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Abstract: Over the past several years, there has been enormous interest in massive neutron stars and
white dwarfs due to either their direct or indirect evidence. The recent detection of gravitational wave
event GW190814 has confirmed the existence of compact stars with masses as high as ∼2.5–2.67 M�
within the so-called mass gap, indicating the existence of highly massive neutron stars. One of the
primary goals to invoke massive compact objects was to explain the recent detections of over a dozen
Type Ia supernovae, whose peculiarity lies with their unusual light curve, in particular the high
luminosity and low ejecta velocity. In a series of recent papers, our group has proposed that highly
magnetised white dwarfs with super-Chandrasekhar masses can be promising candidates for the
progenitors of these peculiar supernovae. The mass-radius relations of these magnetised stars are
significantly different from those of their non-magnetised counterparts, which leads to a revised
super-Chandrasekhar mass-limit. These compact stars have wider ranging implications, including
those for soft gamma-ray repeaters, anomalous X-ray pulsars, white dwarf pulsars and gravitational
radiation. Here we review the development of the subject over the last decade or so, describing the
overall state of the art of the subject as it stands now. We mainly touch upon the possible formation
channels of these intriguing stars as well as the effectiveness of direct detection methods. These
magnetised stars can have many interesting consequences, including reconsideration of them as
possible standard candles.

Keywords: neutron stars; white dwarfs; magnetic fields; magnetohydrodynamics; general relativity;
radiative transfer; equation of state

1. Introduction

In the last several years, there has been much interest in massive compact objects.
Sometimes the evidence is direct; however, it is indirect on some other occasions. For
instance, the detection of gravitational wave (GW) event GW190814 [1] directly confirms
the existence of a compact star with a mass of 2.5–2.67M�. Thus far, the minimum mass
of an astrophysical black hole is understood to be around 3M� [2,3] (also see [4]) while
the maximum mass of a neutron star (NS) is argued to be about 2.5M� [5], leading to a
so-called mass gap. Therefore, the above observation fills in the gap, arguing the compact
object to be a massive NS. Note, however, that some researchers also claim against this mass
gap. There indeed can be a depression in mass distribution. Nevertheless, there is other
evidence for massive NSs (although not as massive as that inferred from GW190814) based
on pulsar observations [6] with mass > 2M�. Indeed, the statistics based on observation
showed that while the averaged mass of NSs is about 1.4M�, the accreted millisecond
pulsars have masses, on average, of 1.6M� [7,8]. Hence, there is no surprise with the
discovery of more than two solar mass pulsars.

On the other hand, for more than 15 years, at least a dozen objects have been detected
as peculiar over-luminous Type Ia Supernovae (SNeIa), whose unusually high luminosity,

Particles 2022, 5, 493–513. https://doi.org/10.3390/particles5040037 https://www.mdpi.com/journal/particles

https://doi.org/10.3390/particles5040037
https://doi.org/10.3390/particles5040037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/particles
https://www.mdpi.com
https://orcid.org/0000-0002-3020-9513
https://orcid.org/0000-0003-3219-4324
https://doi.org/10.3390/particles5040037
https://www.mdpi.com/journal/particles
https://www.mdpi.com/article/10.3390/particles5040037?type=check_update&version=3


Particles 2022, 5 494

along with their violation of Khokhlov’s limit [9], argue for progenitor masses that are as
high as 2.8M� [10,11]. This is evidence for a significant violation of the Chandrasekhar
mass-limit of ∼1.4M� of white dwarfs (WDs) and a super-Chandrasekhar mass-limit.

An important question to ask is: how do we argue for the existence of such uncon-
ventional and massive compact objects? Numerous investigations have been carried out
by our group aimed at uncovering this mystery over the last one decade. We have shown
that strong magnetic field: its strength and anisotropic effect [12–22], modified Einstein’s
gravity [23,24], and matter encountering noncommutative physics at high density in the
core of compact stars [25,26] can each independently lead to highly massive WDs and NSs.
After our initiation, several other groups independently started looking at this issue based
on other ideas, e.g., the ungravity effect [27], WDs having net electric charge [28,29], lepton
number violation [30] and anisotropic pressure [31]. Additionally, there appears to be a
relation between equation of state (EoS) and compact mass [32].

Magnetic fields in WDs and NSs, in general, degenerate stars, have been explored for
a long time (see the review [33] from three decades ago). In general, it is not difficult to
understand the surface field of WDs and NSs to be ∼109 and 1015 G, respectively [33,34],
based on their different origins, e.g., fossil effect, dynamo, binary evolution etc. [35,36].
Spectropolarimetric observations suggest that the magnetic flux of majority magnetic WDs
is similar to that of main-sequence Ap-Bp stars [34]. This argues for an evolutionary link of
magnetism between the main sequence stars and WDs. A similar argument can be made for
isolated NSs if the underlying O-type progenitors have effective dipolar fields ∼103 G [34].
It has been statistically found that magnetic WDs are, in general, massive, and their number
with fields at high as ∼109 G could even be 10% of the total population [35]. However,
magnetic field evolutions for isolated and accreting WDs are different. This is no surprise
because in the outer layers of WDs, the field structure is expected to be modified due to
accretion, particularly above a critical accretion rate ≈ (1–5)× 10−10M�yr−1. This results
in a shorter Ohmic decay time, leading to an apparent lack of field ∼109 G in observed
accreting WDs [37,38].

Among other consequences of magnetized and modified gravity-induced WDs are WD
pulsars. These stars can also behave as soft gamma-ray repeaters (SGRs) and anomalous
X-ray pulsars (AXPs) [39–41], generating significant gravitational radiation that can be
detected by space-based detectors [42–44]. Many of these transients can eventually turn
out to be WDs with super-Chandrasekhar masses. Observational data from the Sloan
Digital Sky Survey (SDSS) suggest that magnetic WDs can have larger masses compared to
their non-magnetic counterparts, although they span the same temperature range [45,46].
Regardless of the rotation rate, strong magnetic fields have been shown to modify the EoS
of electron degenerate matter and yield super-Chandrasekhar WDs with masses up to
∼2.6 M� [12–14,17].

The effect of strong magnetic fields on the mass-radius relation has been explored
previously by our group for both Newtonian [12] and general relativistic [15–17,21] for-
malisms. These studies were performed for various different field configurations and were
in good agreement with the results from independent studies [29,47,48]. All the above ven-
tures, including the underlying observations, by the aforementioned groups have brought
super-Chandrasekhar WDs into the limelight in recent times. Magnetized WDs (B-WDs)
have many important implications other than their apparent link to peculiar SNeIa, and,
therefore, their other properties should also be explored [39,40]. Strong magnetic fields can
influence the thermal properties of WDs, namely their luminosity, temperature gradient
and cooling rate [18,20–22]. Moreover, the magnetic field of WD has a crucial role in their
binary evolution as progenitors of SNeIa or accretion-induced collapse [49–51]. Addition-
ally, a possible merger through binary evolution leading to a peculiar SNeIa could be an
alternate explanation for super-Chandrasekhar progenitors [52].

