2)
k2'0
=

m2
J

k2 , (6)

in the event of which both the dressed gluon acquires a mass and all symmetry constraints
are preserved. That Equation (6) is possible in an interacting quantum gauge field theory
was first shown in a study of two-dimensional QED [56,57], and the phenomenon is now
known as the Schwinger mechanism of gauge boson mass generation. Three-dimensional
QED supports a similar outcome [3–5,58,59], as does D = 3 QCD [60,61]; but, as already
noted above, there is a difference between both these examples and QCD. Namely, whereas
the Lagrangian couplings in D < 4 theories carry a mass dimension, which explicitly
breaks scale invariance, this is not the case for D = 4 chromodynamics.

The existence of a Schwinger mechanism in QCD was first conjectured forty years
ago [62]. The idea has subsequently been explored and refined [63–67], so that, today, a
detailed picture is emerging, which unifies both the gauge and matter sectors [68]. The
dynamical origin of the QCD Schwinger mechanism and its intimate connection with non-
perturbative dynamics in the three-gluon vertex are elucidated elsewhere [36,37]. This is an
area of continuing research, where synergies between continuum and lattice QCD are being
exploited [69,70]. For our purposes, it is sufficient to know that Equation (6) is realised in
QCD. Indeed, owing to their self-interactions, gluon partons transmogrify into gluon quasi-
particles, whose propagation characteristics are determined by a momentum-dependent
mass function. That mass function is power-law suppressed in the ultraviolet—hence,
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invisible in perturbation theory, yet large at infrared momenta, being characterised by a
renormalisation-point-independent value [71]:

m0 = 0.43(1)GeV. (7)

The renormalisation-group-invariant (RGI) gluon mass function is drawn in Figure 2.

gluon
quark

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

k / GeV

M
0
(k
)/
M
0
(0
),
[m

J
(k
)/
m
J
(0
)]
2

Figure 2. Renormalisation-group-invariant dressed gluon mass function (solid blue curve) calculated,
following the method in Reference [72], from a gluon two-point function obtained using the lQCD
configurations in References [73–75]. The mass-squared curve is plotted, normalised by its k = 0 value,
and compared with the kindred chiral-limit dressed quark mass function drawn from Reference [76]
(dotted-dashed green curve). It is this pair of curves that is 1/k2-suppressed in the ultraviolet, each
with additional logarithmic corrections.

Before closing this section, it is worth stressing the importance of Poincaré covariance
in modern physics.2 If one chooses to formulate a problem in quantum field theory using a
scheme that does not ensure Poincaré invariance of physical quantities, then artificial or
“pseudodynamical” effects are typically encountered [77]. In connection with gauge theory
Schwinger functions, Poincaré covariance very effectively limits the nature and number
of independent amplitudes that are required for a complete representation. In contrast,
analyses and quantisation procedures that violate Poincaré covariance engender a rapid
proliferation in the number of such functions. For instance, the covariant-gauge gluon
two-point function in Equation (5) is fully specified by one scalar function, whereas, in the
class of axial gauges, two unconnected functions are required, and unphysical, kinematic
singularities appear in the associated tensors [78,79]. This is why covariant gauges are
normally employed for concrete calculations in both continuum and lattice-regularised
QCD. In fact, Landau gauge, i.e., ξ = 0 in Equation (5), is often used because, amongst
other things, it is a fixed point of the renormalisation group [53] (Ch. IV) and implemented
readily in lQCD [80]. We typically refer to Landau gauge results herein. Naturally, gauge
covariance of Schwinger functions ensures that expressions of EHM in physical observables
are independent of the gauge used for their elucidation.

Equation (7) is the cleanest expression of EHM in Nature, being truly a manifestation
of mass emerging from nothing: infinitely many massless gluon partons fuse together
so that, for all intents and purposes, they behave as coherent quasiparticle fields with a
long-wavelength mass, which is almost half that of the proton. The implications of this
result are enormous and far-reaching, including, e.g., key steps toward the elimination of

2 When working with a Euclidean formulation, as we do, Poincaré covariance maps straightforwardly into
Euclidean covariance, viz. valid Schwinger functions must transform covariantly under O(4) rotations and
linear translations in R4. Owing to the simplicity of this connection, we avoid transliteration and speak of
Poincaré covariance and invariance throughout.
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the problem of Gribov ambiguities [81], which were long thought to prevent a rigorous
definition of QCD.

4. Process-Independent Effective Charge

In classical field theories, couplings and masses are constants. Typically, this is also
true in quantum mechanics models of strong interaction phenomena. However, this is
not the case in renormalisable quantum gauge field theories, as highlighted by the Gell-
Mann–Low effective charge/running coupling in QED [82], which is a textbook case [9]
(Ch. 13.1).

A highlight of Twentieth Century physics was the realisation that QCD, in particular,
and non-Abelian gauge theories, in general, express asymptotic freedom ([83–85], [86]
(Ch. 7.1)), i.e., the feature that the interaction between charge carriers in the theory be-
comes weaker as k2, the momentum-squared characterising the scattering process, becomes
larger. Analysed perturbatively at one-loop order in the modified minimal subtraction
renormalisation scheme, MS, the QCD running coupling takes the form

αMS(k
2) =

γmπ

ln k2/Λ2
QCD

, (8)

where γm = 12/[33 − 2n f ], with n f the number of quark flavours whose mass does
not exceed k2, and ΛQCD ∼ 0.2 GeV is the RGI mass parameter that sets the scale for
perturbative analyses.

Asymptotic freedom comes with a “flip side”, which came to be known as infrared
slavery ([87] (Section 3.1.2)). Namely, beginning with some k2 � Λ2

QCD, then the interaction
strength grows as k2 is reduced, with the coupling diverging at k2 = Λ2

QCD. (This is the
Landau pole.) Qualitatively, this statement is true at any finite order in perturbation theory:
whilst the value of ΛQCD changes somewhat, the divergence remains. In concert with the
area law demonstrated in Reference [18], which entails that the potential between any two
infinitely massive colour sources grows linearly with their separation, many practitioners
were persuaded that the complex dynamical phenomenon of confinement could simply be
explained by an unbounded potential that grows with parton separation. As we shall see,
that is not the case, but the notion is persistent.

Given the character of QCD’s perturbative running coupling, two big questions arise:

(a) Does QCD possess a unique, nonperturbatively well-defined and calculable effective
charge, viz. a veritable analogue of QED’s Gell-Mann–Low running coupling; and

(b) Does Equation (8) express the large-k2 behaviour of that charge?

If both questions can be answered in the affirmative, then great strides have been
made toward verifying that QCD is truly a theory.

Following roughly forty years of two practically disjoint research efforts, one focused
on QCD’s gauge sector [66,67,88] and another on its matter sector [21,23–25], a key step on
the path to answering these questions was taken in Reference [68]. The two distinct efforts
were designated therein as the top-down approach—ab initio computation of the interaction
via direct analyses of gauge sector gap equations; and the bottom-up scheme—inferring
the interaction by describing data within a well-defined truncation of those matter sector
equations that are relevant to bound state properties. Reference [68] showed that the top-
down and bottom-up approaches are unified when the RGI running interaction predicted
by then-contemporary analyses of QCD’s gauge sector is used to explain ground state
hadron observables using nonperturbatively improved truncations of the matter sector
bound state equations. The first such truncation was introduced in Reference [89].

It was a short walk from this point to a realisation [90] that in QCD, by means of the
pinch technique [65,91,92] and background field method [93], one can define and calculate
a unique, process-independent (PI) and RGI analogue of the Gell-Mann–Low effective
charge, now denoted α̂(k2). The analysis was refined in Reference [71], which combined
modern results from continuum analyses of QCD’s gauge sector and lQCD configurations
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generated with three domain-wall fermions at the physical pion mass [73–75] to obtain a
parameter-free prediction of α̂(k2). The resulting charge is drawn in Figure 3. It is reliably
interpolated by writing

α̂(k2) =
γmπ

ln
[
K 2(k2)/Λ2

QCD

] , K 2(y = k2) =
a2

0 + a1y + y2

b0 + y
, (9)

with (in GeV2): a0 = 0.104(1), a1 = 0.0975, b0 = 0.121(1). The curve was obtained using a
momentum subtraction renormalisation scheme: ΛQCD = 0.52 GeV when n f = 4.

Figure 3. Process-independent effective charge, α̂(k)/π, obtained by combining modern results
from continuum and lattice analyses of QCD’s gauge sector [71]. Existing data on the process-
dependent charge αg1 [94,95], defined via the Bjorken sum rule, is shown for comparison—see
References [95–121]. (Image courtesy of D. Binosi).

Notably, α̂(k2) is PI and RGI in any gauge; but, it is sufficient to know α̂(k2) in Landau
gauge, ξ = 0 in Equation (5), which is the choice both for easiest calculation and the result in
Equation (9). This is because α̂(k2) is form-invariant under gauge transformations, as may
be shown using identities discussed elsewhere [122], and gauge covariance ensures that any
such transformations can be absorbed into the Schwinger functions of the quasiparticles
whose interactions are described by α̂(k2) [123].

The following physical features of α̂ deserve to be highlighted because they expose a
great deal about QCD.

Absence of a Landau pole. Whereas the perturbative running coupling, e.g., Equation (8),
diverges at k2 = Λ2

QCD, revealing the Landau pole, the PI charge is a smooth function
on k2 ≥ 0: the Landau pole is eliminated owing to the appearance of a gluon mass
scale, Equation (7).
Implicit in the “screening function”, K (k2), is a screening mass:

ζH = K (k2 = Λ2
QCD) ≈ 1.4 ΛQCD < mp, (10)

at which point the perturbative coupling would diverge but the PI coupling passes
through an inflection point on its way to saturation. On

√
k2 . ζH, the PI charge enters

a new domain, upon which the running slows, practically ceasing on
√

k2 ≤ m0/2, so
that QCD is once again effectively a conformal theory and the charge saturates to a
constant infrared value α̂(k2 = 0) = π × 0.97(4). This value is a prediction: within
3(4)%, the coupling saturates to a value of π at k2 = 0. It is not yet known whether
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this proximity to π has any deeper significance in Nature, but a potential explanation
is provided in the next bullet.
These features emphasise the role of EHM as expressed in Equation (7): the existence of
m0 ≈ mp/2 guarantees that long-wavelength gluons are screened, so play no dynami-
cal role. Consequently, ζH marks the boundary between soft/nonperturbative and
hard/perturbative physics. It is therefore a natural choice for the “hadron scale”, viz.
the renormalisation scale at which valence quasiparticle degrees-of-freedom should
be used to formulate and solve hadron bound state problems [71]. Implementing that
notion, then those quasiparticles carry all hadron properties at ζ = ζH. This approach
is today being used to good effect in the prediction of hadron parton distribution
functions (DFs)—see Section 11 and References [124–136].
Match with the Bjorken process-dependent charge. The theory of process-dependent
(PD) charges was introduced in References [137,138]: “. . . to each physical quantity
depending on a single scale variable is associated an effective charge, whose corresponding
Stückelberg–Peterman–Gell-Mann–Low function is identified as the proper object on which
perturbation theory applies.” PD charges have since been widely canvassed [94,139,140].
One of the most fascinating things about the PI running coupling is highlighted by its
comparison with the data in Figure 3, which express measurements of the PD effective
charge, αg1(k

2), defined via the Bjorken sum rule [141,142]. The charge calculated in
Reference [71] is an essentially PI charge. There are no parameters; and, prima facie,
no reason to expect that it should match αg1(k

2). The almost precise agreement is a
discovery, given more weight by new results on αg1(k

2) [95], which now reach into
the conformal window at infrared momenta.
Mathematically, at least part of the explanation lies in the fact that the Bjorken sum
rule is an isospin non-singlet relation, which eliminates many dynamical contributions
that might distinguish between the two charges. It is known that the two charges are
not identical; yet, equally, on any domain for which perturbation theory is valid, the
charges are nevertheless very much alike:

αg1(k
2)

α̂(k2)

k2�m2
0= 1 +

1
20

αMS(k
2) , (11)

where αMS is given in Equation (8). At the c quark current–mass, the ratio is 1.007, i.e.,
indistinguishable from unity insofar as currently achievable precision is concerned. At
the other extreme, in the far infrared, the Bjorken charge saturates to αg1(k

2 = 0) = π;
hence,

αg1(k
2)

α̂(k2)

k2�m2
0= 1.03(4) . (12)

Evidently, the PD charge determined from the Bjorken sum rule is, for practical intents
and purposes, indistinguishable from the PI charge generated by QCD’s gauge sector
dynamics [71,90].
Infrared completion. Being process-independent, α̂(k2) serves numerous purposes
and unifies many observables. It is therefore a good candidate for that long-sought
running coupling which describes QCD’s effective charge at all accessible momentum
scales [139], from the deep infrared to the far ultraviolet, and at all scales in between,
without any modification.
Significantly, the properties of α̂(k2) support the conclusion that QCD is actually a
theory, viz. a well-defined D = 4 quantum gauge field theory. QCD therefore emerges
as a viable tool for use in moving beyond the SM by giving substructure to particles
that today seem elementary. A good example was suggested long ago; namely, perhaps
all spin-J = 0 bosons may be [57] “. . . secondary dynamical manifestations of strongly
coupled primary fermion fields and vector gauge fields . . . ”. Adopting this position, the
SM’s Higgs boson might also be composite, in which case, inter alia, the quadratic
divergence of Higgs boson mass corrections would be eliminated.
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Qualitatively equivalent remarks have been developed using light-front holographic
models of QCD based on anti-de Sitter/conformal field theory (AdS/CFT) duality [143,144].

Returning to the two questions posed following Equation (8) in Items (a) and (b), it
is now apparent that they are answerable in the affirmative: QCD does possess a unique,
nonperturbatively well-defined and calculable effective charge whose large-k2 behaviour
connects smoothly with that in Equation (8). These facts provide strong support for the
view that QCD is a well-defined 4D quantum gauge field theory.

5. Confinement

Confinement is much discussed, but little understood. In large part, both these things
stem from the absence of a clear, agreed definition of confinement. With certainty, it is only
known that nothing with quantum numbers matching those of the gluon or quark fields in
Equation (1) has ever reached a detector.

An interpretation of confinement is included in the official description of the Yang–
Mills Millennium Problem [145]. The simpler background statement is worth repeating:

“Quantum Yang–Mills theory is now the foundation of most of elementary particle theory,
and its predictions have been tested at many experimental laboratories, but its mathe-
matical foundation is still unclear. The successful use of Yang–Mills theory to describe
the strong interactions of elementary particles depends on a subtle quantum mechanical
property called the ‘mass gap’: the quantum particles have positive masses, even though
the classical waves travel at the speed of light. This property has been discovered by
physicists from experiment and confirmed by computer simulations, but it still has not
been understood from a theoretical point of view. Progress in establishing the existence of
the Yang–Mills theory and a mass gap will require the introduction of fundamental new
ideas both in physics and in mathematics.”

The formulation of this problem focuses entirely on quenched-QCD, i.e., QCD without
quarks; so, its solution is not directly relevant to our Universe. Confinement in pure
quantum SU(3) gauge theory and in QCD proper are probably very different because
the pion exists and is unnaturally light on the hadron scale [27]. On the other hand,
the remarks concerning the emergence of a “mass gap” relate directly to Figure 2 and
Equation (7) herein. Whilst these properties of QCD may be considered proven by the
canons of theoretical physics, such arguments do not meet the standards of mathematical
physics and constructive field theory because they involve input from numerical analyses
of QCD Schwinger functions. Hereafter, therefore, we will continue within the theoretical
physics perspective.

As noted above, a mechanism for the total confinement of infinitely massive charge
sources has been identified in the lattice-regularised treatment of quantum field theories
using compact representations of Abelian or non-Abelian gauge fields [18], viz. the area
law ≡ linear source–antisource potential. However, no treatment of the continuum meson
bound state problem has yet been able to demonstrate how such an area law emerges as
the masses of the meson’s valence degrees-of-freedom grow to infinity.

In the era of infrared slavery, it was widely assumed that some sort of nonperturba-
tively improved one-gluon exchange could simultaneously produce asymptotic freedom
and a linearly rising potential between quarks; and many models were developed with
just such features [146–150]. However, as highlighted by our discussion of QCD’s effective
charge, ongoing developments in the study of mesons, using rigorous treatments of the
Schwinger functions involved, do not support this picture of confinement via dressed
one-gluon exchange. The path to an area law is far more complex.

One direction that deserves exploration is connected with the gluon “H-diagrams”
drawn in Reference [151] (Figure 8) and reproduced in Figure 4A. Imagine a valence quark
and antiquark scattering via such a process, as drawn in Figure 4B; then keep adding
H-diagrams within H-diagrams, exploiting both gluon–quark and gluon self-couplings.
Such H-diagram scattering processes produce an infrared divergence in the perturbative
computation of a static quark potential [152], viz. a contribution that exhibits unbounded



Particles 2023, 6 68

growth as the source–antisource separation increases. Nonperturbatively, that divergence
is tamed because the effective charge saturates—Figure 3. On the other hand, there are
infinitely many such contributions; and in the limit of static valence degrees-of-freedom,
the entire unbounded sum of planar H-diagrams is contracted to a point connection of
infinitely dense fisherman’s net/spider’s web diagrams on both the source and antisource.
It is conceivable that the confluence of these effects could yield the long-sought area law
via the Bethe–Salpeter equation [151,153].

