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Abstract: We aim to construct a potential better suited for studying quarkonium spectroscopy.
We put the Cornell potential into a more geometrical setting by smoothly interpolating between the
observed small and large distance behaviour of the quarkonium potential. We construct two physical
models, where the number of spatial dimensions depends on scale: one for quarkonium with Cornell
potential, another for unified field theories with one compactified dimension. We construct point
charge potential for different dimensions of space. The same problem is studied using operator
fractal calculus. We describe the quarkonium potential in terms of the point charge potential and
identify the strong coupling fine structure constant dynamics. We formulate renormdynamics
of the structure constant in terms of Hamiltonian dynamics and solve the corresponding motion
equations by numerical and graphical methods, we find corresponding asymptotics. Potentials of
a nonlinear extension of quantum mechanics are constructed. Such potentials are ingredients of space
compactification problems. Mass parameter effects are motivated and estimated.

Keywords: space dimension dynamics; coulomb problem; extra dimensions

“. . . there will be no contradiction in our mind
if we assume that some natural forces are governed
by one special geometry, while other forces by another.”

N. I. Lobachevsky

1. Introduction

Quarkonium spectroscopy indicates that between valence quarks inside hadrons, the potential on
small scales has D = 3 Coulomb form and at hadronic scales has D = 1 Coulomb one (here we refer
to Coulomb potential satisfying Gauss’ law in D dimensions, cf. Section 2 or [1]). We may combine
this two types of behavior and form an effective potential in which at small scales dominates the
D = 3 component and at hadronic scale the D = 1 component: the Coulomb-plus-linear potential
(the “Cornell potential” [2]),

V(r) = − k
r
+

r
a2 = µ

(
x− k

x

)
, µ = 1/a = 0.427 GeV, x = µr, (1)

where k = 4
3 αs = 0.52 = x2

0, x0 = 0.72 and a = 2.34 GeV−1 were chosen to fit the quarkonium spectra.
An important step in the solution of a theoretical problem is to find a good initial approximation in

the corresponding mathematical model. Then by small deformations and a few terms in perturbation
expansion we describe a physical phenomenon. When a deformation parameter (e.g., coupling
constant) value increases, in some region the initial approximation might change into a new form.
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In the case of Quantum chromodynamics (QCD), the coupling constant increases with increasing
distance between quarks, and in the intermediate region (∼0.5 fm) the three dimensional hadronic
space becomes a fractal - a space with intermediate dimension. At the hadronic scale (∼1 fm), we again
have a nice classical picture (one dimensional space) and already one gluon exchange between valence
quarks gives a confining potential.

One of the main motivations for this work is to put the Cornell potential into a more geometrical
setting. We aim to smoothly interpolate between the observed small and large distance behaviour of the
quarkonium potential by considering dimension D(r) of space of hadronic matter to be dynamically
changing with r, i.e., the corresponding Coulomb potential is VD(r) ∼ r2−D(r), where the effective
dimension of space D(r) changes from 3 at small r to 1 at hadronic scales ∼1 fm. In this paper, we
extend investigations started in [3] and construct such potentials and effective dimensions as functions
of r.

Heavy quarkonium is a system which can probe all scales of QCD. Hence heavy quarkonium
presents an ideal laboratory for testing the interplay between perturbative and nonperturbative QCD
within a controlled environment. In the last decade, lots of states were found experimentally in the
heavy quarkonium mass range that did not fit into the scheme predicted by the constituent quark model,
for recent reviews see, for example, reference [4–6]. We hope our method of continual interpolation of
the dimension of hadronic space will be useful in that beyond of the standart quarkonium model states.

In Section 2 of this paper, we construct the point charge potential for different dimensions of space.
The same problem is considered in Section 3 by using operator fractal calculus. In Section 4, we describe
the quarkonium potential in terms of the potential of a point charge and identify the strong coupling
fine structure constant dynamics. Then, in Section 5, we formulate renormdynamics in terms of
hamiltonian dynamics and solve corresponding motion equations by numerical and graphical methods,
we find corresponding asymptotics. Next, we deal with another example: spaces with compactified
dimensions. In Section 6, 1/r2 potential of a nonlinear extension of the quantum mechanics constructed.
Such potentials are ingredients of space compactification problems considered in Section 7. Section 8
deals with Debye screening motivated potentials and its anti-screening counterparts. These potentials
are supplemented by a confining factor corresponding to the proper account of the topological effects
of the QCD vacuum. The form of the confining potential corresponds to the existence of halo states of
nuclear matter. In Section 9, mass parameter effects are motivated and estimated. After conclusions
and discussions, several appendices of technical nature and proofs are given.

