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Abstract: The internal degrees of freedom of fermions are in the spin-charge-family theory described by
the Clifford algebra objects, which are superposition of an odd number of γa’s. Arranged into irreducible
representations of “eigenvectors” of the Cartan subalgebra of the Lorentz algebra Sab (= i

2 γaγb|a 6=b)

these objects form 2
d
2−1 families with 2

d
2−1 family members each. Family members of each family offer

the description of all the observed quarks and leptons and antiquarks and antileptons, appearing in
families. Families are reachable by S̃ab = 1

2 γ̃aγ̃b|a 6=b. Creation operators, carrying the family member
and family quantum numbers form the basis vectors. The action of the operators γa’s, Sab, γ̃a’s and
S̃ab, applying on the basis vectors, manifests as matrices. In this paper the basis vectors in d = (3 + 1)
Clifford space are discussed, chosen in a way that the matrix representations of γa and of Sab coincide for
each family quantum number, determined by S̃ab, with the Dirac matrices. The appearance of charges
in Clifford space is discussed by embedding d = (3 + 1) space into d = (5 + 1)-dimensional space.
The achievements and predictions of the spin-charge-family theory is also shortly presented.

Keywords: dirac matrices; clifford algebra; Kaluza-Klein theories; higher dimensional spaces; beyond
the standard model; lepton and quark families
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1. Introduction

Motivation: More than 50 years ago the electroweak (and colour) standard model offered an elegant
new step in understanding the origin of elementary fermion and boson fields by postulating

i. the existence of massless family members with the charges in fundamental representations of the
groups—the colour triplet quarks and colourless leptons the left handed members as the weak charged
doublets, the right handed weak chargeless members, the left handed quarks distinguishing in the
hyper charge from the left handed leptons, each right handed member having a different hyper charge,
the existence of the corresponding anti fermions—the existence of massless families to each family
member,

ii. the existence of massless vector gauge fields to the observed charges of the family members, carrying
charges in the adjoint representations of the charge groups,

iii. the existence of the massive scalar fields with the nonzero vacuum expectation value carrying the
weak charge ± 1

2 and the hyper charge ∓ 1
2 (like if it would be in the fundamental representation of the
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weak group), determining the masses of quarks and leptons and of the weak bosons, the existence of
the Yukawa couplings determining the properties of fermions.

The spin-charge-family theory [1–6], describing the internal degrees of freedom with the odd Clifford
algebra in d ≥ (13 + 1), explains all the postulated properties of quarks and leptons and antiquarks and
antileptons [[2–4] and the references therein].

Statement 1: One irreducible representation of the Lorentz group in the internal space of fermions
described by odd Clifford algebra contains, if analyzed with respect to the standard model groups
SO(3, 1), SU(3), SU(2), U(1), all the quarks and antiquarks, all the leptons and antileptons, with the
quantum numbers postulated by the standard model [[3,4] and the references there in].

Statement 2: The odd Clifford algebra in d ≥ (13 + 1) offers—after the break of the starting
symmetry—two decoupled groups of four families: The fourth family to the observed three families
of quarks and leptons is predicted to have the mass of quarks at around 1 TeV or larger, the lightest neutron
of the upper four families of quarks and leptons is the candidate, together with their lightest neutrino,
to form the dark matter [7,8].

The fact that the odd Clifford algebra offers the description of quarks and leptons and antiquarks
and antileptons as assumed by the standard model suggests that the standard model vector gauge
fields—gravitational, colour, weak and hyper— have the common origin.

Statement 3: The vielbeins and the two kinds of the spin connection fields in d = (13 + 1) manifest
in d = (3 + 1) all the known vector gauge fields postulated by the standard model as well a several scalar
fields, those carrying the weak and hyper charge equal to (± 1

2 , ∓ 1
2 ), respectively [2,3,9]) offering the

explanation for the Higgs and the Yukawa couplings, as well as those causing in the expanding universe
the matter-antimatter asymmetry [2].

The achievements and predictions of the �spin-charge-family theory, to which the above statements
1,2,3 refer, are shortly presented in Appendix A.

We demonstrate in this paper the appearance of families, when internal degrees of freedom are
described with the odd Clifford algebra in d = (3 + 1), and the appearance of charges and families,
when internal degrees of freedom are described with the odd Clifford algebra in d = (5 + 1), we present
the basis vectors of each irreducible representation of each family in both cases as well as the corresponding
matrix representations of the operators of the Clifford algebra objects. We make the choice of the basis
vectors in the way that the matrix elements coincide for each family with the Dirac ones up to a phase.

1.1. Mathematical Background

In the Grassmann graded algebra of anticommuting coordinates θa there are in d-dimensional space
2d vectors, which define, together with the corresponding derivatives ∂

∂θa
, two kinds of the Clifford algebra

objects: γa and γ̃a [1,5,6,10], both with the anticommutation properties of the Dirac γa matrices, while the
anticommutators among γa and γ̃b are equal to zero.

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ , {γa, γ̃b}+ = 0 ,

(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a ,

Sab =
i
4
(γaγb − γbγa) , S̃ab =

i
4
(γ̃aγ̃b − γ̃bγ̃a) ,

{Sab, S̃ab}+ = 0 ,

(a, b) = (0, 1, 2, 3, 5, · · · , d) . (1)

The two Clifford algebras, γa’s and γ̃a’s, are obviously completely independent and form two
independent spaces, each with 2d vectors [11].
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Sacrificing the space of γ̃a’s by defining

γ̃aB(γa) = (−)B i Bγa , (2)

with (−)B = −1, if B is an odd product of γa’s, otherwise (−)B = 1 [6], we end up with vector space of
2d degrees of freedom, defined by γa’s only. The reader can easily prove that the relation of Equation (2)
keeps anticommutation and commutation relations in Equation (1) unchanged.

