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Abstract: This paper review the modelling efforts regarding Generalised Parton Distributions (GPDs)
using continuum techniques relying on Dyson–Schwinger and Bethe–Salpeter equations. The defini-
tion and main properties of the GPDs are first recalled. Then, we detail the strategies developed in
the last decade in the meson sector, highlighting that observables connected to the pion GPDs may be
measured at future colliders. We also highlight the challenges one will face when targeting baryons
in the future.
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1. Introduction

Since the early days of QCD and the major result of Bjorken scaling [1] followed
by scaling violations [2–4], hadron structure has been one of the main topics of study
regarding the strong interaction. In the 1990s, the family of matrix elements connected to
the structure of hadron went from uni-dimensional, Parton Distribution Functions (PDFs)
and Electromagnetic Form Factors (EFF), to multi-dimensional with the introduction of
Generalised Parton Distributions (GPDs) [5–7] and Transverse Momentum Dependent
PDFs (TMDs) [8,9]. The former are connected to the 2D+1D picture of the nucleon [10,11]
while the TMDs provide a 3D picture of momentum space. Both are defined from a matrix
element of the type

〈pout|O
(−z

2
,

z
2

)
|pin〉, (1)

where, in the case of GPDs, the distance z is lightlike (z2 = 0) and the momentum transfer
∆ = pout − pin is finite. For TMDs, the distance z is off the lightcone (z2 6= 0) but no
momentum transfer is allowed (∆ = 0). They both generalise PDFs for which z2 = 0
and ∆ = 0. Similarly, TMDs and GPDs were latter unified as two distinct limits of
Generalised Transverse Momentum Dependent PDFs (GTMDs), for which both z2 6= 0 and
∆ 6= 0 [12–17]. GTMDs are thought to provide a 5D picture of hadrons as illustrated in
Figure 1.

A wealth of theoretical studies has been dedicated in the last decade to GPDs, TMDs
and GTMDs. Since it remains unclear whether some processes could be sensitive to GTMDs
(despite some pioneering studies [18]), TMDs and GPDs stand at the core of experimental
studies of current and future facilities. The 12 GeV upgrade of the electron beam of the
Jefferson Laboratory facility (JLab 12) has been completed. JLab 12 is thus expected to
deliver a wealth of very precise data that can be connected to GPDs and TMDs in the
forthcoming years (and in fact data release has already started, see, e.g., [19,20]), mostly in
the so-called valence region. In the next decade, the experimental community is expected
to move from fixed target to collider experiments, with the planned electron-ion colliders
both in the US (EIC) and China (EicC).
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Figure 1. Family of distributions encoding hadron structure, where x is the momentum fraction along
the lightcone carried by the active parton, k⊥ its transverse momentum (the Fourier conjugate of z⊥).
∆⊥ is the transverse momentum transferred between the initial and final hadron state. At this stage,
the integrals over k⊥ should be understood as formal only, and need to be regularised, both from
TMDs to PDFs [8,21,22] and from GTMDs to GPDs [23]. This picture is valid for vanishing skewness
ξ, i.e., no momentum transfer along the lightcone is allowed.

In parallel with experimental facilities, ab initio computational methods have made
major progress in the last decade. Lattice-QCD is now able to compute data related
directly to the x-dependence of distributions [24–26] instead of solely the first few Mellin
moments. This breakthrough has triggered many computing efforts, attempting to perform
computations of Distribution Amplitudes (DA), PDFs and GPDs (see, e.g., [27–29]). These
steps are very promising but many more remain to be taken before precision studies can be
performed on the lattice.

In parallel, non-perturbative studies using continuum techniques such as Bethe–
Salpeter equations have also been developed in the past decade, targeting the x-dependence
of hadron structure, after the computations of local operators (mostly the EFFs). The main
developments came from the use of spectral representations (or Nakanishi representa-
tions [30,31]) and analysis of the singularities in the complex plane (see the recent exam-
ple [32,33]). The breakthrough in the computation of QCD three-point functions [34–36]
is also very promising in terms of the ability to reach realistic computations of hadron
structure and there interpretation (see, for instance, the case of the gluon mass genera-
tion through the Schwinger mechanism [37]). Indeed, continuum techniques based on
Dyson–Schwinger and Bethe–Salpeter equations offer a unique window to understand
the emergent phenomena in QCD through their ability to select subsets of QCD effects
in systematic ways which carefully guarantee that underlying QCD symmetries remain
fulfilled.

In this review article, we will focus on GPDs. The latter have already been the main
topic of several theoretically oriented [38,39] and phenomenologically oriented [40] review
papers and lectures (see, for instance, [41]). Here, we will highlight the efforts in the
last decade regarding their computations using continuum formalisms, and thus partly
updating them [42]. In Section 2, we will remind the readers the formal definition of GPDs,
the properties they should obey from QCD, and explain why phenomenological extractions
are challenging. In Section 3, we will discuss the efforts which have been undertaken to
compute these GPDs in the meson sector, highlighting the successes and challenges. Then,
in Section 4, we will review the pioneering work in the baryon sector, and highlight the
future possibilities offered by the continuum formalism.



Particles 2023, 6 264

2. Generalised Parton Distributions
2.1. Formal Definitions and First Properties

Introduced in the 1990s in three distinct series of papers [5–7,43,44], GPDs can be
formally defined as off-diagonal matrix elements of a non-local operator in momentum
space. The operator is evaluated at light-like distances such that, in the case of the pion,
GPDs are defined as:

Hq
π(x, ξ, t) =

1
2

∫ dz−

2π
eixP+z−〈p2|ψ̄q

(
− z−

2

)
W
(
− z−

2
,

z−

2

)
γ+ψq

(
z−

2

)
|p1〉, (2)

Hg
π(x, ξ, t) =

1
P+

∫ dz−

2π
eixP+z−〈p2|G+µ

(
− z−

2

)
W
(
− z−

2
,

z−

2

)
G+

µ

(
z−

2

)
|p1〉, (3)

where ψq is a quark field of flavour q and Gµν is the gluon field strength. The + component
indicates the lightcone direction following the standard conventions of:

z± =
1√
2
(z0 ± z3), z⊥ = (z1, z2), (4)

z2 = 2z+z− − z2
⊥. (5)

The average momentum of the hadron P and the momentum transfer ∆ are conveniently
defined as:

P =
p1 + p2

2
, ∆ = p2 − p1. (6)

This allows us to simply express the variables (ξ, t) whose definition is not manifest
in Equations (2) and (3) through:

ξ = − ∆+

2P+
, t = ∆2. (7)

The definition domain of GPDs in x and ξ is illustrated in Figure 2. Finally, let us mention
thatW is the Wilson line defined as:

W
(
− z−

2
,

z−

2

)
= P exp

[
ig
∫ z−

2

− z−
2

dζ−A+(ζ−)

]
(8)

where P is the path ordering between −z−/2 and z−/2 and g is the QCD coupling.
Because of its richer spin structure, more GPDs are necessary in order to parametrise

the off-forward matrix element of the nucleon:

1
2

∫ dz−

2π
eixP+z−〈p2|ψ̄q

(
− z−

2

)
γ+W

(
− z−

2
,

z−

2

)
ψq
(

z−

2

)
|p1〉

=
1

2P+

(
Hq(x, ξ, t)ū(p2)γ

+u(p1) + Eq(x, ξ, t)u(p2)
iσ+ν∆ν

2M
u(p1)

)
, (9)

for quarks and

1
P+

∫ dz−

2π
eixP+z−〈p2|G+µ

(
− z−

2

)
W
(
− z−

2
,

z−

2

)
G+

µ

(
z−

2

)
|p1〉

=
1

2P+

(
Hg(x, ξ, t)ū(p2)γ

+u(p1) + Eg(x, ξ, t)u(p2)
iσ+ν∆ν

2M
u(p1)

)
, (10)

for gluons. Quark and gluon polarised distributions can also be defined for the nucleon
(see, e.g., [38]). However, since we do not use them in the following, we do not introduce
them here. Similarly, transversity GPDs are not introduced in this review paper.
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Figure 2. The GPD definition domain in x and ξ. The so-called DGLAP (or outer) region for which
|x| ≥ |ξ| is shaded in pink, while the ERBL (or inner) region for which |x| ≤ |ξ| is shaded in green.
The ERBL region can be extended for |ξ| ≥ 1 (lighter green) where GPDs can be related to Generalised
Distribution Amplitude [45–48] through analytic continuations thanks to the crossing symmetry.

The off-forward nature of GPDs triggers interesting consequences, as the incoming
and outgoing partons carry a momentum fraction expressed as x± ξ. Several cases can
be drawn, as illustrated in Figure 2. The complete GPD support draws a square such that
(x, ξ) ∈ [−1, 1]2 (see ref. [49] for the derivation of the GPD definition domain). Within
this domain, two types of regions can be highlighted: the outer one for which |x| ≥ |ξ|,
and the inner one where |ξ| ≥ |x|. The former is called the DGLAP region (Dokshitzer,
Gribov, Lipatov, Altarelli, Parisi) while the latter is labelled the ERBL region (Efremov–
Radyushkin–Brodsky–Lepage). This distinction comes from the fact that the two regions
present different physical interpretations when considering probed partons. Indeed, the
incoming and outgoing partons momentum fraction can be expressed as x± ξ. Thus, in the
quark sector, depending of the sign of this combination, one probes a quark or an antiquark.
Figure 3 illustrates the different possibilities highlighting the specificity of the inner region
with respect to the outer ones. There, the interpretation yields an exchange of a pair of
quark and anti-quark in the t channel. On the other hand, the outer region can be seen
as probing an active quark by taking it out and putting it back within the nucleon. These
different interpretations have a major impact as the evolution equations will significantly
vary between the two regions, hence the two names from famous evolution equations,
DGLAP [2–4] and ERBL [50–53].