2. Coulomb Problem in D Dimensions

We have the following expression for the solution of the Poisson equation with a point-like source
in D-dimensional space [1,7] (see Appendix A):

∆ϕ = eδD(x),

ϕ(D, r) = − Γ(D/2)
2(D− 2)πD/2 er2−D,

V(D, r) = eϕ(D, r) = −α(D)r2−D,

α(D) =
e2Γ(D/2)

2(D− 2)πD/2 , D 6= 2, r = |x| (2)

and, for D = 2,

ϕ(2, r) =
e

2π
ln r, V(2, r) =

e2

2π
ln r, (3)

In particular, for spatial dimensions 1, 3 and 4, we have from (2):

V(1, r) =
e2r
2

, V(3, r) = − e2

4πr
, V(4, r) = − e2

4π2r2 . (4)
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Now, let us consider Poisson’s equation in D dimensions with a general source,

∆V(x) = e2ρ(x) , (5)

where V(x) is the generalized D-dimensional potential, ρ(x) is some source function. We find that for
the special case ρ(x) = δ(x) we obtain the fundamental solution (2) (for textbook derivations using
generalized functions, see, e.g., [8]):

E(x) = −α(D)

rD−2 . (6)

For a distribution ρ(x) of delta functions over a volume v, the corresponding value of V(x) is

V(x) = E ∗ ρ = −αD

∫
v

ρ(y)dDy
|x− y|D−2 (7)

where ∗ denotes convolution.
As defined so far, the coupling constant has a mass dimension de = (D− 3)/2 = −ε. To work

with a dimensionless coupling constant e, we introduce the mass scale µ. Then, the potential energy (2)
takes the following form

V(D, r) = − Γ(D/2)
2(D− 2)πD/2 e2µ2εr2−D = −α(D)(µr)2ε/r = −α(D)(x)2−Dµ. (8)

Let us relate the point charge problem to quarkonium and derive the Coulomb coefficient
k = 4/3αs in the Cornell potential (1). The static potential between two heavy quarks belongs to
the fundamental quantities of QCD. In lowest order, in coordinate space (see, e.g., [9])

Vn(r) = −Cn
αs(µ)

r
, Cn = Cn(Nc), n = 1, 8, (9)

with C1(Nc) = CF = (Nc − N−1
c )/2 > 0 for the colour-singlet and

C8(Nc) = CF − CA/2 = −1/2Nc < 0 for the colour-octet state. Nc denotes the number of colors.
In QCD, Nc = 3. Thus C1(3) = (3− 1/3)/2 = 4/3, as we wanted to show.

3. Fractal Calculus of Quantum Field Theory in Examples

Let us solve the point charge problem another way—using fractal calculus. The solution in case
of a non-integer dimension is, by definition, a fractal (for concise introduction in fractal calculus with
some applications see, e.g., [10]). Matrix calculus in QFT perturbation theory [11] can be interpreted as
operator fractal calculus. Indeed, with the following definitions

[x̂n, p̂m] = iδn,m, x̂n |x〉 = xn |x〉 , p̂m |p〉 = pm |p〉 , 〈x|y〉 = δD(x− y)

〈x|p〉 = 1
(2π)D/2 exp(ipx),

∫
dD p |p〉 〈p| =

∫
dDx |x〉 〈x| = 1, (10)

for two point function we have (see Appendix B),

G(x, y) = 〈x| p̂−2α |y〉 = A(α)(x− y)−2β,

β =
D
2
− α, A(α) =

Γ(β)

22απD/2Γ(α)
. (11)

As an example, consider the Coulomb potential, the solution of the equation for potential of
a point source

∆ϕ = eδD(x). (12)
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Note that, ∆ = − p̂2,

ϕ(x) = −e 〈0| 1
p̂2 |x〉 = −e

Γ(D/2− 1)
4πD/2

1
|x|D−2 , D 6= 2. (13)

Using Γ(D/2− 1) = Γ(D/2)/(D/2− 1), Formula (13) is easily reduced to (2). As a side note, let us
mention another application of fractal calculus—we take the following integral, for composition of
two point functions, useful for diagram calculations in Quantum field theories (QFT),

G3(x, y) =
∫

dDz(x− z)−2α(z− y)−2γ

= A−1(β)A−1(δ)
∫

dDz 〈x| p̂−2β |z〉 〈z| | p̂−2δ |y〉

=
A(β + δ)

A(β)A(δ)
(x− y)−2η ,

β =
D
2
− α, δ =

D
2
− γ, η =

D
2
− (β + δ) = α + γ− D

2
. (14)

The constructions of this section can be translated in terms of the theory of generalized functions [8].
This, as well as the reconstruction of QFT, will be done elsewhere.