A general vector can correspondingly be written as

B =
d

∑
k=0

aa1a2 ...ak γa1 γa2 . . . γak |ψo > , ai ≤ ai+1 , (3)

where |ψo > is the vacuum state.
We arrange these vectors as products of nilpotents and projectors

ab
(k): =

1
2
(γa +

ηaa

ik
γb) , (

ab
(k))2 = 0 .

ab
[k]: =

1
2
(1 +

i
k

γaγb) , (
ab
[k])2 =

ab
[k] , (4)

where k2 = ηaaηbb. Their Hermitian conjugated values follow from Equation (1).

ab
(k)

†

= ηaa
ab

(−k),
ab
[k]

†

=
ab
[k] . (5)

After choosing the Cartan subalgebra of the Lorentz algebra Sab in the internal space of γa’s and
making the equivalent choice also for S̃ab

S03, S12, S56, · · · , Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d , (6)

we make the basis vectors in Clifford space to be the eigenstates of the Cartan subalgebra, Equation (6),

with the eigenvalues Sab
ab
(k)= 1

2 k
ab
(k), Sab

ab
[k]= 1

2 k
ab
[k]. Since all the relations of Equation (1) remain

unchanged after the assumption of Equation (2), it follows that each irreducible representation of
the Lorentz algebra Sab receives the additional quantum number f , defined by S̃ab of Equation (6).
It then follows

Sab
ab
(k)=

k
2

ab
(k) , S̃ab

ab
(k)=

k
2

ab
(k) ,

Sab
ab
[k]=

k
2

ab
[k] , S̃ab

ab
[k]= − k

2

ab
[k] . (7)

Equation (7) demonstrates that the eigenvalues of Sab on nilpotents and projectors—generated by
γa’s—differ from the eigenvalues of S̃ab. Nilpotents are the superposition of odd number of γa’s, projectors
have an even Clifford character.
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States, which are products of projectors and nilpotents, have well defined handedness of both kinds,
Γ(d) and Γ̃(d)

Γ(d) : = (i)d/2 ∏
a

(
√

ηaaγa) , if d = 2n ,

Γ̃(d) : = (i)d/2 ∏
a

(
√

ηaaγ̃a) , if d = 2n . (8)

The spin-charge-family theory [1–6] of N.S. Mankoč Borštnik uses odd products of nilpotents,
ab
(k)= 1

2 (γ
a + ηaa

ik γb), and projectors,
ab
[k]= 1

2 (1 + i
k γaγb), to define 2d−1 basis vectors in this space of the

Clifford graded algebra [1–4].
These Clifford odd basis vectors split further into two groups, which are Hermitian conjugated to

each other [[10,11] and references therein]. The choice of the vacuum state (which is for the case that
d = (5 + 1) presented in Equation (9)) makes one of these two groups to have properties of creation
operators. Their Hermitian conjugated partners have properties of annihilation operators.

The creation operators consist of 2
d
2−1 irreducible representations with respect to Sab, carrying the

family quantum number determined by S̃ab’s belonging to Equation (6). Each family has 2
d
2−1 members.

These creation and annihilation operators fulfill the anticommutation relations postulated by
Dirac [12] for second quantized fermions, and consequently explain [10,11] the Dirac’s postulates.

In this spin-charge-family theory Sab determine in d = (3 + 1) space, which is a part of d = (13 + 1)-
dimensional space, spins, handedness and charges of quarks and leptons, while S̃ab determine families of
quarks and leptons.

Let us repeat: Clifford space define all the internal degrees of freedom of fermions—spins, handedness, charges
and families. Charges are expressed by the Cartan subalgebra of Sab when embedding d = (3 + 1) space into
d ≥ (5 + 1) space. Family quantum numbers are determined by S̃ab.

In this paper we discuss the simple case with d = (5 + 1).
In Section 2 the properties of products of nilpotents and projectors are presented, arranged

into eigenvectors of the Cartan subalgebra, when d = (3 + 1)-dimensional space is embedded into
d = (5 + 1)-dimensional space. Nilpotents and projectors define the internal vector space of fermions so
that the spin in d = (5, 6) manifests as a charge of fermions in d = (3 + 1).

In Section 2.3 the matrix representations of vectors are presented.

2. Properties of Vectors in Clifford Space

In References [10,11] the fact that the Clifford vectors, spanned by products of an odd number of
γa’s, are fulfilling the anticommutation relations postulated by Dirac for the second quantized fermions,
are discussed. Let us illustrate how this happens in the case that d = (5 + 1).

Let us denote vectors in d = (5 + 1) of an odd Clifford character (they are superposition of an odd
products of γa’s), presented in Table 1, as products of nilpotents and projectors, by b̂ f †

m (the third column
on Table 1). The member quantum number m = (ch, s) includes the charge ch and the spin s, the charge
concerns the eigenvalue of S56, the spin the eigenvalue of S12. The corresponding Hermitian conjugated
partner (the fourth column on Table 1) is denoted by (b̂ f †

m )† = b̂ f
m.

The first member m = ( 1
2 , 1

2 ) of the first family a, which is the product of three nilpotents,

is correspondingly denoted by b̂a†
( 1

2 , 1
2 )

:=
03

(+i)
12
(+) |

56
(+). All the other vectors b̂ f †

m of the family f = a

follow by the application of Sab. The families b̂ f †
m , f = (b, c, d) follow from f = a by the application of S̃ab.

The Hermitian conjugated partners follow by the application of Equation (1).
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Table 1, taken from Table IV of Reference [10], represents four families of Clifford odd vectors and their
Hermitian conjugated partners. All the families have the same quantum numbers m of the corresponding
members (S03, S12, S56) each family carries its own family quantum number f .