The discussion of evolution properties leads us to mention the symmetry of GPDs
regarding the lightcone momentum fractions. Pion and nucleon GPDs present interesting
symmetry properties: they are even in ξ because of time reversal invariance (see, e.g., [39]
for a proof and list of exceptions for higher spin hadrons). In addition, gluon GPDs are
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even in x within our definition, while quark GPDs have no specific x-parity. Nevertheless,
x-even and x-odd combinations are often introduced as:

H−q = Hq(x, ξ, t) + Hq(−x, ξ, t), (11)

H+
q = Hq(x, ξ, t)− Hq(−x, ξ, t), (12)

where + and −, respectively, mean singlet and non-singlet combinations. Note that in case
of multiple quark flavour, the real singlet component has to be summed over the flavours.
These combinations are often introduced as the singlet combination mixes with gluons
under evolution, while the non-singlet one does not.

ξ−x −x−ξ

−1≤ x≤−ξ

x +ξ ξ−x

−ξ≤ x ≤ ξ

x+ξ x−ξ

ξ≤ x≤ 1

Figure 3. The DGLAP or ERBL regions and their different interpretations in terms of partons. From
left to right, one goes through the antiquark interpretation of the probed parton. Then, in the inner
region −ξ < x < ξ, one recovers the ERBL region and its interpretation as the “extraction” of a
quark–antiquark pair from the hadron. Finally, on the right-hand side, ξ < x < 1 and we recover the
quark interpretation of the DGLAP region.

2.2. Reduction to Unidimensional Distributions

When taking the forward limit of the matrix elements defined in (2) and (3), i.e., when
no momentum transfer is allowed, one recovers the standard PDFs as:

Hq(x, 0, 0) = q(x)θ(x)− q̄(−x)θ(−x), (13)

Hg(x, 0, 0) = xg(x)θ(x)− xg(−x)θ(−x), (14)

where θ is the Heaviside function. Through the forward limit, PDFs have been a key
ingredient in GPD modelling strategies since they were introduced [54–59].

GPDs are also connected with EFFs through integration over the x variable. The
quark flavour q contribution to the Dirac form factor F1 and the Pauli form factor F2 can be
obtained from GPDs as:

∫
dx Hq(x, ξ, t) = Fq

1 (t) (15)
∫

dx Eq(x, ξ, t) = Fq
2 (t) (16)

Until now, the EFFs sum rules presented here have been one of the main constraints applied
to model the t-dependence of GPDs.

In the pion case, one can highlight an additional property. In the chiral limit, the pion
quark GPD can be related to the pion distribution amplitude [46,60]:

H−q (x, 1, 0) = ϕ

(
1 + x

2

)
, (17)

H+
q (x, 1, 0) = 0. (18)

This property is usually labelled “soft pion theorem” in the literature. As we mention
above, since the singlet and gluon GPDs mix under evolution, Equation (18) implies that
the gluon GPD should also vanish in the chiral limit for (ξ, t)→ (1, 0).
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2.3. Interpretation in Coordinate Space

GPDs are naturally defined in momentum space, as the momentum transfer ∆ is the
relevant experimental variable to be measured. Nevertheless, one can also define GPDs
in the so-called impact parameter space (see, e.g., refs. [10,11]), by introducing the impact
parameter b⊥. The latter measures the distance from the centre of +-momentum within the
nucleon and is connected to the momentum variable as being the Fourier conjugate of the
vector D[11]:

D =
p2

1− ξ
− p1

1 + ξ
. (19)

One can then show that a 1+2D probability density ρ(x, b⊥) can be recovered through the
so-called Hankel transform of the GPDs for ξ = 0. In this limit, D⊥ = ∆⊥ and

ρ(x, 0, |b⊥|) =
1

4π

∫ ∞

0
d
(

∆2
⊥
)

J0(|∆⊥||b⊥|)H(x, 0, t), (20)

where J0 is the standard Bessel function of the first kind of order 0. Note that the impact
parameter b⊥ should not be confused with the Fourier conjugate of k⊥ also labelled b by
the TMD community.

An illustration of this probabilistic interpretation is given in Figure 4 and comes from
model computations (see ref. [60] for details). In principle, it is also possible to extract these
3D distributions from experimental data (see, for instance, [61] for a recent example on the
nucleon). However, three main difficulties arise:

• Collinear factorisation allows one to interpret exclusive processes in terms of GPDs
for values of t much smaller than the typical hard scale of the system;

• Yet, performing the Fourier transform requires to integrate over t up to infinity, intro-
ducing model-dependent extrapolations;

• Furthermore, no experimental data is available for vanishing values of ξ, meaning
that additional extrapolations generating more model biases are required.

These difficulties hardly alter the appealing possibilities offered by GPDs to map in 3D
the average position of quarks and gluons within hadrons. This explains the enthusiasm
in the field towards placing GPDs at the core of the physics cases of running or planned
experimental facilities, such as the US [62] and Chinese [63] electron ion colliders.

0.

0.5

1

-0.5

0.

0.5

b
¦

M

0.

0.5

1.

1.5

2.

q Hx, b
¦
L

M2

x

Figure 4. 3D picture of a model computation of the pion quark GPD in the impact parameter space.
Figure from [60].
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2.4. Connection with the Energy-Momentum Tensor

The ability to perform the 1+2D tomography of the nucleon is not the only exciting
feature of GPDs. Indeed, they also allow a unique access to the hadrons’ Energy-Momentum
Tensor (EMT). Labelling the EMT operator T, one can parametrise the associated matrix
element for the pion as [64]:

〈p2|Tµν
a |p1〉 = 2PµPν Aa(t) +

1
2

(
∆µ∆ν − ηµν∆2

)
Ca(t) + 2M2ηµνC̄a(t). (21)

where a is a generic label for quark flavour and gluon contributions, and M is the hadron
mass. In the literature, the form factors A, C and C̄ may be designated as gravitational
form factors. Additional form factors are required for describing the nucleon EMT matrix
element [65,66]:

〈p2|Tµν
a (0)|p1〉 = ū(p2)

{
PµPν

M
Aa(t) +

∆µ∆ν − ηµν∆2

M
Ca(t) + MηµνC̄a(t)

+
i(Pµσνρ + Pνσµρ)∆ρ

4M
[Aa(t) + Ba(t)] +

P[µiσν]ρ∆ρ

4M
Da(t)

}
u(p1) , (22)

where we define the anti-symmetric combination a[µbν] = aµbν − aνbµ. These form factors
of the EMT have to obey specific constraints, originating from conservation laws [5,67–69]:

∑
f

Aq f (0) + Ag(0) = 1 (23)

∑
f

Bq f (0) + Bg(0) = 0 (24)

∑
f

C̄q f (t) + C̄g(t) = 0 (25)

where ∑ f is the sum over the considered quark flavours. Some of the EFF can be related to
GPDs through the computation of the first-order Mellin moments:

∫ 1

−1
dx xHq(x, ξ, t) = Aq(t) + 4ξ2Cq(t), (26)

∫ 1

−1
dx xEq(x, ξ, t) = Bq(t)− 4ξ2Cq(t). (27)

Consequently, two out of three EMT form factors are connected to GPDs in the pion case,
while three out of five are in the nucleon one. The form factor C̄ remains out of reach for
leading twist distributions. In the nucleon case, the form factor D can be related to the
nucleon axial form factor and thus to the polarised GPDs [70,71].

Within our conventions, the gluon EMT form factors are related to the gluon GPDs in
a very similar way, with a modification of the power of the Mellin moment (consistently
with the forward limit of our gluon GPDs):

∫ 1

−1
dx Hg(x, ξ, t) = Ag(t) + 4ξ2Cg(t), (28)

∫ 1

−1
dx Eg(x, ξ, t) = Bg(t)− 4ξ2Cg(t). (29)
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From these connections between GPDs and the EMT, one can derive the famous Ji
sum rule [5], allowing one to decompose the total angular momentum of the nucleon into
contributions carried by each quark flavour Jq and gluons Jg:

2Jq = Aq(0) + Bq(0) =
∫ 1

−1
dx x(Hq(x, ξ, 0) + Eq(x, ξ, 0)), (30)

2Jg = Ag(0) + Bg(0) =
∫ 1

−1
dx (Hg(x, ξ, 0) + Eg(x, ξ, 0)). (31)

The A and B form factors are not the only ones providing an interesting interpretation.
The C and C̄ ones can be interpreted in terms of pressure and shear forces distributions
within the hadrons [64,71–73]. For simplicity, we will only discuss here the quark and
gluon contributions to the isotropic pressure pq and pg and the pressure anisotropy sq and
sg. They depend on the form factors C and C̄ in the Breit frame through [71]:

pa(~r) = M
∫ d3~∆

(2π)3 e−i~r~∆
[

2t
3M

Ci(t)− C̄i(t)
]

, (32)

sa(~r) =
4M
r2

∫ d3~∆
(2π)3 e−i~r~∆ t−1/2

M2
d2

dt2

[
t5/2Ci(t)

]
. (33)

We highlight that the index a stands again for quark flavour and gluon contributions
and~r is a 3D spatial vector. One can readily note from Equation (33) that the pressure
anisotropy is independent of C̄ and thus can be fully extracted from GPDs. In addition,
from Equation (32), one can realise that the total isotropic pressure is also independent of
C̄ thanks to Equation (25), and thus, one can in principle also extract it from GPDs. Finally,
let us mention that this discussion is valid both for the pion and the nucleon.

Before concluding this section, we would like to highlight that in the case of the pion,
there is an additional constraint on the EMT form factors, thanks to the soft pion theorem
of Equation (18). Indeed, at vanishing t in the chiral limit, one has:

0 =
∫ 1

−1
dx xHq

S(x, 1, 0) = Aq(0) + 4Cq(0), (34)

connecting the normalisation of Cq and Aq.
Finally, let us stress that Hq

S vanishes only if the gluon GPD also vanishes due to mixing
of the two under evolution. Since the soft pion theorem is expected to be scale-independent,
then Equation (34) can also be written for gluons.