4. Dimension Dynamics from Cornell Potential

In this section, we obtain the dynamics of the dimension of hadron space and of the coupling
constant as a function of distance between quarks.

Let us compare the Cornell potential and the Coulomb potential with dynamically changing space
dimension. Then, we define the dimension D of space from the equality of (1) and (8)

k− x2

x3−D = α(D) =
e2Γ(D/2)

2(D− 2)πD/2 = αs
2Γ(D/2)

(D− 2)π(D−2)/2
, αs =

e2

4π
. (15)

For any values of x and D, the coupling constant αs thus becomes:

αs(D, x) =
π(D−2)/2

2Γ(D/2)
(D− 2)α, α =

k− x2

x3−D = (k− x2)xD−3. (16)

At the distinguished values D = 1 and D = 3 we have:

αs(1, x) =
1

2π

(
1− k

x2

)
, x2 > x2

0 = k,

αs(3, x) = k− x2 = αs =
e2

4π
, x2 < x2

0 = k, (17)

where the inequalities represent the requirement for the coupling constant αs to be positive, see Figure 1.
According to (17) and Figure 1, the hadronic space dimension at point x =

√
k = 0.72 changes

from 3 to 1. We may interpret this as a phase transition from quark-gluon (or gluquar) phase to
confining (hadron) phase at high temperatures and/or densities of hadronic matter corresponding to
distances of order r = x0a = 0.72× 2.34 GeV−1 = 0.34 fm.

In the following section, we will formulate the hamiltonian form of renormdynamics and apply it
in the analysis of space dimension and coupling constant dynamics (16).
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Figure 1. αs as a function of x = µr ∈ (0, 1.7) for distinguished values D = 1 and D = 3.

5. Hamiltonian Formulation of the Space Dimension Dynamics

Here, we will apply the general framework of Hamiltonian mechanics to the equations of
renormdynamics. By this method we made good motivation for an explicit form of D(x): we use
a simple example of Hamiltonian mechanics and show how to use it to find the dimension D of space
as a function of distance x.

Let us consider the simplest Hamiltonian dynamics

ẋ1 = {x1, H}, ẋ2 = {x2, H} (18)

for dynamical variables (phase space) (x1, x2), Hamiltonian H

H =
p2

2m
+ V(x) =

x2
1

2m
+ V(x2) (19)

and Poisson structure

{A, B} = fnm
∂A
∂xn

∂B
∂xm

= f12

(
∂A
∂x1

∂B
∂x2
− ∂A

∂x2

∂B
∂x1

)
. (20)

Instead of solving the system of motion equations, having one integral of motion-Hamiltonian, we may
find x1 from the Hamiltonian, insert it in the motion equation for x2 and solve it. Similarly, we consider
our coupling constant dynamics. The variables x, D and α are nonnegative, so it is natural to introduce,
free from this restriction, variables: t = ln x, x1 = ln αs and x2 = ln D. Then from (15) we obtain the
following Hamiltonian and motion equations

H(x1, x2, t) = x1 −V(x2, t) = E⇒ x1 = V(x2, t) + E,

ẋ1 = f12
∂V
∂x2

,

ẋ2 = − f12, V(x2, t) = ln

(
π(D−2)/2

2Γ(D/2)
(D− 2)

k− x2

x3−D

)
− E. (21)

We may also take x1 = αs = α, E = 0, then

x1 = V(x2, t) = (k− x2)xD−3 = (k− x2)xexp(x2)−3 = (k− e2t)et(e−t−3),

ẋ1 =
∂V
∂x2

= (k− x2)xex2−3 ln xex2 = (k− e2t)tet(e−t−3)e−t, f12 = 1,

α̇ = β = te−tα = β1α, β1 = ln
αe3t

k− e2t

ẋ2 = −1⇒ x2 = −t + ln c, D = c/x, c = 1, (22)
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Let us return to the general expression (16)

αs(D, x) =
π(D−2)/2

2Γ(D/2)
(D− 2)

k− x2

x3−D =
π(1/x−2)/2

2Γ(1/2x)
(1/x− 2)

k− x2

x3−1/x

=
π(1/x−2)/2

2Γ(1/2x)
(1/x− 2)(

√
k− x)

