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Abstract: In this paper, the impact of core mass on the compact/neutron-star mass-radius relation
is studied. Besides the mass, the core is parameterized by its radius and surface pressure, which
supports the outside one-component Standard Model (SM) matter. The core may accommodate SM
matter with unspecified (or poorly known) equation-of-state or several components, e.g., consisting
of admixtures of Dark Matter and/or Mirror World matter etc. beyond the SM. Thus, the admissible
range of masses and radii of compact stars can be considerably extended.
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1. Introduction

Strong interaction rules a variety of systems, ranging from hadrons to nuclei up
to neutron stars. The related mass scales are typically ≥mπ = 0.13 GeV for mesons,
≥mp = 0.938 GeV for baryons, (1 · · · 250)mp for nuclei, and O(1057)mp for neutron stars.
(mπ,p stand for pion and proton masses.) Further systems awaiting their confirmation are
glueballs (O(GeV)) and non-baryon stars, such as pion stars [1]. Besides weak interaction,
it is the long-range Coulomb interaction that limits the size (or baryon number) of nuclei,
and gravity is the binding force of matter in neutron stars. The phenomenon of hadron
mass emergence is a fundamental issue tightly related to non-perturbative effects in the
realm of QCD, cf., Refs. [2,3] and citations therein. Once the masses and interactions among
hadrons are understood, one can make the journey to address the masses and binding
energies of nuclei and then jump to constituents of neutron stars. Despite the notion,
cool neutron stars accommodate, in the crust, various nuclei immersed in a degenerate
electron-muon environment (maybe as “pasta” or “spaghetti” or crystalline medium).
In the deeper interior, above the neutron drip density, neutrons and light clusters begin
to dominate the matter composition. These constituents and their interactions govern the
mass (or energy density) of the medium. At nuclear saturation density, n0 ≈ 0.15 fm−3,
one meets conditions similar to the interior of heavy nuclei but with crucial impact of the
symmetry energy when extrapolating from nuclear matter with comparable proton and
neutron numbers to a very asymmetric proton-neutron mixture. Above saturation den-
sity, various effects hamper a reliable computation of properties of the strong-interaction
medium: three-body interactions may become even more important than at n0, and fur-
ther baryon species become excited, e.g., strangeness is lifted from vacuum into baryons
forming hyperons whose interaction could be a miracle w.r.t. the hyperon puzzle [4], and
the relevant degrees of freedom become relativistic. Eventually, at asymptotically high
density, the strong-interaction medium is converted into quarks and gluons; color-flavor
locking and color superconductivity can essentially determine the medium’s properties.
The turn of massive hadronic degrees of freedom into quark-gluon excitations is thereby
particularly challenging.

While lattice QCD represents, in principle, an ab initio approach to strong-interaction
systems in all their facets, the “sign problem” prevents the access to non-zero baryon
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number systems. Thus, the exploration of compact/neutron stars, in particular their
possible mass range, by stand-alone theory is presently not feasible. Instead, an intimate
connection of astrophysical data and compact-star modeling is required.

The advent of detecting gravitational waves from merging neutron stars, the related
multimessenger astrophysics [5–12] and the improving mass-radius determinations of
neutron stars, in particular by NICER data [13–17], stimulated a wealth of activities. Be-
sides masses and radii, moments of inertia and tidal deformabilities become experimentally
accessible and can be confronted with theoretical models [18–24]. The baseline of the latter
ones is provided by non-rotating, spherically symmetric cold dense matter configurations.
The sequence of white dwarfs (first island of stability) and neutron stars (second island
of stability) and possibly [25] a third island of stability [26–30] shows up when going to
more compact objects, with details depending sensitively on the actual equation of state
(EoS). The quest for a fourth island has been addressed as well [31,32]. “Stability” means
here the damping of radial disturbances, at least. Since the radii of configurations of the
second (neutron stars) and third (hypothetical quark/hybrid stars [33–40]) islands are very
similar, the notion of twin stars [31–33,41,42] has been coined for equal-mass configurations;
“masquerade” was another related term [43].

We emphasize the relation of ultra-relativistic heavy-ion collision physics, probing the
EoS p(T, µB ≈ 0), and compact star physics, probing p(T ≈ 0, µB) when focusing on static
compact-star properties [44,45]. Of course, in binary or ternary compact-star merging-
events, also finite temperatures T and a large range of baryon-chemical potential µB are
probed, which are accessible in medium-energy heavy-ion collisions [46]. Implications
of the conjecture of a first-order phase transition at small temperatures and large baryo-
chemical potentials or densities [47–50] can also be studied by neutron-hybrid-quark
stars [51–54]. It is known since some time [26–28,55,56] that a cold EoS with special pressure-
energy density relation p(e), e.g., a strong local softening up to first-order phase transition
with a density jump, can give rise to a “third family” of compact stars, beyond white
dwarfs and neutron stars. In special cases, the third-family stars appear as twins of neutron
stars [43,57,58]. Various scenarios of the transition dynamics to the denser configuration as
mini-supernova have also been discussed quite early [59,60].

While the Standard Model (SM) of particle physics seems to accommodate nearly
all of the observed phenomena of the micro-world, severe issues remain. Among them
is the (g − 2)µ puzzle or the proton’s charge radius. Another fundamental problem is
the very nature of Dark Matter (DM): Astrophysical and cosmological observations seem
to require inevitably its existence, but details remain elusive despite many concerted
attempts, e.g., Refs. [61–64]. Supposing that DM behaves like massive particles, it could be
captured gravitationally in the centers of compact stars [65–67], thus providing a non-SM
component there. This would be an uncertainty on top of the less reliably known SM-
matter state. Beyond the SM, other feebly interacting particles could also populate compact
stars. A candidate scenario is provided, for instance, by Mirror World (MW) [68–72], i.e., a
parity-symmetric complement to our SM-world with very tiny non-gravity interaction. There
are many proposals of portals from our SM-world to such beyond-SM scenarios, cf., Ref. [73].

Guided by these remarks we follow here an access to static cold compact stars already
launched in [74]: We describe the core by a minimum of parameters and determine the
resulting compact-star masses and radii by assuming the knowledge of the equation of state
of the SM-matter enveloping the core. A motivation is the quest of a mass gap between
compact stars and black holes.

Our paper is organized as follows. In Section 2 we recall the Tolman–Oppenheimer–
Volkoff equations, their scaling property, and introduce our core-corona decomposition.
Small cores with and without MW/DM admixtures are considered in Section 3. Section 4 is
devoted to the core-corona decomposition, where a specific EoS is deployed for the explicit
construction. We summarize in Section 5. We supplement our paper in Appendix A by a
brief retreat to the emergence of hadron masses as a key issue in understanding the typical
scales of compact (neutron) star masses. Appendix B sketches a complementary approach:
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the construction of an EoS by holographic means, thus transporting information of a hot
(quark-gluon) QCD EoS to a cool EoS and connecting heavy-ion collisions and compact star
physics. These appendices survey (Appendix A) and exemplify (Appendix B) symmetry
and the governing principles where the access to astrophysical objects is based upon.