Table 1. The basis creation operators b̂ f †
m , which are sums of odd products of γa’s, and their annihilation

partners b̂ f
m are presented for the d = (5 + 1)-dimensional case. Here m = (ch, s), ch represents the spin in

d = (5, 6), manifesting in d = (3 + 1) the charge, and s represents the spin, that is the eigenvalue of S12,
according to the choice of the Cartan subalgebra, Equation (6). The basis creation operators are the products
of nilpotents and projectors, which are the “eigenstates” of the Cartan subalgebra generators, (S03, S12, S56)
and (S̃03, S̃12, S̃56), presented in Equation (6).

f (amily)m (ch, s) b̂ f †
m b̂ f

m S03 S12 S56 Γ(3+1) S̃03 S̃12 S̃56

a 1 ( 1
2 , 1

2 )
03

(+i)
12
(+) |

56
(+) (−)

56
(−) |(−)

12
(−)

03
(−i) i

2
1
2

1
2 1 i

2
1
2

1
2

a 2 ( 1
2 ,− 1

2 )
03
[−i]

12
[−] |

56
(+) (−)

56
(−) |

12
[−]

03
[−i] − i

2 − 1
2

1
2 1 i

2
1
2

1
2

a 3 (− 1
2 , 1

2 )
03
[−i]

12
(+) |

56
[−]

56
[−] |(−)

12
(−)

03
[−i] − i

2
1
2 − 1

2 −1 i
2

1
2

1
2

a 4 (− 1
2 ,− 1

2 )
03

(+i)
12
[−] |

56
[−]

56
[−] |

12
[−]

03
(−i) i

2 − 1
2 − 1

2 −1 i
2

1
2

1
2

b 1 ( 1
2 , 1

2 )
03
[+i]

12
[+] |

56
(+) (−)

56
(−) |

12
[+]

03
[+i] i

2
1
2

1
2 1 − i

2 − 1
2

1
2

b 2 ( 1
2 ,− 1

2 )
03

(−i)
12
(−) |

56
(+) (−)

56
(−) |(−)

12
(+)

03
(+i) − i

2 − 1
2

1
2 1 − i

2 − 1
2

1
2

b 3 (− 1
2 , 1

2 )
03

(−i)
12
[+] |

56
[−]

56
[−] |

12
[+]

03
(+i) − i

2
1
2 − 1

2 −1 − i
2 − 1

2
1
2

b 4 (− 1
2 ,− 1

2 )
03
[+i]

12
(−) |

56
[−]

56
[−] |(−)

12
(+)

03
[+i] i

2 − 1
2 − 1

2 −1 − i
2 − 1

2
1
2

c 1 ( 1
2 , 1

2 )
03
[+i]

12
(+) |

56
[+]

56
[+] |(−)

12
(−)

03
[+i] i

2
1
2

1
2 1 − i

2
1
2 − 1

2

c 2 ( 1
2 ,− 1

2 )
03

(−i)
12
[−] |

56
[+]

56
[+] |

12
[−]

03
(+i) − i

2 − 1
2

1
2 1 − i

2
1
2 − 1

2

c 3 (− 1
2 , 1

2 )
03

(−i)
12
(+) |

56
(−) (−)

56
(+) |(−)

12
(−)

03
(+i) − i

2
1
2 − 1

2 −1 − i
2

1
2 − 1

2

c 4 (− 1
2 ,− 1

2 )
03
[+i]

12
[−] |

56
(−) (−)

56
(+) |

12
[−]

03
[+i] i

2 − 1
2 − 1

2 −1 − i
2

1
2 − 1

2

d 1 ( 1
2 , 1

2 )
03

(+i)
12
[+] |

56
[+]

56
[+] |

12
[+]

03
(−i) i

2
1
2

1
2 1 i

2 − 1
2 − 1

2

d 2 ( 1
2 ,− 1

2 )
03
[−i]

12
(−) |

56
[+]

56
[+] |(−)

12
(+)

03
[−] − i

2 − 1
2

1
2 1 i

2 − 1
2 − 1

2

d 3 (− 1
2 , 1

2 )
03
[−i]

12
[+] |

56
(−) (−)

56
(+) |

12
[+]

03
[−i] − i

2
1
2 − 1

2 −1 i
2 − 1

2 − 1
2

d 4 (− 1
2 ,− 1

2 )
03

(+i)
12
(−) |

56
(−) (−)

56
(+) |(−)

12
(+)

03
(−i) i

2 − 1
2 − 1

2 −1 i
2 − 1

2 − 1
2

Half of vectors, the eigenvectors of the Cartan subalgebra, Equation (6), which are products of
nilpotents and projectors, are odd products of γa’s and half of them are even products of γa’s. On Table 1
only Clifford odd vectors are presented.

Let us make a choice of the vacuum state [5,6,10,11]. (In the case of a general even d the normalization
factor is 1√

2
d
2−1

, since the vacuum states, generated by projectors only, follows from the starting products

of d
2 projectors, let say

03
[−i]

12
[−] |

56
[−] . . .

d−1 d
[−] ), by transforming all possible pairs of [−]...[−], with [−i]

included, to [+]...[+], creating therefore 2
d
2−1 summands, which is in the case of d + (5 + 1) chosen

as follows

|ψo > = (
1√
2
)2 (

03
[−i]

12
[−] |

56
[−] +

03
[+i]

12
[+] |

56
[−] +

03
[+i]

12
[−] |

56
[+] +

03
[−i]

12
[+] |

56
[+]) |1 > . (9)
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The reader can check, taking into account Equations (1) and (15) or Equation (10) (taken from
Reference [3])

ab
[k]

ab
[k] =

ab
[k] ,

ab
[k]

ab
[−k]= 0 ,

ab
(k)

ab
[k]= 0 ,

ab
(k)

ab
[−k]=

ab
(k) , (10)

that

b̂ f †
m |ψo >: = |ψ f

m > ,

b̂ f
m |ψo > = 0 · |ψo > ,

{b̂ f †
m , b̂ f ′

m′}+ |ψo > = δ f f ′δmm′ |ψo > ,

{b̂ f †
m , b̂ f ′†

m′ }+ = 0 · |ψo > ,

{b̂ f
m , b̂ f ′

m′}+ = 0 · |ψo > ,

∀m and ∀ f . (11)

The relations among creation and annihilation operators in Equation (11) fulfill all the Dirac’s
requirements for the second quantized fermions.