√
k + x

x3−1/x , (23)

where for simplicity we set the integration constant c = 1 and defined D(x) = 1/x. Note that x > 0
and αs ≥ 0 when x < min(1/2,

√
k) = 1/2 or x > max(1/2,

√
k) =

√
k = 0.72 while αs < 0 for

1/2 < x < 0.72, cf. Figure 2.
We may exclude the negative interval (1/2, 0.72) by using different mass scales µ:

rµ1 = 1/2, rµ2 = 0.72, µ2/µ1 = 1.44. Alternatively, we may close the negative interval by taking√
k = 1/2⇒ αs = 3/16 = 0.1875 in the last formula of (23), c.f. Figure 2:

αs(D, x) =
π(D−2)/2

2Γ(D/2)
(D− 2)

k− x2

x3−D =
π(1/x−2)/2

2Γ(1/2x)
(1/x− 2)

k− x2

x3−1/x

=
π1/2x−1

Γ(1/2x)
(x− 1/2)2 x + 1/2

x4−1/x →
1

2πx2 , x � 1. (24)
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Figure 2. αs as a function of x = µr ∈ (0.1, 1.6) for
√

k = 0.72 with the negative interval and with√
k = 1/2⇒ αs = 3/16 = 0.1875, with the negative interval closed.

If we want for the dimension usual asymptotic behaviour for Cornell potential:
D(∞) = 1, D(0) = 3, we may take, e.g., the following solution

D(x) = 3− 2 tanh(cx), Ḋ = − 2c
cosh2(cx)

= β(D),

β(D) = −c(D− 1)(5− D)/2. (25)

Now, from the motion equation for x1 = αs, and the new structure function

ẋ2 = − f12 ⇓
f12 = −c(D− 5)(D− 1)/(2D), (26)

we construct β-function given in parametric form

ẋ1 = β = f12
∂V
∂x2

,

αs(D, x) =
π(D−2)/2

2Γ(D/2)
(D− 2)

k− x2

x3−D ,
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α̇s =
∂αs

∂x
+

∂αs

∂D
Ḋ. (27)

We close the negative interval for αs, see Figure 3, defining the parameter c as

D = 2 = 3− 2 tanh(c
√

k)⇒ tanh(c
√

k) =
1
2

,
√

k = 0.72, c = 0.76. (28)

For ultraviolet value we have

αs(D = 3, x = 0) = π1/2k/2/Γ(3/2) = k = 0.52. (29)

For infrared value we have

αs(D = 1, x = ∞) = π−1/2(−1)(−1)/2/Γ(1/2) =
1

2π
' 0.16. (30)
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Figure 3. αs as a function of x = µr ∈ (0, 3) when D(0) = 3, D(∞) = 1.

6. Extended Quantum Mechanics and Conformal Potential

In this section, we derive 1/r2 type potentials in extended quantum mechanics [12]. These potentials
serve as a basis to the following section where we consider potentials in spaces where some coordinates
are compactified.

In extended quantum mechanics, the usual Schroedinger equation was completed by
corresponding motion equation for potential V in the following Hamiltonian system

iψt = −∆ψ + Vψ,

iVt = ∆V − 1
2

V2, (31)

with a partial solution for the potential

V =
4(4− D)

r2 . (32)

For dimension of space D > 4, we have attractive potential with the possibility of quantum-mechanical
bound states. We suppose that at small scales we have D−dimensional Euclidean (or Riemannian)
space with 1/r2 potential. At usual scales we observe three dimensional space, so extra D − 3
dimensions are compactified, e.g., as D− 3 dimensional torus TD−3 = (T1)D−3. In the minimal case,
D = 5 and we need a two dimensional torus. The extra dimension may be compactified also in S2

sphere (SD−3 sphere). Note that the circle T1 is S1 sphere.
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In a more general case of the potential motion equation,

iψt = −∆ψ + V̄ψ,

iVt = ∆V − 1
n

Vn, V̄ = Vn−1 (33)

we have the following solution (see Appendix C).

V =

(
2n

n− 1

(
2n

n− 1
− D

)
1
r2

) 1
n−1

, V̄ = Vn−1 =
2n

n− 1

(
2n

n− 1
− D

)
1
r2 . (34)

7. Compactification and Dimension Dynamics

In this section we use the idea of interpolating (fractal) space dimension in another class of models:
with compactified dimensions. We implement the idea in the simplest case of one compact dimension
and then give some general arguments for cases with several compact dimensions.