2.5. Double Distribution Representation

The sum rules already encountered previously and connecting GPDs to the EFF and
EMT Form Factors can in fact be generalised to higher-order Mellin moments by looking at
the tensorial structure of local off-forward operators.

2.5.1. Local Operators Analysis

We define the m-th Mellin momentMm of the GPD as:

Mm(ξ, t) =
∫ 1

−1
dx xm H(x, ξ, t). (35)

Through straightforward computations (see, e.g., [41]), one can connect these Mellin mo-
ments to local twist-two operators (we remain with the lightcone gauge and the pion
case here):

Mm(ξ, t) =
1

2(P+)m+1 〈p2|ψ̄q(0)γ+
(

i
←→
∂ +

)m
ψq(0)|p1〉,
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where we use ←→
∂ µ =

1
2

(−→
∂ µ −←−∂ µ

)
. (36)

The Lorentz structure of the twist-two local operators Oµµ1 ...µm is given as:

Oµµ1 ...µm = ψ̄q(0)γ{µi
←→
∂ µ1 . . . i

←→
∂ µm}ψq(0), (37)

where {. . . } indicates that the Lorentz indices are symmetrised and traceless. The parametri-
sation of the associated matrix elements is thus given as:

〈p2|ψ̄q(0)γ{µi
←→
∂ µ1 . . . i

←→
∂ µm}ψq(0)|p1〉

= P{µ
m+1

∑
i=1

Pµ1 . . . Pµi−1 ∆µi . . . ∆µm}Aq
i,m(t) + ∆{µ∆µ1 . . . ∆µm}Cq

m+1(t), (38)

in the pion case. Ai,m and Cm+1 are called generalised form factors, and only depend on t
and µ2. Moreover, due to discrete symmetries, only even powers of ξ contribute, and the
Mellin moments of the pion GPD can be written as:

Mm(ξ, t) =
[m

2 ]

∑
i=0

(2ξ)2i Aq
i,m(t) + mod(m, 2)(2ξ)m+1Cm+1(t), (39)

where [. . . ] designates the floor function and mod(2, m) vanishes if m is even, and is 1
otherwise. Equation (39) is commonly labelled the polynomiality property of GPDs [74,75].
It generalises the sum rules between GPDs, EFFs and EMT form factors, already highlighted
in Equations (15) and (26) in the case of the pion. For the nucleon, additional tensorial
structures allow one to generalise Equations (15) and (27).

2.5.2. The Radon Transform and the Specific Role of the D-Term

The Cm+1 generalised form factors play a specific role in the decomposition of the
GPD matrix element. They are the moment of an x-odd generating function called the
D-term (we highlight that the D-term D(y, t) is connected to the EMT FF C(t) and not D(t);
this notation discrepancy is unfortunate but standard in the contemporary literature) and
defined through:

∫ 1

−1
dy ymD(y, t) = (2)m+1Cm+1(t). (40)

The proof of existence of the function D is not simple and related to the Hausdorff moment
problem [76,77]. In the following, we assume that D exists and is unique. The polynomiality
property becomes:

[m
2 ]

∑
i=0

(2ξ)2i Aq
i,m(t) =

∫ 1

−1
dx xm H(x, ξ, t)− ξm+1

∫ 1

−1
dy ymD(y, t). (41)

By rescaling the variable y→ x/ξ for ξ > 0, one obtains:

[m
2 ]

∑
i=0

(2ξ)2i Aq
i,m(t) =

∫ 1

−1
dx xm

[
H(x, ξ, t)−D

(
x
ξ

, t
)
I−ξ≤x≤ξ

]
, (42)

where I−ξ≤x≤ξ is 1 for x ∈ [−ξ; ξ] and 0 otherwise. On top of telling us that the D-term is
a function of the ratio x/ξ, Equation (42) highlights that the D-term has support only in
the ERBL region. Moreover, the typical polynomial structure of degree n of the nth Mellin
moments of H − D is known in mathematics as the the Lugwig–Hegalson consistency
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condition. As shown by Hertle [78], this indicates that H − D is in the range of the Radon
transformR [79,80]. As a consequence, one can define F such that:

H(x, ξ, t)− I−ξ≤x≤ξ D
(

x
ξ

, t
)
=
∫

Ω
dβdα δ(x− β− αξ)F(β, α, t) (43)

where Ω = {(β, α) | |α|+ |β| ≤ 1}. Originally, F was introduced as a Double Distribution,
independently by D. Mueller [6] and A. Radyushkin [7], while the D-term was originally
introduced as a possible complementary tensorial structure to the DD F [81]. F was later
identified as the Radon amplitude of the GPDs in ref. [82], and the formalism was further
developed in ref. [83]. Finally, Equation (43) can be straightforwardly manipulated to
obtain the well-known relation between GPDs and DDs:

H(x, ξ, t) =
∫

Ω
dβdα δ(x− β− αξ)[F(β, α, t) + ξδ(β)D(α, t)]. (44)

This result can be generalised to gluons, up to small modifications. In the nucleon case, the
additional spin structure requires the introduction of an additional DD to describe the GPD
E, but the D-term is the same between H and E up to a minus sign.

Finally, let us mention that the way to decompose the GPD between a Double Distri-
bution and a D-term is not unique. This is a technical point and it has been discussed in
the literature in detail (see [39,41,82,83]).

2.6. Positivity and Lightfront Wave Function Picture
2.6.1. The Lightfront Wave Function Picture

On top of polynomiality, another major property is associated with GPDs, called
positivity. In order to properly understand such constraint discussed in several papers, we
will introduce it though the Lightfront Wave Function formalism developed in [84].

To do so, we start decomposing the considered hadron states (here—the pion) in terms
of LFWFs, labelled here Φi...j

β such that:

|π〉 ∝ ∑
β

Φqq̄
β |qq̄〉+ ∑

β

Φqq̄,qq̄
β |qq̄, qq̄〉+ . . . (45)

where the relevant quantum numbers are labelled with β and i...j stands for the partonic
content of the considered state. When a N partons state is considered, then the associated
LFWFs depend on N lightfront momentum fractions xi and N 2D transverse momenta ki

⊥.
The momentum conservation is guaranteed by three Dirac distributions.

Following the derivation given in great detail in ref. [84], one can express the matrix
elements defining GPDs in Equations (2), (3), (9) and (10) in terms of an overlap of LFWFs.
The interested reader can also look at examples of explicit computations in at leading Fock
states (see, for instance, refs. [42,85]).

We will not reproduce these derivations here, and instead focus on the lightcone inter-
pretation associated with considered kinematic area (see Figure 3), and its consequences
on the overlap description. First, looking at the outer or DGLAP region, one obtains an
overlap of LFWFs diagonal in terms of parton number N:

Hq(x, ξ)|x≥ξ ∝ ∑
N

√
1− ξ2

1−N

∑
j

δsj ,q

∫ [
dxid

2ki
⊥
]

N

(
ΦN(r̂N)

)∗
ΦN(r̃N)δ(x− xj), (46)

where the measure is given as

[
dxid

2ki
⊥
]

N
=

1
(16π3)N−1

[
N

∏
i=1

dxid
2ki
⊥

]
δ

(
1−∑

j
xj

)
δ(2)

(
∑

j
kj
⊥

)
(47)
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in the N → N parton case [84]. The label j stands for the active partons, i.e., the one probed
by the operator, while sj is its flavour. The incoming and outgoing momenta degrees of
freedom, boosted in the GPDs symmetric frame, are generically labelled with r̃N and r̂N ,
respectively. More details are provided in ref. [84].

From Equation (46), one realises that the overlap in the DGLAP region only includes
convolution of LFWFs with the same number of partons. This is illustrated in Figure 5.

Figure 5. LFWFs decomposition of GPDs. Left panel, DGLAP region interpretation conserving
parton number between incoming and outgoing states; right panel, ERBL region interpretation not
conserving parton number as the incoming state emits a pair of quark–antiquark.

This contrasts with the ERBL region. There, a pair of quark–antiquark is extracted
from the initial state and and contracted with the operator (see Figure 5). The overlap is
off-diagonal in the Fock space and one obtains:

Hq(x, ξ)|x≤|ξ| ∝ ∑
N

√
1− ξ

2−N√
1 + ξ

−N
∑
j,j′

δs̄′jsj
δsjq

√njnj′

∫ [
dxid

2ki
⊥
]N+1

N−1
δ(x− xj)

×
(

ΦN−1(r̂N−1)
)∗

ΦN+1(r̃N+1). (48)

Similarly, the measure
[
dxid

2ki
⊥
]N+1

N−1
corresponds to the N + 1→ N − 1 transition:

[
dxid

2ki
⊥
]N+1

N−1
= dxj

N+1

∏
i 6=j,j′

dxiδ


1− ξ −

N+1

∑
i 6=j,j′

xi


 d2kj

⊥
(16π3)N−1

N+1

∏
i 6=j,j′

dki
⊥δ


∆⊥

2
− ∑

i 6=j,j′
ki
⊥


. (49)

The discrepancy in terms of parton number between the initial and final state triggers am-
biguity in the attempt to compute GPDs in the entire kinematic range at a given truncation
of the Fock space. Thus, most of the time, only the DGLAP region is computed within
models [42,86,87]. Nevertheless, modern solutions allow us to bypass this difficulty as we
will discuss later on.