In this review paper, we discuss the broad implications of these compact stars as
well as the current status of observations. We aim at gathering all the underlying results
obtained in last decade or so and try to assess the overall state of the art of the subject as
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it stands now, in particular regarding the effects of magnetic fields in NS and WD. This
paper is organised as follows. In Section 2, we discuss the origin and evolution of strong
magnetic fields inside WD stars. In Section 3, we simulate the rotating and magnetized B-
WDs based on their structural stability for toroidal and poloidal magnetic field geometries.
In Section 4, we compute the mass-radius relation for non-rotating B-WDs, assuming a
spherical geometry and radially varying field strength. In Section 5, we explore the effect of
cooling as well as magnetic field dissipation on the modified mass limit and the suppressed
luminosities of B-WDs. In Section 6, we briefly describe the quantisation of energy states of
matter in B-WDs and derive their modified mass limit, assuming both constant and varying
magnetic fields. In Section 7, we investigate the GW emission originating from WDs with
misaligned rotation and magnetic axes, along with their detection prospects. Finally, we
discuss the effect of anisotropy of dense matter in the presence of strong magnetic fields
on the properties of B-WDs in Section 8 and conclude in Section 9.

2. Origin and Evolution of Magnetic Fields inside White Dwarfs

Here, we discuss the origin of strong fields inside magnetised WDs and their evolution
at the end of the main sequence during the asymptotic giant phase. We present both
numerical results from the Cambridge stellar evolution code STARS and analytical estimates
from virial theorem that provide a relation between various energy components of the WD.

2.1. Origin of Magnetic Field

Magnetic fields in stars exhibit complex behaviour with structure on both small and
large scales. The origin of large-scale fields is debated. They can be fossil fields (e.g., [14,34])
that can be dated back to the formation of the star or fields generated by a dynamic effect.
Additionally, the field can be generated due to WD mergers (e.g., [34]). As large-scale
magnetic fields in stars can be unstable, dynamo effects are interesting because they can
regenerate these fields. It is well known that purely poloidal or toroidal fields in stars are
both structurally unstable [53,54]. However, magnetized stars and B-WDs with a toroidally
dominated mixed field configuration, along with a small poloidal component, are among
the most plausible cases [55] and also have an approximately spherical shape [17]. Unlike
the surface magnetic field, which can be observationally inferred, fields in the interior of the
WD cannot be directly constrained. However, there is a sufficient evidence that stars exhibit
dipolar fields in their outer regions and are expected to have stronger toroidally dominated
fields in their interior. Numerical simulations have already shown that the central fields of
B-WDs can be several orders of magnitude higher than those at the surface [17,56,57].

2.1.1. Dynamo-Model Based STARS Simulations

The evolution of magnetic field components along with the angular momentum during
stellar evolution has been modelled recently with the Cambridge stellar evolution code
STARS [56] using advection-diffusion equations coupled to the structural and compositional
equations. It has been shown that the magnetic field is likely to be dipolar in nature,
decaying as an inverse square law for most of the star. The simulation results also suggest
that, at the end of main sequence, stars have toroidally dominated magnetic fields. The
authors reported [56] the evolution of toroidal field in the interior of the WD as a function
of mass coordinate at various times in the end of main sequence after the exhaustion of
helium nuclei in the core, i.e., during the asymptotic giant phase, as displayed in Figure 1
for completeness.

Large-scale magnetic fields can be present in the degenerate core of magnetised WDs
or B-WDs; even during the late stages of stellar evolution [56] very high fields can develop
based on the conservation of magnetic flux, as well as from the dynamo mechanism.
Therefore, strong fields inside magnetized WDs can also be of fossil origin. While the
mass of the WD increases due to accretion, the magnetic field is advected into its interior.
Consequently, the gravitational power dominates over the degeneracy pressure, which
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leads to the contraction of the star. Hence, the initial seed magnetic field is amplified as the
total magnetic flux remains conserved.

Figure 1. Toroidal field inside the star is shown as a function of the mass coordinate at various times
after the helium exhaustion in the core, during the asymptotic giant phase. See [56] for details.

For magnetic field B ∼ 108 G within a star of size R ∼ 106 km, the resultant flux
will be ∼1020 G km2. From flux freezing, for a 1000 km size B-WD, the magnetic field can
then grow up to ∼1014 G. Once the field increases, the total outward force further builds
up to balance the inward gravitational force, and the whole cycle is repeated multiple
times. Therefore, the magnetic fields of B-WDs are likely to be fossil remnants from their
main-sequence progenitor stars.

2.1.2. Modified Virial Theorem

Virial theorem relates the integrated gravitational potential, thermal, kinetic and
magnetic energies of a physical system to provide insight into its equilibrium configuration.
By invoking magnetic flux conservation and based on the variation of the internal magnetic
field with the matter density as a power law, the modified virial theorem can be derived
using the equation of magnetostatic equilibrium [58]. The well-known form of the virial
theorem is

2T + W + 3Π + µ = 0, (1)

where T, W, Π and µ are the kinetic, gravitational, thermal and magnetic energies, re-
spectively. For the case of a static non-rotating WD, we have T = 0. Assuming that a
polytropic EoS is satisfied through the entire star such that P = KρΓ, where K and Γ are
polytropic constants, and M = (4π/3)R3ρ with ρ is the mean density, the scalar virial
theorem reduces to

− α
GM2

R
+ β

MΓ

R3(Γ−1)
+ γ

Φ2
M

R
= 0. (2)

After rearranging the terms, we obtain

M =

√√√√ γΦ2
M

αG
(

1− βMΓ−2

αGR3Γ−4

) (3)

for any Γ. For Γ = 4/3, appropriate for extremely relativistic non-magnetic degenerate
electrons, we obtain a mass which is independent of radius for a fixed magnetic flux,
as expected from Chandrasekhar’s theory. We evaluate the coefficients α, β and γ to
establish the modified virial theorem for a high magnetic field.
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In the presence of a strong magnetic field, the contribution of the magnetic pressure to
the magnetostatic balance cannot be neglected. The new momentum balance condition,
neglecting the effect of magnetic tension, is then given by

1
ρ

(
dP
dr

+
dPB
dr

)
= −Gm(r)

r2 (4)

at an arbitrary radius r with mass enclosed at that radius m(r), where ρ includes the
contribution from magnetic field and PB is the pressure due to the magnetic field of the star.
We consider two different approaches to compute the modified virial theorem (see [58]):
(i) invoke flux conservation (freezing), which is quite common in stars when conductivity
is high, and (ii) assume the magnetic field varies as a power law with respect to density,
just as the EoS of thermal pressure, throughout.