Let us take one of the dimensions y as circle with radius R. This corresponds to the periodic
structure with a point charge sources at each point yn = y + 2πRn, n = 0,±1,±2, . . .

∆ϕ = e ∑
n

δD(x)δ(yn), ϕ(D, r, y) = ∑
n

ϕ(D, r, yn),

V(D, r, y) = −α(D + 1)
∞

∑
n=−∞

(r2 + (2πRn + y)2)(1−D)/2. (35)

When D = 3, the potential (35) can be writen in a closed form [1]

V3(r, y) = −α(4)
2Rr

sinh(r/R)
cosh(r/R)− cos(y/R)

=

{
α(4)/(2Rr), r � R

α(4)/(r2 + y2), r, y� R
(36)

where α(4)/(2R) = α(3). Alternatively, we can rewrite (36) as

V3(r, y) = −α(4)
4Rr

[
coth

(
r + iy

2R

)
+ coth

(
r− iy

2R

)]
, (37)

or, using

A−α = 1/Γ(α)
∫ ∞

0
dt tα−1e−tA, (38)

by means of the Theta function as

V3(r, y) = −α(4)
∫ ∞

0
dte−tr2

∞

∑
−∞

e−t(2πRn+y)2
= −α(4)

∫ ∞

0
dte−tr2 θ

(
iy

2πR , exp
(

i
4R2t

))
2R
√

π
√

t
, (39)

where θ(z, τ) = is given in Appendix D.

Dimension Dynamics with One Compact Dimention

For y = 0, the potential takes the following simple form

V3(r, y = 0) = −α(3)
r

coth
r

2R
. (40)

For y = πR, we have

V3(r, y = πR) = −α(3)
r

tanh
r

2R
. (41)
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From (36), we see that for big r, the effective dimension of space is 3 and for small r is 4.
For intermediate scales, the effective dimension might change smoothly from 3 to 4. Integrating by
coordinate y (or angle ϑ, see Appendix E) we define mean potential depending only on the variable
r [1],

V̄3(r) =
1

2π

∫ 2π

0
dϑV3(r, ϑ) = −α3

r
, α3 ≡ α(3). (42)

As in the Cornell potential case (cf. Equality (15)), we define the dimension dynamics from
equality between the Coulomb potentials (8) and (36)

α(4)
2r

sinh(r/R)
cosh(r/R)− cos(y/R)

= α(D)(x)2−D, α(4) = 2Rα(3)

µ = 1/R, x = µr, (43)

We may take some interpolating dimension, e.g.,

D(x) = 4− tanh x, (44)

and define the coupling function dynamics as

α(x, ϕ) = α3xD−3 sinh x
cosh x− cos ϕ

, x = r/R, ϕ = y/R ∈ [0, 2π),

α(x, 0) = α3xD−3 coth(x/2) =

{
2α3 x � 1
α3 x � 1

,

α(x, π) = α3xD−3 tanh(x/2) =

{
α3x2/2 x � 1

α3 x � 1
. (45)

The last case corresponds to the asymptotic freedom at small r/R scales, see Figure 4. From the point
of view of the compact subspace, it corresponds to infrared asymptotic freedom.

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4. αs(x, 0)/α3 and αs(x, π)/α3 as a function of x = µr ∈ (0.1, 5).

The global maximum value is αs(x, ϕ)/α3 = 2.87644 at ϕ = 0, xc = 0.360028, D(xc) = 3.65476,
see Figure 5. So, we have ultraviolet and infrared fixed points and intermediate fixed point of
renormdynamics. Beta functions for the normed coupling constant: a = αs(x, ϕ)/α3 are

aϕ =
∂a
∂ϕ

= − sin ϕ

cosh x− cos ϕ
a,

ax = x
∂a
∂x

=

(
xDx ln x + D− 3 + x

(
coth x− sinh x

cosh x− cos ϕ

))
a,
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D = 4− tanh x, Dx = −1/ cosh2 x. (46)

From the first equation of the system we see that aϕ = 0 for a 6= 0 at ϕ = 0, π. At ϕ = 0, we have
maximum. At ϕ = π, we have infrared fixed point, see Figure 6.

Figure 5. αs(x, ϕ)/α3 as a function of x = µr ∈ (0.1, 3), ϕ ∈ (0, 2π).