2.6.2. The Positivity Property

The LFWF picture in the DGLAP region allow us to derive an important property of
GPDs called positivity. Focusing first on the forward case, when ∆→ 0, one obtains:

q(x) ∝ ∑
N

∑
j

δsj ,q

∫ [
dxid

2ki
⊥
]

N

∣∣∣ΦN(xi, ki
⊥)
∣∣∣
2
δ(x− xj). (50)

The PDF q is expressed as the sum over momenta, partons content and quantum
numbers of modulus square of the LFWFs. This is consistent with the probabilistic aspect
of the PDF (number density) and a formal interpretation yielding PDF as the norm of a
formal vector.
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This structure can be generalised beyond the forward limit, to the entire DGLAP region.
One formally recovers a scalar product in this parton number conserving kinematic area:

H(x, ξ)|x≥ξ = 〈Φout|Φin〉. (51)

A simple Cauchy–Schwartz inequality yields:

|H(x, ξ)|x≥ξ | ≤ |||Φin〉|| × |||Φout〉||, (52)

Plugging in the forward limit to describe the incoming and outgoing states, one obtains the
positivity condition [84,88–91]:

|Hq(x, ξ)|x≥ξ | ≤
√

q
(

x− ξ

1− ξ

)
q
(

x + ξ

1 + ξ

)
, (53)

again, in the case of the pion. Small modifications appear in the nucleon case. The positivity
property yields an upper and lower bounds on the GPD in the DGLAP region.

2.7. Scale Dependence and Evolution
2.7.1. Discussion in Momentum Space

As we have mentioned several times already, GPDs obey evolution equations, as
the operators they are defined from need to be renormalised. Following ref. [92], the
renormalisation of GPDs can be written as follows:

Ha(x, ξ, t, µ2) = lim
ε→0

∫ 1

−1

dy
|y|Z

ab
(

x
y

,
ξ

x
, αs(µ

2), ε

)
Ĥb(y, ξ, t, ε), (54)

where a, b stand for quark flavours q or gluon contributions. µ is the renormalisation scale,
while ε is the regulator, ensuring that the bare operator remains finite. Since we use pertur-
bation theory to describe the renormalisation properties of GPDs, our regularisation will be
dimensional, such that d = 4− 2ε. From Equation (54), one can apply a renormalisation
group strategy to obtain:

dHa

d ln µ2 (x, ξ, t, µ2) = lim
ε→0

∫ 1

−1

dy
|y|

dZab

d ln µ2

(
x
y

,
ξ

x
, αs(µ

2), ε

)

×
∫ 1

−1

dz
|z| (Zbc)−1

(
y
z

,
ξ

y
, αs(µ

2), ε

)
Hc(z, ξ, t, µ2), (55)

i.e., the evolution equation of GPDs with respect to the scale µ. For the sake of completeness,
let us highlight that Z−1 is defined such that:

δijδ
(

1− z
x

)
= lim

ε→0

∫ 1

−1

dy
|y| (Zil)−1

(
z
y

,
ξ

z
, αs(µ

2), ε

)
Zl j
(

y
x

,
ξ

y
, αs(µ

2), ε

)
. (56)

The combination dZ
d ln µ2 Z−1 can be seen as the momentum-dependent generalisation of the

anomalous dimensions. Thus, we introduce the functions P such that:

P ac
(

x
z

,
ξ

x
, αs(µ

2)

)
= lim

ε→0

∫ 1

−1

dy
|y|

dZab

d ln µ2

(
x
y

,
ξ

x
, αs(µ

2), ε

)
(Zbc)−1

(
y
z

,
ξ

y
, αs(µ

2), ε

)
. (57)

Note that the function P is independent of ε, as the singularities are expected to cancel in
the product dZ

d ln µ2 Z−1, as we will explicitly see in the following in a one-loop expansion.
Provided that Z can be computed non-perturbatively, one could obtain a description of
the scale evolution. However, this has not been achieved yet, and the scale dependence of
GPDs is computed perturbatively through the renormalisation group Equation (55). In the
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MS scheme, letting implicit the factor Sε =
(4π)ε

Γ(1−ε)
accompanying the polesin order to keep

the notation simple, one can write:

Zij
(

x
y

,
ξ

x
, αs(µ

2), ε

)
= δijδ

(
1− x

y

)
+

∞

∑
n=1

an
s (µ

2)
n

∑
p=1

1
εp Z[n,p]

(
x
y

,
ξ

x
,
)

, (58)

where as = αs/4π. The derivative with respect to ln µ2 is then given by:

dZ
d ln µ2

(
x
y

,
ξ

x
, αs(µ

2), ε

)
=

das

d ln µ2 (µ
2)

dZ
das

(
x
y

,
ξ

x
, αs(µ

2), ε

)

=
(
−εas(µ

2) + β(as(µ
2))
)( ∞

∑
n=1

nan−1
s (µ2)

n

∑
p=1

1
εp Z[n,p]

(
x
y

,
ξ

x
,
))

, (59)

where we used the Renormalisation Group Equation (RGE) in d = 4− 2ε dimension for
the strong running coupling. Consequently, at leading order in as, P is given as:

P ac
(

x
z

,
ξ

x
, as(µ

2)

)
= −as(µ

2)Z[1,1]
ac

(
x
z

,
ξ

x

)
. (60)

The one-loop result for P is thus finite, and can be computed in the MS scheme only from
the pole contribution of the associated Feynman diagrams. Moreover, since P is only
sensitive the UV-diverging part of the GPDs in MS, it does not depend on the nature of the
particle chosen at the level of the matrix element. Thus, one can perform the computations
in a “partons-in-partons” approach, as it is performed in ref. [92]. In that case, some of the
relevant Feynman diagrams at one loop in the lightcone gauge are shown on Figure 6.

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

Figure 6. Feynman diagrams used to compute the one-loop anomalous dimension in the lightcone
gauge. On the first and second lines, we display non-mixing terms, while the third line display
diagrams mixing quark and gluon GPDs. On top of these connected diagrams, disconnected self-
energy diagrams need to be added. In covariant gauges, additional contributions come from gluon
exchanges with the Wilson line.

2.7.2. Properties of the Momentum-Dependent Anomalous Dimensions

The computation of the one-loop diagram leading to the one loop splitting function
can be found in several papers [6,7,43,92]. We will adopt here the presentation of ref. [92]
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to feed our discussion. Thus, for convenience, we assume in this section that x > 0 and we
rewrite the evolution equation as:

dH
d ln µ2 (x, ξ, µ2) =

αs(µ)

4π

∫ ∞

x

dy
y
P±H±

(
x
y

, ξ, µ

)
. (61)

Here, the ± index correspond to the singlet and non-singlet combinations, already in-
troduced in Equations (11) and (12), with the difference that the singlet is now a vector
encompassing gluons:

H+(x, ξ, µ2) =

(
∑q H+

q (x, ξ, µ2)

Hg(x, ξ, µ2)

)
, (62)

and consequently, P+ is a matrix mixing quarks and gluons contributions:

P+(y, κ) =

(
P+

q←q(y, κ) P+
q←g(y, κ)

P+
g←q(y, κ) P+

g←g(y, κ)

)
, (63)

where we have introduced κ = ξ/x. One can then decompose P± depending on the
kinematics support of the contributions:

P±(y, κ) = P±1 (y, κ)θ(1− y) + θ(κ − 1)P±2 (y, κ). (64)

The explicit expressions of P±1 and P±2 are given in ref. [92]. Here we see that the P±2
contributes only for ξ > x. Thus, when ξ = 0, only P±1 contributes in the entire y range,
and reduces to the DGLAP splitting functions. Hence, the name of the ξ < x kinematic
region. In the kinematics region where x < ξ both P±1 and P±2 contribute. The transition
between the two regions is continuous as limκ→1 P±2 (y, κ) = 0, but due to the presence of
the θ function, it is not smooth. In fact, the evolution kernel will generate a cusp at x = ±ξ
when evolving smooth GPDs functions. This contrasts with the claim sometimes made in
the literature that evolution smoothens the behaviour of GPD models on the |x| = |ξ| lines
(by rendering a discontinuous GPDs model at low scale continuous at higher scales for
instance).

Finally, let us mention that in momentum space, only two evolution codes at leading
order are publicly available, the Vinnikov code [93], which is not maintained anymore, and
Apfel++ [94–96]. Both of them are integrated through the PARTONS framework [97].

2.7.3. Evolution in Conformal Space

An alternative picture to momentum space evolution is provided by moments, or
conformal space evolution. The idea originated from the expansion of a non-local operator
into a set of local ones through operator product expansion (OPE). The local operators
involved in the expansion need to be renormalised and thus, all of them obtain an “a priori”
different renormalisation scale dependence. The original non-local operator and its scale
dependence can then be recover by resumming the renormalised local operators.

In the PDF field, this is typically what is done when one performs the evolution
through the Mellin moments before applying the inverse Mellin transform. In the GPD
case, as the splitting functions are more complicated, the situation is not as simple. The
Mellin moments mix under GPD renormalisation, making their evolution and resummation
more involved. However, it is possible to diagonalise the basis of local operator for a given
order of perturbative evolution. At order αs, the evolution operator commutes with the
conformal symmetry operators, which tells us that both operators can be diagonalised on
the same basis [98]. From that, one deduces that the conformal moments, defined in the
non-singlet sector as

C−n (ξ, t, µ2) = ξn
∫ 1

−1
dxC3/2

n

(
x
ξ

)
H−(x, ξ, t, µ2), (65)
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where C3/2
n are the 3/2-Gegenbauer polynomials of order n, do not mix among each other.