2. One-Component Static Cool Compact Stars: TOV Equations

The standard modeling of compact star configurations is based on the Tolman–
Oppenheimer–Volkoff (TOV) equations

dp
dr

= −GN
[e(r) + p(r)][m(r) + 4πr3 p(r)]

r2[1− 2GN m(r)
r ]

, (1)

dm
dr

= 4πr2e(r), (2)

resulting from the energy-momentum tensor of a one-component static isotropic fluid
(described locally by pressure p and energy density e as only quantities relevant for the
medium) and spherical symmetry of both space-time and matter, within the framework
of Einstein gravity without cosmological term [75]. Newton’s constant is denoted by GN ,
and natural units with c = 1 are used, unless when relating mass and length and energy
density, where h̄c is needed.

2.1. Scaling of TOV Equations and Compact/Neutron Star Masses and Radii

The TOV equations become free of any dimension by the scalings

e = sē, p = sp̄, r = (GNs)−1/2r̄, m = (G3
Ns)−1/2m̄, (3)

where s is a mass dimension-four quantity or has dimension of energy density. It may be
a critical pressure of a phase transition or a limiting energy density, e.g., at the boundary
matter-vacuum [76]. Splitting up s = nmp into a number density n and the energy scale mp,
one gets (GNs)−1/2 = 7 km/

√
10−2n/n0 and (G3

Ns)−1/2 = 4.8M�/
√

10−2n/n0, where
the nuclear saturation density n0 = 0.15 fm−3 is used as reference density. The scales mπ,p
facilitate the densities n = m3

π → 2.3n0 and n = m3
p → 833n0. That is, the scale solely set by

the nucleon mass, i.e., s = m4
p [77], yields (GNs)−1/2 = 2.74 km and (G3

Ns)−1/2 = 1.86M�,
suggesting that the nucleon mass (see Appendix A on its emergence in QCD) determines
the gross properties of neutron stars, such as mass and radius (modulus factor 2π) in an
order-of magnitude estimate. In contrast, the density estimate via M = 4π

3 〈n〉mpR3 yields,

independently of GN , 〈n〉 = 2n0
M

M�
103

(R/km)3 ≈ 4n0 for M = 2M� and R = 10 km, thus

pointing to the importance of the actual numerical values of r̄ and m̄.
In fact, recent measurements and supplementary work report averaged mean and individ-

ual heavy compact/neutron stars masses and radii (often on 67% credible level) as follows

PSR M [M�] R [km]
1.4 11.94+0.76

−0.87
(1) [12], 12.45± 0.65 [13], 12.33+0.76

−0.81 [15]
J0030+0451 1.34+0.15

−0.16 12.71+1.14
−1.19 [16]

1.44+0.15
−0.14 13.02+1.24

−1.06 [14], 12.18+0.56
−0.79 [17]

J1614–2230 1.908± 0.016 [78]
J0348+0432 2.01± 0.04 [79]
J0740+6620 2.072+0.067

−0.066 12.39+1.30
−0.98 [15]

2.08± 0.07 [80] 13.7+2.6
−1.5

(2) [13], 11.96+0.86
−0.81 [12]

0952-0607 (3) 2.35± 0.17 [81]
(1) 90% confidence. (2) With nuclear physics constraints at low density and gravitational radiation data from
GW170817 added in, the inferred radius drops to (12.35 ± 0.75) km [13]. (3) Black-widow binary pulsar
PSR 0952-0607.
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One has to add GW190814: gravitational waves from the coalescence of a 23 solar mass
black hole with a 2.6M� compact object [82]. An intriguing question concerns a possible
mass gap between compact-star maximum-mass [83] and light black holes, cf., [84,85].

2.2. Solving TOV Equations

Given a unique relationship of pressure p and energy density e as EoS e(p), in particu-
lar at zero temperature, the TOV equations are integrated customarily with boundary condi-
tions p(r = 0) = pc and m(r = 0) = 0 (implying p(r) = pc −O(r2) and m(r) = 0 +O(r3)
at small radii r), and p(R) = 0 and m(R) = M with R as circumferential radius and M as
gravitational mass (acting as parameter in the external (vacuum) Schwarzschild solution at
r > R). The quantity pc is the central pressure. The solutions R(pc) and M(pc) provide the
mass-radius relation M(R) in parametric form.

A great deal of effort is presently concerned about the EoS at supra-nuclear densi-
ties [86]. For instance, Figure 1 in Ref. [87] exhibits the currently admitted uncertainty:
up to a factor of 10 in pressure as a function of energy density. At asymptotically large
energy density, perturbative QCD constrains the EoS, though it is just the non-asymptotic
supra-nuclear density region that crucially determines the maximum mass and whether
twin stars may exist or quark-matter cores appear in neutron stars. Accordingly, one can
fill this gap by a big number (e.g., millions [88]) of test EoSs to scan through the possibly
resulting manifold of mass-radius curves, see Refs. [89–92]. However, the possibility that
neutron stars may accommodate other components than Standard Model matter, e.g., exotic
material as Dark Matter [93–96], can be an obstacle for the safe theoretical modeling of a
concise mass-radius relation in such a manner. Of course, inverting the posed problem with
sufficiently precise data of masses and radii as input offers a promising avenue towards
determining the EoS [17,89,97–101].

Here, we pursue another perspective. We parameterize the supra-nuclear core by a
radius rx and the included mass mx and integrate the above TOV equations only within the
corona (our notion “corona” is a synonym for “mantel” or “crust” or “envelope” or “shell”,
it refers to the complete part of the compact star outside the core, rx ≤ r ≤ R), i.e., from
pressure px to the surface, where p = 0. This yields the total mass M(rx, mx; px) and the
total radius R(rx, mx; px) by assuming that the corona EoS e(p) is reliably known at p ≤ px
and that only SM matter occupies that region. Clearly, without knowledge of the matter
composition at p > px (may it be SM matter with an uncertainly known EoS or may it
contain a Dark-Matter admixture, for instance, or monopoles or some other type of “exotic”
matter) one does not get a simple mass-radius relation by such a procedure, but admissible
area(s) over the mass-radius plane, depending on the core parameters rx and mx and the
matching pressure px and related energy density ex. This is the price of avoiding a special
model of the core matter composition.

If the core is occupied by a one-component SM medium, the region p > px and e > ex
can be mapped out by many test EoSs which locally obey the constraint v2

s ∈ [0, 1] to obtain
the corresponding region in the mass-radius plane, cf., Figure 2 in Ref. [102] for an example
processed by Bayesian inference. This is equivalent, to some extent, to our core-corona
decomposition for SM matter-only.