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

Figure 6. Beta function ax, cf. (46), as a function of x = µr ∈ (0, 3), with ϕ = 0. The curve intersects
the x-axis , determining the global maximum of αs(x, ϕ)/α3 = 2.87644 at ϕ = 0, xc = 0.360028,
D(xc) = 3.65476.

For a point quark inside hadron of size R at a temperature T we have

∆ϕ = e ∑
k,l,n,m

δ(τk)δ(xl)δ(yn)δ(zm),

ϕ(0, τ, x, y, z) = ∑
k,l,n,m

ϕ(0, τk, xl , yn, zm),

V(0, τ, x, y, z) = −α4

∞

∑
k,l,n,m=−∞

((2πk/T + τ)2

+(2πR1l + x)2 + (2πR2n + y)2 + (2πR3m + z)2)−1

= −α4

∫ ∞

0
dttB0(t, τ)B1(t, x)B2(t, y)B3(t, z),

B1(t, x) =
∞

∑
n=−∞

e−t(2πR1n+x)2
= e−tx2

θ(2iR1xt, 4πiR2
1t), . . . , R0 = 1/T (47)

where we have written the sums by means of the Theta function (see Appendix D).



Particles 2020, 3 374

For the sake of completeness, let us state the general expression for the potential in space RD ×Td

where Td = S1 × · · · × S1 (d-times) is the d-dimensional torus. D refer to the “big” dimensions
x = (x1, . . . xD), whereas d to the “small-compactified” ones y = (y1, . . . yd). Then

∆ϕ = e ∑
n1,...,nd

δD(x)δ(y1,n1) . . . δ(yd,nd
),

ϕ(D, d, r, y1, . . . , yd) = ∑
n1,...,nd

ϕ(D, d, r, y1,n1 , . . . , yd,nd
),

VD,d(r, y1, . . . , yd) = −αD+d

∞

∑
n1,...,nd=−∞

(r2 + (2πR1n1 + y1)
2 + · · ·+ (2πRdnd + yd)

2)−(D+d−2)/2

= − αD+d

Γ[D+d−2
2 ]

∫ ∞

0
dtt

D+d−4
2 e−tr2

∞

∑
n1,...,nd=−∞

e−t(2πR1n1+y1)
2

. . . e−t(2πRdnd+yd)
2

= − αD+d

Γ[D+d−2
2 ]

∫ ∞

0
dtt

D+d−4
2 e−tr2

Πd
i=1Bi(t, yi),

Bi(t, yi) =
∞

∑
ni=−∞

e−t(2πRini+yi)
2
= e−ty2

i θ(2iRiyit, 4πiR2
i t), (48)

where we have again used (38) and written the sums in the expressions for Bi by means of the Theta
function (see Appendix D).

Note that the B-factors in the integrand ∼ t−d/2 for small t, so the integral is divergent when
D ≤ 2. For example, for total dimension D + d = 4 and d = 2, the integral is divergent. We may
regularize the integral by restricting summation by some N or consider analytic continuation D + d + ε

in the monomial factor of the integral. We may define the same conditions from direct form of the sum,
before integral transform. Divergent part of the sum is estimated by integral∫

ddxx2−D−d ∼
∫

dxx1−D ∼ x2−D (49)

which is divergent for D < 2. For D = 2, divergent part of the sum is estimated by integral∫
ddxx−d ∼

∫
dx/x ∼ ln x (50)

which gives logarithmic divergence. In the world of confining potentials, D ≤ 2, there are no
macroscopic systems of infinite size or infinite number of constituents.

8. Debye Screening, Modified Gluon Propagator

It is known that the force between two charges, e and −e, changes when the system is placed
in a medium. In an ionized plasma, the 1/r potential turns into Yukawa-Debye screening [13]
(see also [14])

V(r) = −αe−µr

r
= −α

r
− σr + . . . , σ = αµ2/2 , (51)

where we marked with ellipsis the irrelevant constant term αµ and terms of order higher than linear in
r (irrelevant for small r). In expanded form it reminds of the “Cornell potential” (1)

V(r) = − k
r
+ σr, σ = 1/a2 (52)

but the sign of the string tension σ is opposite. The positive sign corresponds to the confined phase,
negative sign to screened (deconfined) phase. We can take (test) as a confining potential the following
one (cf. Figure 7):

V(r) = −α cos µr
r

= −µα cos(x)
x

= −α

r
+ σr + . . . , σ = αµ2/2, x = µr . (53)
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Figure 7. Potential (53).