For the case (i), the coefficients of the modified virial theorem are obtained as

α =
3(Γ− 1)
5Γ− 6

, β =
3ΓK

(4π)Γ−1 , γ =
2(n− 1)
5Γ− 6

+
4n− 3

6
. (5)

When for n = 1, the situation simplifies to that of a non-magnetized or weakly
magnetized WD or a B-WD with constant magnetic field and hence constant PB throughout.
For power-law fields of case (ii), corresponding coefficients are

α =
3(Γ1 − 1)
5Γ1 − 6

, β =

(
1 +

Γ− Γ1

(5Γ1 − 6)(Γ− 1)

)
3ΓK

(4π)Γ−1 , γ =
1
6

, (6)

where Γ1 is the constant from the relation PB = K1ρΓ1 . It is important to note that α is
related to the scaling of B with ρ. Therefore, the presence of magnetic pressure allows either
a more massive or smaller star. For Γ = Γ1, the result reduces to that of the non-magnetic
case with a redefined K. Figure 2 shows the variation of radius with indices n and Γ1 for the
conserved flux and power-law field models, respectively, with various Γ and total masses.

Figure 2. Left panel: Variation of radius with n for the conserved flux model with various Γ and total
masses. Right panel: Variation of radius with Γ1 for the power-law field model with various Γ and
total masses. In each case, Γ = 4/3 corresponds to B = 1014 G, and Γ = 2 corresponds to B = 1016 G,
with B being the average magnetic field. Parameter sets from top to bottom mentioned in the figures
correspond to the lines sequentially from bottom to top in the low n and Γ1 regimes. See [58].

2.2. Evolution of Magnetic Field

Highly magnetised WDs can possibly result from repeated episodes of accretion
and spin-down [57]. The entire evolution of the B-WD can be classified in two phases:
accretion-powered and rotation-powered. The accretion-powered phase is governed by
three conservation laws: linear and angular momenta conservation and conservation of
magnetic flux around the stellar surface, given as
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lΩ(t)2R(t) =
GM(t)
R(t)2 , I(t)Ω(t) = constant, Bs(t)R(t)2 = constant, (7)

where l > 1 accounts for the dominance of gravitational force over the centrifugal force,
I is the stellar moment of inertia and Ω is the angular velocity of the star that also includes
the contribution acquired due to accretion. Here, we neglect any possible field decay and
assume a specific field geometry. Solving the above equations simultaneously gives the
time evolutions of the radius, magnetic field and angular velocity during the accretion
phase. Accretion discontinues when

− GM
R2 =

1
ρ

d
dr

(
B2

8π

)
r=R
∼ − B2

s
8πRρ

, (8)

where ρ is the density of the inner disk edge.
If the magnetic field is dipolar, Ω̇ ∝ Ω3 for a fixed magnetic field. Generalizing it to

Ω̇ = kΩn with constant k giving for the spin-powered phase, we obtain

Ω = [Ω1−n
0 − k(1− n)(t− t0)]

1/1−n, (9)

and Bs =

√
5c3 IkΩn−m

R6sin2χ
. (10)

Here, Ω0 is the initial angular velocity for the spin-powered phase (once accretion
stops) at time t = t0, and χ is the angle between the rotation and magnetic axes. The
value of k is fixed such that Bs can be constrained at t = t0, which is known from the
field evolution in the preceding accretion-powered phase. Here, n = m = 3 corresponds
to the dipole field configuration; therefore m represents the deviation from the dipolar
field, especially for n = 3. Figure 3 shows the sample evolutions of angular velocity and
magnetic field as functions of stellar mass. The initial angular velocity and particularly
the magnetic field are chosen in such a way that they do not affect the stellar structure
with respect to when they are zero. In both cases, initially larger Ω with accretion drops
significantly during the spin-powered phase, followed by a phase of its increasing trend.
At the end of the evolution, the star can be left either as a super-Chandrasekhar WD and/or
an SGR/AXP candidate with a higher spin frequency. Other initial conditions do not
produce qualitatively different results.

Figure 3. Time evolution of angular velocity ((a) panel) and magnetic field ((b) panel) as functions
of mass. The solid curves correspond to the case with n = 3, m = 2.7, ρ = 0.05 g cm−3, l = 1.5 and
dotted curves correspond to the case with n = 3, m = 2, ρ = 0.1 g cm−3, and l = 2.5. The other
parameters are fixed with k = 10−14, Ṁ = 10−8 M�yr−1, χ = 10◦ and R = 104 km at t = 0. See [57].
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3. Simulating Magnetized and Rotating White Dwarfs and Their Stability

In nature, WDs are expected to consist of mixed field geometry, including both toroidal
and poloidal magnetic field components. However, here we consider toroidally dominated
magnetic fields as they ensure the stability of these stars. Note, in fact, that the core
of WDs may contain a stronger toroidal field, which contributes to the stellar structure,
mostly including mass, with a weaker surface poloidal field. We simulate WDs and B-WDs
based on the Einstein equation solver, XNS code [59]. It has been shown that toroidally
dominated and purely toroidal fields not only make the star slightly prolate but also
increases its equatorial radius [17,60,61]. It is seen that the deformation at the core is more
prominent than the outer region. Nevertheless, the rotation of a star makes it oblate, and
hence, there is always a competition between these two opposing effects to decide whether
the star will be an overall oblate or prolate.

The combined effect of toroidal field and rotation (uniform and differential) was
already explored in detail earlier [42]. It was shown that as the angular frequency is small,
it does not affect the star considerably and results in a marginally prolate star due to
magnetic effects. However, for high angular velocity, the low density region is affected
more due to rotation than the high density central region, resulting in an oblate shaped star.
For both the explorations, the magnetic to gravitational energies ratio (ME/GE) as well as
kinetic to gravitational energies ratio (KE/GE) are chosen to be . 0.1 to maintain stable
equilibrium [62–64]. The authors found that for the central density ρc ∼ 2.2× 1010 g cm−3,
the magnetic field at the interior (close to the center) of the WD is Bmax ∼ 2.7× 1014 G.
Several WDs are observed with the surface magnetic field ∼ 109 G [45,65,66]; hence, the
central field might be much larger than 109 G. In fact, it has already been argued in the
literature that the central field could be as large as 1014–1015 G [48,67].

For differentially rotating B-WDs [17], the angular velocity profile is specified as [68,69]

F(Ω) = A2(Ωc −Ω) =
R2(Ω−ω)

α2 − R2(Ω−ω)2 , (11)

which is implemented in the XNS code used to simulate them, where A is a constant that
indicates the extent of differential rotation, R = ψ2rsinθ, ω = −βφ, Ωc is the angular velocity
at the center and ω is the angular velocity at radius r. Previous works (e.g., [16,17,42])
reported in detail the density isocontours of differentially rotating B-WDs for toroidal
and poloidal fields. It was shown that ‘polar hollow’ structure can form with differential
rotation regardless of the specific geometry of the magnetic field.