A B

Figure 4. Panel (A): primitive gluon H-diagram. Panel (B): one-H-diagram contribution to
quark+antiquark scattering. Legend: Dressed gluon two-point function—spring with open cir-
cle insertion; dressed quark two-point function—straight line with open circle insertion; blue-filled
circle at 3-gluon junction—dressed 3-gluon vertex; red-filled circle at gluon–quark junction—dressed
gluon–quark vertex. Repeated insertion of H-diagrams within H-diagrams, exploiting both gluon–
quark and gluon self-couplings, leads to a plaquette-like area-filling structure, reminiscent of the
planar summation of elementary squares in Reference [18].

Real-world QCD, however, is characterised by light degrees-of-freedom: u and d
quarks with electron-size current–masses; s quarks with a mass roughly one order-of-
magnitude larger, so still much less than mp. Pions and kaons are constituted from such
valence degrees-of-freedom, and these mesons are light. In fact, the pion has a lepton-like
mass [40]: mπ ≈ mµ, where mµ is the mass of the µ lepton. Owing to the presence of
such degrees-of-freedom, light particle annihilation and creation effects are essentially
nonperturbative in QCD. Consequently, despite continuing dedicated efforts [154–156], it
has thus far proven impossible to either define or calculate a static quantum mechanical
potential between two light quarks.

This may be illustrated by apprehending that a potential which increases with separa-
tion can be described by a flux tube extending between the source and antisource. As the
source–antisource separation increases, so does the potential energy stored in the flux tube.
However, it can only increase until the stored energy matches that required to produce
a particle+antiparticle pair of the theory’s lightest asymptotic states—in QCD, a π+π−

pair. Numerical simulations of lQCD reveal [157,158] that once the energy exceeds this
critical value, the flux tube then dissolves along its entire length, leaving two isolated
colour singlet systems. Given that mπ = 0.14 GeV, then this disintegration must occur at
source+antisource centre-of-mass separation r ≈ (1/3) fm [159], which is well within the
interior of any hadron. This example assumes that the source and antisource are static.
The situation is even more complex for real, dynamical quarks. Thus, at least in the u, d,
s quark sector, confinement is manifested in features of Schwinger functions that are far
more subtle than can be captured in typical potential models.

One non-static, i.e., dynamical, picture of confinement has emerged from studies of the
analytic properties of the two-point Schwinger functions associated with the propagation
of coloured gluon and quark quasiparticles—see, e.g., Figure 2. The development of this
perspective may be traced back to its beginning almost forty years ago [15,160–164]. It has
subsequently been carefully explored [17,22,33,51,81,163,165–170]; and in this connection,
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one may profitably observe that only Schwinger functions which satisfy the axiom of
reflection positivity [7,171,172] can be connected with states that appear in the Hilbert
space of observables.

The axioms referred to here are those first presented in References [171,172] and
subsequently modified in [7], which identify the properties of Schwinger functions that are
necessary and sufficient to ensure equivalence between the formulation of a given quantum
field theory in Euclidean and Minkowski space. (A contemporary literature compilation is
presented elsewhere [173].) In effect, this means that all and only those Schwinger functions
which satisfy the five Osterwalder–Schrader axioms possess connections with elements in
the Hilbert space of physical states. Regarding strong interactions, all physical states are
colour singlets. Consequently, for QCD to be the theory of strong interactions, all its colour
singlet Schwinger functions must satisfy the Osterwalder–Schrader axioms; equally, all its
colour-nonsinglet functions must violate at least one.

Reflection positivity is a severe constraint. It requires that the Fourier transform of the
momentum space Schwinger function, treated as a function of analytic, Poincaré-invariant
arguments, is a positive-definite function. To illustrate, consider the gluon Schwinger
function in Equation (5). A massless partonic gluon is described by D(k2) = 1/k2; and the
4D Fourier transform of this function is∫ d4k

(2π)4 eik·x 1
k2 =

1
4π2x2 > 0 ∀x2 > 0 . (13)

More generally, regarding two-point functions, viz. those connected with the prop-
agation of elementary excitations in QCD, reflection positivity is satisfied if, and only if,
the Schwinger function has a Källén–Lehmann representation. Returning to the gluon
Schwinger function in Equation (5), this means one must be able to write

D(k2) =
∫ ∞

0
dζ

ρ(ς)

k2 + ς2 , ρ(ς) > 0 ∀ς > 0. (14)

Plainly, ρ(ς) = δ(ς) yields D(k2) = 1/k2, i.e., the two-point function for a bare gluon
parton. Hence, according to Equations (13) and (14), absent dressing, the gluon parton
could appear in the Hilbert space of physical states.

It is important to observe that any function which satisfies Equation (14) is positive-
definite itself. Moreover, given Equation (14),

sgn
(
[

d
dk2 ]

n D(k2)

)
= (−1)n ; (15)

consequently, inter alia, treated as a function of the analytic, Poincaré-invariant variable
k2, no function with a Källén–Lehmann representation of the form written in Equation (14)
can possess an inflection point. Conversely, any function that exhibits an inflection point
or, more generally, has a second derivative that changes sign must violate the axiom of
reflection positivity [22]; hence, the associated excitation cannot appear in the Hilbert space
of observables.

Take another step, and consider the following configuration space Schwinger function
(τ = x4, ` = k4):

∆(τ) =
∫

d3x
∫ d4k

(2π)4 eik·xD(k2) =
1
π

∫ ∞

0
d` cos(`τ)D(`2) . (16)

Suppose that interactions generate a constant mass for the gluon parton, so that D(k2) =
1/(k2 + µ2). Does that trigger confinement? The answer is “no” because this Schwinger
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function has a spectral representation with ρ(ς) = δ(ς2 − µ2); Equation (15) is satisfied;
and so is positivity:

∆(τ) =
1

2µ
e−µτ . (17)

Suppose instead that interactions produce a momentum-dependent mass-squared
function like that in Figure 2, which is 1/k2 suppressed in the ultraviolet:

m2
J (k

2) =
µ4

0
k2 + µ2

0
⇒ D(k2) =

k2 + µ2
0

k2(k2 + µ2
0) + µ4

0
. (18)

The mass function itself is a monotonically decreasing, concave-up function; yet, in this
case, the Schwinger function has an inflection point at k2 = 0.53µ2

0. Hence, it does not
have a Källén–Lehmann representation; so, the associated excitation cannot appear in the
Hilbert space of observables. Furthermore, evaluation of the configuration space Schwinger
function defined by Equation (16) yields [81]

∆(τ) =
1

µ0
e−τµ0

√
3

2 cos
µ0τ

2
=: ∆p(τ) cos

µ0τ

2
, (19)

using which the curve in Figure 5 is drawn: plainly, the configuration space Schwinger func-
tion violates reflection positivity. (Notably, the algebraic calculation of ∆(τ) is often difficult
and not always possible; so, uniform positivity of the second-derivative, Equation (15),
is a much quicker means of testing for reflection positivity. Nevertheless, when it can be
obtained, an explicit form of ∆(τ) does provide additional insights.)
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Figure 5. ∆(τ)µ0 exp(µ0τ
√

3
2 ) computed from the Schwinger function in Equation (18) using

Equation (16).

It is interesting to extend Equation (18) using m2
J (k

2) = αµ4
0/[k2 + µ2

0], in which case

D(k2 = µ2
0y) =

1
µ2

0

1 + y
y2 + y + α

=:
1

µ2
0

d (y) . (20)

This type of Schwinger function lies within the so-called “refined Gribov–Zwanziger”
class [166]. For α > 1

2 , as in the example above, the function in Equation (20) exhibits
an inflection point at some y > 0; and when α ∈ ( 1

4 , 1
2 ), the inflection point is found at

a location y ∈ (− 1
2 , 0). With α ∈ (0, 1

4 ), on the other hand, the function in Equation (20)
separates into a sum of two terms:

d (y) =
n1

y + p1
− n2

y + p2
, (21)
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where p1,2 ∈ R and sgn(p1/p2) = +1. In this case, there is no inflection point; nevertheless,
the second derivative does change sign, switching ±∞↔ ∓∞ as y passes through the pole
locations. Consequently, any excitation whose propagation is described by a Schwinger
function obtained with α > 0 in Equation (20) cannot appear in the Hilbert space of
observable states.

Inserting Equation (20) into Equation (16), one finds, after some careful algebra [81]
(a = α1/4):

∆(τ) =
1

2µ0asϕ/2
e−τµ0acϕ/2

×
[
(1 + 1

a2 )sϕ/2 cos(τµ0asϕ/2)− (1− 1
a2 )cϕ/2 sin(τµ0asϕ/2)

]
, (22)

where cϕ/2 = [ 1
2 + 1

4a2 ]
1/2, sϕ/2 = [1− c2

ϕ/2]
1/2. (Equation (19) is a special case of this

result.) Equation (22) reveals that the distance from τ = 0 of the first zero in the configura-
tion space Schwinger function, τz, increases with decreasing α, i.e., as the infrared value
of the gluon mass-squared function is reduced. Thus, confinement would practically be
lost if τz were to become much greater than π/µ0. Considering realistic gluon two-point
functions, however, one finds µ0 ≈ (3/4)mp, α ≈ 1 [81]; so, τz ≈ 1 fm, expressing a natural
confinement length scale. (It is worth observing that if τz were instead measured on the Å
scale, then the notion of confinement would be lost because modern detectors are able to
directly image targets of this size [174].)

This discussion is readily summarised. Owing to complex nonlinear dynamics in QCD,
gluon and quark partons acquire momentum-dependent mass functions, as a consequence
of which they emerge as quasiparticles whose propagation characteristics are described by
two-point Schwinger functions that are incompatible with reflection positivity. Normally,
the dynamical generation of running masses is alone sufficient to ensure this outcome. It
follows that the dressed gluons and quarks cannot appear in the Hilbert space of physical
states. In this sense, they are confined. The associated confinement length scale is τz ≈ 1 fm.
It is worth stressing that the use of such two-point functions in the calculation of colour
singlet matrix elements ensures the absence of coloured particle+antiparticle production
thresholds [175], thereby securing the empirical expression of real-QCD confinement.

Considering these quasiparticle Schwinger functions further, one may also define
a parton persistence or fragmentation length, τF, as the scale whereat the deviation of the
Schwinger function from parton-like behaviour is 50%: ∆(τF)/∆p(τF) = 0.5. Referring
to Equation (19), one reads τF = (2/3)τz. This result is also found using realistic gluon
two-point functions [81]. (The value of 50% is merely a reasonable choice. At this level,
30% would also be acceptable, in which case τF → τ′F = (1/2)τz.)

A physical picture of dynamical confinement now becomes apparent [165]. Namely,
once a gluon or quark parton is produced, it begins to propagate in spacetime. However,
after traversing a spacetime distance characterised by τF, interactions occur, causing the
parton to lose its identity, sharing it with others. Ultimately, combining the effects on
this parton with similar impacts on those produced along with it, a countable infinity of
partons (a parton cloud) is produced, from which detectable colour singlet final states
coalesce. This train of events is the physics expressed in parton fragmentation functions
(FFs) [176]. Such distributions describe how the QCD partons in Equation (1), generated in
a high-energy event and almost massless in perturbation theory, transform into a shower
of massive hadrons, viz. they describe how hadrons with mass emerge from practically
massless partons. It is natural, therefore, to view FFs as the cleanest expression of dynamical
confinement in QCD. Furthermore, in the neighbourhood of their common boundary of
support, DFs and FFs are related by crossing symmetry [177]: FFs are timelike analogues
of DFs. Hence, an understanding of FFs and their deep connection with DFs can deliver
fundamental insights into EHM. This picture of parton propagation, hadronisation, and
confinement—of DFs and FFs—can be tested in experiments at modern and planned
facilities [178–186]. A pressing demand on theory is delivery of predictions for FFs before
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such experiments are completed so as, for instance, to guide development of facilities
and detectors. As yet, however, there are no realistic computations of FFs. In fact, even a
formulation of this problem remains uncertain.

Before moving on, it is worth reiterating that confinement means different things to
different people. Whilst some see confinement only in an area law for Wilson loops [18],
our perspective stresses a dynamical picture, in which dynamically driven changes in the
analytic structure of coloured Schwinger functions ensures the absence of colour-carrying
objects from the Hilbert space of observable states. In time, perhaps, as strong QCD is
better understood, it may be found that these two realisations are connected. The only
certain thing is the necessity to keep an open mind on this subject.

6. Spectroscopy

Insofar as the spectrum of hadrons is concerned, results from nonrelativistic or some-
what relativised quark models [187–189] are still often cited as benchmarks. Indeed, a
standard reference ([40] (Section 63)) includes the following assertions: “The spectrum of
baryons and mesons exhibits a high degree of regularity. The organizational principle which best
categorizes this regularity is encoded in the quark model. All descriptions of strongly interacting
states use the language of the quark model.” This is despite the facts that neither the “quarks”
nor the potentials in quark models have been shown to possess any mathematical link with
Equation (1)—rigorous or otherwise; and, furthermore, the orbital angular momentum and
spin used to label quark model states are not Poincaré-invariant (observable) quantum
numbers.

In step with improvements in computer performance, lQCD is delivering interesting
results for hadron spectra [190,191], amongst which one may highlight indications for
the existence of hybrid and exotic hadrons [192–195]. Continuum studies in quantum
field theory are lagging behind owing in part to impediments placed by the character of
the Bethe–Salpeter equation; primarily the fact that it is impossible to write the complete
Bethe–Salpeter kernel in a closed form.

A systematic approach to truncating the integral equations associated with bound state
problems in QCD was introduced almost thirty years ago [196,197]. Amongst other things,
the scheme highlighted the importance of preserving continuous and discrete symmetries
when formulating bound state problems; enabled proof of Goldberger–Treiman identities
and the Gell-Mann–Oakes–Renner relation in QCD [198,199]; and opened the door to
symmetry-preserving, Poincaré-invariant predictions of hadron observables, including
elastic and transition form factors and DFs [21,23–25,28,125,200–207]. Some of the more
recent developments are sketched below.

An issue connected with the leading-order (rainbow ladder (RL)) term in the truncation
scheme of References [196,197] is that it only serves well for those ground state hadrons
which possess little rest-frame orbital angular momentum, L, between the dressed valence
constituents [208–218]. This limitation can be traced to its inability to realistically express
the impacts of EHM on hadron observables, a weakness that is not overcome at any finite
order of elaboration [210]. Improved schemes, which express EHM in the kernels, have
been identified [68,89,151,219–221]. They have shown promise in applications to ground
state mesons constituted from u and d valence quarks and/or antiquarks. However, that is
a small subset of the hadron spectrum; so, a recent extension to the spectrum and decay
constants of u, d, and s meson ground and first-excited states is welcome [222].

Returning to quark models, it was long ago claimed [149] “. . . that all mesons—from the
pion to the upsilon—can be described in a unified framework.” The context for this assertion
was a model potential built using one-gluon-like exchange combined with an infrared
slavery “confinement” term that increases linearly with colour source separation. The
basic mass scales in such potential models are set by the constituent quark masses; and
one might draw a qualitative link between those scales and the far-infrared values of
the momentum-dependent dressed quark running masses ([35] (Figure 2.5)): Mu,d(0) '
0.41 GeV, Ms(0) ' 0.53 GeV. Thereafter, mass splittings and level orderings are arranged by
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tuning details of the potential. Such a procedure can be quantitatively efficacious; however,
it is qualitatively incorrect. This is readily seen by recalling the Gell-Mann–Oakes–Renner
relation [46,198,223]: m2

π ∝ m̂, where m̂ is Nature’s explicit source of chiral symmetry
breaking, generated by Higgs boson couplings to quarks in the SM. Such behaviour is
impossible in a potential model [25,27], but natural in the CSM treatment of bound states—
see, e.g., References [198,208], [21] (Figure 3.3), [224] (Figure 7), [89] (Figure 1A). Thus,
whilst potential models might deliver a fit to hadron spectra, they do not provide an
explanation.

That such challenges are surmounted when using CSMs to treat hadron bound state
problems is further exemplified in Reference [222], which adapts a novel scheme for in-
cluding EHM effects in the Bethe–Salpeter kernel [221] to simultaneously treat ground and
first-excited states of u, d, and s quarks. As revealed in Figure 6, the empirical spectrum
displays some curious features, e.g.: consistent with quark mass–scale counting, mρ < mK∗ ,
but this ordering is reversed for the first excitations of these states; the first excited state of
the π is lighter than that of the ρ, but the ordering is switched for K, K∗; and all axial vector
mesons are nearly degenerate, with the larger mass of the s quarks appearing to have little
or no impact. In delivering the first symmetry-preserving analysis of this collection of
states to employ an EHM-improved kernel, Reference [222] supplies fresh insights into the
dynamical foundations of the properties of lighter quark mesons.








 









 
















 


































































    

       
  

  


























 









 
















 


































































    

       
  

  



















Figure 6. Empirical spectrum [40] (PDG summary tables): blue circles (bars)—u, d states; green
diamonds (bar)—systems with s and/or s̄ quarks. Little is known about K(1460), which is therefore
drawn as an open red diamond. Gold six-pointed stars—spectrum of low-lying u, d, and s mesons
predicted by the EHM-improved Bethe–Salpeter kernel developed in Reference [222]; black five-
pointed stars—same spectrum computed using RL truncation.