3. Small-Core Approximation and Beyond
3.1. One-Component Core

For small one-component distinguished cores one can utilize the EoS parameterization
from a truncated Taylor expansion of p(e) ≥ px at λex, p(e) = p(λex) +

∂p
∂e |λex (e− λex) + · · · ,

p(e) = px + v2
s (e− λex), (4)
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where λ > 1 is a density jump at the core boundary and λ = 1 continuously continues (but
may be kinky) the corona EoS at p ≥ px; px and ex mark the “end point” of the corona EoS.
A Taylor expansion for small cores,

p(r) =
∞

∑
i=0

p2ir2i, (5)

m(r) =
∞

∑
i=0

m2i+1r2i+1, (6)

gives by means of Equations (1) and (2) with (4) ( that is e = λex − v−2
s px + v−2

s ∑∞
i=0 p2ir2i)

and p2i+1 = 0 and m2i = 0 for all i ∈ N0

m1 = 0, m3 =
4π

3
ec, m2i+1 =

4πv−2
s

2i + 1
p2i−2 for i ≥ 2, (7)

where ec ≡ e(pc) = λex + v−2
s (pc − px), and the recurrence

p0 = pc, p2 = −2π

3
GN(ec + pc)(ec + 3pc), (8)

p2i =
GN
2i

(
2Ai − [λex − v−2

s px](m2i+1 + 4πp2i−2)− (1 + v−2
s )Bi−1

)
for i ≥ 1, (9)

Ai =
i

∑
j=0

2(i− j)m2j p2i−2j, (9a)

Bi =
i

∑
j=0

(m2j+3 + 4πp2j) p2i−2j. (9b)

In leading order one obtains

rx ≈
δ1/2(1−O(δ))√

2π
3 GN pxW

≈ 60.1 km√
W

√
δ

100 MeV/fm3

px
, (10)

mx ≈ 2λ
ex

px

δ3/2(1−O(δ))√
2π
3 G3

N pxW3
≈ 81.2M�

W3/2 λ
ex

100 MeV/fm3 ×
(

δ
100 MeV/fm3

px

)3/2

, (11)

where δ := pc/px − 1 and W := 3+ 4λ ex
px

+ λ2
(

ex
px

)2
. The scale setting is by px and λex/px.

The core-mass–core-radius relation is mx(δ) ≈ 4π
3 pxλ

(
ex
px

)
rx(δ)3(1 +O(δ)).

To control and extend the above approximations we numerically solve the scaled
TOV equations by assuming that Equation (4) holds true in the core. (Of course, this is
an ad hoc assumption aimed at providing an explicit example of mass-radius relations of
the core.) The core-corona matching is at px, i.e., the maximum (minimum) pressure of
the corona (core) EoS. The related energy density is ex = 3px/(1− 3∆corona), where ∆corona

denotes the trace anomaly measure discussed below in Equation (12). It is used here for
a suitable parameterization of the double (ex, px) by means of the corona EoS. The core
EoS Equation (4), e(p) = λex + v−2

s (p− px), enters, after scaling according to Equation (3),
the dimensionless TOV equations

dp̄
dr̄

= − [ē(r̄) + p̄(r̄)][m̄(r̄) + 4πr̄3 p̄(r̄)]

r̄2[1− 2m̄(r̄)
r̄ ]

, (11a)

dm̄
dr̄

= 4πr̄2 ē(r̄), (11b)



Particles 2023, 6 222

for p̄ ∈ [ p̄c, p̄x] to get r̄x( p̄c) and m̄x( p̄c). The corresponding scaled core mass vs. core
radius relations are exhibited in Figure 1, where the scaling quantity s = px is employed,
i.e., p̄x = 1. The figure offers a glimpse on the systematic of the parameter dependence.
Note that it applies to all values of px > 0. The finite pressure and energy density at the
core boundary facilitates a pattern of mass-relations and dependence on sound velocity as
known from bag model EoS, cf., Figure 7 in Ref. [76]. λ > 1 causes an overall shrinking of
the pattern plus a slight up-shift; see the right panel for λ = 1.5. Considering, e.g., ex ∈
[150, 1500] MeV/fm3 and the scaling ∝ 1/

√
ex, cf., (3), the core masses and radii change by

a factor up to three, depending on the actual value of ex.

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 0 . 1 2

0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

m x

r x

∆  =  0 . 3
∆ =  0 . 2

∆  =  0 . 1

v s 2  =  1
1 / 3

1 / 6

l  =  1

v s 2  =  1

1 / 3

1 / 6

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 0 . 1 2

0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

m x
r x

l  =  1 . 5

Figure 1. Scaled core masses m̄x as a function of the scaled core radii r̄x for various values of
∆corona = ∆ and v2

s for a one-component medium with EoS (4). The left (right) panel is for λ = 1
(1.5). The scaling quantity is s = px. For central pressures p̄c = 1.1n, n = 1 · · · 55. The displayed
curves are limited by m̄x < r̄x/2 (black hole limit) and m̄x > 4π

3 λ 3
1−3∆corona r̄3

x. The latter expression
is for the respective asymptotic curve in the small-r̄x region. To convert to usual dimensions, one
employs rx = r̄x

86.9 km√
px/100 [MeV/fm3

]
and mx = m̄x

58.8 M�√
px/100 [MeV/fm3

]
, where “px/100 [MeV/fm3]”

denotes the scaling pressure px in units of 100 MeV/fm3. The approximations (10) and (11) apply
only in the small-m̄x and small-r̄x regions.

3.2. Multi-Component Cores

In a multi-component medium ( note that our considerations apply to components
which do not mutually interact in a direct microscopical manner, but are coupled solely by
the common gravity field) with known EoSs one has to add the contributions by [m(r) +

4πr3 p(r)]→ ∑i[m(i)(r) + 4πr3 p(i)(r)] and [1− 2GN m(r)
r ]→ [1− 2GN ∑i m(i)(r)

r ] and solve in
parallel the multitude of TOV equations for the components i. A particular minimum-
parameter model is Mirror World matter (component i = 2) which is completely symmetric
to SM matter (component i = 1), i.e., p(1)(r) = p(2)(r) etc., turning ∑(i) → 2. The results
are exhibited in Figure 2, left. The increased energy density by the two superimposed
fluids cause a shrinking of the core-mass–core-radius curves similar to the increase of λ in
Figure 1. The extension to three components is exhibited in Figure 2, right. Here, ∑(i) → 3
applies. Due to further increased energy density and pressure, the configurations become
even more “compact”, i.e., core masses and core radii shrink further on.

One may quantify the core compactness by C̄x := 2m̄max
x /r̄x|m̄max

x and note that, within
the scanned parameter patch, it (i) is independent of the number of fluids, (ii) increases
slightly with ∆corona at v2

s = const and (iii) decreases with decreasing v2
s = const at

∆corona = const, see Table 1. Note that the usual definition of compactness is without
the factor of two.
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l  =  1 t w o  f l u i d s
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0 . 0 3

m x

r x

l  =  1 t h r e e  f l u i d s

Figure 2. Left panel: As the left panel of Figure 1, but for a two-component medium of SM + MW
matter with p(1)(r) = p(2)(r) and EoS (4) for both components. Note the difference to the two-fluid
core-shell construction in Ref. [103]. Right panel: As a left panel but for a three-component medium.