In the limit when ξ → 0, the conformal moments reduce to the Mellin one, consistently with
the evolution kernel going to the DGLAP one. In the case when ξ → 1, the Gegenbauer
polynomial formed a base in x of the GPD support, and one recovers the diagonalisation of
the evolution kernel à la “Efremov-Radyushkin-Brodsky-Lepage”. The conformal moments
obey an evolution equation of the type of:

dC−n
d ln µ2 (ξ, t, µ2) =

αs(µ)

4π
VnC−n (ξ, t, µ2), (66)

where

Vn = 2CF

(
3
2
+

1
(n + 1)(n + 2)

− 2
n+1

∑
k=1

1
k

)
(67)

with CF = 4/3. The solution of this equation is given as:

C−n (ξ, t, µ2) =

(
αs(µ2)

αs(µ2
0

)− Vn
β0

C−n (ξ, t, µ2
0) (68)

where β0 is the leading order term of the QCD β function given as β0 = 11− 2/3 ∗ n f , where
n f is the number of active quark flavours. From Equation (68), one can note the advantage
of moments evolution, which is purely multiplicative, and not convoluted as in momentum
space. However, the difficulties lie in the reconstruction of the x-dependent function.
Indeed, the Gegenbauer polynomials introduced in (65) do not form an orthogonal basis
for x ∈ [−1, 1] but x ∈ [−ξ, ξ], complicating the evolution of a polynomial expansion
of GPDs. Moreover, such an expansion is expected to converge very slowly and thus,
resumming techniques have been introduced relying on Mellin–Barnes integrals [99]. The
Mellin–Barnes integral transform requires knowledge of the conformal moments for n ∈ C
and not just integer values. Thus, an analytic continuation of the moments within the
complex plane is required, and if the moments are not given by an algebraic formula, this
continuation can be challenging. Moreover, its uniqueness is not guaranteed. Nevertheless,
models in conformal space have been developed [100,101] and are today among the most
successful ones.

In the singlet sector, mixing between quarks and gluons is unavoidable for a given
order n of the conformal moments. Gluon conformal moment distribution follows the
same definition as in (65), but is computed from 5/2-Gegenbauer polynomials C5/2

n . An
additional diagonalisation of the 2× 2 matrix is necessary. An example is given in the
specific case of the D-term in ref. [71].

Finally, let us briefly discuss what happens beyond leading order. Evolution kernels
have been derived at two loops (and at three loops in the non-singlet case) [102–107]. In the
MS scheme, the conformal moments Cn start mixing among each other in such a way that:

Cn(µ
2) =

n

∑
j=0

bnj(µ
2, µ2

0)Cj(µ
2
0), (69)

yielding a triangular matrix at a given order n (see [108]).This complicates the evolution
and reconstruction in x-space of NLO evolved GPDs in conformal space. Consequently,
in MS, the strategy is rather to evolve Wilson coefficients in the computation of a process
rather then the GPD itself (see, e.g., [100]). An alternative solution is to work in a specific
scheme in which the off-diagonal coefficients vanish. This scheme is labelled conformal
scheme (or CS), and is defined so that in the forward limit, one recovers the MS scheme
results (this is possible as PDFs Mellin moments do not mix under evolution). This specific
scheme has allowed early descriptions of DVCS at NNLO accuracy [100], before modern
computations in MS scheme [109]. From the first studies on scheme dependence [100],
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the difference between CS and MS is mild for the quarks, and somehow more sizeable for
gluons, while NLO and NNLO quark GPDs are indistinguishable.

3. Continuum Results for Mesons
3.1. Impulse Approximation and Its Limitations

In the meson sector, one of the first attempts to compute GPDs (see, e.g., [110–112])
relied on the so-called impulse approximation, graphically represented in Figure 7.

k −∆/2 k +∆/2

k − P

P +∆/2P −∆/2

∆

k −∆/2 k + ∆/2

∆

k + P

P −∆/2 P +∆/2

Figure 7. Triangle diagrams used in early computations of meson EFF, PDFs and GPDs.

In this framework, a pion is split into a quark–antiquark pair and is later reformed. In
between, one computes the impact of local twist-two operators defined in Equation (37)
inserted within a quark line. Using this technique, one gains access to the Mellin moments
of the GPDs (including the D-term contribution), and thus, a reconstruction technique is
necessary to gain access to the x-dependence of the distribution. If polynomials reconstruc-
tions have been tried (see, e.g., refs. [42,113]), direct identifications of Double Distributions
has been favoured in the literature [60,112,114].

Such computations rely on two main points:

• The computation (or modelling) of non-perturbative QCD correlation functions such
as the Bethe–Salpeter wave function, the quark propagator and the local operator;

• The validity of the impulse approximation.

We will not enter here the discussion about the consistent computation of the non-
perturbative QCD correlation function, and instead, we redirect the reader toward a pre-
vious review paper [42] and refined studies of the pion Bethe–Salpeter wave function
performed since then [115,116]. Rather, we will discuss the limitations of the impulse
approximation.

When one chooses an approximation set such that the Bethe–Salpeter amplitude is
independent of the relative momentum (k in Figure 7) the forward limit of the GPD, i.e.,
the PDF, ends up being symmetric with respect to x → 1− x, as expected from momentum
conservation in the two-body case. However, as soon as the Bethe–Salpeter amplitude
becomes k dependent, the momentum conservation and the two-body symmetry are lost
(see for instance [117]). This is a consequence of missing contributions in the computation
of matrix element of local twist-2 operators. Loosely speaking, as the relative momentum
dependence kicks in, the Bethe–Salpeter amplitude gains a spatial extension. Thus, the
operator can be inserted “within” the amplitude. This idea yields additional contributions
as illustrated in Figure 8.
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≈ + +

Figure 8. Decomposition of contributions to the local operators when the Bethe–Salpeter amplitude
is momentum-dependent. The red circles correspond the standard Bethe–Salpeter amplitudes, while
the squares include modifications allowing the insertion of the local operators.

As shown in [42,113,114], in the Rainbow ladder approximation, the new contributions
can be written in terms of the Bethe–Salpeter amplitude Γπ as:

= −1
2
(k · n)mnν ∂Γπ

∂kµ (k, P), (70)

where n is a lightlike vector so that k · n = k+ and m is the order of the Mellin moment
considered.

The impact of the additional terms is shown in Figure 9 in the case of simple algebraic
models for the Bethe–Salpeter amplitudes and the quark propagators (see [42,113,114]).
Being anti-symmetric with respect to x → 1− x, it does not contribute to the PDF normali-
sation. It exactly compensates the antisymmetric component of the triangle contribution
alone, restoring the symmetry of the complete result. The most advanced computations
using this technique can be found in [118].
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Figure 9. Results for the forward limit after reconstruction of the x-dependence in the case of a
simple, algebraic model (see [42,113,114]). The total PDF (solid black) is symmetric under x → 1− x
transformation, but the sole triangle diagram contribution (solid red) is not. The additional terms
coming from the square vertices in Equation (70) provide the adequate correction (solid blue).

If this contribution allows one to recover the expected symmetry properties in the
forward limit, it remains insufficient for tackling GPD computations in the entire kinematic
domain. More precisely, at non-vanishing skewness, the additional vertices in Equation (70)
are not able to restore the positivity property. As the forward limit yields a symmetric
and thus vanishing contribution at small-x, the positivity property imposes that the GPD
is also vanishing at |x| = |ξ|. Models employing momentum-dependent Bethe–Salpeter
have thus been limited to the vanishing ξ kinematic region [60]. Note that models based
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on the Nambu–Jona–Lasinio (NJL) approximation are not impacted, since the amplitude
is momentum-independent [119–121]. However, in the NJL approximation, the triangle
diagram is not sufficient in off-forward kinematics as the meson resonances appear in the
t-channel, contributing to the D-term [119,122,123]. Thus, omitting the resonances leads to
a breaking of the soft pion theorem in the chiral limit. To go beyond vanishing skewness,
techniques based on LFWFs have been developed.

3.2. From Bethe–Salpeter Wave Funtions to Lightfront Wave Functions

As we highlighted previously, the most natural way to fulfil the positivity property
is to start modelling GPDs as overlaps of LFWFs. Different techniques exist to compute
the LFWFs, from Lightfront Hamiltonian (see, for instance, [124]) to ADS/QCD (e.g.,
refs. [86,125]). We will focus here on the connection between the Bethe–Salpeter and
Lightfront wave functions, in the case of the pion.

The N-body Bethe–Salpeter wave function can be projected out to obtain all the
independent N-body LFWFs carrying the quantum numbers of interest (mostly the helicity
projection of the quark, and thus the orbital angular momentum projection of the pion).
If nothing forbids the computation of N-body Bethe–Salpeter wave function, in practice,
today, only the two-body one is computed as it involves only four-point functions. Thus,
we will further restrain ourselves to the lowest Fock state of the pion.

The two-body LFWFs Φ for the pion are given as projection of the Bethe–Salpeter wave
function χπ . The latter is defined by “attaching” quark propagators to the Bethe–Salpeter
amplitude: χπ = SΓπS). The connection the the LFWFs is then given through (see, for
instance, [126]):

P+Φ↑↓(x, k⊥) =
∫ dk−

2π
Tr
[
γ+γ5χπ(k, P)

]
, (71)

2ikiP+Φ↑↑(x, k⊥) =
∫ dk−

2π
Tr
[
σ+iγ5χπ(k, P)

]
, (72)

where ↑↓ and ↑↑ indicate the helicity projection of the quarks. If the projection looks simple,
it is in fact made complicated by the lightcone integration over k−, as the Bethe–Salpeter
wave function is typically computed in Euclidean space, using standard euclidean variable.
This difficulty is usually bypassed by using spectral, or Nakanishi representation [30,31]
for the Bethe–Salpeter amplitude Γπ in Euclidean space:

Γπ(k, P) =
∫ ∞

0
dω

∫ 1

−1
dz

ρ(z, ω)

ω +
(
k + z

2 P
)2 . (73)

The advantage of this representation is that the momenta degrees of freedom can be al-
gebraically manipulated, while the non-perturbative information is shifted toward the
Nakanishi weight ρ. Different modelling strategies have been performed in the literature,
from simple algebraic Ansätze [60,127] to parametric fit [128,129] or even direct computa-
tions in the specific case of QED N-point functions [130]. The results obtained in the forward
limit are similar to those obtained through the diagrammatic computation, as shown by the
dotted line on Figure 9 in the case of the simple algebraic model of [42]. Concerning GPDs
computations, only algebraic Ansätze and parametric fits have been used.