In order to sketch that effort, we note that, using CSMs, the dressed propagator (two-
point Schwinger function) for a quark with flavour g is obtained as the solution of the
following gap equation:

S−1
g (k) = iγ · k Ag(k2) + Bg(k2) = [iγ · k + Mg(k2)]/Zg(k2) , (23a)

= Z2 (iγ · k + mg) + Σg(k) , (23b)

Σ(k) = Z1

∫ Λ

dq
g2Dµν(k− q)

λa

2
γµSg(q)

λa

2
Γg

ν(k, p), (23c)

where Mg(k2) is RGI;
Dµν(k) = ∆(k2) 0Dµν(k) ; (24)

Γg
ν is the quark-gluon vertex;

∫ Λ
dq denotes a Poincaré-invariant regularisation of the four-

dimensional integral, with Λ the regularisation mass scale; and Z1,2(ζ
2, Λ2) are, respectively,

the vertex and quark wave function renormalisation constants, with ζ the renormalisation
point. (In such applications, when renormalisation is necessary, a mass-independent scheme
is important, as discussed elsewhere [225].)
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It was anticipated almost forty years ago [226,227], and confirmed more
recently [76,228–230], that EHM engenders a large anomalous chromomagnetic moment
(ACM) for the lighter quarks; and with development of the first EHM-improved kernels, it
was shown that such an ACM has a big impact on the u, d meson spectrum [219–221].

The aim in Reference [222] was to extend References [219–221] and highlight additional
impacts of an ACM on the spectrum of mesons constituted from u, d, and s quarks. An
ACM emerges as a feature of the dressed gluon–quark vertex, a three-point Schwinger
function. Its character and impacts can be exposed by writing (l = k− q)

Γg
ν(q, k) = γν + τν(l) , τν(l) = ηκ(l2)σlν , (25)

σlν = σρνlρ, κ(l2) = (1/ω) exp (−l2/ω2). Here, η > 0 is the strength of the ACM term,
τν(l); and it is assumed that the vertex is flavour-independent, which is a sound approxi-
mation for the lighter quarks [224,231]. When considering Equation (25), one might remark
that the complete gluon–quark vertex is far more complicated—potentially containing
twelve distinct terms—and, in QCD, κ(l2) is power-law suppressed in the ultraviolet.
Notwithstanding these things, illustrative purposes are well served by Equation (25).

ACM effects are most immediately felt by the dressed quark propagator. The presence
of an ACM in the kernel of Equation (23) increases positive EHM-induced feedback on
dynamical mass generation. Consequently, as shown elsewhere [76], realistic values of
the dressed quark mass at infrared momenta are achieved using the PI effective charge
in Figure 3. Such an outcome requires tuning when using the PI charge in a rainbow
truncation of the gap equation; in fact, DCSB cannot be guaranteed in that case [68].

Following References [89,221,228] in continuing to emphasise clarity over numerical
complexity, Reference [222] also simplified the kernel in Equation (23), writing

g2∆(k2) = 4πα̂(0)
D(η)

ω4 e−k2/ω2
, (26)

where ω = 0.8 GeV, a value matching that suggested by analyses of QCD’s gauge
sector [68,71], and D(η) = DRL(1 + 0.27η)/(1 + 1.47η), with ωDRL = (1.286 GeV)3 cho-
sen to achieve mρ = 0.77 GeV in RL truncation. The η-dependence of D(η) was fixed a
posteriori by requiring that mρ remain unchanged as η is increased. Since η > 0 adds EHM
strength to the gap equation’s kernel, then D must become smaller as η grows in order to
maintain a fixed value of mρ. Following this procedure, mρ becomes the benchmark against
which all ACM-induced changes are measured.

It is worth noting that when one identifies (g2/[4π])∆(k2 = 0) = 1/µ2
0, then µ0 =

0.39 GeV in RL truncation and µ0 = 0.57 GeV at η = 1.2. Therefore, the interaction
specified by Equation (26) is consistent with gluon mass generation, as it is described in
Section 3. On the other hand, the large-k2 behaviour of Equation (26) does not respect
the renormalisation group flow of QCD. This would be an issue if one were using it, e.g.,
to calculate hadron form factors at large-Q2 [200,201,203,204], where Q2 is momentum
transfer squared, or parton distribution functions and amplitudes near the endpoints of
their support domains [124–127].3 However, it is far less important when calculating global,
integrated properties, like hadron masses. In such applications, Equation (26) is satisfactory.
Indeed, good results can even be obtained using a symmetry-preserving treatment of a
momentum-independent interaction [232–234]. A key merit of Equation (26) lies in its
elimination of the need for renormalisation, which simplifies analyses without materially
affecting relevant results.

3 This is well known and explains why the truncated interaction in Equation (26) was not used for any of the
calculations described in Sections 7–11 below. All those studies are based on interactions that at least preserve
QCD’s ultraviolet power-law behaviour, where more has not yet been achieved—Sections 7 and 9—and also
the one-loop logarithmic improvement, when the necessary algorithms are already available—Sections 8, 10,
and 11.
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The scheme introduced in Reference [221] provides a direct route from any reasonable
set of gap equation elements to closed-form Bethe–Salpeter kernels for meson bound state
problems. Thus having specified physically reasonable gap equations via Equations (25)
and (26), Reference [222] adapted that scheme to arrive at Bethe–Salpeter equations for
each of the mesons identified in Figure 6, obtaining solutions in all cases. The image
compares the experiment with the RL truncation results, also calculated in Reference [222],
and predictions obtained using the EHM-improved kernel.4

It is first worth mentioning the RL truncation mass predictions in Figure 6. On
the whole, the mean absolute relative difference, ard, between RL results and central
experimental values is 13(8)%. This is tolerable. However, there is substantial scatter and
there are many qualitative discrepancies.

In contrast, compared with central experimental values, the EHM-improved masses in
Figure 6 agree at the level of ard = 2.9(2.7)%. This is a factor of 4.6 of improvement over
the RL spectrum. Moreover, correcting RL truncation flaws and reproducing empirical
results: mK′ > mπ′ , mρ′ > mπ′ , mρ′ ≈ mK∗′ ; the mass splittings a1-ρ and b1-ρ match the em-
pirical values because including the ACM in the kernel has markedly increased the masses
of the a1 and b1 mesons, whilst mρ was deliberately kept unchanged; mφ′ − mφ agrees
with experiment to within 2%; the K+−

1 , K++
1 -level order is correct; and quark+antiquark

scalar mesons are heavy, providing room for the addition of strongly attractive resonant
contributions to the bound state kernels [235,236].

Using the Bethe–Salpeter amplitudes obtained in solving for the meson spectrum,
canonically normalised in the standard fashion ([237] (Section 3)), Reference [222] also de-
livered predictions for the entire array of associated leptonic decay constants, fH , including
many that have not yet been measured. The predicted values are depicted in Figure 7, which
also includes the few available empirical results. The ground state leptonic decay constants
in Figure 7 were calculated directly on-shell, but extrapolation was necessary to obtain
on-shell values for those of the excited states. For these observables, two extrapolation
schemes were used and they yielded consistent results in all cases.

 


 














 

 

  

 

 




  
 

 


  
 

 


  


 

    





   

 
 

 

  
  
  
  

       
  

  






















Figure 7. Leptonic decay constants for all states whose masses are reported in Figure 6: ground
states, n = 0; lowest lying radial excitations, n = 1. For the excited states, two extrapolation results
are presented for each state, viz. one obtained with Padé approximants and the other employing
the Schlessinger point method (SPM) [206,207,238,239]—the distinct approaches yield consistent
outcomes. Results inferred from data are also plotted, where available [40] (PDG).

Given that Reference [222] used a simplified interaction, viz. Equation (26), then
the Figure 7 comparison between predicted ground state decay constants and the few

4 Dressed-quark propagators form an important part of the kernels of all bound state equations. As on-shell
meson masses increase, poles in those propagators enter the complex plane integration domain sampled by the
Bethe–Salpeter equation [199]. For such cases—here, meson excited states—a direct on-shell solution cannot
be obtained using simple algorithms. Therefore, to obtain the masses of those mesons, Reference [222] used an
extrapolation procedure based on Padé approximants. This is the origin of the uncertainty bar on the CSM
predictions.
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known empirical values is favourable, particularly because decay constants are sensitive to
ultraviolet physics, which was omitted. There are also indications that the EHM-improved
kernels deliver better agreement.

The decay constants of radially excited states are especially interesting. Quantum
mechanics models of positronium-like systems produce a single zero in the radial wave
function of n = 1 states. The decay constant of a first radial excitation is thus (1/8)-times
that of the ground state. The predictions in Reference [222] are generally consistent with
this pattern, except for JP = 0− mesons. In the pseudoscalar channel, as a corollary
of EHM, QCD predicts f n=1

H ≡ 0 in the chiral limit [208,209,240,241]. The results in
Reference [222] meet this requirement, whereas such outcomes cannot be achieved in quark
models without tuning parameters. For this reason alone, the decay constant predictions
of [222] warrant testing.

Notwithstanding the simplifications used in formulating the problem, Reference [222]
delivered the first Poincaré-invariant analysis of the spectrum and decay constants of the u, d,
and s meson ground and first-excited states. The results include predictions for masses of as-yet
unseen mesons and many unmeasured decay constants. One may look forward to extensions
of the approach to heavy+light mesons [239,242,243], hybrid/exotic mesons [213,244–246], and
glueballs [247–250]. These directions are especially important owing to worldwide investments
in studies of the former and searches for the latter [179,183,186,251–253].

Such progress with meson properties should not obscure the need to calculate the
spectrum of baryons. Indeed, baryons are the most fundamental three-body systems in
Nature; if we do not understand how QCD, a Poincaré-invariant quantum field theory,
structures the spectrum of baryons, then we do not understand Nature. Within the context
of the truncation scheme introduced in References [196,197], baryon masses and bound
state amplitudes have been calculated using a Poincaré-covariant Faddeev equation that
describes a six-point Schwinger function for three-quark→ three-quark scattering. The first
solution of this problem for the nucleon (N) was presented in Reference [254]; continuing
studies are reviewed elsewhere [28,31,181,255]; efforts are now under way to adapt the
methods in References [221,222] to the formulation and solution of the baryon Faddeev
equations.

Meanwhile, the quark+dynamical diquark approach to baryon properties, intro-
duced in References [256–259], is also being pursued vigorously. This treatment begins
with solutions of the equation illustrated in Figure 8. As sketched, e.g., in Reference [21]
(Section 5.1), this is an approximation to the three-body Faddeev equation, whose kernel is
constructed using dressed quark and nonpointlike diquark degrees-of-freedom. Binding
energy is lodged within the diquark correlation and also produced by the exchange of
a dressed quark, which, as drawn in Figure 8, emerges in the break-up of one diquark
and propagates to be absorbed into formation of another. In the general case, five distinct
diquark correlations are possible: isoscalar–scalar, (I, JP = 0, 0+); isovector–axial vector;
isoscalar–pseudoscalar; isoscalar–vector; isovector–vector. Channel dynamics within a
given baryon determines the relative strengths of these correlations therein.

Given the extensive coverage of the role of diquark correlations in hadron structure
presented in Reference [255], herein, we will only draw some recent highlights from anal-
yses of the baryon spectrum using the Faddeev equation in Figure 8, drawing largely
from Reference [232]. That study was built upon a symmetry-preserving treatment of
a vector×vector contact interaction (SCI), which was introduced a little over a decade
ago [260] and has since been employed with success in numerous applications, some of
which are reviewed in this volume [261]. Amongst the merits of the SCI are its algebraic
simplicity; limited number of parameters; simultaneous applicability to many systems
and processes; and potential for generating insights that connect and explain numerous
phenomena.

Reference [232] used the SCI to calculate the ground state masses of JP = 0±, 1± ( f ḡ)
mesons and JP = 1/2±, 3/2± ( f gh) baryons, where f , g, h ∈ {u, d, s, c, b}. Using JP = 1

2
±

states as exemplars, Figure 9 highlights the level of quantitative accuracy.
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Figure 8. Figurative representation of the integral equation satisfied by the Poincaré-covariant matrix-
valued function Ψ, viz. the Faddeev amplitude for a baryon with total momentum Q = `q + `d = kq +

kd built from three valence quarks, two of which are always participants in a nonpointlike, interacting
diquark correlation. Ψ describes the sharing of relative momentum between the dressed quarks and
diquarks. Shaded rectangle—Faddeev kernel. Legend: single line—dressed quark propagator, S(q);
ΓJP

(k; K)—diquark correlation amplitude; double line—diquark propagator, ∆JP
(K).

A

— — — —

— — — — —

— — — — —

—

— —

—

—

— —

—

—

—

● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

● ●

●

●

● ●

●

●

●

p Λ Σ Ξ Λc Σc Ξc Ξc
 Ωc Λb Σb Ξb Ξb

 Ωb Ξcc Ξcb Ξcb
 Ξbb Ωcc Ωcb Ωcb

 Ωbb Ωcc
b Ωcb

b

0

2

4

6

8

10

12

m
as
s
/
G
eV

B

● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

● ●

●

●

● ●

●

●

●

— — —
— —

—

▲ ▲ ▲

▲ ▲

✶

✶ ✶ ✶ ✶

✶ ✶

✶

✶ ✶

✶

✶

✶

p– Λ– Σ– Ξ– Λc
– Σc

- Ξc
– Ξc

'– Ωc
– Λb

– Σb
– Ξb

– Ξb
'– Ωb

– Ξcc
– Ξcb

– Ξcb
'– Ξbb

– Ωcc
– Ωcb

– Ωcb
'– Ωbb

– Ωcc
b– Ωcb

b–

0

2

4

6

8

10

12

m
as
s
/
G
eV

Figure 9. Upper panel (A): SCI-calculated masses of ground state flavour-SU(5) JP = 1/2+

baryons [232] compared with either experiment (first 15) [40] or lQCD (last 9) [262,263]. Lower
panel (B): SCI masses of ground state flavour-SU(5) JP = 1/2− baryons in [232] compared with ex-
periment [40] (green bars), lQCD [264] (gold triangles), or three-body Faddeev equation results [218]
(orange asterisks). Analogous plots for JP = 3/2± baryons are presented elsewhere ([232] (Figures 4B
and 5B)).

Regarding the 33 mesons, then ard = 5(6)% when comparing SCI predictions with
empirical masses. In achieving this outcome, it was found that sound expressions of EHM
were crucial. Turning to baryons, the SCI generated 88 distinct bound states, namely every
possible three-quark 1/2±, 3/2± ground state. In this collection, 34 states have already been
identified empirically, and lQCD results are available for another 30: for these 64 states,
comparing SCI prediction with experiment, where available, or lQCD mass otherwise,
ard = 1.4(1.2)%. This level of agreement was only achieved through the implementation
of EHM-induced effects associated with spin–orbit repulsion in 1/2− baryons. Notably,



Particles 2023, 6 78

the same 88 ground states are also produced by a three-body Faddeev equation [218]: in
comparison with those results, ard = 3.4(3.0)%.

Overall, Reference [232] delivered SCI predictions for 164 distinct quantities, 114 of
which have either been measured or calculated using lQCD: performing a comparison
on this subset yields ard = 4.5(7.1)%. Such quantitative success means that credibility
should be given to the qualitative conclusions that follow from the SCI analysis. We list
them here: (i) Nonpointlike, dynamical diquarks play a significant role in all baryons.
Usually, the lightest allowed diquark is the most important part of a baryon’s Faddeev
amplitude. This remains true, even if the lightest correlation is a (sometimes called bad)
axial vector diquark, and also for baryons containing one or more heavy quarks. In the
latter connection, this means one cannot safely assume that singly heavy baryons may
realistically be described as two-body light diquark+heavy quark (qq′ + Q) bound states or
that doubly heavy baryons (qQQ′) can be treated as two-body light quark+heavy diquark
bound states, q + QQ′. Corresponding statements apply to the treatment of tetra- and
penta-quark problems. (ii) Positive-parity diquarks dominate in positive-parity baryons.
Axial vector diquarks are prominent in all states. (iii) Negative-parity diquarks play a minor
role in positive-parity baryons. On the other hand, owing to EHM, they are significant and
sometimes dominant in J = 1/2− baryons. (iv) Curiously, however, J = 3/2− baryons
are built (almost) exclusively from J = 1+ diquark correlations. These conclusions are
being checked using Faddeev equations with momentum-dependent exchange interactions;
hence, a closer link to QCD. Where results are already available, the SCI conclusions have
been confirmed [265–268].

Following more than fifty years of hadron spectroscopy based on quark models, we
are beginning to see real progress with the use of bound state equations in quantum field
theory. Poincaré-invariant, symmetry-preserving analyses that reveal the expressions of
EHM in hadron masses and level orderings are becoming available. This increases the
value of experimental hadron spectra measurements, making them a clearer window onto
strong QCD.

7. Baryon Wave Functions

Concerning baryon structure, as noted when opening Section 6, quark models are still
considered to provide a useful picture [187–189,269]. In such models, baryons built from
combinations of u, d, and s valence quarks are grouped into multiplets of SU(6)⊗O(3). The
multiplets are labelled by their flavour content—SU(3), spin—SU(2), and orbital angular
momentum—O(3). However, as has been emphasised, quark potential models do not have
an explicit link with QCD, a Poincaré-invariant quantum gauge field theory.