Table 1. Core compactness C̄x = 2m̄max
x /r̄x|m̄max

x for various values of v2
s (sound velocity squared in

the core) and ∆corona = ∆. For λ = 1.

v2
s

∆
0.1 0.2 0.3

1 0.64 0.67 0.70
1/3 0.49 0.51 0.53
1/6 0.37 0.38 0.40

Of course, more general is an asymmetric Mirror World component facilitating
p(1)(r) 6= p(2)(r), especially p(1)(r = 0) 6= p(2)(r = 0), even for the common EoS (4),
dealt with in Appendix A in Ref. [74]. We do not dive into various conceivable scenarios
here and refer the interested reader to Refs. [103,104].

4. Core-Corona Decomposition with NY∆ DD-EM2 EoS
4.1. Trace Anomaly

An example of an EoS largely compatible with neutron star data is NY∆ based on
the DD-ME2 density functional [31]. Despite some peculiarities (see the left panel in
Figure 3), it shares features recently advocated as essential w.r.t. QCD tracy anomaly and
conformality [105,106]. A suitable measure of the trace anomaly is

∆ :=
1
3
− p

e
(12)

which is related to the sound velocity squared

v2
s :=

∂p
∂e

=
nB

µbχB
=

1
3
− ∆− e

∂∆
∂e

, (13)

where nB stands for the baryon density, µB the baryo-chemical potential, and χB =
∂2 p/∂µB = ∂nB/∂µB is the second-order cumulant of the net-baryon number density.
Thermodynamic stability and causality constrain ∆ ∈ [−2/3, 1/3]. Restoration of scale
invariance means ∆→ 0 and v2

s → 1/3. Although ∆ approaches monotonically to zero, v2
s

can develop a peak at lower energy densities. In fact, v2
s as a function of η ≡ ln e/(n0mp)

displays such a peak at η ≈ 1.3 (see Figure 2 in Ref. [105] or Figure 1 in Ref. [88] and
discussion in Ref. [107]), which should be considered a signature of conformality even
at strong coupling. Continuing with the adjustment of ∆ beyond the values tabulated in
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Ref. [31] (see the symbols in Figure 3, left), v2
s drops first slightly below 1/3 and approaches

then slowly 1/3 from below, in agreement with QCD asymptotic.

- 1 0 1 2
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

∆

η

N Y ∆

E q .  ( 7 ) ,  η c =  1 . 1

9 . 5 1 0 . 0 1 0 . 5 1 1 . 0 1 1 . 5 1 2 . 0 1 2 . 5
0 . 5 0

0 . 7 5

1 . 0 0

1 . 2 5

1 . 5 0

1 . 7 5

2 . 0 0

2 . 2 5

2 . 5 0

M/
M s

un

R  [ k m ]

N Y ∆

E q .  ( 7 ) ,  η c  =  1 . 1

1 . 2

1 . 0

Figure 3. Left panel: Trace anomaly measure ∆ = 1/3− p/e as a function of η ≡ ln e/(n0mp) for
the NY∆ DD-EM2 EoS of [31] (black curve with symbols) and the adjusted parameterization by
Equation (7) in Ref. [105] (red curve; ηc = 1.1, other parameters as in Ref. [105], see Equation (14)
below). NY∆ DD-EM2 shows a softening at p ≈ 10 MeV/fm3, η ≈ 0.5, caused by the onset of
∆ proliferation, similar to Ref. [108]. Right panel: Mass-radius relation for NY∆ DD-EM2 EoS of
Ref. [31] (solid black curve) in comparison with the parameterization by Equation (7) in Ref. [105]
(see Equation (14) below for three values of the parameter ηc (read dashed/solid/dotted curves for
ηc = 1.2, 1.1 and 1.0).

The comparison of the resulting mass-radius relations is exhibited in Figure 3, right.
We follow the parameterization [105]

∆ =
1
3
− 1

3

(
1− A

B + η2

)
1

1 + e−κ(η−ηc)
, (14)

however, with parameters adjusted to [31]: κ = 3.45, ηc = 1.1, A = 2 and B = 20, see
Figure 3. Despite the tiny differences of the red curve (for adjusted ∆) and the solid black
curve with markers (for NY∆ DD-EM2 EoS of [31]), the overall shapes of M(R) differ in
detail, see Figure 3, right. While the maximum masses agree, the radii for NY∆ DD-EM2
EoS of [31] are greater by about 1 km at M ≈ 1.4 M�. A small dropping of the parameter
ηc from 1.2 to 1.0 in the ∆ EoS lets us increase the radius by 1 km. All these differences can
be traced back essentially to differences in the low-density part of the employed EoSs.

4.2. Distinguished Cores with NY∆ Envelope

Focusing now on NY∆ DD-EM2 EoS of Ref. [31] and the core-corona decomposition,
one obtains the resulting mass-radius radius relation exhibited in Figure 4. We find it
convenient to keep the respective core radius constant and vary the core masses as mx =
10−41.5n M�, n = 1, 2, 3 · · · . The very small core masses (of course, a large core with
several-km radius and small included mass is a very exotic thing; it may be referred to
as bubble or void with surface pressure px and the stable interface to SM matter) occupy
the right end of the solid blue curves, where the dots refer to the increasing values of n.
Heavy core masses occupy the left sections of the blue curves, i.e., larger values of n. For
considerably smaller values of the core radii (not displayed), the blue curves approach the
conventional mass-radius curve of the NY∆ DD-EM2 EoS of Ref. [31] (fat black curve).
The limit rx → 0 and mx → 0 of the core-corona decomposition curve is depicted by the
asterisk, which also agrees with the mass and radius of NY∆ DD-EM2 EoS of Ref. [31] with
pc = px. Increasing values of px make an up-shift of the core-corona mass-radius curves
for a constant value of the core radius rx, and a larger range of masses is occupied.
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Figure 4. Mass-radius plane and its occupancy by compact stars with given core radii rx (blue curves
with dots at core masses mx = 10−4 1.5n M�, n = 1, 2, 3 · · · from right to left; the open circles depict
points for n = 15, and the right-most endpoints are for n = 1). The values of px are 50 (left panel),
100 (middle panel), and 150 MeV/fm3 (right panel). The fat solid curve is obtained by standard
integration of the TOV equations using the NY∆ EoS tabulated in Ref. [31] with linear interpolation
both in between the mesh and from the tabulated minimum energy density to the p = 0 point at
e0 = 1 MeV/fm3. The asterisks display the mass-radius values for pc = px. That is, the sections
above the asterisks (dotted curves) are for a particular continuation of NY∆ at p > px, which is,
(trivially) in this case, NY∆ itself. One could instead employ the parameterization Equation (4) which
would deliver another dotted curve. For other examples, in particular the small-R region near black
hole and Buchdahl limits, the interested reader is referred to Ref. [74].