As the reader may have noted, the fact that only the two-body LFWFs are available
from the two-body Bethe-Salpeter wave function make the computation of the GPDs
possible only in the DGLAP region, as the first term in the ERBL one would require the
four-body LFWFs. Thus, a priori, if positivity is well fulfilled, it is not possible to complete
polynomiality, as DGLAP and ERBL contributions are intertwined to yield polynomials
Mellin moments. Such a hole in the kinematic domain has to be filled and we will see how in
the next section. Nevertheless, accessing the DGLAP region alone remains highly valuable.
Indeed, it gives access to the PDF when ∆→ 0, while EFF can be recovered after integrating
over x at ξ = 0. Furthermore, the 3D density interpretation is also accessible from the
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DGLAP region only. The major missing part is the EMT for factor C of Equation (21), and
more generally, the D-term of Equation (40).

As highlighted in [59], under specific assumption on the Bethe–Salpeter wave function,
the associated LFWFs ends up being separable between x and k⊥ variable so that:

Φ(x, k⊥) = ϕ(x)ψ(k⊥). (74)

This separability property triggers interesting simplifications. First, ϕ yields the pion
distribution amplitudes, up to a normalisation constant. Then, the PDF computed as
an overlap of LFWFs in Equation (50) becomes proportional to the square of the pion
distribution amplitude. Regarding GPDs, this factorisation yields the following functional
form [58,85]:

Hπ(x, ξ, t) =

√
qπ

(
x− ξ

1− ξ

)
qπ

(
x + ξ

1 + ξ

)
Ψπ(x, ξ, t), (75)

where Ψ < 1. The positivity property is thus manifestly fulfilled, as expected starting
from a LFWF description of the nucleon. This formula is used in ref. [58] to introduce
new kinds of models, exploiting PDFs computed in the covariant approach, but beyond
the impulse approximation [118]. The Ψ can be then modelled or computed following
the simple Anzätze or parametric fits available. Under two assumptions regarding the
Nakanishi parametrisation: (i) the hadron mass can be neglected and (ii) the ω dependence
of the weight ρ can be approximated by a Dirac delta, Ψ can be written as:

Ψ(x, ξ, t) = Ψ(z), with z = −t
(1− x)2

1− ξ2 . (76)

Introduced in ref. [85], this simplification has been exploited in refs. [59,129].
The computations in the DGLAP region allow one already to extract valuable infor-

mation, and in particular, the impact parameter space density ρ(x, b⊥). Regarding that
point, realistic computations start emerging in the literature based one the Nakanishi
representation (see refs. [59,87]). Consequently, computations of the 1+2D densities, both
for the pion and kaon, have been obtained using different modelling techniques for the
Nakanishi weight, or for the LFWFs themselves. The results presented in Figure 11 of
ref. [59] highlight the differences that can be expected from different modelling strategies
of the LFWFs. They are sizeable, especially in the kaon case.

3.3. The Covariant Extension

Even if the modelling of GPD in the DGLAP region only provides interesting out-
comes, it precludes any comparison with potential future experimental data, as part of the
kinematic range, the ERBL region, is missing. Since the two-body Bethe–Salpeter wave
function allows us only to recover the two-body LFWFs, the standard overlap representa-
tion in the ERBL region is out of reach, and would anyway lead to a GPD model violating
the polynomiality property. Consequently, another strategy should be sought.

The answer was provided few years ago, exploiting the Radon transform property
existing between GPDs and DDs (see Equation (43) and ref. [83]). This technique, labelled
covariant extension, allows one to exploit both the LFWFs formalism, and the DDs one,
guaranteeing by construction that all GPDs theoretical properties are fulfilled. This work
followed a pioneering example given in [131], and can be connected with the Laplace
transform [132]. The key point of the covariant extension is to exploit the properties of the
inverse Radon transform. More precisely, Boman and Todd–Quinto showed that compactly
supported distributions can be reconstructed from a partial knowledge of their Radon
transform [133]. In the case of GPDs, this can be translated as such: the knowledge of the
GPD in the DGLAP region is sufficient to reconstruct uniquely the Double Distribution
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F introduced in Equation (43) [83] (in fact, even an incomplete knowledge of the DGLAP
region is enough [134]).

Since the proof presented in refs. [83,133] is rather technical, we will not enter the de-
tails here. Rather, we will provide the reader with an intuitive picture relying on tessellation
and finite element methods. As illustrated in Equation (43), the Radon transform consists
in integrating a function along lines. As illustrated on the left-hand side of Figure 10, the
DGLAP and ERBL lines are different to the former cross the β = 0 axis outside of the
definition domain, while the ERBL one hit this line within the the DD support. Looking at
the right-hand side of Figure 10, one can discretise the support of the DD (only the upper
right corner is shown because of symmetry properties in α and β). A DGLAP-type line is
shown, probing a given number of cells. It is easy to realise that each cell can be probed by
infinitely many DGLAP lines, and that reducing the size of the cell does not modify this
statement. Thus, every point on the DD support, expect the one such that β = 0, is probed
by infinitely many DGLAP lines. This provides the level-arm to recover the DD F from the
DGLAP region only. However, it does not allow recovering the D-term, which remains
inaccessible (some specific Double Distribution schemes allow one to extract a D-term, but
the latter remains ambiguous [83,135]).

0.0 0.25 0.5 0.75 1.0

0.0

0.25

0.5

0.75

1.0

Figure 10. Left: Support of the DD and example of a DGLAP line (red) and ERBL line (green). Right:
Support of the DD F after tessellation using a Delaunay mesh. An example of a DGLAP line is given.
If numerous enough, those lines can probe every cell of the DD support. Figure from [58].

Figure 10 also highlights another difficulty in any attempt to recover the DD from
the GPD in the DGLAP region only. Indeed, if one wants to probe the region close to the
point (0, 0) in the (β, α) space, the associated DGLAP lines become almost parallel, and
yields a badly conditioned inverse problem. In fact, the Radon inverse problem is known
to be ill-defined in the sense of Hadammard [136–138], since, even before discretisation,
the Radon transform is not continuous. The discretisation makes the problem worse, as the
existence and uniqueness of a solution is not guaranteed anymore, requiring regularisation
techniques to ensure the convergence of reconstruction algorithms. In the following, we
will discuss the strategy applied in ref. [58].

The discretised problem can be expressed as looking for a DD vector F such that:


Hi


 =


 Rij




Fj


, (77)

where R is the matrix of the discretised Radon transform and Hi—a given sample of
the GPD in the DGLAP region. The size of the vector F is a function of the number of
cells introduced for the discretisation, but also the degree of the polynomials used to
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approximate locally the Double Distribution. The elements Fj are taken at a position (β j, αj),
which depends on the polynomial order and is called a node. For instance, a zero-order
polynomial interpolation requires a node at the barycentre of each cell, while a degree-one
interpolation requires a node at every vertex of the mesh. On the left-hand side, the size of
H depends of the available sampling of the GPD in the DGLAP region. At minimum, the
size of Hi should be as large as Fj, allowing the rank of the matrix R to be maximal, and
thus, the problem invertible.

However, the solution of Equation (77) might be rather sensitive to the initial condi-
tions such as the shape and size of the grid, or the sampling of the GPD. To overcome this
difficulty, one can overconstrain the system by having R have more lines that columns,
and look for a solution through a least-squares strategy. To do so, an adequate strategy
is to use the so-called normal equations, although direct least-squares algorithms such
as LSMR [139] can be used [83]. Rather than using iterative algorithms to minimise the
associated χ2, the normal equations provide directly the minimal solution Fj. The normal
equations transform our linear system (77) into

F =
(
RTR

)−1
RT H. (78)

In addition, it allows to simply propagate uncertainties on the values of H in that DGLAP
region onto the ERBL one after the reconstruction through the DD. This is based on
computations of the covariant matrix (see [58,140] for details).

In practice, for a simple functional form of DD F from ref. [85]:

F(β, α) =
15
2

θ(β)
(

1− 3(α2 − β2)− 2β
)

, (79)

an excellent agreement can be obtained through the reconstruction procedure for 780 cells
and furst-order Lagrange polynomials. The results are illustrated in Figure 11, highlighting
the good control on the uncertainties in the ERBL region through the reconstruction. Note
however that even if the functional form is simple, the model is made more complicated by
the specific DD scheme labelled Pobylitsa (or P) scheme, in which it is defined.

Figure 11. Left: results of the reconstuction of the DD of Equation (79). Black, exact GPD computed
from the algebraic DD (79). Blue, reconstructed GPDs with a sample of Hi roughly four times the
number of cells. Orange, same but with a sample of 12 times the number of cells. Right: zoom on the
central region to highlight the uncertainty bands.

This technique, together with the simplified assumption of Equation (75), has been
used to build “theoretically complete” models of the pion GPDs, ensuring that both poly-
nomiality and positivity were fulfilled by construction, and based on state-of-the-art com-
putations of the pion PDF using continuum techniques. The next step is to assess whether
these sophisticated models of GPDs could one day be compared to experimental data.

3.4. The Sullivan Process

As we mentioned earlier, GPDs can be probed in deep exclusive processes. These
processes require a high luminosity of the experimental set up. However, there is no facility
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today with a high enough luminosity allowing to make exclusive experiments through real
pion targets. One thus has to find another solution.

3.4.1. Introduction to the Sullivan Process

Since the 1970s, one of the main ideas for studying the internal structure of the pion
is to rely on the so-called Sullivan process [141], i.e., to hit a virtual pion within the me-
son cloud of the nucleon. It has been used to probe the pion EFF [142–144] and also the
pion PDFs [145,146]. In order to probe GPDs, one focuses on the best-understood process,
namely, Deep Virtual Compton Scattering (DVCS). The latter describes the exclusive elec-
troproduction of a photon out of a pion, the latter remaining intact. This is illustrated on
the left-hand side of Figure 12.