For the lightest four (I, JP = 1
2 , 1

2
±
) baryons, with I denoting isospin, a comparison

between quark model expectations and insights drawn from solutions of the Poincaré-
covariant Faddeev equation is presented elsewhere [265]. Herein, we will illustrate the
qualitative character of such comparisons by considering more recent studies of ( 3

2 , 3
2
±
),

( 1
2 , 3

2
∓
) baryons [267,268].

These systems were studied in Reference [217] using RL truncation and direct calcula-
tions of all primary Schwinger functions. With current algorithms, owing to singularities
that enter the integration domains sampled by the Faddeev equations [199], this approach
limits the ability to compute wave functions because the on-shell point for many systems is
inaccessible. (Similar issues are encountered with meson structure studies—Section 6.) To
circumvent this issue, References [267,268] employed the QCD-kindred framework intro-
duced elsewhere [270], in which, instead of calculating all primary Schwinger functions,
one uses physics-constrained algebraic representations of the Faddeev kernel elements.
This weakens the connection with QCD, but that loss is well compensated because, with
reliably informed choices for the representation functions, the expedient enables access to
on-shell baryon wave functions. The QCD-kindred framework has widely been used with
success—see, e.g., References [271–276].
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Within the quark model framework and using standard spectroscopic notation, n 2S+1LJ ,
where n is the radial quantum number with “0” labelling the ground state, the lightest
four ( 3

2 , 3
2
±
) ∆ baryons, constructed from isospin I = 3

2 combinations of three u and/or d
quarks, are understood as follows [277]:

1. ∆(1232) 3
2
+

. . . 0 4S 3
2
= S-wave ground state;

2. ∆(1600) 3
2
+

. . . 1 4S 3
2
= S-wave radial excitation of ∆(1232) 3

2
+

;

3. ∆(1700) 3
2
−

. . . 0 2P3
2
= P-wave orbital angular momentum excitation of ∆(1232) 3

2
+

;

4. ∆(1940) 3
2
−

. . . 1 4P3
2
= P-wave excitation of ∆(1600) 3

2
+

.

Analogously, the ( 1
2 , 3

2
∓
) states are interpreted thus [277]:

1. N(1520) 3
2
−

. . . 0 2P1
2
= P-wave ground state in this channel and an angular momentum

coupling partner of N(1535) 1
2
−

;
2. N(1700) 3

2
−

. . . 0 4P3
2
= P-wave angular momentum coupling partner of N(1520) 3

2
−

;

3. N(1720) 3
2
+

. . . 0 2D 3
2
= D-wave orbital angular momentum excitation of N(1520) 3

2
−

;

4. N(1900) 3
2
+

. . . 0 4D 3
2
= D-wave orbital angular momentum excitation of N(1700) 3

2
−

.

On the other hand, Poincaré-invariant quantum field theory does not readily admit
such assignments. Instead, the states appear as poles in the six-point Schwinger functions
associated with the given (I, JP) channels. Here, “(1↔ 3)” and “(2↔ 4)′’ in each block
above are related as parity partners. All differences between positive- and negative-
parity states can be attributed to chiral symmetry breaking in quantum field theory.
This is highlighted by the ρ-a1 meson complex [219–222,278]. Regarding light quark
hadrons, such symmetry breaking is almost exclusively dynamical [24,279–284]. As noted
above, DCSB is a corollary of EHM [32–37]; hence, quite probably linked tightly with
confinement—Section 5. These features imbue quantum field theory analyses of ( 3

2 , 3
2
±
),

( 1
2 , 3

2
∓
) baryons with particular interest; consequently, experiments that test predictions

made for structural differences between parity partners are highly desirable.
Working with the Faddeev equation sketched in Figure 8, then, a priori, the ( 3

2 , 3
2
±
)

baryons are the simpler systems because they can only contain isovector–axial vector and
isovector–vector diquarks, whereas the ( 1

2 , 3
2
∓
) systems may involve all five distinct types

of diquarks: (0, 0+), (1, 1+), (0, 0−), (1, 1−), (0, 1−). Nonetheless, the formulation of the
bound state problems in both channels is practically identical, using the same dressed quark
and diquark propagators; diquark correlation amplitudes; etc. This way, one guarantees
a unified description of all states in the spectrum. The propagators are parametrised
using entire functions [163,285,286]; hence, satisfy the confinement constraints described in
Section 5. It is this feature that enables on-shell calculations for all baryons.

The calculated spectrum of states is displayed in Figure 10. As highlighted else-
where [29,265,267,268,287,288], the kernel in Figure 8 does not include contributions that
may be understood as meson–baryon final state interactions. These are the interactions
that transform a bare baryon into the observed state, e.g., via dynamical coupled chan-
nels calculations [289–293]. The Faddeev amplitudes and masses calculated in Refer-
ences [265,267,268] should therefore be seen as describing the dressed quark core of the bound
state, not the fully dressed, observable object [294–296]. That explains why the masses are
uniformly too large. Evidently and importantly, in each sector, a single subtraction constant
is sufficient to realign the masses and produce a good description of the spectrum.
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Figure 10. Real part of empirical pole position for each designated baryon [40] (red circle) compared
with: calculated masses in Reference [268] (gold asterisks) after subtracting δ

N3/2
MB = 0.13 GeV from

each; Reference [265] (teal diamonds) after subtracting δ
N1/2
MB = 0.30 GeV; and Reference [267] (green

five-pointed stars) after subtracting δ
∆3/2
MB = 0.17 GeV. All Faddeev equation predictions are drawn

with an uncertainty that reflects a ±5% change in diquark masses.

Regarding ( 3
2 , 3

2
±
) baryons, Reference [267] found that although these states may

contain both (1, 1+) and (1, 1−) quark+quark correlations, one can neglect the (1, 1−)
diquarks because they have practically no impact on the masses or wave functions. After
this simplification, the Poincaré-covariant wave functions involve eight independent matrix-
valued terms, each multiplied by a scalar function of two variables: (k2, k ·Q), with k the
quark+diquark relative momentum. Studying the properties of these functions, one may
conclude that ∆(1600) 3

2
+

is fairly interpreted as a radial excitation of the ∆(1232) 3
2
+

,
as suggested by the quark model. However, the wave functions of the ∆(1700) 3

2
−

and
∆(1940) 3

2
−

states are complicated and do not readily admit direct analogies with quark
model pictures.

Projecting the Poincaré-covariant Faddeev wave functions of ( 3
2 , 3

2
±
) baryons into

their respective rest-frames, one arrives at a J = L + S separation which is comparable to
that associated with quark models. (Here, L is quark–diquark orbital angular momentum.)
Following this procedure, Reference [267] found that the angular momentum structure of
all these states is much more complicated than is typically generated in quark models—see
Figure 11.

Evidently, making a link to quark models, the ∆(1232) 3
2
+

and ∆(1600) 3
2
+

are char-
acterised by a dominant S-wave component and the ∆(1700) 3

2
−

by a prominent P-wave.
The ∆(1940) 3

2
−

, however, does not fit this picture: contrary to quark model expectations,
indicated on page 79, this state is S-wave-dominated. Moreover, each state contains every
admissible partial wave.

Combining all gathered information, Reference [267] furthermore concluded that the
negative-parity ∆ baryons are not merely orbital angular momentum excitations of positive
parity ground states. In this observation, the results match those obtained earlier for ( 1

2 , 1
2
±
)

baryons [265].
Recalling now that the interpolating fields for positive- and negative-parity hadrons

are related by chiral rotation of the quark spinors used in their construction, then the
highlighted structural differences are largely generated by DCSB. Regarding the ∆(1940) 3

2
−

in particular, these novel structural predictions may be expected to encourage new experi-
mental efforts aimed at extracting reliable information about this little-understood state
from exclusive π+π−p electroproduction data [297,298].
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A B

C D

Figure 11. Rest-frame quark+axial vector–diquark orbital angular momentum content of ( 3
2 , 3

2
±
)

baryons considered in Reference [267], as measured by the contribution from the various components
to the associated canonical normalisation constant: A ∆(1232) 3

2
+

; B ∆(1600) 3
2
+

; C ∆(1700) 3
2
−

; D

∆(1940) 3
2
−

. The overall positive normalisations receive both positive (above plane) and negative
(below plane) contributions. The central image provides the legend for the interpretation of the
other panels, identifying interference between the various identified orbital angular momentum basis
components in the baryon rest-frame.

Observations upon similar features were made about ( 1
2 , 3

2
±
) baryons in Reference [268].

To begin, despite the fact that such states may contain all possible diquark correlations, the
analyses showed that a good approximation is obtained by keeping only (0, 0+), (1, 1+)
correlations. This runs counter to the nature of ( 1

2 , 1
2
−
) systems, in which (0, 0−), (0, 1−)

diquarks are also important [265,299]. Projecting the Poincaré-covariant Faddeev wave
functions into the baryon rest-frames and considering the baryon mass fraction contributed
by each partial wave, this collection of states form a set related via orbital angular mo-
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mentum excitation: as in quark models, the parity-negative states are primarily P-wave in
nature, whereas the parity-positive states are D wave—see Reference [268] (Figure 4). How-
ever, looking with finer resolution, using charts of the canonical normalisation constant
contributions from the various partial waves in the Poincaré-covariant wave functions, like
Figure 11 herein, far greater L-complexity was observed than is usually found in quark
models—see Reference [268] (Figure 7). Here, too, one may anticipate that these structural
predictions can be tested using data from measurements of resonance electroexcitation at
large momentum transfers. For the N(1520) 3

2
−

, data are already available [300–305], and
calculations of the electroproduction form factors are underway. Large-Q2 data on the
other states is not available; so, the predictions in Reference [268] will also encourage new
experimental efforts in this area.

Parity partner channels are identical when chiral symmetry is restored [14,30]. It is
therefore interesting to note that the mass splitting between partner states does not exhibit
a simple pattern, viz. empirically [40]:

states mass splitting/GeV
N(1535) 1

2
− − N(940) 1

2
+

0.57 ,
N(1650) 1

2
− − N(1440) 1

2
+

0.29 ,
∆(1700) 3

2
− − ∆(1232) 3

2
+

0.46 ,
∆(1940) 3

2
− − ∆(1600) 3

2
+

0.44 ,
N(1720) 3

2
+ − N(1520) 3

2
−

0.17 ,
N(1900) 3

2
+ − N(1700) 3

2
−

0.22 .

(27)

This system dependence of the mass splitting is also linked to the deeper structural differ-
ences between these states that are expressed in their complex wave functions.

Using a familiar quantum mechanics framework, quark models produce baryon wave
functions that have an appealing simplicity. However, far richer structures are found when
quantum field theory is used to solve baryon bound state problems. The growing body
of quantum field theory predictions can be tested, e.g., in modern and future large-Q2

measurements of baryon elastic and transition form factors. In fact, the large-Q2 character
of such experiments is alone sufficient to demand the sort of Poincaré-invariant, symmetry-
preserving treatment that only analyses in quantum field theory can deliver. One may,
therefore, expect studies using the Faddeev equation approach outlined in this section to
become steadily more widespread.

8. Meson Form Factors

The truncation scheme explained in References [196,197] has been used to calculate
many meson elastic and transition form factors [21]; and modern algorithms have enabled
predictions to be delivered on the entire domain of spacelike Q2 [200,201,306–309], making
it possible to draw connections with hard scattering formulae derived using QCD perturba-
tion theory [310–312]. These new predictions, which unify the infrared and ultraviolet Q2

domains, are providing the impetus for measurements at new-generation high-energy and
high-luminosity facilities [35,180,182,184]. Recalling that QCD is not found in form factor
scaling, but in scaling violations, then the goal of these new experiments is, of course, to
discover the breakaway from scaling in a hard exclusive process and thus reveal the hand
of QCD.

In connection with these new facilities, it has been argued that the interaction of a
heavy vector meson, V = J/ψ, Υ, with a proton, p, may provide access to a QCD van der
Waals interaction, produced by multiple gluon exchange [313,314] and/or the QCD trace
anomaly [6,315–317]. The van der Waals interaction is of interest because it might relate to,
amongst other things, the observation of hidden-charm pentaquark states [318]; and the
trace anomaly is topical because of its connection with EHM.
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Lacking vector meson beams, ongoing and anticipated experiments at electron (e)
accelerators are based on an expectation that the desired V + p interactions can be accessed
through the electromagnetic production of vector mesons from the proton, in reactions
like e + p → e′ + V + p [183,252,319]. This is because some practitioners imagine that
single-pole vector meson dominance (VMD) [320–322] can reliably be employed to draw
a clean link between e + p→ e′ + V + p and the desired Vp→ Vp cross-sections. In this
picture (see Figure 12), the interaction is supposed to proceed via the following sequence
of steps: (i) e → e′ + γ(∗)(Q); (ii) γ(∗)(Q) → V; and (iii) V + p → V + p. γ(∗)(Q) is a
virtual photon; and step (ii) expresses the VMD hypothesis. As commonly used, VMD
assumes: (a) that a photon, which is generally spacelike, so that Q2 > 0, transforms into
an on-shell vector meson, with timelike momentum Q2 = −m2

V ; and (b) that the Q2 > 0
strength and form of the transition in (ii) is the same as that measured in the real vector
meson decay process, V → γ∗(Q2 = −m2

V)→ e+ + e−. Property (b) means that γγV , the
associated decay constant, is fixed at its meson on-shell value and acquires no momentum
dependence:

γ2
γV = 4παemm2

V f 2
V , (28)

<latexit sha1_base64="9LnJlAi/SElwx1lDbY3UaZo2Rrk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUtMeKF48V7Ae0IWy2m3bpZrPsboQS+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8UHKmjet+O6W19Y3NrfJ2ZWd3b/+genjU0UmqCG2ThCeqF2JNORO0bZjhtCcVxXHIaTec3OV+94kqzRLxaKaS+jEeCRYxgo2VurdB1gnkLKjW3Lo7B1olXkFqUKAVVL8Gw4SkMRWGcKx133Ol8TOsDCOcziqDVFOJyQSPaN9SgWOq/Wx+7gydWWWIokTZEgbN1d8TGY61nsah7YyxGetlLxf/8/qpiRp+xoRMDRVksShKOTIJyn9HQ6YoMXxqCSaK2VsRGWOFibEJVWwI3vLLq6RzUfeu65cPV7Vmo4ijDCdwCufgwQ004R5a0AYCE3iGV3hzpPPivDsfi9aSU8wcwx84nz87pY97</latexit>

AVp

Figure 12. Electroproduction of a vector meson from the proton: e+ p→ e′+V + p, often interpreted
as providing access to V + p → V + p using a vector meson dominance model. The γ(∗)(Q) → V
VMD transition is indicated by the crossed circle. It is usually assumed to occur with a momentum-
independent strength γγV [320–322]. However, regarding heavy mesons, at least, the VMD hypothesis
is unsound, as discussed below and in, e.g., References [204,323].

where αem is the QED fine-structure constant, mV is the vector meson mass, and
fV measures the strength of the meson’s Bethe–Salpeter wave function at the origin in
configuration space [324] (Section IIB).

The fidelity of these VMD assumptions was recently subjected to scrutiny via analyses
of the photon vacuum polarisation and photon–quark vertex [204]. Regarding the photon
vacuum polarisation, it was shown that there is no vector meson contribution to this polari-
sation at the photoproduction point, Q2 = 0. Consequently, massless real photons cannot
readily be linked with massive vector bosons, and the current field identity, Equation (28),
typical of VMD implementations, should not be used literally because it entails violations
of Ward–Green–Takahashi identities (breaking of symmetries) in QED.

Turning to the dressed photon–quark vertex, Γγ
ν (k; Q), this three-point Schwinger

function exhibits a pole at the mass of any vector meson bound state. A physical property,
it expresses the fact that the decay V → e+e− proceeds via a timelike virtual photon. The
VMD hypothesis may thus be seen as a claim that Γγ

ν (k; Q)
∣∣
Q2'0 maintains a rigorous link,

in both magnitude and momentum dependence, with the Bethe–Salpeter amplitude of an
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on-shell vector meson. However, as shown in Figure 13, that is not the case. The panels in
Figure 13 depict the ratios:

RV(k2; Q2 = 0) =
2 fV
mV

F0
1 (k

2;−m2
V)

G0
1(k

2; Q2 = 0)
, RB

V(k
2; Q2 = 0) =

fV
mV

F0
8 (k

2;−m2
V)

G0
3(k

2; Q2 = 0)
, (29)

where G0
1 is the zeroth Chebyshev moment5 of the dominant amplitude in the photon–quark

vertex, associated with the matrix structure γ · ε(Q), where ε(Q) is the photon polarisa-
tion vector—in fact, using the vector Ward–Green–Takahashi identity and Equation (23),
G0

1(k
2; Q2 = 0) = Ag(k2), where g is the flavour of the meson’s valence quark; F0

1 is its
analogue in the vector meson bound state amplitude; G0

3 is the zeroth moment of that term
in the photon–quark vertex, which is directly linked to the scalar piece of the dressed quark
self-energy via the vector Ward–Green–Takahashi identity, i.e., G0

3(k
2; Q2 = 0) = −2B′g(k2);

and F0
8 is its analogue in the vector meson bound state amplitude. Were VMD to be a sound

assumption, then all these curves would lie near the thin horizontal line drawn at unity
in both panels of Figure 13. However, whilst one might discuss the case for lighter vector
mesons, the VMD hypothesis is plainly false for heavy vector mesons: the momentum-
dependence of the Q2 = 0 photon–quark vertex is completely different from that of the
vector meson Bethe–Salpeter amplitude.
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Figure 13. Left panel (A): First ratio in Equation (29) computed using matched solutions of the gap
and Bethe–Salpeter equations for V = ρ, φ, J/ψ, Υ. Right panel (B): Second ratio in Equation (29),
computed similarly. In cases where the VMD hypothesis were sound, all these curves would lie close
to the thin horizontal line drawn at unity.