All the features discussed in Section 2 in Ref. [74] are recovered, e.g., the convex
shape of the curves rx = const, which however becomes visible only by extending the
plot towards smaller values of R (not shown). The right end points of the core-corona
curves refer to very small values of mx, while the not displayed left end points are on the
limiting black hole curve 2GN M = R. However, the core-corona decomposition shows that
the maximum-mass region of NY∆-DD-ME2 (see fat solid curves) is easily uncovered too,
interestingly with sizeable core radii and noticeably smaller up to larger total radii.

We refrain from displaying the core-corona mass-radius curves for mx = const. They
can be easily inferred by connecting the points n = const in each of the panels in Figure 4.

To stress the relation to the usual mass-radius relation M(R) obtained from the para-
metric representations M(pc) and R(pc), let us mention that the respective dotted curve
sections above the asterisk on the fat solid curves are just an example—here simply NY∆
DD-EM2 EoS of Ref. [31] for p > px. Other continuations of the EoS at p > px are within
the region filled by the blue core-corona curves, which however may not be completely
mapped out by many conceivable EoSs: The core can contain more than just SM matter,
such as Dark Matter or Mirror Matter or other exotic material. In the simplest case, a multi-
component composition with hypothesized EoS for each component can be used for the
explicit construction. All that counts in our core-corona decomposition is that a core with
radius rx and included mass mx is present and supports the pressure px at its boundary.
By definition, outside the core, only SM matter with known EoS is there. (For a dedicated
study of crust properties, cf., Ref. [109].)

4.3. Example of Radial Pressure and Mass Profiles

To illustrate that feature in some detail let us consider an example and select
px = 100 MeV/fm3. Assuming that the continuation of the EoS above this px is, hy-
pothetically, by NY∆ itself, one obtains the pressure and mass profiles as displayed by
black solid curves in Figure 5 for pc = 200 MeV/fm3. Clearly, taking rx, mx and px as
start values and integrating in the corona up to the surface at p = 0, one obtains the same
values of M and R as for the standard integration from p(r = 0) = pc to p(R) = 0 (see the
blue circles on top of the black solid curve sections). However, keeping rx but using other
core masses mx, e.g., m(1)

x = 0.5mx or m(2)
x = 2mx, one obtains different pressure and mass

profiles and, consequently, also different values of M and R, see Figure 5. This is the very
construction of the core-corona decomposition leading to the results exhibited in Figure 4.
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Figure 5. Pressure p(r) (left panel) and mass m(r) (right panel) as a function of the radius r for
the special value px = 100 MeV/fm3, selected here as the end point of the “reliable EoS” NY∆ at
p ≤ px. Assuming a possible continuation at p > px by NY∆ itself as a particular example, it yields
the fat solid curves for the (ad hoc) choice pc = 200 MeV/fm3. Keeping the resulting value rx from

p(rx) = px and integrating the TOV equations in the corona, r ≥ rx with px and m(1,2)
x as initial

values, one gets the dashed blue (m(1)
x = 0.5mx) and dotted blue (m(2)

x = 2mx) curves, where the
respective values of R and M can be read off. Using mx as core mass, the blue circles (on top of the fat

black curve at r ≥ rx) are obtained. Using a multitude of values m(n)
x would generates one additional

blue curve in Figure 4. In the present example, for rx = 6 km.

5. Summary

The core-corona decomposition relies on the assumption that the EoS of compact/
neutron star matter (i) is reliably known up to energy density ex and pressure px and
(ii) occupies the star as the only component at radii r ≥ rx. The base line for static,
spherically symmetric configurations is then provided by the TOV equations, which are
integrated, for r ∈ [rx, R], to find the circumferential radius R (where p(R) = 0) and the
gravitational mass M = m(R). We call that region r ∈ [rx, R] “corona”, but “crust” or
“mantle” or “envelope” or “shell” are also suitable synonyms. The region r ∈ [0, rx] is the
“core”, which is parameterized by the included mass mx. The core must support the corona
pressure at the interface, i.e., p(r−x ) = p(r+x ). The core can contain any material compatible
with the symmetry requirements. In particular, it could be modeled by a multi-component
fluid with SM matter plus Dark Matter and/or Mirror World matter or anything beyond
the SM. The TOV equations then deliver R(rx, mx, px) and M(rx, mx, px).

It helps our intuition to think of a SM matter material in the core with assumed fiducial
EoS, which determines, for given value of px, rx(pc) and mx(pc), thus R(pc) and M(pc)
resulting in M(R), as conventionally done. Using many fiducial test EoSs at p > px, one
maps out a certain region in the M-R plane accessible by SM matter. Our core-corona
decomposition extends this region, since the core can contain much more than SM matter
only. With reference to a special EoS, applied tentatively in core and corona, the accessible
masses and radii become smaller (larger) for heavy (light) cores. That effect is noticeable
for large (km size) and heavy (fraction of solar mass) cores. Small and light cores hardly
have an impact.

This analysis should be refined in follow-up work by employing improved EoSs in
the low-density region and by taking care of mass-radius values for the heaviest neutron
star(s), still keeping precise radius values for the 1.4M� neutron stars. In addition, the
holographic model in Appendix B, which is aimed at mapping hot QCD thermodynamics
to a cool EoS, deserves further investigations, before arriving quantitatively at an EoS
suitable for compact star properties and (merging) dynamics. The emphasis in Appendix B
is the illustration of the extrapolation scheme beyond a patch of QCD thermodynamic
state space.
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Taking up the suggestion in Ref. [77] that the scaling property of the TOV equations
with a mass dimension-4 quantity, e.g., by m4

p, where mp is the proton mass, essentially
determines the gross parameters of compact/neutron stars, we supply in Appendix A a
brief contemplation on the emergence of hadron masses within QCD-related approaches,
thus bridging from micro to macro physics: MPSR J0740+6620 ≈ 2M� ≈ 2.38 × 1057mp,
RPSR J0740+6620 ≈ 12.3 km ≈ 1.5× 1019rp with proton charge radius rp ≈ 0.88 fm ≈ 4.2m−1

p
which is somewhat larger than its “natural” scale h̄c/mp. Our focus, however, is here
on the emergence of the gravitational mass (the gravitational mass in our core-corona
decomposition is M = mx + 4π

∫ R
rx

drr2e(r) which, due to gravitational binding, is different
from the total mass

∫
d3Ve(r) where the integral measure d3V accounts for the gravitational

spatial deformation, cf., Ref. [110]) determining the trajectories of light rays and test
particles outside of compact astrophysical objects.
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Appendix A. Emergence of Hadron Masses

Astronomical observations of neutron stars have provided us with a way to understand
these mysterious objects. The literature suggests that the outer and inner core of neutron
stars may consist of nucleons or cold, dense quark matter. The question one can ask is how
almost massless light quarks could combine and produce such massive nucleons to give
rise to neutron star mass, as emphasized in Section 2.1. A widely recognized mechanism
is the Higgs mechanism, which gives rise to the current quark masses. However, as was
immediately realized, the current quark mass contributes only a few MeV, while the mass of
a proton or neutron is much larger. The mystery of the missing masses lies in the emergence
of hadron mass (EHM).