4. Mass-Limit and Luminosity Suppression in Non-Rotating White Dwarfs

Apart from increasing the limiting mass of WDs, strong magnetic fields can also
influence the thermal properties of the star, such as its luminosity, temperature gradient
and cooling rate [18–22]. To model such a WD, the total pressure inside the star is modelled
by including the contributions from the degenerate electron gas, ideal gas and magnetic
pressures. The interface is at the radius where the contributions from electron degenerate
core and outer ideal gas pressures are the same. The presence of strong fields gives rise
to additional pressure PB = B2/8π and density ρB = B2/8πc2 inside the magnetized
WDs [70] when c is the speed of light.

For an approximately spherical B-WD, the model equations for magnetostatic equi-
librium, photon diffusion and mass conservation can be written within a Newtonian
framework as

d
dr (Pdeg + Pig + PB) = −Gm(r)

r2 (ρ + ρB),

dT
dr = −max

[
3

4ac
κρ

T3
Lr

4πr2 ,
(

1− 1
γ

)
T
P

dP
dr

]
, (12)

dm
dr = 4πr2(ρ + ρB),
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where we have ignored the magnetic tension term for radially varying magnetic field
strength. In these equations, Pdeg and Pig = ρkT/µmp are the electron degeneracy pressure
and the ideal gas pressure, ρ is the matter density, T is the temperature, m(r) is the mass
enclosed within radius r, κ is the radiative opacity, Lr is the luminosity at radius r, and γ is
the adiabatic index of the gas.

The opacity in the surface layers of non-magnetised WD is approximated with Kramers’
formula, κ = κ0ρT−3.5, where κ0 = 4.34× 1024Z(1+ X) cm2 g−1, and X and Z are the mass
fractions of hydrogen and heavy elements (other than hydrogen and helium) in the stellar
interior, respectively. Assuming helium WDs for our study here, we set the helium mass
fraction to Y = 0.9 and Z = 0.1. The radiative opacity in the surface layers is mainly due to
the bound-free and free-free transitions of electrons [71]. For the radial variation of the field
magnitude within the B-WD, we adopt a profile used extensively to model magnetized
NSs and B-WDs [15,72], given by

B
(

ρ

ρ0

)
= Bs + B0

[
1− exp

(
−η

(
ρ

ρ0

)γ)]
, (13)

where Bs is the surface magnetic field, B0 is a fiducial magnetic field, and η and γ are
dimensionless parameters along with ρ0 = 109 g/cm3, which determine how the magnetic
field decays from the degenerate core to the surface. We set ρ0 = 109 g cm−3, η = 0.8 and
γ = 0.9 for all calculations, unless stated otherwise.

Radial luminosity is assumed to be constant, Lr = L, as there is no hydrogen burning
or other nuclear fusion reactions that take place within the WD core. The differential
equations are solved by providing the matter density at the surface, total WD mass and
surface temperature as the boundary conditions. For strong magnetic fields, the variation of
radiative opacity with B can be modelled as κ = κB ≈ 5.5× 1031ρT−1.5B−2cm2 g−1 [73,74].
The field-dependent Potekhin’s opacity is used instead of Kramers’ opacity if B/1012 G ≥
T/106 K, which is relevant for the strong fields that we consider.

The left panel of Figure 4 shows the effect of luminosity on the mass-radius relation
for non-magnetized WDs compared to Chandrasekhar’s results [75]. Although the increase
in L leads to progressively higher masses for larger WDs, Chandrasekhar mass limit is
retained irrespective of the luminosity. The right panel of Figure 4 shows the effect of
magnetic field on the mass-radius relation for B-WDs with L = 10−4 L� and compares
them with the non-magnetic Chandrasekhar results. It can be seen that the magnetic
field affects the mass-radius relation in a manner analogous to increasing L by shifting
the curve towards higher masses for these WDs having larger radii. The mass-radius
curves for B0 . 1013 G practically overlap with each other in the smaller radius regime and
retain the Chandrasekhar mass limit. However, for strong central fields with B0 ∼ 1014 G,
super-Chandrasekhar WDs are obtained, with masses as high as ∼1.9 M�.

To ensure structural stability of B-WD, an increase in magnetic energy density has to be
compensated by a corresponding decrease in the thermal energy and hence the luminosity.
This effect is especially prominent for B-WDs with larger radii where the magnetic, thermal
and gravitational energies are comparable with each other. We find that in the presence of
stronger field, a slight decrease in the luminosity for R & 12,000 km WDs leads to masses
that are similar to their non-magnetic counterparts. However, the smaller radius B-WDs
require a substantial drop in their luminosity (well outside the observable range) and still
do not really achieve masses that are similar to the non-magnetized WDs. As a result,
for stars with 2000 ≤ R/km ≤ 10,000, even if the luminosity decreases substantially with
10−16 ≤ L/L ≤ 10−12, the resulting mass of the B-WD remains larger than its non-magnetic
counterpart. This leads to an extended branch in the mass-radius relation.
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Figure 4. Left panel: The effect of L on the mass–radius relation of non-magnetised WDs is shown
for L = 10−4 L� (blue diamonds), L = 10−3 L� (green circles) and L = 10−2 L� (red triangles),
along with the Chandrasekhar result (black squares). Right panel: The effect of field strength on the
mass–radius relation of B-WDs is shown for B = (Bs, B0) = (0, 0) (blue diamonds), B = (109, 1013) G
(orange crosses), B = (107, 1014) G (green circles) and B = (109, 1014) G (red pluses), along with the
Chandrasekhar result (black squares) for L = 10−4 L�. See [22].

5. Effect of Magnetic Field Dissipation and Cooling Evolution

Magnetic fields inside WD undergo decay by Ohmic dissipation and Hall drift pro-
cesses with timescales given by [37,76], respectively,

tOhm = (7× 1010 yr) ρ1/3
c,6 R1/2

4 (ρavg/ρc), (14)

tHall = (5× 1010 yr) l2
8 B−1

0,14T2
c,7ρc,10, (15)

where ρc,n = ρc/10n g cm−3, R4 = R/104 km, Tc,7 = Tc/107 K, B0,14 = B0/1014 G and
l = l8 × 108 cm is the characteristic length scale of the flux loops through the outer core
of WD. Ohmic decay is the dominant field dissipation process for B . 1012 G, while for
1012 ≤ B/G ≤ 1014, the decay occurs via Hall drift, and for B & 1014 G, the principal decay
mechanism is likely to be ambipolar diffusion [76].