One is consequently led to conclude that, insofar as heavy mesons are concerned, no
extant attempt to link e+ p→ e′+V + p reactions with V + p→ V + p via VMD is reliable.
A similar conclusion is drawn in Reference [323] using arguments within perturbative
QCD. It is strengthened by Reference [325], which demonstrates that even if VMD were
valid, then contributing relevant coupled channels processes would obscure connections
between e + p→ e′ + V + p and V + p→ V + p reactions. These analyses make tenuous
any interpretation of e + p→ e′ + V + p reactions as a path to hidden-charm pentaquark
production or as a route to understanding the origin of the proton mass. In fact, the crudity
of existing models prevents sound conclusions being drawn about the capacity of heavy
meson production to reveal something about the SM [326].

On the other hand, numerous applications [28,31–33,327], including γ∗γ → π0, η,
η′, ηc, and ηb [201,308], show that a viable alternative to the VMD hypothesis exists in
adapting the CSMs discussed herein to a direct analysis of processes like γ(∗) + p →
V + p. Considering vector meson photoproduction/electroproduction from the proton,

5 The Chebyshev (or hyperspherical) expansion of Poincaré-invariant functions of two scalar variables is
discussed, e.g., in Reference [199] (IV.B).
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References [326,328,329] illustrate how one might proceed; and given developments in the
past vicennium, improvements of such studies are now possible.

Following the first studies almost thirty years ago [330], the CSM treatment of meson
elastic and transition form factors has now reached a mature level. Today, as sketched above,
sound predictions with a traceable connection to QCD are being delivered. This enables
new opportunities to be exploited, such as informative comparison with results from
lQCD [200], weak transitions of heavy mesons (see References [205–207] and Section 10),
calculations of form factors describing light-by-light scattering contributions to the muon
anomalous magnetic moment [331], and a beginning to the analysis of meson gravitational
form factors [332].

9. Baryon Form Factors

Advances in the calculation of meson form factors are complemented by progress with
the parameter-free prediction of baryon elastic and transition form factors. The first direct
RL truncation study of nucleon elastic form factors was presented in Reference [333]. It was
extended to nucleon axial and pseudoscalar form factors in Reference [334], the elastic form
factors of ∆ and Ω baryons in Reference [335], and nucleon tensor charges in Reference [31].

Many other direct RL truncation analyses are in train. However, in all such studies, the
challenge of quark propagator singularities moving into the complex integration domain must
also be overcome [199]. Using existing algorithms, the singularities limit the Q2 reach of
baryon form factor calculations. Here, again, the QCD-kindred quark plus fully interacting,
nonpointlike diquark picture of baryon structure—outlined in Section 7—can profitably be
exploited. Some of the successes are summarised elsewhere [181,255]. Recently, the predictions
made for γ+ p→ ∆(1600) transition form factors [273] have been tested in analyses of π+π−p
electroproduction data collected at Jefferson Lab (JLab), with preliminary results supporting the
quark+diquark picture [336].

Scanning the sources indicated above, it becomes apparent that, hitherto, nucleon properties
have largely been probed in e + N scattering. Aspects of this field are reviewed elsewhere [337].
An entirely new window onto baryon structure is opened when one uses neutrino scattering. In
fact, reliable predictions of nucleon and N → ∆(1232) electroweak form factors are crucial for
understanding new-generation long-baseline neutrino oscillation experiments [338–344]. Impor-
tantly, in this connection, recent developments within the framework of CSMs have enabled
practitioners to deliver the first Poincaré-invariant parameter-free predictions for such form
factors on a momentum transfer domain that extends to Q2 = 10 GeV2 [274–276]. Extensions to
even larger Q2 are feasible. Where data are available, the predictions confirm the measurements.
More significantly, the results are serving as motivation for new experiments at high-luminosity
facilities.

The key step in the use of CSMs was the construction of a symmetry-preserving current
that describes the coupling between axial vector and pseudoscalar probes and baryons whose
structure is determined by the Faddeev equation in Figure 8. This current is illustrated in
Figure 14 and explained by the legend in Table 2. The origins and characters of Diagrams 1–3
are obvious: the probe must interact with every “constituent” that carries a weak charge.
Diagram 4 is a two-loop diagram, made necessary by the quark exchange nature of the kernel
in Figure 8: the object exchanged in binding also carries a weak charge. Given the presence of
Diagram 4, so-called seagull diagrams—Diagrams 5 and 6—are necessary to ensure symmetry
preservation. The analogous contributions for baryon electromagnetic currents were derived in
Reference [345], but it took more than twenty years before the seagull terms were derived for
axial vector and pseudoscalar currents [275]. These contributions are both two-loop diagrams.
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Axial vector interactions of a nucleon are described by two form factors—-GA(Q2)
(axial) and GP(Q2) (induced pseudoscalar)—associated with the following matrix element:

Ĵ j
5µ(K, Q) := 〈N(Pf )|A

j
5µ(0)|N(Pi)〉 (30a)

=ū(Pf )
τ j

2
γ5

[
γµGA(Q2) + i

Qµ

2mN
GP(Q2)

]
u(Pi) , (30b)

where Pi, f are, respectively, the initial and final nucleon momenta, with P2
i, f = −m2

N , mN is
the nucleon mass, and u(P) is the associated Euclidean spinor. (Associated conventions
are specified elsewhere, e.g., Reference [271] (Appendix B).) The average momentum of
the system is K = (Pi + Pf )/2, and Q = Pf − Pi is the momentum transferred between the
initial and final states. It is usual to consider the SU(2)F isospin limit mu = md =: mq, with
the flavour structure described using Pauli matrices {τ j|j = 1, 2, 3}: τ1±i2 := (τ1 ± iτ2)/2
correspond to the weak charged currents and τ3 is the neutral current. Moreover, the
isovector axial current operator is

A j
5µ(x) = q̄(x)

τ j

2
γ5γµq(x), q =

(
u
d

)
. (31)

A third form factor is defined via the kindred pseudoscalar current, a matrix element of
P j

5(x) = q̄(x) τ j

2 γ5q(x):

Ĵ j
5(K, Q) := 〈N(Pf )|P

j
5(0)|N(Pi)〉 = ū(Pf )

τ j

2
γ5 G5(Q2) u(Pi) . (32)

Figure 14. Axial/pseudoscalar current that ensures a symmetry-preserving interaction with an on-
shell baryon described by a Faddeev amplitude obtained from the equation depicted in Figure 8: single
line, dressed quark propagator; undulating line, axial/pseudoscalar current; Γ, diquark correlation
amplitude; double line, diquark propagator; χ, seagull terms. A detailed legend is provided in Table 2.

Using the framework deployed to calculate the baryon wave functions discussed
in Section 7, References [274,275] delivered the parameter-free prediction for GA(Q2) dis-



Particles 2023, 6 87

played in Figure 15: the lighter blue band expresses the impact of ±5% variations in the
diquark masses: m0+ = 0.80(1± 0.05); m1+ = 0.89(1± 0.05). The calculated values for the
nucleon axial charge gA = GA(Q2 = 0), associated axial charge radius, and axial mass are,
respectively,

gA = 1.25(3) , 〈r2
A〉1/2mN = 3.25(4) , mA/mN = 1.23(3) . (33)

For comparison, empirically, gA = 1.2756(13) [40] (PDG) and [346] 〈r2
A〉1/2mN = 3.23(72),

mA/mN = 1.15(08). Evidently, the CSM predictions agree with extant data. Regarding the
axial mass, we note that it is sometimes convenient, when comparing with other analyses,
to use a dipole Ansatz as an approximation for the axial form factor:

GA(Q2) =
gA(

1 + Q2/m2
A
)2 ; (34)

therefore References [274,275] extracted mA using Equation (34) to interpolate the global
Q2 behaviour of GA on x ∈ [0, 1.6], in which case mA is not simply related to the axial
radius. It is worth remarking that scalar and axial vector diquark mass variations interfere
destructively, e.g., reducing m0+ increases gA, whereas gA decreases with the same change
in the axial vector mass.

Table 2. Enumeration of terms in the baryon axial vector/pseudoscalar current, drawn in Figure 14.

1. Diagram 1, two terms: 〈J〉Sq—probe strikes dressed quark with scalar diquark spectator;
〈J〉Aq —probe strikes dressed quark with axial vector diquark spectator.

2. Diagram 2: 〈J〉AA
qq —probe strikes axial vector diquark with dressed quark spectator.

3. Diagram 3: 〈J〉{SA}
qq —probe mediates transition between scalar and axial vector diquarks,

with dressed quark spectator.
4. Diagram 4, three terms: 〈J〉SS

ex —probe strikes dressed quark “in-flight” between one scalar

diquark correlation and another; 〈J〉{SA}
ex —dressed quark “in-flight” between a scalar di-

quark correlation and an axial vector correlation; 〈J〉AA
ex —“in-flight” between one axial vector

correlation and another.
5. Diagrams 5 and 6, seagull diagrams describing the probe coupling into the diquark correla-

tion amplitudes: 〈J〉sg. There is one contribution from each diagram to match every term in
Diagram (4).

◆

◆
◆
◆
◆◆

◆◆◆◆

◆ Jang et al.

Chen et al.
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x=Q2/mN
2
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A
(x
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Figure 15. Predicted result for GA(x) in Reference [275] (Chen et al.) (blue curve within lighter blue
uncertainty band), compared with lQCD results from Reference [347] (Jang et al.) (green) diamonds.
With respect to the CSM central results, this comparison may be quantified by reporting the mean-χ2

value, which is 0.27.
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Turning to the induced pseudoscalar form factor, muon capture experiments (µ + p →
νµ + n) may be used to determine the induced pseudoscalar charge:

g∗p =
mµ

2mN
GP(Q2 = 0.88 m2

µ) . (35)

The CSM prediction is g∗p = 8.80(23). Compared with the recent MuCap Collaboration
result, g∗p = 8.06(55) [348,349], it agrees within uncertainties, but is slightly larger. The
CSM value is nicely aligned with the world average [350]: g∗p = 8.79(1.92).

The pseudoscalar form factor, G5(Q2), is of interest because, inter alia, it is used to
define the pion–nucleon form factor GπNN(Q2) via

G5(Q2) =:
m2

π

Q2 + m2
π

fπ

mq
GπNN(Q2) , (36)

where fπ is the pion leptonic decay constant (appearing in Figure 7) and GπNN(−m2
π) =

gπNN is the πNN coupling, a key input to nucleon+nucleon potentials. The CSM prediction
is [274,275]: gπNN/mN = 14.02(33)/GeV. This value overlaps with that inferred from
pion–nucleon scattering [351] (gπNN/mN = 13.97(10)/GeV) and compares favourably
with a determination based on the Granada 2013 np and pp scattering database [352]
(gπNN/mN = 14.11(3)/GeV) and a recent analysis of nucleon–nucleon scattering using
effective field theory and related tools [353] (gπNN/mN = 14.09(4)/GeV). All these results
are compared in Figure 16, which also highlights their error-weighted average:

gπNN/mN = 14.10(2)/GeV . (37)

✶✶

★★

●●

▲▲

13.6 13.8 14 14.2 14.4

Chen

Baru
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Reinert

gπNN/mN [GeV-1]

Figure 16. Comparison of the CSM prediction for gπNN/mN (blue asterisk) [275] with values ex-
tracted from pion–nucleon scattering [351] (Baru) (black star), the Granada 2013 np and pp scattering
database [352] (Navarro) (purple circle), and nucleon–nucleon scattering [353] (Reinert) (red triangle).
The vertical grey band marks the estimated uncertainty in the CSM prediction. The error-weighted
average of the depicted results, Equation (37), is drawn as the gold line within the like-coloured band.

Continuing with an effort to inform nuclear physics potentials using hadron physics
results, it is worth noting that on −m2

π < Q2 < 2 m2
N , a fair approximation to the CSM

prediction for the pion–nucleon form factor is provided by (x = Q2/m2
N):

Gd
πNN(x) =

13.47mN

(1 + x/0.8452)2 . (38)

This corresponds to a πNN dipole mass ΛπNN = 0.845mN = 0.79 GeV, viz. a soft form
factor. (A commensurate value was obtained previously in a simpler quark+scalar-diquark
model [354].) Being just ∼ 20% greater, the CSM prediction is qualitatively equivalent
to the πNN dipole mass inferred in a dynamical coupled channels analysis of πN, γN
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interactions [292]. Future such coupled channels studies may profit by implementing
couplings and range parameters determined in CSM analyses.

An extension of this effort to the more general case of hyperon+nucleon potentials can
be found in Reference [355]. Using an SCI, predictions were made therein for an array of
meson+octet-baryon couplings. Comparing the results with extant phenomenological in-
teractions [292,356,357], one finds a mean absolute relative deviation (P is the pseudoscalar
meson absorbed in the baryon transition B→ B′, and gPB′B is the associated coupling):

δ
g
r := {|gSCI

PB′B/gphen.
PB′B − 1|} = 0.18(14) . (39)

This result strengthens the case in favour of using CSM predictions for the couplings as
new constraints in the development of baryon+baryon potentials.

A little algebra reveals that the proton axial charge can be interpreted as a measure
of the valence quark contributions to the proton light-front helicity, e.g., Reference [358]
(Equations (6)–(8)):

gA =
∫ 1

0
dx [∆u p(x; ζH)− ∆d p(x; ζH)] =: gu

A − gd
A , (40)

where ∆q p(x; ζH) = q p
↑ (x; ζH) − q p

↓ (x; ζH) is the light-front helicity DF for a quark q.
Plainly, ∆q p is the difference between the light-front number density of quarks with helicity
parallel and antiparallel to that of the proton. It is scale-dependent.

Equation (40) conveys additional significance to a flavour separation of the axial
charge form factor:

GA(Q2) = Gu
A(Q

2)− Gd
A(Q

2) . (41)

A detailed analysis is presented in Reference [276] (Section 4), which reveals the following
diagram contributions to the separate u, d axial form factors:

Gu
A = 〈J〉Sq − 〈J〉Aq + 〈J〉AA

qq + 1
2 〈J〉

{SA}
qq + 2〈J〉{SA}

ex + 4
5 〈J〉

AA
ex , (42a)

−Gd
A = 2〈J〉Aq + 1

2 〈J〉
{SA}
qq + 〈J〉SS

ex − 〈J〉
{SA}
ex + 1

5 〈J〉
AA
ex , (42b)

where the nomenclature of Table 2 is used. Identified according to Equations (42), the calculated
Q2 = 0 contributions are listed in Table 3. It is worth stressing that Equations (42) express
the fact that since a 0+ diquark cannot couple to an axial vector current, then Diagram 1 in
Figure 14 only supplies a u quark contribution to the proton GA(Q2), viz. 〈J〉Sq. It follows that
in a scalar-diquark-only proton, a d quark contribution to GA(Q2) can only arise from Figure 14,
Diagram 4, i.e., 〈J〉SS

ex ; and |〈J〉SS
ex /〈J〉Sq| ≈ 0.06. Notably, many scalar-diquark-only models

omit Diagram 4, in which case Gd
A(Q

2) ≡ 0. An extension of these observations to the complete
array of octet baryons is described elsewhere [355] (Section IV).

Table 3. Flavour and diagram—Figure 14—separation of the proton axial charge: gu
A = Gu

A(0),
gd

A = Gd
A(0); gu

A − gd
A = 1.25(3). The listed uncertainties express the effect of ±5% variations in the

diquark masses, e.g., 0.886∓ ⇒ 0.88∓ 0.06.

〈J〉Sq 〈J〉Aq 〈J〉AA
qq 〈J〉{SA}

qq 〈J〉SS
ex 〈J〉{SA}

ex 〈J〉AA
ex

gu
A 0.886∓ −0.080± 0.030± 0.080∓ 0 ≈ 0 0.031±
−gd

A 0 0.160± 0 0.080∓ 0.051± ≈ 0 0.010±

Using the solution of the Faddeev equation (Figure 8), Reference [276] reports

gu
A/gA = 0.76± 0.01 , gd

A/gA = −0.24± 0.01 , gd
A/gu

A = −0.32± 0.02 . (43)
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In nonrelativistic quark models with uncorrelated wave functions, gd
A/gu

A = −1/4. Hence,
the relevant comparison reveals that the highly correlated wave function obtained by
solving the Faddeev equation gives the valence d quark a markedly larger fraction of the
proton’s light-front helicity than is found in simple quark models. Reviewing the discussion
after Equation (42), it becomes apparent that this feature owes to the presence of axial
vector diquarks in the proton: the current contribution arising from the {uu} correlation—
underlined term in Equation (42b)—measuring the probe striking the valence d quark, is
twice as strong as that from the {ud} correlation—underlined term in Equation (42a)—in
which the probe strikes the valence u quark.