Appendix A.1. Three Pillars of EHM

Contemporary studies of continuum Schwinger methods (CSMs) have shown that
the emergence of hadron mass rests on three pillars: (a) the running quark mass, (b) the
running gluon mass, and (c) the process-independent effective charge. These three pillars
provide the basis for giving observable results of hadron properties [111].

Appendix A.1.1. Running Quark Mass

The first pillar is the most familiar, namely the running quark mass. The dressed-
quark propagator can be represented by a special quantity, the dressed-quark mass function.
Modern CSMs calculations of the quark gap equation show that the dressed-quark mass
function is a finite value of M0(k2 = 0) = 0.41 GeV in the far infrared, even in the chiral
limit. This is an explicit expression of the dynamical chiral symmetry breaking (DCSB),
and the infrared scale is responsible for the masses of all hadrons, and the running quark
mass is therefore regarded as an expression of the EHM. In a sense, the quark in the far
infrared can be seen as a quasiparticle, produced by the interaction of the high-energy
quark parton with the gluon. The scale of the dressed-quark mass function in the far
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infrared is comparable to the scale in the constituent quark model. The difference is
that the dressed-quark mass function is momentum-dependent, and it runs from the far
infrared to the ultraviolet, where it matches the current quark mass in perturbation theory.
The dressed-quark mass function is also flavor-dependent, with the Higgs mechanism
gradually dominating in describing it from light to heavy quarks, while the dressed-quark
mass function decreases at a slower rate. It is worth emphasizing that the ultraviolet
behavior of the dressed-quark mass function in the chiral limit is related to the well known
chiral condensates.

Appendix A.1.2. Running Gluon Mass

The second pillar is the running gluon mass. Gauge invariance requires that the gluon
parton be massless. However, in the Schwinger mechanism of QCD, it was conjectured
long ago that the two-point gluon Schwinger function might give rise to a massive dressed
gluon. Thus, the dressed gluon gains mass and the gluon parton is transformed into
the gluon quasiparticle by interaction with themselves. Consequently, gluons can have
a momentum-dependent mass function, and this non-zero function has been confirmed
by both the continuum and lattice QCD. The dressed gluon mass function is power-law
suppressed in the ultraviolet, so it is invisible in perturbation theory. However, it is non-zero
in the infrared momentum range, and in the far infrared it yields a value of mg = 0.43 GeV.
This is purely a manifestation of “mass from nothing” and is responsible for all hadron
masses. It is worth emphasizing that the running gluon mass may also be associated with
confinement. The gluon two-point Schwinger function has an inflection point, so it has
no Källén-Lehmann representation, and therefore the relevant states cannot appear in the
Hilbert space of physical states.

Appendix A.1.3. Process-Independent Effective Charge

The third pillar is the process-independent effective charge. QCD has a running
coupling which expresses the feature of asymptotic freedom in the ultraviolet at one-
loop order, but it also shows a Landau pole in the infrared, where the coupling becomes
divergent when k2 = Λ2

QCD. However, recent advances in CSMs based on pinch techniques
and background field methods show that QCD has a unique, nonperturbatively well-
defined, computable, process-independent effective charge. Its large-momentum behavior
is smoothly connected to the QCD running coupling at one-loop order, while it is convergent
at small momentum. The Landau pole is eliminated due to the appearance of the gluon
mass scale in the infrared. It is noteworthy that, at small momentum, the effective charge
run ceases and it enters a domain that can be regarded as an effective conformal. In this
domain, the gluons are screened so that the valence quasiparticle can be seen as carrying all
the properties of a hadron. Furthermore, the process-independent effective charge matches
the Bjorken process-dependent charge, and in practical use they can be considered to be
indistinguishable. Additionally, the process-independent effective charge is a well-defined
smoothing function at all available momenta, from the far infrared to the ultraviolet, so
it can be a good candidate for applications, for example, in evolving parton distribution
functions to different scales.

Appendix A.2. Hadrons in Vacuum

A direct correlation with the running quark mass is its effect on pseudoscalar mesons,
especially the lightest meson, the pion [112,113]. As a chiral symmetry breaking Nambu–
Goldstone boson, the well-known Goldberger–Treiman relation relates the dressed-quark
mass function to pion’s Bethe–Salpeter amplitude, so that, to some extent, it can be seen that,
once the one-body problem is solved, the two-body problem is also solved. Furthermore,
because of its direct connection to the dressed quark mass function, the properties of the
pion can be seen as the cleanest window to glimpse the emergence of hadron mass. In the
quark model, the vector meson is a spin-flip state of the pseudoscalar meson, and thus
the ρ meson is the closest relative to pions. However, the properties of ρ mesons are
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significantly different from those of pion. Compared to the surprisingly light pion, the ρ is
much heavier. Therefore, one can ask a straightforward question: how does the spin flip
produce such different masses for the two mesons? Since QCD is a well-defined theory of
strong interactions, it must answer such a fundamental question.

The meson spectrum includes not only ground states, but also excited states with
high orbital angular momenta between the quark and antiquark constituents of the meson.
The study of excited mesons is more difficult in both lattice QCD and CSMs. Experience
tells us that the well-known rainbow ladder approximation does not provide the correct
ordering of the meson masses between ground and excited states when using CSMs [114].
Recent improvements to the Bethe-Salpeter kernel have made it possible for practitioners
of CSMs to reproduce the empirical results. The new feature of modern Bethe-Salpeter
kernel is the inclusion of a term closely related to the anomalous chromomagnetic moment,
which reflects the influence of the EHM on the quark gluon vertex and which can be used
to effectively describe the excited meson state very well.

In addition to studying mesons made up of light quarks, it is also worth exploring
how the properties of mesons vary with meson mass. In the quark model view, if a valence
light quark in pion is replaced by a strange quark, a kaon is formed. A kaon is also
a Nambu–Goldstone boson in the chiral limit, however, in the real world, the strange
quark, produced through the Higgs mechanism, is 27 times more massive than the current
light quarks. Thus, the properties of the kaon are the result of the combined effect of the
Higgs mechanism and the emergence of hadron mass. This has been revealed from the
study of the parton distribution functions of kaons. The skewness of the distribution is
caused by the heavier strange quark, while the overall broadening of the distribution is
caused by the EHM. If mesons consisted of heavier quarks, charm, and bottom quarks,
the Higgs mechanism would dominate and be the largest source of heavy meson properties.
In particular, pseudoscalar mesons and heavy vector mesons are of particular interest
as mesons with zero orbital angular momentum in the quark model [115,116]. Their
distributions are usually narrower than those of light mesons, since it has been pointed
out that the distribution in the heavy-quark limit is a Dirac delta function. The difference
in distributions provides a clear picture of how the properties of mesons evolve with
increasing meson mass, and the CSMs is a unified framework for describing all mesons,
from pion to Upsilon.

It is worth mentioning that progress in mesons has also been extended to baryons.
The properties of baryons are calculated using the Faddeev equation describing the three-
quark scattering problem. Since the complete three-body problem in nature is much
more complicated, the quark dynamical-diquark method is usually introduced, which is
useful as a means of elucidating many qualitative features. Central to this approach is
the incorporation of five different diquark correlations, of which the axial-vector diquark
is of outstanding importance, to produce the correct baryon spectrum as well as baryon
structure functions such as distribution functions, electromagnetic, axial, and pseudoscalar
form factors.