The field decay can be solved using

dB
dt

= −B
(

1
tOhm

+
1

tAmb
+

1
tHall

)
, (16)

where tAmb denotes the ambipolar diffusion time scale. We consider two separate cases:
(a) when only Ohmic dissipation occurs for both the surface and central magnetic fields,
and (b) while Bs continues to evolve over tOhm, Hall drift determines the B0 evolution until
the central field drops to about 1012 G, below which Ohmic dissipation sets in.

The thermal energy is radiated away gradually over time in the observed luminosity
from the surface layers as the star evolves. Because most of the electrons occupy the lowest
energy states in a degenerate gas, the thermal energy of ions is the only significant energy
source that can be radiated. The rate at which thermal energy of ions is transported to
surface and radiated depends on the specific heat, given by

L = − d
dt

∫
cvdT = (2× 106 erg/s)

Amµ

M�

(
T
K

)7/2
, (17)

where cv ≈ 3kB/2 is the specific heat at constant volume. Given an initial L and tempera-
ture T0 at time t0, final temperature after cooling is given by (T/K)−5/2 − (T0/K)−5/2 =
2.406× 10−34 τ/s, where τ = t− t0 is the WD age. It is important to note that for sim-
plicity in calculations, we have assumed self-similarity of the cooling process over the
entire evolution.
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Table 1 lists the luminosities and masses for WDs with radii 2000 . R/km . 20,000
and initial B = (109, 1014)G at time t = 0 and 10 Gyr. The fraction of time when the Hall
drift dominates, i.e., tHall/τ, falls significantly with increasing stellar radius. Therefore,
the magnetic field decays considerably more because the faster Ohmic dissipation process
turns out to be critical for much of the cooling evolution. The mass-radius relations merge
for R & 6000 km WDs. The inferred luminosities are also much less suppressed for the
intermediate radius WDs with 6000 . R/km . 12,000. However, for low radius B-WDs,
field decay affects mass and luminosity significantly. As it is the high magnetic pressure
which helps to hold more mass, the field decay significantly sheds off mass in its new
equilibrium if the radius is fixed. The limiting mass for small radius B-WDs with a fixed
R ≈ 2000 km drops to about 1.5 M� due to field decay compared to 1.9 M� without
field evolution. The majority of these small radius B-WDs still remain practically hidden
throughout their cooling evolution because of their strong fields and correspondingly
low luminosity.

Table 1. The effect of magnetic field on luminosity when the initial field is fixed at B = (109, 1014) G
for all the radii. The topmost entry for each radius is the initial time, whereas the bottom two entries
list corresponding parameters for t = τ = 10 Gyr. We evaluate fields assuming Ohmic dissipation
is the dominant process for the top entries of τ = 10 Gyr, and for the bottom entries, we assume
Hall drift is the primary process until the field parameter B0 decays to ∼1012 G, below which Ohmic
dissipation dominates.

R/1000 km t/Gyr tHall/τ Bs/G B0/G L/L� MB=0/M� M/M�

2.0
0 109 1014 10−16 1.378 1.865

10 0 4.58× 108 4.58× 1013 10−16 1.377 1.478
1 5.83× 1013 10−16 1.542

8.0
0 109 1014 10−12 0.709 0.762

10 0 9.86× 107 9.86× 1012 2× 10−6 0.699 0.699
2.28× 10−2 1.04× 1011 7× 10−6 0.699

14.0
0 109 1014 2× 10−6 0.286 0.286

10 0 3.06× 107 3.06× 1012 10−5 0.262 0.262
2.22× 10−3 3.08× 1010 10−5 0.262

20.0
0 109 1014 7× 10−6 0.164 0.164

10 0 2.97× 107 2.97× 1012 10−5 0.138 0.138
3.70× 10−4 2.98× 1010 10−5 0.138

The left panel of Figure 5 shows the effect of B-WD evolution on their mass-radius
relations, including both magnetic field decay and thermal cooling effects but neglecting
neutrino cooling. The luminosities are varied with field strength such that the B-WD masses
can match those obtained for the non-magnetized WDs. For B = (0, 0)G, the mass-radius
relation is shifted more towards the Chandrasekhar result as a result of cooling, and the
mass limit remains unaltered. However, for B = (109, 1014)G, although the maximum
mass ∼1.9 M� at a small radius turns out to be much larger than the Chandrasekhar limit,
we find that it is lowered considerably to ∼1.5 M� primarily as a result of magnetic field
decay and also thermal cooling over t = 10 Gyr. The right panel of Figure 5 shows the
radial variation of matter density for the same cases. Matter density at the core is slightly
suppressed in the presence of strong field and also as a result of the evolution. As the total
stellar energy is conserved, an increase in the magnetic energy has to be compensated by
a similar decrease in gravitational energy, and, hence, the central density. Once the field
decays and luminosity drops due to cooling, the central density adjusts itself to be slightly
lower to balance the loss of magnetic and thermal energies with time.
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We also use the STARS stellar evolution code to qualitatively investigate the B-WD
mass-radius relationship at different field strengths, with the objective of numerically
validating our semi-analytical models. We find that the numerical results are in good
agreement with our analytical formalism, and the magnitude of B0 dictates the shape of
the mass-radius curve. In validation of our analytical approach, we have found that the
limiting mass ∼1.8703 M� obtained with the STARS numerical models is in very good
agreement with M ≈ 1.87 M�, which is inferred from the semi-analytical calculations for
B-WDs with strong fields B = (106–9, 1014)G [22] for a given magnetic field profile.

We argue that the young super-Chandrasekhar B-WDs only sustain their large masses
up to ∼105–106 yr since their formation, and this essentially explains their apparent scarcity
even without the difficulty of detection owing to their suppressed luminosities. We plan
to explore this issue in detail in the future, particularly the timescale of their formation
considering simultaneously the growth (e.g., by accretion [57]) and decay of fields. It is
important to note that if matter accretes at a higher rate such that the total mass accreted
exceeds ∼0.1–0.2 M� before the field diffuses, the field may be restructured [38], leading to
a reduced polar field independent of the initial field. We also plan to rigorously explore
the fate of B-WDs once the fields decay, if they actually collapse, in place of keeping the
radius fixed.

Figure 5. Left panel: Effect of magnetic field on L set to match the non-magnetised mass-radius
relation. Results are shown for B = (0, 0) at t = 0 (green circles), B = (0, 0) at t = 10 Gyr (blue
diamonds), B = (109, 1014)G at t = 0 (orange triangles) and B = (109, 1014)G at t = 10 Gyr (magenta
crosses). Right panel: The matter density profiles for the same cases are shown for R = 10,000 km.
See [22].