It is natural to enquire after the robustness of the results in Equation (43). Consider,
therefore, that assuming SU(3) flavour symmetry in analyses of octet baryon axial charges,
these charges are expressed in terms of two low-energy constants ([359] (Table 1)): D,
F, with gu

A = 2F, gd
A = F − D. (This assumption is accurate to roughly 4%—see, e.g.,

Reference [355].) In this case, the values in Equation (43) correspond to

D = 0.78(2) , F = 0.48(1) , F/D = 0.61(2) . (44)

On the other hand, using available empirical information [40], one obtains D = 0.774(26),
F = 0.503(27), and gu

A/gA = 0.79(4), gd
A/gA = −0.21(3), and gd

A/gu
A = −0.27(4), val-

ues that are consistent with the results in Equations (43) and (44).6 In addition, the SCI
predicts [355]

D = 0.78 , F = 0.43 , F/D = 0.56 , (45)

and a covariant baryon chiral perturbation theory analysis yields D = 0.80(1), F = 0.47(1),
F/D = 0.59(1) [360].

Given the favourable realistic proton wave function comparisons presented above,
the values in Equation (43) can be viewed as reliable. This is important because of the
connection between flavour-separated axial charges and the so-called proton “spin cri-
sis” [361,362]. At any given resolving scale, the singlet, triplet, and octet axial charges of
the proton are, respectively:

a0 = gu
A + gd

A + gs
A , a3 = gA = gu

A − gd
A , a8 = gu

A + gd
A − 2gs

A . (46)

If working at the hadron scale, ζH, where dressed valence quasiparticles carry all proton
properties [126,127,132–135], then gs

A ≡ 0 a0 = a8; hence [276],

a0 = 0.65(2) . (47)

In general, a3,8 are conserved charges, viz. they are the same at all resolving scales, ζ. However,
that is not true of the individual terms in their definitions: the separate valence quark charges
gu

A, gd
A, gs

A evolve with ζ [362]. Consequently, the value of a0, which is the fraction of the
proton’s total J = 1/2 carried by valence degrees-of-freedom, changes with scale: the result in
Equation (47) is the maximum value of a0, and the fraction falls slowly with increasing ζ.

Returning to expectations based on simple, nonrelativistic quark models, textbook-level
algebra yields a0 = 1. Therefore, in such pictures, all the proton spin derives from that of the
constituent quarks. On the other hand, the CSM analysis in Reference [276] predicts that proton
dressed valence degrees-of-freedom carry only two-thirds of the spin. Since there are no other
degrees-of-freedom at ζH and the Poincaré-covariant proton wave function properly describes
a J = 1/2 system, then the “missing” part of the total J must be associated with quark+diquark
orbital angular momentum. Similar conclusions apply for all ground state octet baryons [355].

The study in Reference [276] delivered Poincaré-invariant parameter-free predictions for
the proton axial form factor and its flavour separation out to Q2 ≈ 10 m2

N. The axial form factor

6 If one eliminates axial vector diquarks from the proton wave function, then gd
A/gu

A = −0.054(13), a result
disfavoured by experiments at the level of 5.1σ, i.e., the probability that the scalar-diquark-only proton result
could be consistent with data is 1/7, 100, 000.
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itself agrees with available data [363,364], which extends to Q2 ≈ 5 m2
N—see Reference [276]

(Figure 3). More importantly, the results will likely serve as motivation for new experiments
aimed at exploring nucleon structure with axial vector probes instead of the photon, opening
a new window onto hadron structure. It is worth highlighting here that a dipole fit to data is
only a good approximation on the fitting domain. With increasing Q2, the dipole increasingly
overestimates the actual result, being 56(5)% too large at Q2 = 10 m2

N—see Reference [276]
(Figure 4B). It therefore becomes an unsound tool for developing qualitative insights and
quantitative cross-section estimates.

Furthermore, with flavour-separated form factors in hand on such a large-Q2-domain,
Reference [276] was able to calculate and contrast the u and d quark contributions to the
associated light-front transverse spatial density profiles:

ρ̂
f
A(|b̂|) =

∫ d2~q⊥
(2π)2 ei~q⊥ ·b̂G f

A(x) , (48)

with G f
A(x) interpreted in a frame defined by Q2 = m2

Nq2
⊥, mNq⊥ = (~q⊥1,~q⊥2, 0, 0) =

(Q1, Q2, 0, 0). These profiles are depicted in Figure 17. We note that |b̂| and ρ̂
f
A are dimen-

sionless; so, the images drawn in Figure 17 can be mapped into physical units using:

ρ
f
A(|b| = |b̂|/mN) = m2

N ρ̂
f
A(|b̂|) , (49)

in which case |b̂| = 1 corresponds to |b| ≈ 0.2 fm and ρ̂
f
1 = 0.1⇒ ρ

f
1 ≈ 2.3/fm2.

The top row of Figure 17 provides two-dimensional renderings of the flavour-separated
transverse density profiles calculated from a proton wave function which does not include
axial vector diquarks, i.e., a scalar-diquark-only proton. In this case, the u quark profile
is far more diffuse than that of the d quark, viz. its extent in the light-front transverse
spatial plane is much greater. One may quantify this by reporting the associated radii:
r⊥Ad = 0.24 fm, r⊥Au = 0.48 fm, so the d/u ratio of radii is ≈ 0.5.

The bottom row of Figure 17 was obtained using a realistic proton wave function,
in which both scalar and axial vector diquarks are present with the strength determined
by the Faddeev equation in Figure 8. In this realistic case, the d quark profile is not very
different from that of the u quark: relative to the u quark profile, the intensity peak is only
somewhat broader for the d quark; and comparing radii,

r⊥Ad = 0.43 fm, r⊥Au = 0.49 fm, r⊥Ad /r⊥Au ≈ 0.9 . (50)

The CSM predictions for nucleon axial and pseudoscalar form factors discussed in this
section complement those for the large-Q2 behaviour of nucleon electromagnetic elastic
and transition form factors reported, e.g., in References [272,365]. One may now anticipate
that predictions for form factors characterising weak interaction induced N → ∆(1232) and
N → N∗(1535) transitions will soon become available. Each will shed new light on nucleon
structure; and the former, calculated on a domain that stretches from low-to-large-Q2, will
likely prove valuable in developing a more reliable understanding of neutrino scattering
from nucleons and nuclei.
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Figure 17. Transverse density profiles, Equation (48), calculated in Reference [276] from flavour-separated
proton axial form factors. Top row: scalar-diquark-only proton. Panel A: two-dimensional plot of ρ̂d

A(|b̂|)/gd
A;

Panel B: similar plot of ρ̂u
A(|b̂|)/gu

A. Removing the 1/g f
A normalisation, the b = 0 values are ρ̂d

A(0) = −0.009,
ρu

A(0) = 0.097. Bottom row: realistic proton Faddeev amplitude, including axial vector diquarks as
predicted by the Faddeev equation in Figure 8. Panel C: ρ̂d

A(|b̂|)/gd
A; Panel D: ρ̂u

A(|b̂|)/gu
A. Removing

the 1/g f
A normalisation, the b = 0 values of these profiles are ρ̂d

A(0) = −0.038, ρ̂u
A(0) = 0.12. N.B.∫

d2b̂ ρ̂
f
A(|b̂|)/g f

A = 1, f = u, d.

10. Transition Form Factors of Heavy+Light Mesons

Heavy mesons (Bq=c,s,u, Ds, D) are special for many reasons; and their mass budgets and
role in exposing constructive interference between Nature’s two known sources of mass are
of particular interest herein. Consider, therefore, Figure 18 and contrast the images with those
in Figure 1. Evidently, for heavy meson masses: (i) the HB component is largest in each case
and its relative size grows as the current–masses of the valence constituents increase; (ii) all
receive a significant EHM+HB interference component, but its relative strength diminishes with
increasing current–masses; and (iii) for vector heavy mesons, but not pseudoscalar mesons,
there is an EHM component, but its relative strength drops as the HB component grows.

Next consider semileptonic weak-interaction transitions between heavy and light
mesons. Comparing Figures 1 and 18, it is apparent that heavy-pseudoscalar to light-
pseudoscalar transitions serve to probe the relative impacts of the strength of EHM+HB
interference in the initial and final states, whereas heavy-pseudoscalar to light-vector
transitions overlap systems in which HB mass is dominant with those whose mass is
owed almost entirely to EHM. Both classes of transitions, therefore, present excellent
opportunities for exposing the influence of Nature’s two known sources of mass on physical
observables. These cases are of special interest, of course, because the transitions have long
been used to place constraints on the values of the elements of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix, which parametrises quark flavour mixing in the SM.



Particles 2023, 6 93

A unifying analysis of both classes of transitions was recently completed using the
SCI [233,366], yielding results that compare favourably with other reliable experimental or
independent theory analyses. The SCI branching fraction predictions should therefore be a
reasonable guide. This is important because predictions were made for several branching
fraction ratios—R

D(∗)
(s)

, RJ/ψ, Rηc —whose values are direct tests of lepton universality in

weak interactions: the SCI values confirm SM predictions, hence, speak for universality, as
we discuss below. The analyses also used B(s) → D∗(s) transitions to predict the precursor
functions which evolve into the universal Isgur–Wise function [367], obtaining results in
agreement with empirical inferences—References [368] (Equations (177) and (181)) and [369]
(Belle).

The SCI’s successes in these applications highlight the need for kindred studies using an
interaction with a closer connection to QCD. The impediment has always been the large disparity
in masses that typically exists between initial and final states. That mass imbalance requires, inter
alia, that any approach to the problem be simultaneously able to deal with both chiral and heavy
quark limits in quantum field theory. To date, compared with the SCI, no framework with a
better link to QCD can directly surmount this difficulty. Nevertheless, following Reference [205],
practicable and effective algorithms for continuum studies do now exist. They exploit the
strengths of the statistical SPM as a tool for interpolating data (broadly defined) and therefrom
deliver extrapolations with a rigorously defined and calculable uncertainty [238]. Namely,
results are calculated on domains of current–quark mass for which transition form factors may
straightforwardly be obtained. The SPM is then used to extrapolate those results and arrive at
predictions for the physical processes of interest.

At present, CSM RL truncation predictions are available for the following transi-
tions [206,207]: Bc → J/ψ, ηc; B(s) → π(K); Ds → K; D → π, K; and K → π. The last
process is something of a test for the approach because such K`3 transitions have long been
of experimental and theoretical interest [40] (Section 62). The calculated branching fractions
are gathered in Table 4, from which it will be seen that CSMs deliver sound results.

Table 4. CSM predictions for pseudoscalar meson semileptonic branching fractions [206,207]—each
such fraction is to be multiplied by 10−3. The column labelled “ratio” is the ratio of the preceding two
entries in the row, so no factor of 10−3 is applied in this column. (A 1σ SPM uncertainty is listed for
the CSM predictions.) Reference [40] (PDG) lists the following values for the CKM matrix elements:
|Vus| = 0.2245(8), |Vcd| = 0.221(4), |Vcs| = 0.987(11) |Vub| = 0.00382(24); and the following lifetimes
(in seconds): τK+ = 1.2379(21)× 10−8, τD0 = 4.10× 10−13, τD±s = 5.04× 10−13, τB̄0 = 1.519× 10−12,
τB̄0

s
= 1.515× 10−12, τB±c = 0.51× 10−12.

BI→F(`ν`) References [206,207] PDG [40] or Other, If Indicated

e+νe µ+νµ ratio e+νe µ+νµ ratio
K+ → π0 50.0(9) 33.0(6) 0.665 50.7(6) 33.5(3) 0.661(07)
D0 → π− 2.70(12) 2.66(12) 0.987(02) 2.91(4) 2.67(12) 0.918(40)
D+

s → K0 2.73(12) 2.68(12) 0.982(01) 3.25(36) [370]
D0 → K− 39.0(1.7) 38.1(1.7) 0.977(01) 35.41(34) 34.1(4) 0.963(10)

µ− ν̄µ τ− ν̄τ ratio µ− ν̄µ τ− ν̄τ ratio
B̄0 → π+ 0.162(44) 0.120(35) 0.733(02) 0.150(06)
B̄0

s → K+ 0.186(53) 0.125(37) 0.667(09)
Bc → ηc 8.10 (45) 2.54(10) 0.31(2)

Bc → J/ψ 17.2 (1.9) 4.17(66) 0.24(5)

One of the key results in Reference [206] concerns a ratio of B+
c → J/ψ branching

fractions measured for the first time by the LHCb Collaboration fairly recently [371]:

RJ/ψ :=
BB+

c →J/ψτν

BB+
c →J/ψµν

= 0.71± 0.17 (stat)± 0.18 (syst) . (51)
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A B

C D

Figure 18. Mass budgets: (A): D∗ meson; (B): B∗-meson; (C): D meson; (D): B meson. Each is drawn
using a Poincaré-invariant decomposition and the numerical values listed in Table 1. (Separation at
ζ = 2 GeV, calculated using information from References [35,40]).

This value is plotted in Figure 19 and compared with the CSM prediction and other
Standard Model calculations. Evidently, the LHCb measurement lies approximately 2σ above
the values predicted by reliable SM calculations. If future, precision experiments do not deliver
a markedly lower central value, then one might begin to judge that lepton flavour universality
is violated in Bc → J/ψ semileptonic decays. As yet, however, the experimental precision is
insufficient to support such a claim. Furthermore, a compelling case would need to include
information on Bc → ηc semileptonic decays. The CSM prediction is Rηc = 0.313(22)—see
Table 4; the SCI result is Rηc = 0.25 [233]; and a mean value of 0.31(4) is obtained from modern
continuum analyses [372–377]. An experimental value is lacking.

●●

★★✶✶ 

LHCb SCICSM lQCD
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R
J/
ψ

Figure 19. Ratio RJ/ψ in Equation (51)—red circle, empirical result [371] (LHCb); blue asterisk—
CSM prediction [206]; green star—SCI prediction [366]; grey circle—lQCD result [378,379]; gold
band—unweighted mean of central values from several calculations [372–377].

The array of analyses in Reference [207] yields novel results in other areas. Of particular
interest are the discussions of D0 → K− transition form factors and the value of |Vcs|. Two
independent form factors characterise 0+ → 0+ transitions, viz. vector and scalar, f+,0(t),
respectively, where t is the Mandelstam variable, whose value expresses the momentum
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transferred to the final state. The CSM predictions are plotted in Figure 20 and compared
with available data [380–383]. The CSM result is largely consistent with this collection,
although there may be a hint that it is too high at lower t values. Concerning branching
fractions, form factor contributions from this domain are important. It is therefore notable
that, within mutual uncertainties, the CSM value for f D→K

+ (0) = 0.796(9) agrees with the
N f = 2 + 1 + 1 lQCD result in Reference [384]: 0.765(31).
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Figure 20. D → K transition form factors. f+—solid blue curve; f0—long-dashed purple curve;
like-coloured shaded bands—associated SPM uncertainty in each case. Data: cyan squares [380];
green diamonds [381]; dark-blue up-triangles [382]; indigo down-triangles [383].

With the form factors in Figure 20, Reference [207] obtained the D0 → K− branching
fractions listed in Table 4 when using the value of |Vcs| listed in the caption: evidently, both
the e+νe and µ+νµ fractions exceed their respective PDG values. On the other hand, the
ratio agrees within 1.4σ; so, a common overall factor can remedy the mismatch. Adopting
this perspective, then the value |Vcs| = 0.937(17) combined with the CSM form factors
delivers branching fractions that match the PDG values, viz. 3.52(18)% and 3.44(18)%,
respectively. Actually, referring to Reference [40] (Section 12.2.4), one sees that the inferred
CSM value is both commensurate with and more precise than one of the two used to arrive
at the PDG average listed in the caption of Table 4. With |Vcs| = 0.937(17) used instead to
compute this average, one finds a slightly more precise central value that is 1σ lower:

|Vcs| = 0.974(10) . (52)

Predictions for semileptonic B̄0 → π+, B̄0
s → K+ transition form factors and branching

fractions were also delivered in Reference [207]. As emphasised above, such processes
present challenges because π, K are Nambu–Goldstone bosons and there is a huge disparity
between the masses of the initial and final states. Consequently, comparisons with data
serve as a stringent test of the new CSM algorithms.

CSM predictions for the B̄0 → π+ transition form factors are depicted in Figure 21A.
Regarding f B̄→π

+ , data have been collected by two collaborations [385–388]: within mutual
uncertainties, the CSM predictions agree with these data. The data support a value

f B̄→π
+ (t = 0) = 0.27(2) , (53)

which is consistent with the CSM prediction [207]: 0.29(5).
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Figure 21. CSM predictions for B(s) semileptonic transition form factors: f+—solid blue curve;
f0—long-dashed purple curve; SPM uncertainty in each—like-coloured shaded bands. Left panel (A):
B̄0 → π+. Data (green stars): reconstructed from the average [368] (Table 81) of data reported in
References [385–388]. Right panel (B): B̄0

s → K+. lQCD results: f+—indigo open up-triangles [389]
and green open boxes [390]; f0—brown open down-triangles [389] and red open circles [390].