The confining potential turns into a deconfining one when µ2 changes sign or when exchange
particle becomes tachyon.

In paper [15], by proper account of the compact nature of SU(3) gauge group that gives rise to the
periodic θ-vacuum of the theory, the gluon propagator was modified as

G(p) = (p2 + χ/p2)−1 =
p2

p4 + χ
=

1
2
(

1
p2 + i

√
χ
+

1
p2 − i

√
χ
) (54)

which gives the potential (cf. Figure 8):

V(r) = −α cosh µr cos µr
r

= −µα cosh x cos x
x

= µα(− 1
x
+

x3

6
+ . . . ),

x = µr, µ = 4
√

χ/
√

2 (55)

where χ is the Yang–Mills topological susceptibility related to the η′ mass by the
Witten–Veneziano relation,

χ =
F2

π

2N f
(m2

η′ + m2
η − 2m2

K) ' (180 MeV)4, µ = 4
√

χ/
√

2 = 127 MeV. (56)

The topological susceptibility in this formula is the only quantity which is by definition calculable in
gluodynamics. Early papers of its calculation are [16–18], and more recently [19].

2 4 6 8
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Figure 8. Confining potential (55).
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Potential (55) is well motivated and confining. In the minimum of the potential (55) bound states
“bags” have size of the order of 11 fm,

r = 7/µ = 7/0.127 GeV−1 = 11 fm, GeV−1 ' 0.2 fm , (57)

and can give rise to long lived states corresponding to hadronic halos or galactic (in case of
gravitational) halos.

9. Variable Mass and Momentum-Space Formulations of Dimension Dynamics

We may change the long distance behaviour of the Coulomb potential by including a variable
mass term

4V −m2V = −e2δD(x), δD(x) = (2π)−D
∫

dD peipx ⇓

V(r) =
e2

(2π)D

∫
dD p(p2 + m2)−1eipx ∼ r2−De−mr ∼ r2−d,

m⇒ m(r) = a ln(µr)/r, d = D + a. (58)

Note that the m2 term plays the role of a potential. Comparing this term with Expression (32), we
find the corresponding dimension dynamics: D(r) = 4− a2 ln2 µr/4, from which we may estimate
parton size r0 , from hadron size R ∼ 1 fm and condition D(r) = 0 : r0 = R exp(−4/a). The parton
size r0 ≤ 0.3 fm—valence quark size, so a ≤ 4.

In momentum representation, explicit dependence on spatial dimension is contained in the
volume form. Form-factor may cause the dimension to depend on momentum. We may construct
form-factors corresponding to transition from space-time dimension 4 on small scales, to dimension 2
and then 1 (only a time dimension remains—which is equivalent to confinement) at large scales.

10. Discussion and Summary

The main idea of this paper is to change the dimension of the hadronic space continually with
the distance between valence quarks and using advanced methods of the fractal calculus obtain
qualitatively new results for the description of the quarkonium potential. The most important bonus
we received is the dynamics of the coupling constant as a function of distance (and angle, in the case of
a compactified extra dimension).

We considered spherically symmetric solutions of the Poisson equation for a point charge.
For these solutions, the Laplace operator in radial variables permits an analytic continuation for
non-integral values of spatial dimensions. We assign such geometric characteristics to quarkonium,
considered to be a hadronic state in a fractal space whose dimensionality changes continually with
distance. More precisely, as the distance between valence quarks rises, the dimension of space of
hadronic matter changes continually from three to one.

The same idea was realized also in the case of one compact dimension. In unified field theories,
extra dimensions are compactified. On small scales, the space dimension is an integer number, and at
large scales another one, smaller than the former one. In our approach we interpolate between this
two dimensions smoothly, passing fractal geometries and using fractal calculus methods.

The results of this theoretical work could be used for possible improvements in the description of
quarkonium spectra and for space (de)compactification problems in the unified field and extended
particle models.
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Appendix A. Fundamental Solution of the Point Charge Problem

∫
dDx∆ϕ = ΩDrD−1 d

dr
aD

rD−2 = −(D− 2)ΩDaD = e, aD = − e
(D− 2)ΩD

, a3 = − e
4π

,∫
d2x∆ϕ = Ω2r

d
dr

(a2 ln r) = 2πa2 = e, a2 =
e

2π
,∫

dxDe−x2
= (2π

∫ ∞

0
drre−r2

)D/2 = πD/2 = ΩD

∫ ∞

0
drrD−1e−r2

=
ΩD

2
Γ(D/2), ΩD =

2πD/2

Γ(D/2)
. (A1)

Appendix B. Derivation of the Main Formula of the Operator Fractal Calculus

G(x, y) =
1

Γ(α)

∫ ∞

0
dttα−1 〈x| e−tp̂2 |y〉

=
1

Γ(α)

∫ ∞

0
dttα−1

∫
dD p 〈x|p〉 〈p|y〉 exp(−tp2)

=
Γ(D

2 − α)

Γ(α)22απD/2 (x− y)−2(D/2−α). (A2)

In coordinate representation, p̂n = −i∂/∂xn, we have D-dimensional fractal calculus.