2.1. Action

The Lorentz invariant action for a free massless fermion, describing internal degrees of freedom in
Clifford space, is well known

A f =
∫

ddx
1
2
(ψ†γ0 γa paψ) + h.c. , (12)

pa = i ∂
∂xa . It leads to the Weyl equations of motion

γa pa|ψ > = 0 , (13)

which fulfill also the Klein-Gordon equation

γa paγb pb|ψ > = pa pa|ψ >= 0 , (14)

γ0 appears in the action to take care of the Lorentz invariance of the action.
To illustrate that fermions interacting with only gravity in d = (13 + 1)-dimensional space manifest

charges in d = (3 + 1), we present in Appendix A the whole action used in the spin-charge-family, in which
fermions interact with the vielbeins and the two kinds of the spin connections fields, the gauge fields of
momenta pa and the two kinds of the generators of the Lorentz transformations in the internal space of
fermions Sab and S̃ab, respectively. We comment there the part of the action, which manifest in d = (3 + 1)
all the observed vector gauge fields, the scalar gauge fields, offering explanation for the scalar higgs and
Yukawa couplings of the standard model, explaining as well several phenomena in physics of elementary
fermion and boson fields and in cosmology. Some of the achievements of this theory is also presented.

Solutions of equations of motion, Equation (13), for a free massless fermion with momentum pa =

(|p0|, p1, p2, p3, 0, 0) and a particular charge 1
2 , are for any family f superposition of basis vectors |ψm

f >=

b̂ f †
m |ψo > with spin 1

2 and spin − 1
2 , both multiplied by e−i(p0x0−~p~x), (see Equation (97) in Reference [10]).

Coefficients in the superposition depend on the momentum pa.
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2.2. Creation and Annihilation Operators in d = (3 + 1) Space Embedded in d = (5 + 1) Space

The creation and annihilation operators of Table 1 are all of an odd Clifford character (they are
superposition of odd products of γa’s). The rest of the 24 creation operators of an even Clifford character
can be found in References [10,11].

Taking into account Equation (1) one recognizes that γa’s transform
ab
(k) into

ab
[−k], never to

ab
[k],

while γ̃a’s transform
ab
(k) into

ab
[k], never to

ab
[−k]

γa
ab
(k)= ηaa

ab
[−k], γb

ab
(k)= −ik

ab
[−k], γa

ab
[k]=

ab
(−k), γb

ab
[k]= −ikηaa

ab
(−k) ,

γ̃a
ab
(k)= −iηaa

ab
[k], γ̃b

ab
(k)= −k

ab
[k], γ̃a

ab
[k]= i

ab
(k), γ̃b

ab
[k]= −kηaa

ab
(k) . (15)

With the knowledge presented in Equation (15) it is not difficult to reproduce Table 2, representing
vectors that belong to d = (3 + 1) space. Vectors carry no charge and have either an odd or an even
Clifford character. Multiplying these vectors by the appropriate nilpotent or projector representing the
charge (that is by either the nilpotent which is the eigenstate of S56, if the d = (3 + 1) part has an even
Clifford character, or the corresponding projector, if the d = (3 + 1) part has an odd Clifford character)
we end up with the Clifford odd vectors from Table 1, representing four (2

6
2−1) families with four (2

6
2−1)

members each.
The properties of vectors of Table 2 are analyzed in details in order that the correspondence with the

Dirac’s γ matrices in d = (3 + 1) space is easy to be recognized. Superposition of vectors with the spin ± 1
2

(either Clifford even or odd) solve the equations of motion, Equation (13), for free massless fermions.
As seen in Table 2 γa’s change the handedness (Equation (8)) Γ(3+1) of vectors, while γ̃a’s change the

handedness Γ̃(3+1) of vectors. Both change the Clifford character of states, from Clifford odd character
to Clifford even character or vice versa. Sab, which do not belong to Cartan subalgebra, generate all the
states of one representation of particular handedness Γ(3+1) and particular family quantum number.
S̃ab, which do not belong to Cartan subalgebra, transform a family member of one family into the
same family member number of another family, γ̃a change the family quantum number as well as the
handedness Γ̃(3+1).

Dirac matrices γa and Sab do not distinguish among the families: Corresponding family members of
any family have the same properties with respect to Sab and γa, manifesting for d = (3 + 1) space four
times twice 2× 2 by diagonal matrices, which are, up to a phase, identical. The operators γa and Sab are
correspondingly four times 4× 4 matrices.

One finds among Clifford even vectors of Table 2 the ones which are products of projectors; they are
Hermitian self conjugated. The remaining even vectors are Hermitian conjugated to each other (b̂a†

1 is
Hermitian conjugated to b̂d†

2 , for example). In the Clifford odd part of Table 2 one finds that b̂a†
m=(3,4)

(
03
[−i]

12
(+) ,

03
(+i)

12
[−]) have as the Hermitian conjugated partners b̂(c,b)

m=2 (−
03
[−i]

12
(−) ,

03
(−i)

12
[−]), respectively.

And b̂d†
m=(3,4) (

03
(−i)

12
[+] ,

03
[+i]

12
(−)) have as the Hermitian conjugated partners b̂(c,b)

m=1 (
03

(+i)
12
[+] , −

03
[+i]

12
(+)), respectively.