6. Mass Limit Estimate including Quantum Effects

Several magnetized WDs have been discovered with surface fields as high as∼105–109 G.
It is likely that stronger fields (∼1012–1014 G) exist at their interiors. Energy states of a
free electron in a uniform strong magnetic field are quantized into Landau orbitals, which
defines the motion of the electron in a plane perpendicular to the field. The maximum
number of Landau levels occupied by cold electrons in a magnetic field is given by νm =
(EFmax/mec2)2−1

2BD
, where me is the rest mass of the electron, EFmax is the maximum Fermi

energy of the system and BD = B/Bc, where Bc = 4.414 × 1013 G, is the critical field
strength. High magnetic field strength therefore modifies the equation of state (EoS)
of degenerate matter by causing Landau quantization of electrons [77]. The larger the
magnetic field, the smaller is the number of Landau levels occupied [13]. This results in a
significant modification of the mass-radius relation of the underlying WD, particularly for
BD & 100.
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To obtain the revised mass-radius relation for a strongly magnetized WD, the modified
EoS has to be combined with the condition of magnetostatic equilibrium. If the B-WD is
approximated to be spherical, then its mass is obtained from

1
ρ + ρB

d
dr

(
P +

B2

8π

)
= −GM

r2 +

[
~B .∇~B

4π(ρ + ρB)

]
r

,
dM
dr

= 4πr2(ρ + ρB). (18)

If the field is uniform or highly fluctuating, the magnetic terms can be neglected in
the above equations, and following Lane–Emden formalism [78], the scalings of mass and
radius with central density are obtained as

M ∝ K3/2
m ρ

(3−n)/2n
c , R ∝ K1/2

m ρ
(1−n)/2n
c , Km = Kρ−2/3

c . (19)

Here n = 1 (Γ = 2), which is the case for a high BD as shown in Figure 6, corresponds
to central density independent mass, unlike Chandrasekhar’s case when Km is independent
of the field strength, and limiting mass corresponds to n = 3.

Figure 6. Left panel: EoS for different cases: solid line represents Chandrasekhar’s EoS, and the dotted
and dashed lines represent the 5-level (corresponding to very strong B) and 1-level (corresponding
to ultimate EoS for extreme B) systems of Landau quantization, respectively. Right panel: Mass-
radius relations: pure solid line represents Chandrasekhar’s result, and the one marked with filled
circles represents the evolutionary track of WD with an increase in B. The dot-dashed, dotted and
dashed lines represent WDs with 50124-level, 200-level and 1-level systems of Landau quantization,
respectively (corresponding to increasing B). We set EFmax = 200mec2 for both panels. See [13,14].

Substituting the proportionality constants appropriately, the limiting mass is ob-
tained as

Mlim =

(
hc
2G

)3/2 1
(µemH)2 ≈

10.312
µ2

e
M�, (20)

when the limiting radius Rlim → 0. For µe = 2, which is the case for a carbon-oxygen
WD, we obtain Mlim = 2.58 M�. For a finite but high-density and magnetic field, e.g.,
ρc = 2× 1010 g cm−3 and B = 8.8× 1015 G when EFmax = 20mec2, Mlim = 2.44 M� and
R ≈ 650 km. It should be noted that these ρc and B are similar or below their respective
upper limits set by the instabilities of pycnonuclear fusion, inverse-β decay and general
relativistic effects [15]. Note, however, that pycnonuclear reaction rates are quite uncertain
and not well constrained. Moreover, slightly lower ρc and B still would lead to B-WD mass
well above the Chandrasekhar mass-limit.

The left panel of Figure 6 shows how the EoS of electron degenerate matter is modified
as a result of magnetic field. With increasing field, the inward gravitational force is balanced
by the outward force due to modified matter pressure, and a quasi-equilibrium state is
attained. Consequently, with decreasing stellar radius due to a higher gravitational field,
a very high magnetic field is generated, which prevents the WD from collapsing, thus
making its equilibrium configuration more massive. Subsequently, with the continuation of
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accretion the WD approaches the new mass limit Mlim ∼ 2.58M�. This new limiting mass
WD plausibly sparks off a violent thermonuclear reaction with further accretion, as is the
case with the idea of the 1.4M� limit of nonmagnetic WDs, thus exploding it and giving
rise to an over-luminous type Ia supernova.

The evolution of the mass-radius relationship with the evolution of magnetic field
for a super-Chandrasekhar WD of maximum possible mass is shown in the right panel of
Figure 6, along with a few typical mass-radius relations for different fixed magnetic field
strengths describing possible stars in intermediate equilibrium states. The ultimate WD,
corresponding to the maximum mass Mlim ∼ 2.58M�, lies on the mass-radius relation
for a one-Landau-level system, but the intermediate WDs having weaker magnetic fields
correspond to multilevel systems. The said one-Landau-level system corresponds to the
hypothetical high central magnetic field 8.8× 1017 G. This is in the spirit of a Chandrasekhar
mass-limit for a non-magnetic WD, which also corresponds to the hypothetical high (even
infinity) central density. However, the mass for BD ∼ 30–100 still appears to be significantly
super-Chandrasekhar. The intermediate systems of 200-level and 50124-level systems
correspond to central magnetic fields of 4.4× 1015 G and 1.7× 1013 G, respectively.

7. Detectability of Gravitational Waves from Magnetised White Dwarfs

One question that remains to be answered is how can B-WDs be detected directly. Con-
tinuous gravitational waves can be among the alternate ways to detect super-Chandrasekhar
WD candidates. If B-WDs are rotating with certain angular frequency, then they can effi-
ciently emit gravitational radiation, provided that their magnetic field and rotation axes are
not aligned [79], and these gravitational waves can be detected by upcoming instruments.
The dimensionless amplitudes of the two polarizations of a gravitational wave (GW) at a
time t are given by [79,80]

h+ = h0sin χ

[
1
2

cos i sin i cos χ cos Ωt− 1 + cos2i
2

sin χ cos 2Ωt
]

,

h× = h0sin χ

[
1
2

sin i cos χ sin Ωt− cos i sin χ sin 2Ωt
]

, (21)

with h0 = (−6G/c4)Qz′z′(Ω2/d), where Qz′z′ is the quadrupole moment of the distorted
star, χ is the angle between the rotation axis z′ and the body’s third principal axis z, and i
is the angle between the rotation axis of the object and our line of sight. The left panel of
Figure 7 shows a schematic diagram of a pulsar with z′ being the rotational axis and z the
magnetic field axis, where the angle between these two axes is χ. The GW amplitude is

h0 =
4G
c4

Ω2εIxx

d
, (22)

where ε = (Izz − Ixx)/Ixx is the ellipticity of the body, and Ixx, Iyy, Izz are the principal
moments of inertia. We have used XNS code [59] to simulate the underlying axisymmetric
equilibrium configuration of B-WDs in general relativity. Moreover, we assume the distance
between the WD and the detector to be 100 pc.

