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Abstract: Two coupled, interpenetrating fluids suffer instabilities beyond certain critical counterflows.
For ideal fluids, an energetic instability occurs at the point where a sound mode inverts its direction
due to the counterflow, while dynamical instabilities only occur at larger relative velocities. Here, we
discuss two relativistic fluids, one of which is dissipative. Using linearized hydrodynamics, we show
that, in this case, the energetic instability turns dynamical, i.e., there is an exponentially growing
mode, and this exponential growth only occurs in the presence of dissipation. This result is general
and does not rely on an underlying microscopic theory. It can be applied to various two-fluid systems,
for instance, in the interior of neutron stars. We also point out that, under certain circumstances, the
two-fluid system exhibits a mode analogous to the r-mode in neutron stars that can become unstable
for arbitrarily small values of the counterflow.
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1. Introduction and Conclusions

Two-fluid (or multi-fluid) systems are realized in various settings. They can be created in the
laboratory, for instance through Bose–Fermi mixtures of cold atomic gases [1–3]. They may also appear
in neutron star cores, where neutrons, protons, and electrons, possibly together with hyperons, can be
described as a multi-fluid or even a multi-superfluid system [4–7]. Besides the core of a neutron star,
the inner crust hosts a complicated system of superfluid neutrons (and electrons) immersed in a lattice
of ions [8,9]. This is somewhat comparable to an atomic superfluid in an optical lattice, which shows
instabilities analogous to the two-fluid systems discussed here [10]. In addition, any single superfluid
at finite temperature is a two-fluid system, in which the condensate and the collective excitations
act as independent fluids [11–13]. Two-fluid models have also been proposed in the context of the
quark-gluon plasma to account for strongly and weakly coupled sectors [14] and for dark matter being
gravitationally coupled to normal matter in neutron stars [15,16] and quark stars [17].

Here, we are interested in two miscible relativistic fluids which are coupled to each other but have
independent velocity fields. We shall work in a hydrodynamic formalism, and our main result does not
depend on the microscopic theory from which the equation of state and transport coefficients can be
obtained. We will use a specific equation of state to illustrate our results. The validity of our two-fluid
hydrodynamics relies on the following assumptions: The mean free paths from collisions of the
microscopic constituents of each fluid among themselves are much smaller than the system size, which
is why each of the components can be treated as a fluid; and the mean free path from inter-collisions,
i.e., between constituents of one fluid with the other, is larger than those from intra-collisions, which is
why the system does not simply become a single fluid, but still smaller than the system size (otherwise,
the fluids would not interact).

The main motivation for this study is as follows: If the two coexisting fluids move relative to
each other, an instability can be expected at a certain critical velocity, termed two-stream instability or

Particles 2019, 2, 457–480; doi:10.3390/particles2040028 www.mdpi.com/journal/particles

http://www.mdpi.com/journal/particles
http://www.mdpi.com
https://orcid.org/0000-0001-8550-3843
http://www.mdpi.com/2571-712X/2/4/28?type=check_update&version=1
http://dx.doi.org/10.3390/particles2040028
http://www.mdpi.com/journal/particles


Particles 2019, 2 458

counterflow instability [18–20]. Here, we are only discussing homogeneous systems, i.e., the fluids
interpenetrate each other and we do not consider interfaces between the fluids, which also exhibit
counterflow instabilities [21]. Instabilities of relativistic ideal fluids in this homogeneous scenario
were discussed systematically in References [22,23]. It was found that dynamical instabilities only
occur at very large velocities, where there is already an energetic instability, which sets in at a smaller
counterflow. Here, dynamical instability refers to an exponentially increasing mode with a certain
growth time. Since we shall only work with linearized hydrodynamic equations, this growth time is
valid for the initial stage of the instability before nonlinear effects become important. An energetic
instability, on the other hand, refers to a negative energy, but there is not necessarily a growth time
associated with it. The negative energy indicates that the system wants to relax to a state of lower
energy. For this instability to turn into an actual unstable process, i.e., for it to turn dynamical, the
coupling to an environment is needed, for instance, by dissipative processes. Demonstrating and
explaining this effect for the two-stream instability in a two-fluid system is the main goal of this paper.
In our hydrodynamic approach, the energetic instability is associated with a change of direction of a
sound mode from upstream to downstream due to an increasing counterflow between the fluids. In a
more microscopic approach, this flip over is accompanied by the energy of a quasiparticle excitation
turning negative [23]. This is completely analogous to Landau’s original argument for the instability
of a superflow, which is thus an example for an energetic instability. The relation between energetic
and dynamical instabilities is also discussed, for instance, in References [10,24,25]. Another example of
an energetic instability is a negative canonical energy of rotating fluids [26], and we shall point out
further intriguing parallels of our observations to rotational instabilities in neutron stars below.