The vacuum state for the d = (3 + 1) case is correspondingly:

( 1√
2
)2 (

03
[−i]

12
[−] +

03
[+i]

12
[+] +

03
[+i]

12
[−] +

03
[−i]

12
[+]) (embedding vectors from (3 + 1) into d = (5 + 1) the

vacuum becomes the one from Equation (9)).
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Embedding b̂b†
m=3 (=

03
[−i]

12
(+)) into odd part of Table 1, the creation operator extends into

03
[−i]

12
(+)

12
[−],

manifesting in d = (3 + 1) the charge − 1
2 (while the annihilation operator extends into −

03
[−i]

12
(−)

12
[−]).

Table 2. In this table 2d = 16 vectors, describing internal space of fermions in d = (3 + 1), are presented.
Each vector carries the family member quantum number m = (1, 2, 3, 4)—determined by S03 and S12,
Equations (6) and (7)—and the family quantum number f = (a, b, c, d)—determined by S̃03 and S̃12,
Equations (6) and (7). Vectors ψ

f
m are obtained by applying b̂ f †

m on the vacuum state, Equation (9). Vectors,
that is the family members of any family, split into even (they are sums of products of an even number of
γa’s) and odd (they are sums of products of an odd number of γa’s). If these vectors are embedded into the
vectors of d = (5 + 1) (by being multiplied by an appropriate nilpotent or projector so that they are of an
odd Clifford character), they “gain” charges as presented in Table 1.

ψ
f
m γ0 ψ

f
m γ1 ψ

f
m γ2 ψ

f
m γ3 ψ

f
m γ̃0 ψ

f
m γ̃1 ψ

f
m γ̃2 ψ

f
m γ̃3 ψ

f
m S03 S12 S̃03 S̃12 Γ(3+1) Γ̃(3+1)

ψa
1 (+i)(+) ψa

3 ψa
4 iψa

4 ψa
3 −iψb

1 −iψc
1 ψc

1 −iψb
1

i
2

1
2

i
2

1
2 1 1

ψa
2 [−i][−] ψa

4 ψa
3 −iψa

3 −ψa
4 iψb

2 iψc
2 −ψc

2 iψb
2 − i

2 − 1
2

i
2

1
2 1 1

ψa
3 [−i](+) ψa

1 −ψa
2 −iψa

2 −ψa
1 iψb

3 iψc
3 −ψc

3 iψb
3 − i

2
1
2

i
2

1
2 −1 1

ψa
4 (+i)[−] ψa

2 −ψa
1 iψa

1 ψa
2 −iψb

4 −iψc
4 ψc

4 −iψb
4

i
2 − 1

2
i
2

1
2 −1 1

ψb
1 [+i](+) ψb

3 −ψb
4 −iψb

4 ψb
3 iψa

1 iψd
1 −ψd

1 −iψa
1

i
2

1
2 − i

2
1
2 1 −1

ψb
2 (−i)[−] ψb

4 −ψb
3 iψb

3 −ψb
4 −iψa

2 −iψd
2 ψd

2 iψa
2 − i

2 − 1
2 − i

2
1
2 1 −1

ψb
3 (−i)(+) ψb

1 ψb
2 iψb

2 −ψb
1 −iψa

3 −iψd
3 ψd

3 iψa
3 − i

2
1
2 − i

2
1
2 −1 −1

ψb
4 [+i][−] ψb

2 ψb
1 −iψb

1 ψb
2 iψa

4 iψd
4 −ψd

4 −iψa
4

i
2 − 1

2 − i
2

1
2 −1 −1

ψc
1 (+i)[+] ψc

3 −ψc
4 −iψc

4 ψc
3 iψd

1 −iψa
1 −ψa

1 iψd
1

i
2

1
2

i
2 − 1

2 1 −1
ψc

2 [−i](−) ψc
4 −ψc

3 iψc
3 −ψc

4 −iψd
2 iψa

2 ψa
2 −iψd

2 − i
2 − 1

2
i
2 − 1

2 1 −1
ψc

3 [−i][+] ψc
1 ψc

2 iψc
2 −ψc

1 −iψd
3 iψa

3 ψa
3 −iψd

3 − i
2

1
2

i
2 − 1

2 −1 −1
ψc

4 (+i)(−) ψc
2 ψc

1 −iψc
1 ψc

2 iψd
4 −iψa

4 −ψa
4 iψd

4
i
2 − 1

2
i
2 − 1

2 −1 −1

ψd
1 [+i][+] ψd

3 ψd
4 iψd

4 ψd
3 −iψc

1 iψb
1 ψb

1 iψc
1

i
2

1
2 − i

2 − 1
2 1 1

ψd
2 (−i)(−) ψd

4 ψd
3 −iψd

3 −ψd
4 iψc

2 −iψb
2 −ψb

2 −iψc
2 − i

2 − 1
2 − i

2 − 1
2 1 1

ψd
3 (−i)[+] ψd

1 −ψd
2 −iψd

2 −ψd
1 iψc

3 −iψb
3 −ψb

3 −iψc
3 − i

2
1
2 − i

2 − 1
2 −1 1

ψd
4 [+i](−) ψd

2 −ψd
1 iψd

1 ψd
2 −iψc

4 iψb
4 ψb

4 iψc
4

i
2 − 1

2 − i
2 − 1

2 −1 1

2.3. γa, Sab, γ̃a and S̃ab Matrices in d = (3 + 1)

There are 2d = 16 basis vectors in d = (3 + 1), presented in Table 2. They all can be found as well as
a part of basis vectors in Table 1, with either nilpotent or projector expressing the charge added, so that
each basis vector has an odd Clifford character belonging to one of 16 (2

6
2−1 × 2

6
2−1) odd vectors in Table 1.

Basis vectors are products of nilpotents and projectors, which are eigenstates of the Cartan subalgebra
operators, Equation (6), as presented in Equations (7).