In addition to the existing traditional hadrons, mesons, and baryons, many other new
hadron states have been proposed experimentally and theoretically, such as exotic states,
pentaquark, tetraquark, hybrid states, and glueballs. In the field of research on mesons
consisting of heavy quarks, a comprehensive study of the charm family has been carried
out thanks to a large amount of experimental data from the B-factory. As a result, states
such as XYZ states, pentaquark, and tetraquark have extensively extended our knowledge
of QCD bound states. In the field of research on mesons consisting of light quarks, there is
a tendency to think that gluon degrees of freedom may also play a role in the formation
of bound states, and thus there is speculation about the existence of states such as hybrid
states and even glueballs [117]. This has been found from calculations of lattice QCD and
CSMs, and future experiments, such as the 12 GeV upgrade experiment at Jefferson Lab,
which will provide an opportunity to test these theoretical predictions.



Particles 2023, 6 230

Appendix A.3. Hadrons in Cold Dense Medium

In a cold and dense medium, i.e., for non-zero baryo-chemical potentials, quarks and
emergent hadrons suffer the impact of the ambient matter. From low to high chemical
potential domains, QCD will go through a phase of confinement and dynamical chiral
symmetry breaking to a phase of deconfinement and chiral symmetry restoration. The key
to the study is to determine the critical point/region at which the transition occurs and to
which category the “phase transition” belongs.

Since the full domain of the finite chemical potential is currently not fully available in
lattice QCD simulations, a complementary approach is CSMs [118–120], which expresses
the dynamical chiral symmetry breaking and confinement in QCD, so that it can therefore
be used as a tool to explore the properties of quark and hadron matter in cold dense
medium, thus revealing relevant features of objects such as neutron stars. In the CSMs,
the medium-induced dressed-quark propagator can be obtained by solving the quark gap
equation in the medium, and the quark condensates are proportional to the matrix trace of
the dressed quark propagator in the chiral limit. The quark condensate is crucial because it
is commonly seen as the order parameter of the deconfinement (phase) transition. In some
studies it has been shown that the chiral quark condensate is discontinuous with chemical
potential, so that in the chiral limit the phase transition is of first order. Furthermore,
it has been suggested that the QCD quark condensate may be completely contained in
hadrons [121]. In addition to quarks, hadrons are also affected by the ambient medium at a
non-zero chemical potential and, consequently, their masses change, showing noticeable
deviations from the masses in vacuum. The appearance of a turning point in the chemical
potential dependence of the hadron mass can also characterize the occurrence of chiral
symmetry transition. It has also been proposed that increasing the chemical potential
promotes the possibility of quark-quark Cooper pairing, i.e., diquark condensation. Quark-
quark Cooper pairs are composite bosons with both electric and color charge, and thus
superfluidity in quark matter entails superconductivity and color superconductivity.

These hadronic in-medium information is important not only for imaging the QCD
phase diagram, but also for constructing a unified EoS from low-density nucleonic matter
to high-density quark matter, and thus becomes crucial for determining the properties of
neutron stars. Analog reasoning applies to other forms of strong-interaction matter which
could govern new classes of compact stars, e.g., pion stars [1].

Appendix A.4. Supplementary Remarks

Before supplementing the above reflections by another approach to EHM w.r.t. con-
densates as fundamental QCD quantities, let us mention that the ab initio access to hadron
vacuum masses is directly based on QCD as the theoretical basis of strong interaction. The
current status is reviewed in Ref. [122]: a compelling description of the mass spectrum and
various other hadron parameters is achieved by lattice QCD.

The operator product expansion relates parameters of a hadron model of the spec-
tral function to a series of QCD condensates, most notably the above mentioned chiral
quark condensate 〈q̄q〉, the gluon condensate 〈 αs

π G2〉, the mixed quark-gluon condensate
〈q̄gsσGq〉, the triple gluon condensate 〈g3

s G3〉, the four-quark condensates 〈q̄Γqq̄Γq〉 (Γ
denotes all possible structures formed by Dirac and Gell–Mann matrices) [123] and the
poorly known condensates with higher mass-dimension. Further ingredients are the Wil-
son coefficients, which are accessible by perturbation theory [124]. In a strong-interaction
medium, the condensates change: 〈· · · 〉0 → 〈· · · 〉T,µB ; one could say that they are ex-
pelled from vacuum (label “0”) by a higher spatial occupancy due to non-zero temperature
and density (parametrized by µB) ( similar to concerns as on the Higgs field condensate
challenge such a picture of the vacuum, cf., [125] and follow-up citations). The induced
dropping of condensates facilitates in-medium modifications of hadrons, in particular due
the coupling to the chiral condensate, which is often considered as an order parameter of
chiral symmetry. A recent review is Ref. [126].
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In the baryon sector, the impact of the four-quark condensates and other in-medium-
only condensates make unambiguous analyses of QCD sum rules somewhat vague. Previ-
ous factorizations relate the many four-quark condensates to the chiral condensate modulo
some uncertain factor. For a comprehensive discussion, see Ref. [127], which focuses on the
emergence of the nucleon mass, most notably mp, from various quark and gluon condensates.

This brief journey should supplement our perspective of how the hadronic constituents
of matter in compact stars acquire their masses and that the ambient medium modifies
them. The very first step of gaining the above mentioned bare input masses by the Higgs
mechanism is therefore left out, see Figure A1. The various bare quark masses appear in
several QCD approaches as parameters adjusted to data. This is evidenced, e.g., in the
approach [114]: A formula of two-quark meson masses is developed, m(m1, m2), where
m1,2 refer to the bare quark masses. As shown in Figure 3 in Ref. [114], inspection of the
contour lines m(m1, m2) = const. can be used to pin down numerical values of bare masses
m1,2 which reproduce empirical values of ground states in the pseudo-scalar and vector
channels including light u, d, strange and charm quarks at once; redundancy is used for
cross checking. In addition, Regge trajectories become accessible to some extent [114,128].

Figure A1. Masses within the SM. Mysterious concentration of bare SM masses (quarks [u, d, s, c, t, b],
leptons [e, µ, τ], gauge bosons [W±, Z0], Higgs [H]) and separation of neutrinos (ν′s = [νe,µ,τ ]) on a
large energy scale ranging from present-day cosmic background radiation ωCBR

2.7 K ≈ 0.233× 10−3 eV
to Planck mass mPl =

√
h̄c/GN ≈ 1.22× 1019 GeV. Only the QED and QCD gauge Bosons [γ, g]

remain massless.