Appendix C. Extended Quantum Potential

Let us consider the Ansatz V = Arm,

(m(m− 1) + (D− 1)m)rm−2 − 1
n

rnm An−1 = 0 ⇓

m− 2 = nm⇒ m =
2

1− n
;

m(m + D− 2)− 1
n

An−1 = 0⇒ A = (mn(D + m− 2))1/(n−1) =

(
2n

n− 1

(
2n

n− 1
− D

))1/(n−1)
,

V̄ = Vn−1 =
2n

n− 1

(
2n

n− 1
− D

)
1
r2 ,

D ≡ Dn =
2n

n− 1
, D2 = 4, D3 = 3, D−1 = 1, D0 = 0. (A3)

Appendix D. Theta Functions

Theta functions [20] are the analytic functions θ(z, τ) in 2 variables defined by

θ(z, τ) = ∑
n∈Z

exp[iπ(τn2 + 2nz)] = 1 + 2 ∑
n≥1

exp(iπτn2) cos(2πnz), (A4)

where z ∈ C and τ ∈ H, the upper half plane Im τ > 0. The series converges absolutely and uniformly
on compact sets.
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Appendix E. Integrals

∫ 2π

0

dϑ

a + b cos ϑ
=

2π√
a2 − b2

=
2π

|c2 − 1| , a = c2 + 1, b = 2c (A5)

∫ 2π

0
dϑ

eiϑ

a + b cos ϑ
=
∫ 2π

0
dϑ

cos ϑ

a + b cos ϑ
=

−b
a +
√

a2 − b2

2π√
a2 − b2

(A6)

Let us take the following integral

I(a) =
∫ π

0

dϑ

a2 + 1− 2a cos ϑ
=

π

|a2 − 1| =
{

π/a2, a2 � 1
π, a2 � 1

. (A7)

Obviously, I(1) = ∞, but

I(1) =
1
2

∫ π

0

dϑ

1− cos ϑ
=

1
4

∫ π

0

dϑ

sin2 ϑ
2

=
1
2

∫ 1

0

dx
(1− x2)3/2

=
1
4

∫ 1

0

dy
y1/2(1− y)3/2 = B(1/2,−1/2) =

1
4

Γ(1/2)Γ(−1/2)
Γ(0)

= 0, ?!

B(α, β) =
∫ 1

0
dxxα−1(1− x)β−1 =

Γ(α)Γ(β)

Γ(α + β)
, Real α, β > 0. (A8)

In our case a = exp(r/R) > 1. Let us take corresponding integral,

I =
1
a

∫ dϑ

b + 2 cos ϑ
=

1
ia

∫ dz
z2 + bz + 1

= I(z, a) =
1

ia(a− 1/a)
ln

z + a
z + 1/a

,

I(a) = I(−1, a)− I(1, a) =
1

ia(a− 1/a)
ln

(−1 + a)(1 + 1/a)
(−1 + 1/a)(1 + a)

=
π

a2 − 1
,

b = a + 1/a, z = eiϑ. (A9)

We may calculate the same integral by residue formula

∮ dz
(z + a)(z + 1/a)

= 2πi

{
1/(−a + 1/a), |a| < 1
1/(−1/a + a), |a| > 1.

(A10)

I(a) =
1
ia

2πi

{
1/(−a + 1/a), |a| < 1
1/(−1/a + a), |a| > 1.

}
=

2π

|a2 − 1| . (A11)

Now,

I =
∫ 2π

0

dϑ

a2 + 1− 2a cos ϑ
= I(a) + I(−a) =

2π

|a2 − 1| =
π exp(−r/R)

sinh(r/R)
,

1
2π

∫ 2π

0

dϑ

cosh(r/R)− cos ϑ
=

2a
a2 − 1

=
1

sinh(r/R)
, a = exp(r/R). (A12)
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