The family members of a family are reachable from any member by either Sab or by γa, and represent
twice two vectors of definite handedness Γ(d) in d = (3 + 1). Different families are reachable by either S̃ab

or by γ̃a. Each state carries correspondingly quantum numbers of the two kinds of the Cartan subalgebra.
In Table 2 also Γ(3+1) (= −4iS03S12) and Γ̃(3+1) (= −4iS̃03S̃12) are presented.

Let us again point out that if we treat all the basis vectors in d = (3 + 1) as a part of vectors in
d = (5 + 1), all of an odd Clifford character, so that they carry also a charge which is the spin S56, then the
family members of a family are reachable by Sab only and families by S̃ab only.

When the basis vectors are chosen and Table 2 is made, it is not difficult to find the matrix
representations for the operators (γa, Sab, γ̃a, S̃ab, Γ(3+1), Γ̃(3+1)). They are obviously 16× 16 matrices with
a 4× 4 diagonal or off diagonal or partly diagonal and partly off diagonal substructure.

Dirac matrices pay attention on only one family, any one, and do not take into account charges.
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Let us define, to simplify the notation, the unit 4× 4 submatrix and the submatrix with all the matrix
elements equal to zero as follows

1 =

(
1 0
0 1

)
= σ0, 0 =

(
0 0
0 0

)
. (16)

We also use (2× 2) Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (17)

It is easy to find the matrix representations for γ0, γ1, γ2 and γ3 from Table 2

γ0 =


0 σ0

σ0 0
0 0 0

0 0 σ0

σ0 0
0 0

0 0 0 σ0

σ0 0
0

0 0 0 0 σ0

σ0 0

 , γ1 =


0 σ1

−σ1 0
0 0 0

0 0 −σ1

σ1 0
0 0

0 0 0 −σ1

σ1 0
0

0 0 0 0 σ1

−σ1 0

 ,

γ2 =


0 −σ2

σ2 0
0 0 0

0 0 σ2

−σ2 0
0 0

0 0 0 σ2

−σ2 0
0

0 0 0 0 −σ2

σ2 0

 , γ3 =


0 σ3

−σ3 0
0 0 0

0 0 σ3

−σ3 0
0 0

0 0 0 σ3

−σ3 0
0

0 0 0 0 σ3

−σ3 0

 , (18)

manifesting the 4× 4 substructure (of Dirac matrices) along the diagonal of 16× 16 matrices.
The representations of γ̃a do not appear in the Dirac case. They manifest the off diagonal structure

as follows

γ̃0 =


0 −iσ3 0

0 iσ3 0 0
iσ3 0
0 −iσ3 0 0 0

0 0 0 iσ3 0
0 −iσ3

0 0 −iσ3 0
0 iσ3 0

 , γ̃1 =


0 0 −iσ3 0

0 iσ3 0

0 0 0 iσ3 0
0 −iσ3

−iσ3 0
0 iσ3 0 0 0

0 iσ3 0
0 −iσ3 0 0

 ,

γ̃2 =


0 0 σ3 0

0 −σ3 0

0 0 0 −σ3 0
0 σ3

−σ3 0
0 σ3 0 0 0

0 σ3 0
0 −σ3 0 0

 , γ̃3 =


0 −iσ3 0

0 iσ3 0 0
−iσ3 0

0 iσ3 0 0 0

0 0 0 −iσ3 0
0 iσ3

0 0 −iσ3 0
0 iσ3 0

 . (19)

Matrices Sab have again along the diagonal the 4× 4 substructure, repeating, up to a phase, as expected
the corresponding Dirac matrices, since the Dirac Sab do not distinguish among families.

S01 =
i
2


σ1 0
0 −σ1 0 0 0

0 −σ1 0
0 σ1 0 0

0 0 −σ1 0
0 σ1 0

0 0 0 σ1 0
0 −σ1

 , S02 =
i
2


−σ2 0

0 σ2 0 0 0

0 σ2 0
0 −σ2 0 0

0 0 σ2 0
0 −σ2 0

0 0 0 −σ2 0
0 σ2

 ,
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S03 =
i
2


σ3 0
0 −σ3 0 0 0

0 σ3 0
0 −σ3 0 0

0 0 σ3 0
0 −σ3 0

0 0 0 σ3 0
0 −σ3

 , S12 =
1
2


σ3 0
0 σ3 0 0 0

0 σ3 0
0 σ3 0 0

0 0 σ3 0
0 σ3 0

0 0 0 σ3 0
0 σ3

 ,

S13 =
1
2


σ2 0
0 σ2 0 0 0

0 −σ2 0
0 −σ2 0 0

0 0 −σ2 0
0 −σ2 0

0 0 0 σ2 0
0 σ2

 , S23 =
1
2


σ1 0
0 σ1 0 0 0

0 −σ1 0
0 −σ1 0 0

0 0 −σ1 0
0 −σ1 0

0 0 0 σ1 0
0 σ1

 . (20)

Γ(3+1) = −4iS03S12 =


1 0
0 −1 0 0 0

0 1 0
0 −1 0 0

0 0 1 0
0 −1 0

0 0 0 1 0
0 −1

 . (21)

The operators S̃ab have again off diagonal 4× 4 substructure, except S̃03 and S̃12, which are diagonal.

S̃01 = − i
2


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , S̃02 =
1
2


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , S̃03 =
i
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , (22)

S̃12 =
1
2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , S̃13 =
i
2


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , S̃23 =
1
2


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 . (23)

Γ̃(3+1) = −4iS̃03S̃12 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (24)

3. Conclusions

In this contribution the internal degrees of freedom of fermions are represented by the Clifford algebra
objects, which offers not only the description of spins and charges as it is in the case of the Dirac 2 · 2 d

2−1

matrices in d = (3 + 1) space but also the description of 2 · 2 d
2−1 families.

Embedding (3 + 1) space into (2n + 1)-dimensional space the Clifford algebra offers as well the
description of charges.