Since a pulsating WD can emit both dipole and GW radiations simultaneously, it
is associated with both dipole and quadrupolar luminosities. Dipole luminosity for an
axisymmetric WD is [81]

LD =
B2

pR6
pΩ4

2c3 sin2 χ F(x0), (23)

where x0 = R0Ω/c, Bp is the magnetic field strength at the pole, Rp is the radius of the pole
and R0 is the average WD radius. The function F(x0) is defined as

F(x0) =
x4

0

5(x6
0 − 3x4

0 + 36)
+

1
3(x2

0 + 1)
. (24)
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Figure 7. Left panel: Schematic diagram of a B-WD with z′ being the rotational axis and z as the
magnetic axis. Right panel: The dimensionless GW amplitudes for WDs are shown as functions of
frequency, along with the sensitivity curves of various detectors. Optimum i is chosen for χ at t = 0.
See [43].

Similarly, the quadrupolar GW luminosity is given by [80]

LGW =
2G
5c5 (Izz − Ixx)

2Ω6sin2 χ (1 + 15sin2 χ). (25)

It should be noted that this formula is valid if χ is very small. The total luminosity is
due to both dipole and gravitational radiations. Therefore, Ω and χ decay with time due to
both LD and LGW , given by [81]

d(ΩIz′z′)

dt
= − 2G

5c5 (Izz − Ixx)
2Ω5sin2 χ (1 + 15 sin2 χ)−

B2
pR6

pΩ3

2c3 sin2 χ F(x0), (26)

Iz′z′
dχ

dt
= −12G

5c5 (Izz − Ixx)
2Ω4sin3 χ cos χ−

B2
pR6

pΩ2

2c3 sin χ cos χ F(x0), (27)

where Iz′z′ is the moment of inertia about the z′-axis. Equations (26) and (27) need to be
solved simultaneously to obtain the timescale over which a WD can radiate.

The right panel of Figure 7 shows the dimensionless GW amplitudes for WDs as
functions of their frequencies, along with the sensitivity curves of various detectors. We
find that the isolated WDs may not be detected directly by LISA but can be detected after
integrating the signal-to-noise ratio (SNR) for 1 year. As WDs are larger in size compared to
NS, they cannot rotate as fast as NS and hence ground-based GW detectors such as LIGO,
Virgo and KAGRA are not expected to detect the isolated WDs. These isolated WDs are
also free from the noise due to the galactic binaries as well as from the extreme mass ratio
inspirals (EMRIs).

A pulsar-like object radiates GWs at two frequencies. When we observe such a GW
signal whose strength remains unchanged during the observation time T, the corresponding
detector’s cumulative SNR is given by [82,83]

SNR =
√

S/N2
Ω + S/N2

2Ω (28)

where

〈S/N2
Ω〉 =

sin2ζ

100
h2

0Tsin22χ

Sn( f )
, 〈S/N2

2Ω〉 =
4sin2ζ

25
h2

0Tsin4χ

Sn(2 f )
(29)

where ζ is the angle between the interferometer arms and Sn( f ) is the detector’s power
spectral density (PSD) at the frequency f with Ω = 2π f . As we mostly deal with space-
based interferometers such as LISA, we assume ζ = 60◦. The average is over all possible
angles, including i, which determine the object’s orientation with respect to the celestial
sphere reference frame.
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Figure 8 shows the SNR as a function of time for toroidal field-dominated WDs with
different field strengths. We assume that these toroidal-dominated WDs have a poloidal
surface field which is nearly four orders of magnitude smaller than the maximum toroidal
field Bmax inside the WD. Of course, such a poloidal field cannot change the shape and size
of the WD, as does the toroidal field. The surface field strength is relatively very small (as
is the dipole luminosity), and so it hardly changes Ω and χ within a 1 yr period. The left
panel of Figure 8 shows the SNR for a B-WD with Bmax = 2.6× 1014 G with mass 1.7 M�.
All the GW detectors except LISA can easily detect such a WD almost immediately, and
LISA can detect it in 5 months of integration. In contrast, when the field strength decreases
(Bmax ≈ 1014 G) the SNR decreases, and LISA and TianQin can no longer detect them, as
shown in the right panel. However, they can still be detected by ALIA, BBO and DECIGO
within 1 yr of integration time.

Figure 8. SNR as a function of integration time for a toroidal field-dominated WD with central density
ρc = 2× 1010 g cm−3, spin period P = 2 s, χ = 30◦ and d = 100 pc. The green (top) line represents
ALIA, the red (middle) line represents TianQin and blue (bottom) line represents LISA. The solid black
line corresponds to 〈S/N〉 ≈ 5. See [44].

Figure 9 shows the SNR as a function of integration time for XTE J1810-197, assuming
χ = 45◦. We choose the maximum radius of this source to be 3000 km instead of 4000 km if
it is a WD because its spin is fast and the XNS code does not run for 4000 km with such high
rotation frequency. The left panel of Figure 9 shows that BBO and DECIGO would be able
to detect it within 20 d and 100 d, respectively, if it is a 3000 km poloidal field-dominated
WD. If it is a toroidally dominated WD, BBO and DECIGO could immediately detect it, and
ALIA would be able to detect it within 5 months only if it is a 3000 km toroidally dominated
WD (see right panel).

There are many other plausible detectabilities, e.g., via their activity in binary systems,
which will be explored in the future.

Figure 9. SNR as a function of integration time for XTE J1810-197 assuming χ = 45◦. The first,
second and fifth lines from top correspond to a WD with radius 3000 km for BBO, DECIGO and ALIA
respectively, while third, fourth and sixth lines from top represent a WD with radius 1000 km for
BBO, DECIGO and ALIA respectively. The solid black line corresponds to 〈S/N〉 ≈ 5. See [44].
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8. Matter Anisotropy Effects in Highly Magnetised White Dwarfs

It has been shown that the presence of a strong magnetic field, the anisotropy of dense
matter, and the orientation of a magnetic field can significantly influence the properties
of neutron and quark stars [84]. The stability of them and B-WDs is not achieved unless
one considers the anisotropy of the system arising from the combined effects of [84,85]:
(i) anisotropy due to strong magnetic fields and (ii) anisotropy of the system fluid.