Appendix B. Holographic Approach to the EoS

Here we present a particular model of strong-interaction matter that is based on the
famous AdS/CFT correspondence. In line with Refs. [129–131] we employ the action in a
fiducial five-dimensional space-time with asymptotic AdS symmetry:

SEdM =
1

2κ2
5

∫
d4x dz

√
−g5

(
R− 1

2
∂Mφ ∂Mφ−V(φ)− 1

4
G(φ)F2

B

)
, (A1)

where R is the Einstein–Hilbert gravity part, FMN
B = ∂MBN − ∂NBM stands for the field

strength tensor of an Abelian gauge field B à la Maxwell with BMdxM = Φ(z)dt defining
the electro-static potential. An embedded black hole facilitates the description of a hot and
dense medium, since the black hole has a Hawking surface temperature and sources an
electric field, thus encoding holographically a temperature and a density of the system.
Dynamical objects are a dilatonic (scalar) field φ and a Maxwell-type field Φ that are
governed by a dilaton potential V(φ) and a dynamical coupling G(φ) and geometry-related
quantities. For a more general holographic approach to compact star physics, cf., Ref. [132].
Space-time is required to be described by the line element squared

ds2 = gMNdxMdxN := exp{A(z, zH)}
[

f (z, zH)dt2 − d~x2 − dz2

f (z, zH)

]
, (A2)
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where zH is the horizon position, z ∈ [zH , ∞] is the radial coordinate, A is the warp factor,
and f the blackness function.

The resulting Einstein equations are a set of coupled second-order ODEs to be solved
with appropriate boundary conditions. The quantities V and G are tuned ( in contrast
to former work, we here put emphasis on side conditions which ensure that, at µB = 0,
no phase transition is facilitated outside the temperature range uncovered by the lattice
data) to quantitatively describe the lattice QCD results [133]: Meanwhile, at µB = 0,
the datasets [134,135] are consistent, special combinations of quantities, e.g., e/p, enhance
the small differences. This is, in particular, is striking at T ∈ [130, 140] MeV, where a +4%
(−10%) deviation in energy density (pressure) even changes the shape of the e/p curve
when ignoring the error bars

∂φ ln V(φ) = (p1φ + p2φ2 + p3φ3) exp{−γφ}, (A3)

G(φ) = 1
1 + c5

(
1

cosh(c1φ + c2φ2)
+

c3

cosh c4φ

)
(A4)

with parameters {p1,2,3, γ} = {0.165919, 0.269459, −0.017133, 0.471384} and {c1,2,3,4,5} =
{−0.276851, 0.394100, 0.651725, 101.6378, −0.939473}. These parameters and the scales im-
plicitly refer to the QCD input, see Figure A2. The trace anomaly measure ∆, Equation (12),
is exhibited in Figure A2, left, for various temperatures T and at baryon-chemical potential
µB = 0; the middle panel is for the ratio e/p. As argued in Ref. [105], the high-temperature,
small-density and low-temperature, high-density behavior is strikingly different. A further
crucial input quantity is the susceptibility χ2 = ∂µB nB|µB=0, see the right panel in Figure A2.
The length scale of the z coordinate is set by L−1 = 1465 MeV, which relates the horizon
position zH and temperature via T = −1/(4π∂z f (z, zH))|z=zH , and by κ2

5 = 8.841 fm−3,
which determines entropy density s(T, µB) = 2π

κ2
5

exp{ 3
2 A(zH , zH)} and baryon density

nB(T, µB) = −πL2

κ2
5

∂2
zΦ(z, zH)|z=0.

Figure A2. Trace anomaly measure ∆ (left panel) and ratio e/p (middle panel) for the holographic
model with tuned parameters to describe the lattice QCD data [133] (small crosses) at µB = 0. Errors
are constructed either from combining the respective maximum and minimum values (vertical error
bars) or by error propagation in quadrature (blueish error bars). The scaled susceptibility χ2/T2 is
displayed in the right panel; data (symbols) from [136].

The comparison of the scaled pressure p/T4, ratio e/p, and scaled baryon density
nB/T3 with the data [133] at µB/T = 1 and 2 in Figure A3 exhibits good agreement in the
small-µB region. That is, the model successfully maps QCD thermodynamics from the T axis
into the T-µB plane, in particular towards the µB axis: p(T) 7→ p(µB) = p(T(µB)). Curves
of constant pressure, T(µB)|p=const, are determined by dT/dµB = −nB(T, µB)/s(T, µB),
(from p(T(x), µB(x)) = const and assuming a parametric representation T(x) and µB(x)
with x being the arc length. dp/dx = (∂p/∂T)(dT/dx) + (∂p/∂µB)(dµB/dx) = 0 then
uses s = ∂p/∂T and nB = ∂p/∂µB. The technicalities of holographically determining these
quantities and the properties of the resulting EoS are relegated to a separate paper.) The left
panel in Figure A4 is for a toy model demonstrating how the EoS given on the temperature
axis is mapped to the chemical potential axis exhibited in Figure A4. The lattice data [133]
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are for T ∈ [125, 240] MeV at small values of µB (see the right panel). The “transport” into
the restricted region of the T-µB plane by the holographic model is already an extrapolation,
which requires a smooth pattern of T(µB)|p=const curves without junctions, branchings,
crossings, etc. The extrapolation of the data to T < 125 MeV and T > 240 MeV at µB = 0
by the parameterizations (A3) and (A4) is another type of extrapolation. Thu,s the region
beyond the displayed p = const curves could be hampered by both types of uncertainties,
but nevertheless may serve as educated guess of the cool EoS in the high-density realm.
The benefit of such an approach is the direct coupling of the hot EoS, being an essential
input in describing ultra-relativistic heavy-ion collisions by fluid dynamics, and the cool
EoS, being the input for compact (neutron) star structure and (merger) dynamics.

Figure A3. Scaled pressure p/T4 (left panel), ratio e/p (middle panel), and scaled baryon density
nB/T3 (right panel) as a function of temperature for µB/T = 1 (blue) and 2 (red) in comparison with
the data [133] (symbols with error bars).

Figure A4. Curves of constant pressure over the T-µB plane. In such a way, the pressure data on the T axis

are directly “transported” towards the µB axis, in particular p(T = 0, µ
(0)
B ) = p0 := p(T0, µB = 0) along

the constant-pressure curve T(µB)|p=p0 starting at T(µB = 0) = T0 and terminating at T(µ(0)
B ) = 0.

The energy density, with s(T, µB) and nB(T, µB) given, then follows from e = −p + Ts + µBnB

(Gibbs–Duhem). Left panel: A simple toy model is employed here for the purpose of demonstration
(s = 4aT3 + 2bTµ2

B, nB = 4cµ3
B + 2bT2µB, and numerical values b/a = 0.027384, c/a = 0.000154

referring to a two-flavor ideal quark-gluon plasma). Right panel: For the holographic model (A1),
(A3) and (A4) in a region (grey hatched) controlled by lattice QCD data [133] on the dark-grey beam
sections.

Instead of explicitly using hadronic degrees of freedom to devise the holographic
EoS, here the EoS as relation of energy density and pressure is solely deployed. Of course,
the underlying hot QCD EoS is anchored in the common quark-gluon dynamics with
intimate contact to the hadron observables.
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