This contribution manifests:

i. That the appearance of two kinds of the Clifford algebra objects, γa’s and γ̃a’s, offers the explanation
for the appearance of families of quarks and leptons, without postulating the family groups.

ii. The appearance of charges in d = (3 + 1) part if d ≥ (5 + 1). To reproduce all the properties of
fermions manifesting as quarks and leptons in d = (3 + 1) the dimension of space time must be
d ≥ (13 + 1).
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This contribution is a part of the project of (N.S.M.B.), named the spin-charge-family theory ([1–11]
and the references therein), which uses the Clifford algebra to describe the internal degrees of freedom of
fermions, proving that the theory offers the next step to the standard model.

The theory suggests that since the Clifford algebra in d ≥ (13+ 1) offers in d = (3+ 1) the description
of spins, handedness, and all the charges of quarks and leptons, the gravity and all the vector and scalar
gauge fields must be of the same origin, determined by the vielbeins and the two kinds of the spin
connection fields, the gauge fields of momenta, of Sab and of S̃ab.

We present in this contribution the matrix representations of operators, γa’s, Sab’s, γ̃a’s, S̃ab’s, applying
on the basis vectors, which are odd products of the Clifford objects defining the creation and annihilation
operators for fermions in d-dimensional Clifford space, where d = 2(2n + 1), or 4n, n = 1. We make a
choice of d = (3+ 1) and d = (5+ 1), paying attention that creation and annihilation operators of fermions
in d = (3 + 1) manifest charges, if embedded in d = (5 + 1).

Creation and annihilation operators, defining the internal space of the second quantized fermions,
have an odd Clifford character (they are superposition of odd products of Clifford objects γa’s). They are in
our presentation products of nilpotents and projectors, chosen to be eigenvectors of the Cartan subalgebra,
Equation (6), of the Lorentz algebra of Sab, as well as of the corresponding Cartan subalgebra, Equation (6),
of S̃ab. Sab define the members of each irreducible representation of the Lorentz group, S̃ab define family
quantum number of each irreducible representation.

Creation and annihilation operators are Hermitian conjugated to each other. We make a choice
of the creation operators with respect to the annihilation operators by choosing the vacuum state,
Equation (9), to be the sum of products of the annihilation operators with their Hermitian conjugated
partners creation operators.

Sab generate 2
d
2−1 family members of a particular family of an odd Clifford character, S̃ab generate the

corresponding 2
d
2−1 families. The Hermitian conjugation determines their 2

d
2−1× 2

d
2−1 partners (which are

reachable also by γaγ̃a). The Clifford even representations follow from the odd 2d−1 vectors by the
application of γa’s or γ̃a’s. There are correspondingly 2d vectors in d-dimensional space (d = 2(2n + 1), 4n).

The Clifford even operators, Sab and S̃ab, keep the Clifford character unchanged. γa’s and γ̃a’s change
the Clifford character of vectors—from odd to even or vice versa.

Embedding SO(3 + 1) into SO(d), d > (3 + 1), d even, makes spins in d ≥ (5 + 1) to manifest in
d = (3 + 1) as charges.

One can check that the creation operators of an odd Clifford character and their Hermitian
conjugated partners, applied on the vacuum state, Equation (9), fulfill the anticommutation relations for
the second quantized fermions, Equation (11), postulated by Dirac, what explains the Dirac’s second
quantization postulates [10,11].

We demonstrate in this contribution how does the Clifford algebra reproduce the Dirac matrices in
the case of one family in d = (3 + 1) with four basis vectors and in the case of four families offered by
the Clifford algebra. There are namely 24 = 16 basis vectors in d = (3 + 1) and correspondingly all the
matrices have dimension 16× 16, which are for the operators, determined by γa’s, by diagonal and for
the operators, determined by γ̃a’s, off diagonal, except S̃03, S̃12, which are the members of the Cartan
subalgebra and correspondingly also Γ̃(3+1) = −4iS̃03S̃12. We keep in d = (3 + 1) the Clifford odd and
the Clifford even vectors as the basis vectors to point out, that if space of d = (3 + 1) is embedded in
d ≥ (5 + 1), all the parts, even and odd, contribute to the enlarged vector space manifesting charges.

In Appendix A we shortly illustrate some achievements and predictions of the spin-charge-family
theory, using the odd Clifford algebra objects to represent internal degrees of freedom of fermions.
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Appendix A. Short Overview of Achievements of Spin-Charge-Family Theory

One of the authors of this paper (N.S.M.B.) is proposing the spin-charge-family theory [[2–4,7–9] and
references therein], in which massless fermions in d = (13 + 1)-dimensional space interact with gravity
only—the vielbeins f α

a (the gauge fields of moments pa) and the two kinds of the spin connections
(ωabα and ω̃abα, the gauge fields of the two kinds of the Clifford algebra objects Sab and S̃ab, respectively,
Equations (1) and (6)).

A =
∫

ddx E
1
2
(ψ̄ γa p0aψ) + h.c. +∫

ddx E (α R + α̃ R̃) , (A1)

with p0a = f α
a p0α + 1

2E {pα, E f α
a}−, p0α = pα − 1

2 Sabωabα − 1
2 S̃abω̃abα and R = 1

2 { f α[a f βb] (ωabα,β −
ωcaα ωc

bβ)}+ h.c., R̃ = 1
2 { f α[a f βb] (ω̃abα,β − ω̃caα ω̃c

bβ)}+ h.c.. Here f α
a are inverse vielbeins to ea

α with

the properties ea
α f α

b = δa
b, ea

α f β
a = δ

β
α , E = det(ea

α). Latin indices a, b, ..., m, n, ..., s, t, ... denote a tangent
space (a flat index), while Greek indices α, β, ..., µ, ν, ...σ, τ, ... denote an Einstein index (a curved index).
Letters from the beginning of both the alphabets indicate a general index (a, b, c, ... and α, β, γ, ... ), from the
middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m, n, ... and µ, ν, ...), indexes from the
bottom of the alphabets indicate the compactified dimensions (s, t, ... and σ, τ, ...). We assume the signature
ηab = diag{1,−1,−1, · · · ,−1}) f α[a f βb] = f αa f βb − f αb f βa.