Figure 12. Left: Sullivan DVCS ep→ enγπ+. At small t, one expects the pion pole contribution to be
the leading one in such a process. Right: Sullivan Bethe–Heitler, interfering with the DVCS.

The differential cross section of the complete process dσSul depends on multiple
kinematic variables [147]. Among the lists are the photon virtuality Q2 = −q2, the fraction
of energy carried by the virtual pion xπ = pπ · l/(p · l) and the inelasticity of the process y =
p · q/p · l. Three angles are also necessary to characterise the kinematics in the laboratory
frame. The first is φ, the angle between the leptonic plane (formed by the incoming and
outgoing electrons), and the hadronic plane (formed by the virtual photon and the outgoing
pion). The two others are the azimutal angle of the outgoing electron φe and of the outgoing
neutron φn. The subprocess eπ → eπγ is characterised by related subkinematic variables
such as the inelasticity of the subprocess yπ = pπ · q/pπ · l or the Bjorken variable of the
subprocess xπ

B = Q2/(2pπ · q). Then, one can write the differential cross section of the
Sullivan process in terms of the subprocess differential cross section [147,148] as:

d8σ(λ,±e)
dydQ2dtπdφdφedxπdtdφn

= xπ
g2

NNπ

16π3 F(t, Λ2)2 −t
(m2

π − t)2
|JQ2

xπ
B
|d

5σeπ→eπγ(λ,±e)
dyπdxπ

B dtπdφdφe
, (80)

where λ is the longitudinal polarisation of the electron beam, e—the electron charge, gNNπ—
the pion-nucleon coupling, and F(t, Λ)—the associated form factor. Following ref. [147], a
single-parameter functional form is chosen:

F(t, Λ) =
Λ2 −m2

π

Λ2 − t
(81)

with Λ = 800 MeV. |JQ2

xπ
B
| is the Jacobian between Q2 and xπ

B . To be valid, the Sullivan
process requires that the pion pole contribution dominates, and thus, that t remains small
enough. Additionally, the Bjorken regime is achieved at the level of the subprocess for both
Q2 and sπ = (pπ + q)2 large in front of other scales involved.
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However, DVCS on a virtual pion is not the only process contributing to the ep →
enγπ+ cross section. Additional N∗ resonances decaying in the nπ channel can interfere
with the Sullivan process. Their impact is reduced by ensuring that the invariant mass
between the neutron and pion is large enough, typically larger than 2 GeV. However, one
process always interfere with the DVCS one, the Bethe-Heitler process, shown on the
right-hand side of Figure 12. Being a QED process and depending only of the pion EFF, the
Bethe–Heitler contribution is computable, usually larger than the DVCS one and through
the interference term, it magnifies the impact of GPDs. The subprocess cross section is thus
decomposed in terms of amplitudes T as:

d5σeπ→eπγ(λ,±e)
dyπdxπ

B dtπdφdφe
=

α3
QEDxπ

B yπ

16π2Q2
√

1 + ε2

|T BH |2 + |T DVCS|2 ∓ I
e6 , (82)

where the interference term is further decomposed in I = Iunpol + λIpol , αQED is the
electromagnetic coupling and ε = (2mπxπ

B )
2/Q2.

3.4.2. From the Sullivan Process to GPDs

The amplitude T DVCS and interference term I are not directly parametrised in terms
of GPDs, but rather in terms of Compton Form Factors (CFFs)H which are connected to
GPDs through:

H(ξ, t, Q2) =
∫ 1

−1

dx
ξ

C
(

x
ξ

,
Q2

µ2 , αs(µ
2)

)
H(x, ξ, t, µ2), (83)

where C is a coefficient function, computed in perturbation theory. The decomposition of
the DVCS amplitude and the interference term as a function of the CFFs can be found in
ref. [149]. Rather than looking at the exact expression, we will assume for a moment that
experimental data allow us to extract with a great accuracyH and ask whether it is possible
to inverse the convolution of Equation (83) to regain the GPD H.

The answer to this question has been known for a long time if C is computed and
the leading order of αS only, and it is ”no”. In fact, at leading order, any GPD such that
H(ξ, ξ, t, µ2) = 0 yields a vanishing CFF, and is thus invisible in experimental data. It was
thought that this problem would vanish a once higher order of perturbation theory or
evolution equations would be turned on [150]. This has been proven wrong in [151], where
the concept of shadow GPDs is introduced. Briefly shadow GPDs are constructed so that
below an given order of perturbation theory n, the associated CFFs vanish, and that their
forward limits also vanish. Consequently, they are invisible both in DVCS and DIS. Of
course, the exact cancellation is valid only at a fixed scale µshadow, but it was also shown
that evolution has little effect on improving the situation [151].

In the case of the nucleon, the way out is to go through multichannel analysis of GPDs,
as shadow GPDs are process dependent, i.e., a shadow GPD for DVCS can be visible in
another process. In fact, some processes are expected to be free of shadow GPDs, such
as Double DVCS [152]. However, these processes are much harder to measure already
in the nucleon case, and are thus out of reach for the pion through the Sullivan process.
In the case of the pion, rather than extracting GPDs from experimental data, the aim is
to challenge existing models through comparison of predictions of the Sullivan process
observables, with potential future measurements.

The first step in that direction is to figure out whether or not present and future facilities
will be able to measure enough events connected to the Sullivan process. To assess that, we
used a theoretically complete model of GPDs, fulfilling all required theoretical properties,
and computed the CFFs associated with that model in ref. [58], using the PARTONS
software [97] using a next-to-leading order description of the coefficient function, and
computed separately quarks and gluon contributions. The result is illustrated in Figure 13,
where the theoretically complete model corresponds to the brown curve. One can note an
interesting characteristic, the sign of the real and imaginary part of the CFF changes with
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the inclusion of gluons. This is understood as the quark and gluon contributions to the CFF
comes with a relative minus sign. This behaviour is confirmed, and even strengthened at
next-to-next-to-leading order (N2LO) [153]. Thus, generally speaking, the sign of the CFF
indicates the relative strength between quark and gluon contribution. Accessing such a
sign would already favour or disfavour different pion GPD models.

Figure 13. Real (left) and imaginary (right) parts of DVCS Compton Form Factors computed with
theoretically complete model developed in ref. [58] (brown curves). Dotted lines correspond to LO
computation, dashed lines—to NLO without gluon contributions and the solid lines to the full NLO
computation. The light blue curves are built from standard phenomenological Anzätze in the GPD
framework [55], and a phenomenological forward limit [58,154] for details).

3.4.3. A Smoking Gun for Gluons at the EIC and EicC

To access this sign, one needs to look at the interference term introduced in Equation (82)
which depends linearly on the CFF [149]. Even better, one can look at the beam spin asym-
metry, selecting on the polarised part of the interference and defined as:

ALU =
dσ↑ − dσ↓

dσ↑ + dσ↓
. (84)

At leading-twist, the latter is proportional to the imaginary part of the CFFH. If gluons are
strong enough to flip the sign of the polarised interference, it would trigger a flip in the
sign of the asymmetry.

Two models were used to assess whether DVCS on a virtual pion would be possible,
and if one would see a sign change in the beam spin asymmetry. The results are shown
on Figure 14. The first model is a theoretically complete model built in ref. [58] and
exploiting the state-of-th-art results on the pion PDF from Continuum Schwinger method
techniques [118]. The second one is a phenomenological model, based on the Radyushkin
Ansatz [55] and the GRS PDF [155]. The necessary evolution was performed by the Apfel++
software [92,94–96] interfaced with PARTONS [97]. The conclusions are clearly different
from the contributions of the sole Bethe–Heitler process at typical EIC kinematics, allowing
us to hope that DVCS on virtual pion will be measurable at this future facility. Moreover,
the sign of the asymmetry is flipped, highlighting the strength of gluons, and this in both
models. Thus, even if pion GPDs will not be extracted from experimental data, the latter
will be able to assess the strength of gluons, and scan it with respect to Q2, making an
excellent physics case for the measurement of the Sullivan process at EIC.

In the case of EicC, since the kinematics probe the valence region, one is less sensi-
tive to gluons. Nevertheless, the destructive interferences of quark and gluon trigger a
sizeable reduction of the amplitude of the asymmetry, and make it sensitive to the Q2

value probed [148]. This is also a valuable piece of experimental information that could be
delivered in the future regarding pion GPDs.
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Figure 14. Upper band: number of events assessed as a function of φ for different bin in Q2. The blue
crosses correspond to the Bethe–Heitler signal only, the black square—to the theoretically complete
model of ref. [58] with a CSM-based forward limit. The open square correspond to the same model
but with gluons set to zero in the CFF. The red circles correspond to a phenomenological model with
the GRS PDF [155] as an input for the forward limit. The grey band corresponds to the uncertainty of
the CSM model associated with the choice of the initial evolution scale. Lower band: associated beam
spin asymmetries. The sign flip is visible with the model from ref. [58]. Figure from ref. [148].

3.5. Challenges

The procedure described above and the very encouraging results which have been
obtained might make one thing that the problem of computing GPDs for mesons is solved.
However, some challenges remain that we will highlight in this section.

3.5.1. The Wilson Line

The first difficulty comes with the Wilson lineW introduced in Equation (8). When we
discussed the properties of the GPDs, we assumed that we were working in the lightcone
gauge, where W is reduced to 1. However, in practice, the Bethe–Salpeter equation is
mostly solved in the Landau gauge. There are two main reasons for this: the Landau gauge
is the one used for fixed-gauge lattice QCD computation, allowing to compare N-point
functions computed from lattice and continuum methods, and because the Landau gauge
is a fixed point of the renormalisation group equation, and thus the gauge parameter does
not run. Therefore, a fully consistent computation of the GPDs would require computing
also the contribution of the Wilson line.