Using the form factors in Figure 21A, one obtains the B̄0 → π+ branching fractions in
Table 4. The PDG lists a result for the µ−νµ final state, which matches the CSM prediction
within mutual uncertainties. Precise agreement is obtained using

|Vub| = 0.00374(44) . (54)

This value is commensurate with other analyses of BB̄0→π+µ− ν̄µ
[40] (Section 76.3), thus

increases tension with the higher value inferred from inclusive decays. No data are available
on the τ−ντ final state; so, the τ:µ ratio is empirically unknown. Here, a N f = 2+ 1-flavour
lQCD study yields 0.69(19) [390], which, within its uncertainty, matches the CSM result:
0.733(2).

Figure 21B displays CSM predictions for the B̄s → K+ form factors. Although the
Bs → K− transition was recently observed [391], with the measurement yielding the
branching fraction:

BB0
s→K−µ+νµ

= [0.106± 0.005stat ± 0.008syst]× 10−3 , (55)

no form factor data are yet available. Comparisons are therefore made in Figure 21B
with results obtained using N f = 2 + 1-flavour lQCD [389,390]. Owing to difficulties
encountered when using lattice methods to calculate form factors of heavy+light mesons,
lQCD results are limited to a few points on the domain t & 17 GeV2—see Figure 21B. Today,
lattice analyses typically employ such results to construct a least-squares fit to the form
factor points, using some practitioner-favoured functional form. That fit is then employed
to define the form factor on the whole kinematically accessible domain: 0 . t . 25 GeV2 in
this case. It is worth noting that, at this time, given the small number of points and their
limited precision, the SPM cannot gainfully be used to develop function–form unbiased
interpolations and extrapolations of the lQCD output.

The CSM form factors in Figure 21B yield the B̄0
s → K+ branching fractions in Ta-

ble 4. Figure 22A compares the µ−ν̄µ value with the measurement in Equation (55) and
also results obtained via various other means. Experiment and theory only agree be-
cause the theory uncertainty is large. The unweighted theory average is 0.141(44)h,
and the uncertainty-weighted mean is 0.139(08)h. These values increase when Entries
V–VI [390,392] are omitted: unweighted 0.159(38)h and uncertainty weighted 0.156(10)h.
The extrapolations employed in V–VI [390,392] lead to values of f B̄s→K

+ (0) that are∼ 50% of
those obtained in I–IV [389,393–395]: 0.148(53) vs. 0.299(86). This can explain the difference
in branching fractions: V–VI vs. I–IV in Figure 22A. Significantly, a different approach
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to fitting and extrapolating lQCD results, using the LHCb datum, Equation (55), as an
additional constraint, produces [396]: f B̄s→K

+ (0) = 0.211(3).
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Figure 22. Left panel (A): Branching fraction BB̄0
s→K+µ− ν̄µ

computed in Reference [207], “Y”, compared
with the value in Equation (55), “E”, viz. a measurement of BB0

s→K−µ+νµ
[391], and some results

obtained using other approaches: continuum I–III [393–395]; lattice IV–VI [389,390,392]. Right
panel (B): Branching fraction ratio BB̄0

s→K+τ− ν̄τ
/BB̄0

s→K+µ− ν̄µ
computed in Reference [207] compared

with some results obtained using other approaches. The legend matches Panel A, except “P(E)” is the
result from [396], i.e., an estimate constrained by the datum in Reference [391]. Both panels: Grey line:
unweighted mean of theory results. Pink dotted-dashed line: unweighted mean of theory results,
omitting V–VI. Green dashed line: uncertainty-weighted average of theory results. Like-coloured
bands mark associated uncertainties in each case.

Reference [396] also infers f B̄→π
+ (0) = 0.255(5), leading to f B̄s→K

+ (0)/ f B̄→π
+ (0) < 1.

This outcome conflicts with the CSM prediction, which has f B̄s→K
+ (0)/ f B̄→π

+ (0) > 1 at
the 85% confidence level [207] (Equation (9)), and the results in a raft of other studies,
e.g., References [393,394,397–403]. It is probable, therefore, that the value for f B̄s→K

+ (0) in
Reference [396] is too small. It is worth remarking that the SCI is unclear on the value of
this ratio. It produces f B̄s→K

+ (0)/ f B̄→π
+ (0) < 1, but the individual t = 0 values are too large

by a factor of two [233] (Table 3A). On the other hand, the t = 0 value of the kindred ratio
of vector form factors in B̄s → K∗, B̄→ ρ transitions is greater than unity [366] (Table 1A).
Notably, the ratio f B̄s→K

+ (0)/ f B̄→π
+ (0) is a marker for SU(3)-flavour symmetry breaking

and its modulation by EHM; so, it is worth reaching a sound conclusion on the value of the
ratio. It is here relevant to observe that fK/ fπ = 1.2 > 1.

Regarding the τντ final state in B̄s → K transitions, no empirical information is
currently available, hence none on the |Vub|-independent ratio that would test lepton
flavour universality. In Figure 22B, therefore, we compare the CSM prediction for this
ratio, drawn from Table 4, with results obtained via other means. The unweighted average
of theory results is 0.705(87), and the uncertainty weighted mean is 0.678(03). Omitting
Entries V–VI [390,392], these values are: unweighted 0.653(41) and uncertainty weighted
0.677(03). Within sound analyses, many uncertainties cancel in this ratio; so, the results
should be more reliable than any calculation of either fraction alone. Nevertheless, the
values are widely scattered, indicating that there is ample room for improving the precision
of B̄0

s → K theory. Of course, measurements enabling extraction of B0
s → K− form factors

would be very useful, too, for refining both (a) comparisons with theory and between
theory analyses and (b) making progress toward a more accurate value of |Vub|.

Such predictions for heavy-to-light meson electroweak transition form factors are a
new branch of application for CSMs. They are far more sophisticated and robust than the
Schwinger function parametrisation-based analyses in, e.g., References [324,403,404] and
significantly improve upon earlier RL truncation studies of π`3 and K`3 transitions [405,406].
The keys to these advances are an improved understanding of RL truncation and the
capacity to greatly expand its quark mass and mass splitting domains of applicability using
the SPM. Fairly soon, one can expect these advances to be exploited in the study of kindred
baryon transitions.
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11. Distribution Functions

Hadron parton DFs are probability densities: each one describes the light-front fraction,
x, of the hadron’s total momentum carried by a given parton species within the bound
state [407]. They are a much-prized source of hadron structure information; and following
the quark discovery experiments fifty years ago [408–411], measurements interpretable in
terms of hadron DFs have been awarded a high priority. For much of this time, DFs were
inferred from global fits to data, with the results viewed as benchmarks. Such fitting remains
crucial, providing input for the conduct of a huge number of experiments worldwide; but
the past decade has seen the dawn of a new theory era. Continuum and lattice studies of
QCD are beginning to yield robust predictions for the pointwise behaviour of DFs; and
these developments are exposing potential conflicts with the fitting results [35,129,132–136].

Notwithstanding the enormous expense of time and effort, much yet remains to be
learnt before proton and pion structure may be judged as understood in terms of DFs.
For instance and most simply, it is still unclear whether there are differences between the
distributions of partons within the proton (Nature’s most fundamental bound state) and
the pion (Nature’s most fundamental (near) Nambu–Goldstone boson). Plainly, if there
are differences, then they must be explained. As we have stressed above, answering the
question of similarity/difference between proton and pion DFs is particularly important
today as science seeks to expose and explain EHM [32–37].

Regarding DFs measured in processes that do not resolve beam or target polarisation,
practitioners experienced and involved with solving bound state problems in QCD have
learnt that, at the hadron scale, ζH < mp, valence quark DFs in the proton and pion behave
as follows [132–134,412,413]:

d p(x; ζH), u p(x; ζH)
x'1
∝ (1− x)3 , d̄ π(x; ζH), uπ(x; ζH)

x'1
∝ (1− x)2 . (56)

It subsequently follows from the DGLAP equations [177,414–416] that the large-x power on
the related gluon DF is approximately one unit larger; and that for sea quark DFs is roughly
two units larger. Moreover, as the resolving scale increases to ζ > ζH, all these exponents
grow logarithmically. However, fuelling controversy and leading some to question the
veracity of QCD [132,133,417], these constraints are typically ignored in fits to the world’s
data on deep inelastic scattering (DIS) and kindred processes [418–422]. Furthermore,
largely because pion data are scarce [35] (Table 9.5), proton and pion data have never
been considered simultaneously. Therefore, the unified body of results in Reference [135],
which uses a single symmetry-preserving framework to predict the pointwise behaviour of
all proton and pion DFs—valence, glue, and four-flavour-separated sea—is a significant
advance.

In order to sketch this progress, it is necessary to recall that the modern approach to
the CSM prediction of hadron DFs7 is based on a single proposition [131–135]:

P1 There is an effective charge, α1`(k2), which, when used to integrate the one-loop
perturbative-QCD DGLAP equations, defines a DF evolution scheme that is all or-
ders exact.

As noted in connection with Figure 3, charges of this sort are discussed in
References [137–139]. They need not be process-independent (PI), hence not unique. More-
over, the results delivered are independent of the explicit form of α1`(k2). Notwithstanding
these things, a suitable PI charge is available, viz. the coupling discussed in Section 4,
which has proven efficacious. In being defined by an observable—in this instance, structure
functions—each such α1`(k2) is [94]: consistent with the renormalisation group and renor-
malisation scheme independent; everywhere analytic and finite; and, crucially, provides an
infrared completion of any standard perturbative running coupling.

7 Contemporary continuum methods for obtaining light-front amplitudes and density distributions from
Euclidean space Schwinger functions are detailed, e.g., in References [134,423]; [35] – Sections 3, 5; [125] –
Section IV; [127] – Sections 2, 5.
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P1 was used in References [126–128,131,136] to deliver meson DFs with a flavour-
symmetric sea. A generalisation, which expresses key quark current–mass effects in the
evolution kernels, was introduced in Reference [135] and used for the proton and pion. It
features a threshold function P ζ

qg ∼ θ(ζ − δf ), which ensures that a given quark flavour
only becomes active in DF evolution when the energy scale exceeds a value determined by
the quark’s mass [35] (Figure 2.5): δu,d ≈ 0, δs ≈ 0.1 GeV, δc ≈ 0.9 GeV. The impact of this
modification is readily anticipated. Supposing that all quark flavours are light, then each
would be emitted with equal probability on ζ > ζH; so, evolution would produce a certain
gluon momentum fraction in the hadron plus a sea quark fraction shared equally between
all quark flavours. Considering mass differences between the quarks, with some flavours
being heavier than the light quark threshold, then evolution on ζ > ζH will generate a
gluon momentum fraction that is practically unchanged from the all-light quark case and a
sea quark fraction divided amongst the quarks in roughly inverse proportion to their mass.

It is worth reiterating here that ζH is the scale at which the valence quasiparticle
degrees-of-freedom carry all properties of a given hadron [124–136]. Moreover, the value
of this scale is a prediction. Using the PI charge discussed in Section 4 to construct bound
state kernels informed by References [68,212], then

ζH = 0.331(2)GeV. (57)

The value in Equation (57) is the same for all hadrons.
Furthermore, combined with evolution according to P1, the character of ζH ensures

that all hadron DFs are intertwined at every scale ζ. Hence, this perspective suggests that
it is incorrect to choose independent, uncorrelated functions to parametrise the DFs of
different parton species when fitting data at any scale ζ > ζH. If one nevertheless chooses
to ignore the innate associations, then DFs with unphysical features may be obtained—see,
e.g., Reference [132] [Figure 6].

CSM predictions for the ζ = ζH proton and pion valence DFs are drawn in Figure 23A.
The following points are significant.

(i) Each DF is consistent with the relevant large-x scaling law in Equation (56). Hence,
from the outset, whilst the ζ = ζH momentum sum rules for each hadron are necessarily
saturated by valence degrees-of-freedom, viz.

〈x〉ζHup = 0.687 , 〈x〉ζHdp
= 0.313 , 〈x〉ζHuπ

= 0.5 , (58)
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Figure 23. Left panel (A); Proton and pion hadron scale valence parton DFs: xu p(x; ζH)—solid red
curve; xd p(x; ζH)—dotted-dashed blue curve; xuπ(x; ζH)—dashed green curve. Right panel (B):
Valence DFs in Panel A evolved to ζ3 = mJ/ψ = 3.097 GeV according to P1. The band surrounding
each CSM curve expresses the response to a ±5% variation in ζH.

The proton and pion valence DFs nevertheless have markedly different x-dependence.
(Nature’s approximate G-parity symmetry [424] entails d̄π(x; ζ) = uπ(x; ζ).) (ii) Owing
to DCSB [14,76,279–283], an important corollary of EHM, QCD dynamics simultaneously
produce a dressed light quark mass function, Mu,d(k2), that is large at infrared momenta,
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MD := Mu,d(k2 ' 0) ≈ 0.4 GeV, and an almost massless pion, m2
π/M2

D ≈ 0.1—see
Reference [35] (Section 2). As a result, uπ(x; ζH) is Nature’s most dilated hadron-scale
valence DF. This is highlighted by Figure 23A and Refs. [126,127] and implicit in numerous
other symmetry-preserving analyses, e.g., References [201,239,425,426].

Evolving the DFs in Figure 23A according to P1, one obtains the ζ = mJ/ψ =: ζ3
distributions in Figure 23B. Plainly, although the profiles change, the relative dilation of the
DFs is preserved and is therefore a verifiable prediction of the EHM paradigm.

Given that Figure 23B depicts the first CSM predictions for proton valence quark DFs,
one might question their reliability. That issue can partly be addressed through a comparison
with lQCD results. The calculation of individual valence DFs using lQCD is problematic owing
to difficulties in handling so-called disconnected contributions [427]. In the continuum limit,
however, disconnected diagrams do not contribute to the isovector DF [u p(x; ζ)− d p(x; ζ)], so
computations of this difference are available [428,429]. Both analyses use the quasidistribution
approach [430], but the lattice algorithms and configurations are somewhat different. Their com-
parison with CSM predictions is depicted in Figure 24. The level of agreement is encouraging,
especially because refinements of both continuum and lattice calculations may be anticipated.
For instance, the CSM predictions were obtained using a simplified proton Faddeev amplitude,
and the lattice studies must address issues with, inter alia, the pion masses used, lattice artefacts
and systematic errors, and convergence of the boost expansion in the quasidistribution approach.
(The last of these is a particular hindrance to lQCD extractions of DF endpoint behaviour [431].)
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Figure 24. Isovector distribution [u p(x; ζ)− d p(x; ζ)]. CSM prediction—solid purple curve, ζ = ζ3;
lQCD result from Reference [428]—dashed grey curve, ζ = ζ3; lQCD result from Reference [429]—
dotted-dashed brown curve, ζ = ζ2. Like-coloured band bracketing each curve indicates associated
uncertainty.

In typical evolution kernels, gluon splitting yields quark+antiquark pairs of all flavours
with equal probability. However, it was long ago argued [432] that, because the proton
contains two valence u quarks and one valence d quark, the Pauli exclusion principle
should force gluon splitting to prefer d + d̄ production over u + ū. Consequently, when
implementing evolution of proton singlet and glue DFs, Reference [135] followed Refer-
ence [134] and introduced a small Pauli blocking factor into the gluon splitting function.
This correction preserves the baryon number, but shifts momentum into d + d̄ from u + ū,
otherwise leaving the sum of sea quark momentum fractions unchanged. It vanishes with
increasing ζ, in order to express the declining influence of valence quarks as the proton’s
sea and glue content increases.

The resulting CSM predictions for ζ = ζ3 proton and pion glue DFs are drawn in
Figure 25A. The glue-in-π DF is directly related to the ζ = 2 GeV =: ζ2 result discussed in
Reference [129], which is drawn in Figure 25B: evidently, it agrees with a recent lQCD cal-
culation of the glue-in-π DF [433]. Furthermore, reproducing the pattern seen with valence
quark DFs in Figures 23 and 25A reveals that the glue-in-π DF possesses significantly more
support on the valence domain, x & 0.1, than the glue-in-p DF. Once again, this feature is a
measurable expression of EHM.
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The ζ = ζ3 light quark sea DFs for the proton and pion are depicted in Figure 25C.
The EHM-induced pattern is also apparent here, viz. the sea-in-π DF possesses greater
support on x & 0.1 than the kindred sea-in-p DFs. DFs of the heavier sea quarks are also
generated via evolution, with the results drawn in Figure 25D. Interestingly, the ζ = ζ3 s
and c quark DFs are similar in size to those of the light quark sea DFs; and for these heavier
quarks, as well, the pion DFs have significantly greater support on the valence domain,
x & 0.1, than the related proton DFs.

An analysis of the endpoint exponents of all ζ = ζ3 DFs is also contained in Refer-
ence [135] along with simple interpolations of each DF that can readily be used by any
practitioner—Reference [135] (Table 1). It is worth reiterating the following remarks about
the endpoint exponents.

(i) The power-laws express measurable effective exponents, obtained from separate linear
fits to ln[xp(x)] on the domains 0 < x < 0.005, 0.85 < x < 1. (Here, p(x) denotes a
generic DF.)