Let us rewrite the fermion part of the Lagrangean of the action so that it manifests in d = (3 + 1) the
free massless fermion part (first term in Equation (A2)), the interaction of fermions with the vector gauge
fields (the second term in Equation (A2)), the interaction of fermions with the scalar fields (the third term
in Equation (A2)), and the rest.

L f = ∑
m

ψ̄γm pmψ−∑
A,i

ψ̄ γmτAi AAi
m ψ ++ ∑

s=7,8
ψ̄γs p0s ψ + ∑

t=5,6,9,...,14
ψ̄γt p0t ψ , (A2)

with τAi = ∑st cst
AiSst, (s, t) = (5, 6, · · · , 13, 14), which are generators of the subgroups of SO(13, 1),

determining charges of fermions, with AAi
m = ∑s,t cAi

st ωst
m [9], m ∈ (0, 1, 2, 3), which are the

corresponding superposition of ωstm ([2,4,11] and the references therein), describing the known vector
gauge fields of the standard model— the colour, weak and hyper gauge fields.

AAi
s = ∑s′ ,s′′ cAi

s′s′′ ω
s′s′′

s offer explanation for the scalar higgs and Yukawa couplings of the standard
model, with p0s = ps − 1

2 Ss′s”ωs′s”s − 1
2 S̃abω̃abs, where s ∈ (7, 8), (s′, s”) ∈ (5, 6, 7, 8), (a, b) (appearing in

S̃ab) run within (0, 1, 2, 3) and (5, 6, 7, 8).
AAi

t = ∑s′ ,t′ cAi
s′t′ ω

s′t′
t predict new scalar fields, which are involved in the matter antimatter

asymmetry in the expanding universe [2] and in proton decay, with p0t = pt − 1
2 St′t”ωt′t”t − 1

2 S̃abω̃abt,
t ∈ (5, 6, 9, . . . , 13, 14), (t′, t”) ∈ (5, 6, 7, 8) and ∈ (9, 10, . . . , 14).

The spinor function ψ in Equation (A2) represents all the family members, 2
d
2−1 = 64, d = (13 + 1),

(after the break of symmetry caused by the neutrino condensate [2,4,11]) of all the 2
7+1

2 −1 = 8 families,
including fermions and antifermions, Table III. [2]. The rest of families are assumed to have very large
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masses as discussed and proved for a toy model in Ref. [13–16]. The properties of quarks and leptons and
antiquarks and antileptons, are presented from the point of view of subgroups of SO(13, 1) breaking first
into SO(7, 1)× SU(3)×U(1), keeping connection between handedness and the two SU(2)I,I I charges,
and further to— SU(2)R × SU(2)L ×SU(2)I ×SU(2)I I × SU(3)×U(1) —representing in d = (3 + 1) the
spin and handedness, the weak charge τ13 of SU(2)I , the second τ23 of SU(2)I I , the colour charge τ33 and
τ38 of SU(3) and τ4 of U(1) for massless quarks and leptons and antiquarks and antileptons, postulated by the
standard model.

There are twice separated four families of quarks and leptons in the spin-charge-family theory ([3] and
the references therein). (All eight families obtain masses when the scalar gauge fields with the space
index (7,8)—third term in Equation (A2)—gain nonzero vacuum expectation values at the electroweak
phase transition.)

To the lower four families the observed three families of quarks and leptons contribute [8,17]. By the
spin-charge-family theory predicted SU(2)× SU(2)×U(1) symmetry of mass matrices, which limits the
number of free parameters of mass matrices, the properties of the fourth family could be predicted by
fitting free parameters to the experimental data. However, the accuracy of the so far measured 3× 3
mixing (sub)matrices are even for quarks far from the required precision, which would enable prediction
of masses of the fourth family members [8]. We predict for the assumed masses of the fourth family of
quarks the corresponding matrix elements. Calculations show [8] that the larger the masses of the fourth
family—up to 6 TeV seems to be allowed by experiments [18]—the smaller are the unwanted mixing
elements which could cause the flavour-changing neutral currents and the better is agreement with the
experimental data, which require, due to the observations in Refs. [18], that there should be the fourth
family due to the nonunitarity of the 3× 3 so far measured mixing matrix for quarks and that the 4× 4
mixing matrix elements should have the properties: Vu1d4 > Vu1d3 , Vu2d4 < Vu1d4 , and Vu3d4 < Vu1d4 .
Here ui, di, i = 1, 2, 3, 4 represent u, c, t, u4 and d, s, b, d4 quarks. Our results are not in contradictions with
the observations.

The lowest of the upper four families is, as evaluated in Ref. [7], the candidate, which can explain
(or at least can contribute to) the appearance of the dark matter in the universe. Comparing the results
from following the fifth family members in the expanding universe with the astrophysical observations
of dark matter and the direct measurements of the dark matter, the predicted masses of the fifth family
quarks would be 102 TeV < mq5 c2 < 4 · 102 TeV, and the scattering cross section σ for the fifth family
neutron at least 10−6× smaller than the cross section for the first family neutron. These values change if
the fifth family neutron is not the only source of the dark matter.

The spin-charge-family theory offers several other predictions. The reader can find them in the cited
references. The more effort and work is put into this theory the more observed phenomena the theory
offers the explanation for.

Starting from a very simple action the theory is limited in degrees of freedom and there is not
a lot of space for arbitrariness. It is true from the other side that in the many body problems is
difficult to make predictions without the accurate enough experimental data, which suggest the way of
breaking symmetries.
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