The effective contributions from the matter and magnetic field lead to the system
density given by

ρ̃ = ρ +
B2

8π
. (30)

The system pressure along the direction of magnetic field is represented as parallel
pressure and takes the form based on magnetic field orientations as

p|| =

{
pr − B2

8π , for radial orientation

pt − B2

8π , for transverse orientation.
(31)

Similarly, the system pressure that aligns perpendicular to the magnetic fields is
defined as transverse pressure and is based on the magnetic field orientations

p⊥ =

{
pt +

B2

8π , for radial orientation

pr +
B2

8π , for transverse orientation.
(32)

The essential magnetostatic stellar equations which describe static, spherically sym-
metric B-WDs are

dm
dr

= 4π

(
ρ +

B2

8π

)
r2, (33)

and for radial orientation (RO)

dpr

dr
=
−(ρ + pr)

4πr3
(

pr− B2
8π

)
+m

r(r−2m)
+ 2

r ∆[
1− d

dρ

(
B2

8π

)
dρ
dpr

] , (34)

whereas for transverse orientation (TO)

dpr

dr
=
−
(

ρ + pr +
B2

4π

) 4πr3
(

pr+
B2
8π

)
+m

r(r−2m)
+ 2

r ∆[
1 + d

dρ

(
B2

8π

)
dρ
dpr

] . (35)

We describe the effective anisotropy of the stars with ∆, which depends on the mag-
netic field orientations given by pt − pr +

B2

4π in case of RO and pt − pr − B2

4π for TO. We
have for RO

∆ = κ
(ρ + ρr)

(
ρ + 3pr − B2

4π

)
(
1− 2m

r
) r2, (36)

and for TO

∆ = κ
(ρ + ρr +

B2

4π )
(

ρ + 3pr +
B2

2π

)
(
1− 2m

r
) r2, (37)

where κ is a dimensionless constant that describes the strength of anisotropy within the
stellar structure. Note that κ = 0 implies the anisotropy effects that arise due to matter
properties and magnetic field both vanish. However, the case of B = 0 but κ 6= 0 implies
that only the anisotropy due to magnetic field vanishes. We have shown that highly
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magnetized WD models, which do not account for the combined anisotropic effects of the
fluid and field, are eliminated, as they suffer from an instability at the stellar center.

To solve the magneto-hydrostatic stellar structure equations from the stellar center to
surface, it is needed to supply an EoS along with a functional form of ∆. Here, we consider
the EoS proposed by Chandrasekhar to describe degenrate electrons of WDs as

pr =
πm4

e c5

3h3

[
x(2x2 − 3)

√
x2 + 1 + 3sinh−1x

]
, ρ =

8πµemH(mec)3

3h3 x3, (38)

where me is the mass of an electron, mH is the mass of a hydrogen atom, h is Planck’s
constant, µe is the mean molecular weight per electron, and x = pF/mec with pF is the
Fermi momentum. For the carbon-oxygen WDs, µe = 2.

We show the mass-radius relations of B-WDs for different B0, κ and γ in Figure 10.
For TO fields with B0 = 3.79× 1014 G, a maximum mass B-WD of 2.8 M� is obtained, whose
radius is 1457.67 km. For an RO field with B0 = 1.2× 1014 G, the maximum mass drops to
1.62 M�, and the radius of the B-WD is 454.67 km. For B0,TO = 3.79× 1014 G, the maximum
mass and the corresponding radius of B-WDs increase by ∼ 70% and ∼ 57%, respec-
tively, compared to the non-magnetized but anisotropic case. For B0,RO = 1.2× 1014 G,
the maximum mass and the corresponding radius decrease by ∼2% and ∼52%, respec-
tively, compared to the values of non-magnetized but anisotropic WDs. Even without
considering the magnetic field and incorporating the effects of local anisotropy due to
the fluid, it is possible to push the maximum mass of WDs beyond the Chandrasekhar
mass limit. For example, by considering κ = 2/3, we obtain a maximum mass for a
non-magnetized but anisotropic WD of 1.81 M�. The corresponding radius is 956.08 km.
These values are ∼ 29% and ∼ 8%, respectively, higher than the respective values of WDs
at the Chandrasekhar mass limit. Moreover, with increasing η and γ for the TO field case,
the mass of anisotropic B-WDs changes significantly, as can be seen in the right panel of
Figure 10. It shows that the maximum mass of a B-WD with γ = 0.9 and η = 0.2 increases
by ∼ 46% compared to γ = 0.6 and η = 0.1.

(a) (b) (c)

Figure 10. Stellar radius (R) as a function of gravitational mass (M/M�) for different (a) B0 (left panel),
(b) κ (middle panel), and (c) η and γ (right panel). Solid circles represent the stars with the maximum-
possible masses. See [85].

For RO fields, we can explain sub-, standard- and super-Chandrasekhar B-WDs by
making appropriate choices of B0,RO and κ (see Figure 11). By changing both B0,RO and
κ, as shown in the left panel of Figure 11, we successfully explain both (i) the sub- and
standard-Chandrasekhar progenitor B-WDs and (ii) the standard and super-Chandrasekhar
progenitor B-WDs by a single mass-radius curve for the respective cases. On the other hand,
through changes of only B0,RO or κ, sub-, standard- and super-Chandrasekhar B-WDs line
up in a series of mass-radius curves; see, e.g., the middle and right panels of Figure 11.
This leads to a complete explanation of under-, regular- and over-luminous SNeIa in a
single theory.



Particles 2022, 5 510

(a) (b) (c)

Figure 11. Stellar radius (R) as a function of gravitational mass (M/M�) for varying (a) B0,RO and κ

(left panel), (b) B0,RO (middle panel), and (c) κ (right panel). Solid circles represent the stars with the
maximum possible masses. See [85].

9. Conclusions

Reviewing the work in last decade or so, we have confirmed that, at least theoretically,
massive NSs and WDs, heavier than their conventional counterparts as observed/inferred
from recent data, are possibly highly magnetized, rotating stable compact stars. They
have multiple implications including enigmatic peculiar over-luminous SNeIa. Numerical
simulations based on Cambridge stellar evolution code STARS argue B-WDs to be toroidally
(centrally) dominated with lower, maybe dipole, surface magnetic fields. The new generic
mass-limit of WDs seems to be well above 2M�, around 2.8M�, depending on the magnetic
field profile/geometry and rotational frequency.

However, these massive compact objects, particularly WDs, have hardly been observed
directly due to their apparently very low luminosity. On the other hand, the presence of
magnetic fields and rotation by definition brings in anisotropy in these compact objects,
leading them to be triaxial when the magnetic and rotation axes are misaligned. Therefore,
they are expected to emit continuous GW. Hence, B-WDs can be detected directly by the
missions LISA (in one year integration time), DECIGO/BBO and the magnetised NSs can
be detected by aLIGO, aVIRGO, Einstein Telescope.

Nevertheless, the magnetic fields therein start decaying beyond million years, hence
these massive compact objects may not survive beyond this time. Moreover, due to their
electromagnetic and gravitational radiation, the angular velocity and the misalignment
angle between magnetic and rotation axes decrease, leading them to lose their pulsar nature
and detection possibility. This is another reason why they are so rare and/or hard to detect
unless targeted at an appropriate time. Therefore, appropriate missions in GW astronomy
and otherwise, e.g., radio astronomy, should be planned to probe them.
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