One of the possibility to bypass this problem would be to solve the Bethe–Salpeter and
Dyson–Schwinger equations in the lightcone gauge. It is one of the clearest ways to provide
a fully consistent description of GPDs through the overlap of LFWFs, avoiding gauge-
related difficulties. As we mentioned before, this would trigger additional complications
when solving the Dyson–Schwinger and Bethe–Salpeter equations, but remain feasible [156].
However, it would require a significant amount of work as all modern computations would
need to be re-adapted for this specific gauge, without any lattice-QCD guidance.

In the case of the impulse approximation, attempts to describe the Wilson line pertur-
batively have been pursued (see [157]). However, because of the limitations of the impulse
approximation already mentioned before, it is unclear that such a procedure could be
generalised beyond the NJL model employed there.

3.5.2. Non-Perturbative Renormalisation

Another difficulty lies in the renormalisation properties of the operator already dis-
cussed before. One would expect that a two-body description would be valid only at low
scale of QCD, a region which cannot be described using standard perturbative QCD. Yet,
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the renormalisation properties of the twist-two operators are known only perturbatively,
generating questions on whether one could use perturbative evolution equations at low
scales. Models and prescriptions have been introduced, relying on a saturating coupling
in the infrared (see, e.g., [158,159]). However, it is in principle possible to really derive
non-perturbative renormalisation group equations for the twist two operators, consistently
with the way the Dyson–Schwinger and Bethe–Salpeter equation are renormalised. A
way to proceed here would be to look at the local twist-two operators and compute their
associated renormalisation constants. However, one would expect that such a procedure
would be feasible only for the lowest ones, as in the Landau gauge, the number of gluon
fields entering the definition of the operator increases linearly with the order of the operator
itself. Nevertheless, renormalising non-perturbatively the lowest-order twist-two operators
would already provide insights on the size of the uncertainties associated with perturbative
evolution at low scale.

Finally, let us add that for phenomenology purposes, one would need to manipulate
objects renormalised in a consistent way, i.e., using the same renormalisation scheme. As
most coefficient functions are computed in the MS scheme, it is, in principle, necessary to
match the non-perturbative scheme to MS, at a given order of perturbation theory. Since,
for the moment, only perturbative evolution is used (though in an improved for with a
saturating coupling), this question has not been treated in the continuum literature but will
be brought to light once a non-perturbative renormalisation strategy is put in place.

3.5.3. The D-Term

Through the modelling procedure, we have also highlighted a difficulty regarding our
ability to extract the so-called D-term when extending GPDs from the DGLAP to ERBL
regions. Indeed, the D-term appears as a singularity on the β = 0 line (see Equation (44)),
which remains ambiguous through the covariant extension technique presented here. The
soft pion theorem of Equations (17) and (18) provides an anchor for vanishing t in the chiral
limit. Moreover, the large t behaviour is known in perturbative QCD [160]. Yet in between,
one is left with a hole to fill through modelling, in the absence of better treatment of this
specific contribution. It was shown in ref. [135] that the question of the determination of
the D-term was equivalent to the assumption of the J = 0 fixed pole in the Regge theory
of Compton Scattering and that, for the moment, there is no other way than measuring
specific sum rules connected to the D-term in order to tame the ambiguity on the latter.

4. From Mesons to Baryons

Having discussed in detail the results obtained regarding meson GPDs, we provide
here some hints at how this can be generalised to baryons, as pioneering studies are still
ongoing [161].

4.1. Nucleon LFWFs

The first complication between the pion and the nucleon, is that the lower Fock state
of the latter is made of three quarks instead of two. This obviously increases the number of
degrees of freedom and thus complicates the computation of three-body Bethe–Salpeter
equation (also called the Faddeev equation). Techniques to compute the latter relying either
on a quark–diquark picture (see, e.g., [162–164]) or using a three-quark picture [165–167]
have been developed. Consequently, it is in principle possible to follow the mesons’ path
and project the solution of these covariant equations onto the lightfront. The expected
result is composed of six independent lightfront wave functions (see [168]) characterising
the possible three quarks fluctuations of the nucleon and carrying a given amount of orbital
angular momentum.

A first attempt of computing the LFWFs in such a formalism has been pursued
in the quark-diquark picture and led to computation of the leading-twist distribution
amplitude [169,170]. The computations have highlighted several interesting points. First, it
validated the extension of the meson framework toward the baryon ones. Then, it showed
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that the quark–diquark computations yield very similar results with respect to the lattice
QCD simulations of the first Mellin moments, highlighting that this kind of approximation
is indeed valuable, as explained in great details in ref. [171]. Finally, a third point of interest
is the noticeable difference between the Distribution Amplitude of the nucleon and the
Roper resonance highlighted in ref. [169]. Indeed, while the distribution amplitude of
the nucleon is positive definite, the one of the Roper resonance changes sign, meaning
there is a kinematic area which is forbidden. This behaviour is similar to what one expects
in non-relativistic quantum mechanics regarding higher excited states. One may thus
expect significant differences between the nucleon GPDs and resonances GPD from such a
comparison of Distribution amplitude. We expect that these differences also impact the
1+2D probability densities to find quarks and gluons at a given position of the transverse
plane, reinforcing the interest in the computation of excited states GPDs.

4.2. Nucleon GPDs

Once the nucleon LFWFs are at hand, the formalism of overlap of LFWFs can be
applied in the same way as for the pion, with some small differences. The first one is
that because nucleons are spin 1/2 particles, one needs several GPDs to parametrise
the considered leading twist matrix element (see Equation (9)). As a result, the overlap
representation will naively yield combinations of GPDs. The latter can be disentangled by
playing with the incoming and outgoing nucleon helicity projections (see, for instance, [84]).
Multiple GPDs, means multiple DDs to extract as, in the case of the nucleon, Equation (44)
is modified to:

H(x, ξ, t) =
∫

Ω
dβdα δ(x− β− αξ)[F(β, α, t) + ξδ(β)D(α, t)], (85)

E(x, ξ, t) =
∫

Ω
dβdα δ(x− β− αξ)[K(β, α, t)− ξδ(β)D(α, t)]. (86)

Consequently, two DDs, F and K, need to be extracted following the covariant extension
procedure. Rather than extracting them independently, it may be better to focus on H + E,
which is directly a “true” Radon transform, without an additional D-term, and −E, as
it was suggested in ref. [39,172] and put in practice in phenomenological extractions in
ref. [57]. The stability of the incomplete inverse Radon transform remains to be assessed in
the case of the nucleon.

This decomposition allows us to highlight that the issue of the D-term is more difficult
to handle in the case of the nucleon, with respect to the pion. Indeed, to the best of our
knowledge, there is no equivalent in the nucleon case of the soft pion theorem, and thus,
a theoretical constrain providing us with information on the D-term is lost. If the large-
t expansion in perturbative QCD has been computed (see ref. [160]), at experimentally
achievable values of t (and small enough so that collinear factorisation works), there is for
the moment no theoretical guidance on the value of this function. It is noticeable though
that, at the time of writing, phenomenological extractions of the nucleon D-term based
on the DVCS dispersion relations (see [173,174]) provide results which remain compatible
with zero [71,175]. This situation might change with the more precise DVCS data provided
by the upgraded facilities of the Jefferson Laboratory [19,20].

With the expected wealth of new experimental data coming from Jefferson Laboratory
in the following years, the question of a consistent description of experimental data using
GPDs computed with continuum technique has never been more relevant. The impact of
the Wilson line together with that of non-perturbative renormalisation are expected to be
at the core of future theoretical developments. Finally, let us highlight that the overlap of
LFWFs will also allow us to compute using continuum techniques the standard nucleon
PDFs and the standard nucleon EFFs.
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4.3. Transition GPDs

Beyond the nucleon GPDs, we would like to highlight that our formalism is able to
handle all spin 1/2 baryons GPDs (providing that computations of the associated Faddeev
wave function are available), but also transition GPDs, between two different baryons.
Among all possible transitions, the better experimentally accessible one is certainly the
nucleon-to-delta transition [176,177]. One can indeed define a transition DVCS process,
such that ep → e∆+γ, which factorises between the standard DVCS hard coefficient
function and nucleon-to-delta transition GPDs. Such a complementary channel provides
an indirect way to probe the internal structure of the delta particle, as in the continuum
framework, one would need to compute the transition GPDs as an overlap between the
nucleon and delta LFWFs. This will allow to shed light on the delta LFWFs, and thus
provide feedback on the solution of the Faddeev equations for baryons other than the
nucleon. We expect that it provides guidance in our understanding of the three-body
interaction and its consequences in QCD.

5. Conclusions

Concluding this review paper, we would like to highlight again that GPDs provide
a unique way to map hadrons in 3D and gain experimental insights into their energy-
momentum tensor. However, the path toward reliable models and computations of GPDs
remains difficult. We have highlighted how using continuum techniques, one could manage
to compute GPDs who fulfil all required theoretical constrains, and more specifically, both
positivity and polynomiality. It relies on the projection of the solutions of the Bethe–Salpeter
equations (or Faddeev equation for baryons) onto the lightfront, so that one obtains the
so-called lightfront wave functions. GPDs can then be expressed as an overlap of lightfront
wave functions in the so-called DGLAP region, ensuring the positivity is fulfilled. Then,
they are extended to the ERBL region using the covariant extension, which guarantees the
polynomiality property.

This technique has been successfully applied to mesons, and it has provided estimates
of counting rates for DVCS on virtual pion through the Sullivan process, showing that one
can expect such a process to be measurable. Regarding the nucleon, part of the path toward
the building of a GPD model has been performed, but some of the work remain to be
completed. Today, the baryon sector appears as the target to reach in the forthcoming years.
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