(ii) Within mutual uncertainties, proton and pion DFs have the same power-law behaviour
on x ' 0:

α
p,π
valence ≈ −0.22 , α

p,π
glue ≈ −1.6 , α

p,π
sea ≈ −1.5 . (59)

(iii) On x ' 1, the following relationships exist for and between pion and proton DF
exponents:

βπ
valence ≈ 2.5 , β

p
valence ≈ βπ

valence + 1.6 , (60a)

β
p,π
glue ≈ β

p,π
valence + 1.4 , β

p,π
sea ≈ β

p,π
valence + 2.4 . (60b)

(iv) Given (ii) and (iii), then the CSM predictions are consistent with the QCD expectations
discussed in connection with Equation (56).

(v) Existing phenomenological fits to relevant scattering data typically arrive at DFs which
are inconsistent with (ii) and (iii); hence, fail to meet many QCD-based expectations, e.g.,
References [419,421,422,434,435]. This point is also discussed elsewhere [132,133,436].

Owing to the Pauli blocking factor described above and as evident in Figure 25C, the DFs
calculated in Reference [135] express an in-proton separation between d̄ and ū distributions.
This entails a violation of the Gottfried sum rule [437,438], which has been seen in experi-
ments [439–443]. Using the proton DFs in Figure 25C then, on the domain covered by the
measurements in References [439,440], one obtains∫ 0.8

0.004
dx [d̄ (x; ζ3)− ū(x; ζ3)] = 0.116(12) (61)

for the Gottfried sum rule discrepancy. This value matches that inferred from recent fits to a
large sample of high-precision data (ζ = 2 GeV) [419] (CT18), 0.110(80), and is far more precise.

The result in Equation (61) corresponds to a strength for the Pauli blocking term in
the gluon splitting function that shifts just ≈ 25% of the u quark sea momentum fraction
into the d quark sea at ζ = ζ2. Changing the strength by ±25% leads to the uncertainty
indicated in Equation (61). Data from the most recent experiment focused on the asymmetry
of antimatter in the proton [443] (E906) are presented in Figure 26A. They may be compared
with the CSM result obtained using the proton DFs in Figure 25C. Evidently, a modest Paul
blocking effect in the gluon splitting function is sufficient to explain modern data.
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Figure 25. Left upper panel (A): Glue DFs—x2g , in the proton (solid purple curve) and pion (dashed
green curve) at ζ = ζ3. Right upper panel (B): Comparison between continuum [127] (Cui 2020)
and lattice [433] (Fan 2021) results for the glue-in-pion DF at ζ = 2 GeV. Left lower panel (C): Pro-
ton and pion light quark sea DFs: x2S p

u (x; ζ3)—solid red curve; x2S p
d (x; ζ3)—dashed blue curve;

x2S π
u (x; ζ3)—dotted-dashed green curve. Right lower panel (D): Proton and pion c- and s quark sea

DFs: x2S p
s (x; ζ3)—solid red curve; x2S π

s (x; ζ3)—dashed green curve; x2S p
c (x; ζ3)—dotted-dashed

blue curve; x2S π
c (x; ζ3)—long-dashed orange curve. The band surrounding each CSM curve ex-

presses the response to a ±5% variation in ζH. The uncertainty in the lQCD result is similarly
indicated in Panel B.
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Figure 26. Left panel (A): Ratio of light antiquark DFs. Data: Reference [443] (E906). CSM result
(solid purple curve) obtained from valence quark DFs in Figure 23 after evolution to ζ2 = ζ2

SQ =

30 GeV2 [135]. The shaded band expresses the impact of a ±25% variation in the strength of Pauli
blocking. Right panel (B): Neutron-to-proton structure function ratio. Data: [444] (BoNuS)—open
grey squares; [445] (MARATHON)—gold asterisks. Contemporary CSM results (solid purple curve)
obtained from valence quark DFs in Figure 23 after evolution to ζ = ζM = 2.7 GeV [134,135]. Other
predictions: green star—helicity conservation in the QCD parton model [412,446,447]; red diamond—
large-x estimate based on Faddeev equation solutions [448]; retaining only scalar diquarks in the
proton wave function, which produces a large-x value for this ratio that lies in the neighbourhood
of the filled circle [449,450]. The band surrounding the CSM curve expresses the response to a ±5%
variation in the size of axial vector diquark contributions to the proton charge. It is only noticeable on
the valence quark domain.
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Proton and, in principle, neutron structure functions—Fp,n
2 —can be measured in the

DIS of electrons from nucleons [408–411]. The ratio Fn
2 (x)/Fp

2 (x) is recognised as a sensitive
measure of d p(x)/up(x) on x & 0.4 [407], and the latter ratio is important because it is a keen
discriminator between pictures of proton structure [444,445,448]. The obstacle to an empirical
result for Fn

2 (x)/Fp
2 (x) is the measurement of Fn

2 : since isolated neutrons decay rather quickly, a
suitable, effective “free neutron target” must be found. Following References [451,452], many
experiments have used the deuteron. However, despite this being a weakly bound system, the
representation dependence of proton–neutron interactions leads to large theory uncertainties in
the extracted ratio on x & 0.7 [453].

A more favourable approach is provided by DIS measurements on 3H and 3He. In this
case, nuclear interaction effects cancel to a very large degree when extracting Fn

2 (x)/Fp
2 (x)

from the 3H:3He ratio of scattering rates [454,455]. Of course, 3H is highly radioactive;
so, careful planning and implementation are required to deliver a safe target. Recently,
after years of development, all challenges were overcome, and such an experiment was
completed [445]: the extracted data are drawn in Figure 26B. Importantly, within mutual
uncertainties, the results from Reference [445] match those inferred from an analysis of
nuclear DIS reactions, exploiting targets ranging from the deuteron to lead and accounting
for the effects of short-range correlations in the nuclei [456]. This speaks in support of the
reliability of the analyses in both cases.

As described in Section 7, the Faddeev equation in Figure 8 makes firm statements
about proton structure. In particular, well-constrained studies predict that axial vector
diquark correlations are responsible for approximately 40% of the proton’s charge—see
Reference [267] (Figure 2)—e.g., this strength is confirmed in studies of nucleon axial
vector and pseudoscalar currents—see Section 9. Consequently, this is the size of the axial
vector diquark fraction in the nucleon Faddeev amplitudes used to calculate proton DFs in
References [134,135]. Using the results therein, one may readily predict the neutron–proton
structure function ratio:

Fn
2 (x; ζ)

Fp
2 (x; ζ)

=
U(x; ζ) + 4D(x; ζ) + Σ(x; ζ)

4U(x; ζ) + D(x; ζ) + Σ(x; ζ)
, (62)

where, in terms of quark and antiquark DFs, U(x; ζ) = u p(x; ζ) + ū p(x; ζ), D(x; ζ) =
d p(x; ζ) + d̄ p(x; ζ), and Σ(x; ζ) = s p(x; ζ) + s̄ p(x; ζ) + c p(x; ζ) + c̄ p(x; ζ). Supposing that
valence quarks dominate on x ' 1, then the limiting cases d p(x) ≡ 0 and u p(x) ≡ 0 yield
the Nachtmann bounds [457]:

1/4 ≤ Fn
2 (x)/Fp

2 (x) ≤ 4 on x ' 1. (63)

The ζ = 2.7 GeV =: ζM CSM prediction for Fn
2 (x)/Fp

2 (x) is drawn in Figure 26B.
Its comparison with modern data [445] (MARATHON) may be quantified by noting that
the central curve yields χ2/ degree-of-freedom = 1.3. It is worth stressing that the x-
dependence of the CSM prediction in Figure 26B was made without reference to any data.
Consequently, the agreement with the results published in Reference [445] (MARATHON)
is meaningful and should serve to allay any concerns that the associated data analysis
omitted some systematic effect deriving from nuclear structure modelling.

Such heightened confidence in the MARATHON data adds impact to the model-
independent SPM analysis of that data described in Reference [458]; so, it is worth reca-
pitulating some of the material therein. The final results are highlighted by Figure 27,
which compares the MARATHON-based SPM prediction for Fn

2 /Fp
2

∣∣∣
x→1

with: the nuclear
DIS value [456]; theory predictions [271,412,446,450]; and the phenomenological fit result
in Reference [434]. The figure also marks the Nachtmann lower bound, Equation (63),
which is saturated if valence d quarks play no significant role at x = 1; namely, when
there are practically no valence d quarks in the proton: d p/u p|x→1 = 0. This outcome
is characteristic of proton wave function models in which the valence d quark is (almost)
always paired with one of the valence u quarks inside a scalar diquark [255,449,459]. Even
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allowing for the quark exchange dynamics in Figure 8, one still finds d p/u p|x→1 ≈ 0 if
only scalar diquarks are retained [450].

CJ15
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Figure 27. limx→1 Fn
2 (x)/Fp

2 (x). SPM prediction derived from Reference [445] (MARATHON)
compared with results inferred from: nuclear DIS [456]; large-x estimate from CSM studies [271,450];
quark counting (helicity conservation) [446]; and a phenomenological fit (CJ15) [434]. The red vertical
line indicates the Nachtmann lower limit, Equation (63), which is saturated if valence d quarks play
no material role at x = 1; Row 3 is the average in Equation (64).

The following observations serve as a summary of the analyses in Reference [458]:

Observation A . . . Applied to MARATHON data, the SPM yields Fn
2 /Fp

2

∣∣∣
x→1

= 0.437(85)

⇒ d p/u p|x→1 = 0.227(100).8 The possibility d p/u p|x→1 = 0 is thus excluded with
a 98.7% level of confidence; hence, scalar-diquark-only models of proton structure
are excluded with equal likelihood. On the other hand, with this same 98.7% level of
confidence, the SPM analysis confirms the QCD parton model prediction [412,446]:
d p(x) ∝ u p(x) on x ' 1.

Observation B . . . The value of Fn
2 /Fp

2

∣∣∣
x→1

inferred from nuclear DIS [456] agrees with
the SPM prediction; hence, they may be averaged to yield

Fn
2 /Fp

2

∣∣∣SPM & DIS−A

x→1
= 0.454± 0.047 . (64)

This result is drawn on Row 3 in Figure 27. It corresponds to

lim
x→1

d p(x)
u p(x)

= 0.230± 0.057 (65)

and entails that the probability that scalar-diquark-only models of proton structure
might be consistent with available data is 1/141, 000. In fact, with a high level of
confidence, one may discard any proton structure model that delivers a result for
Fn

2 /Fp
2

∣∣∣
x→1

that differs significantly from Equation (64). (As reviewed in Section

9, the ratio gd
A/gu

A places an even harder exclusion bound on scalar-diquark-only
models.)

Observation C . . . Within uncertainties, the result in Equation (64) agrees with both: (i)
the value obtained by assuming an SU(4)-symmetric spin–flavour wave function for
the proton and helicity conservation in high-Q2 interactions [412,446]; and (ii) the

8 Extrapolations based on [1, 1] Padé fits to MARATHON data, obtained using a one-point jackknife procedure,
yield Fn

2 /Fp
2 = 0.395(3) on x ' 1⇒ d p/ud = 0.169(3) [182]. Another analysis [460], employing practitioner-

chosen polynomials as the basis for extrapolation, obtains Fn
2 /Fp

2 = 0.37(7) on x ' 1⇒ d p/ud = 0.13(8). The
latter is less precise, but both results are consistent with the function form unbiased SPM prediction.
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prediction developed from proton Faddeev wave functions that contain both scalar
and axial vector diquarks, with the axial vector contributing approximately 40% of
the proton charge [271,450]. (Recall that this was the axial vector diquark fraction
built into the analyses in References [134,135].)

Following common practice, Reference [135] (Table 2) lists low-order ζ = ζ2, ζ3 Mellin
moments of all proton and pion DFs. Given P1 and the character of the hadron scale,
then comparable momentum fractions in the proton and pion are necessarily identical
and, as anticipated above, the total sea quark momentum fraction is shared between
the quark flavours in roughly inverse proportion to their infrared dressed mass, M f .
Significantly, given that they are predictions, the calculated values of the proton DF moments
in Reference [135] (Table 2) are in fair agreement with those produced by phenomenological
fits—see e.g., Reference [419] (Table VI): referring to the CT18 column, the CSM results
match at the level of 1.7(1.5) σ. Furthermore, within mutual uncertainties, the pion valence
quark DF moments agree with recent lQCD results [461,462].

It is worth emphasising that the quantitative similarities also extend to the c quark:
Reference [135] predicts 〈x〉ζ2

cp = 1.32(5)%, 〈x〉ζ3
cp = 1.82(6)%, cf. 1.7(4), 2.5(4)% in Refer-

ence [435] (Figure 60). Moreover, the CSM study predicts 〈x〉ζ=1.5 GeV
c = 0.64(3)% in both

the pion and proton. Regarding the pion, nothing is known about this momentum fraction;
and in the proton, phenomenological estimates are inconclusive, ranging from 0-2% [435]
(Figure 59). Plainly, a significant c quark momentum fraction is obtained under P1 evolu-
tion without recourse to “intrinsic charm” [463]. This outcome, which is independent of
the explicit form of α1`(k2), potentially challenges the findings in Reference [464]. Notwith-
standing the size of these calculated fractions, we stress that, as apparent in Figure 25,
S π,p

c (x) have sea quark profiles.
Given these observations, one is led to re-evaluate what is meant by intrinsic charm

in the proton or any other hadron. With ζH being the scale at which valence quasiparticle
degrees-of-freedom carry all measurable properties of a given hadron, then the Fock space
components, which might be interpreted as intrinsic charm or intrinsic strangeness, etc.,
are sublimated into the nonperturbatively computed ζ = ζH Schwinger functions that
completely express the bound state’s structure. In this context, such Fock space components
are interpreted as being members of the set of basis eigenvectors representing a free-field
light-front Hamiltonian. One may exemplify this by noting that any true QCD solution for
the dressed quark Schwinger function (propagator) must contain infinitely many and all
possible contributing Fock space vectors. The putative “intrinsic” components within a
bound state are then revealed by evolving the hadron-scale Schwinger functions to higher
scales, whereat an interpretation of data in terms of a Fock space expansion is relevant and
practicable. In one study or another, the actual expressions of the characters of intrinsic
charm, strangeness, etc., will depend on the sophistication of the kernels used to calculate
the hadron-scale Schwinger functions. Nevertheless, as highlighted by Reference [135],
any reasonable kernels will predict that a measurable fraction of the proton’s light-front
momentum is carried by the charm quark sea at all resolving scales for which data may be
interpreted in terms of DFs.

With a symmetry-preserving framework in hand that has the demonstrated ability
to provide simultaneous predictions for the entire array of proton and pion DFs, one is
potentially in a position to bring a new order to the study of hadron structure functions.
Stringent new tests of the approach, including P1—see page 98—and the general character
of the hadron scale, Equation (57), will be found in, amongst other things, studies of
helicity-dependent DFs. New insights into proton spin structure may then be forthcoming.

12. Conclusions

We sketched some recent advances in the use of continuum Schwinger function
methods (CSMs) to link QCD and hadron observables. The connecting bridge from theory
to observation is supported by the three pillars of emergent hadrons mass (EHM): (i)
dynamical generation of a gluon mass scale, whose size is roughly one half the proton mass;
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(ii) existence of a unique, process-independent effective charge, α̂(k2), which runs to a finite
value at infrared momenta, α̂(0)/π ≈ 1; and (iii) emergence of a running quark mass in the
chiral limit, whose infrared value matches that typically identified as the constituent quark
mass. Our subsequent commentary stressed that the single phenomenon of EHM manifests
itself differently in the diverse array of measurable quantities that define hadron physics.
No single observable is alone sufficient to validate the EHM paradigm for understanding
strong interactions within the Standard Model (SM). Instead, theory should identify a broad
range of empirical consequences of EHM so that the order brought to a collective body of
experimental results—existing and future—can be recognised as the signature of EHM.

Our developing understanding of EHM suggests that QCD is unique amongst known
fundamental theories of natural phenomena. It might be the first well-defined four-
dimensional quantum field theory ever contemplated. If so, then QCD could provide
the archetype for theories that take physics beyond the SM.

Science has delivered theories of many things. The best of them remain a part of
the grander theories developed in response to new observations. The basic question yet
remains unanswered, viz.: Is there a theory of everything? Hadron physics and QCD
might be pointing us toward an answer in exposing the special qualities of strong-coupling
non-Abelian quantum gauge field theories.
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The following abbreviations are used in this manuscript:

ACM anomalous chromomagnetic moment
AdS/CFT (duality) anti-de Sitter/conformal field theory (duality)
ard mean absolute relative difference
CKM Cabibbo–Kobayashi–Maskawa (matrix)
CSMs continuum Schwinger function methods
DCSB dynamical chiral symmetry breaking
DF (parton) distribution function
DIS deep inelastic scattering
DSE Dyson–Schwinger equation
EHM emergent hadron mass
FF (parton) fragmentation function
JLab Thomas Jefferson National Accelerator Facility
lQCD lattice-regularised quantum chromodynamics
NG (mode/boson) Nambu–Goldstone (mode/boson)
PD (charge) process-dependent (charge)
PDG Particle Data Group and associated publications
PI (charge) process-independent (charge)
QCD quantum chromodynamics
QED quantum electrodynamics
RGI renormalisation-group-invariant
RL rainbow ladder (truncation)
SCI symmetry-preserving treatment of a vector×vector contact interaction
SM Standard Model of particle physics
SPM Schlessinger point method
VMD vector meson dominance
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