We consider a two-fluid system in which one of the fluids is dissipative. Dissipation is taken
into account by adding terms of first order in space-time derivatives to the stress-energy tensor. In a
single fluid, this gives rise to three dissipation channels, characterized by three transport coefficients:
heat conductivity, shear viscosity, and bulk viscosity. Two-fluid systems allow for more coefficients.
This is known, for instance, from a superfluid at finite temperature, which has one dissipative and
one non-dissipative component, resulting in three bulk viscosity coefficients [27,28]. For our purpose,
it is sufficient to consider only the dissipative coefficients that are already present in the absence of
the second fluid and thus ignore additional dissipative effects due to the counterflow between the
fluids. We also do not discuss two-fluid systems where both fluids would be dissipative in the absence
of the other fluid. Moreover, for our main result, we shall restrict ourselves to zero temperature, i.e.,
only viscosity, not heat conduction, will play a role. In this sense, we are constructing the “minimal”
scenario which shows our main result: Dissipation triggers a dynamical instability exactly at the critical
velocity at which, in the absence of dissipation, an energetic instability would occur.

It is known that in first-order hydrodynamics unphysical instabilities occur even for a single
fluid [29], which are cured by going to second order [30]—or possibly, as recently suggested [31,32], by
generalizing the common first-order formulations by Eckart and Landau/Lifshitz. We shall, therefore,
start with a careful discussion of a single relativistic dissipative fluid (in an arbitrary rest frame) and
identify the unphysical modes before moving on to two coupled fluids. Then, by working in the rest
frame of the dissipative fluid and at zero temperature, we ensure that the modes with unphysical
instabilities do not mix with the modes we are interested in. As a further confirmation that the
two-stream instabilities considered here are not artifacts of first-order relativistic hydrodynamics, we
shall also discuss the non-relativistic limit, where no unphysical instabilities occur and where the same
conclusion is reached. The observation of the coincidence of an energetic instability and a dynamical
instability due to dissipative effects has also been made in the study of a holographic superfluid [33].

Our system may be considered as a toy version of a finite-temperature superfluid. In that case,
dissipative and non-dissipative components are connected by a microscopic equation of state, and the
dissipative component is identical to the entropy current. In the present study, we keep the coupling
between the fluids completely general, allowing also for entrainment—a nontrivial mixing of the
currents and their conjugate momenta. In the future, it would be interesting to repeat the calculation



Particles 2019, 2 459

using an actual equation of state for a finite temperature superfluid, for instance, along the lines
of References [34,35]. The generality of our setup allows us to decide whether the non-dissipative
fluid behaves as a normal fluid or a superfluid. In a superfluid, the hydrodynamic equations are
supplemented by a Josephson equation which shuts off certain modes that exist in a normal fluid. Our
main result does not depend on whether or not this constraint is taken into account, i.e., it holds for
both normal fluids and superfluids.

The results of our study are mostly of general value, but they also have concrete implications.
For instance, it has been suggested that two-stream instabilities may provide the trigger for a
collective unpinning of vortices from the ion lattice in the inner crust of a neutron star, which is
necessary to explain sudden jumps in the rotation frequency, so-called pulsar glitches (see, for instance,
References [36–39]). By comparing the estimated lag between the rotating superfluid and the crust
from glitch data with the regions in parameter space where the two-stream instability sets in, it has
been argued that the instability only affects very large multipole moments [22]. This estimate, however,
was based on the ideal fluid approximation. Our results show that dynamical instabilities in realistic
systems set in at lower counterflow velocities, which suggests that the instability may operate at lower
multipole moments and thus on larger length scales. Therefore, further studies which connect our
general results to concrete systems, such as neutron star crusts but also to two-fluid systems in the
laboratory, would be of great interest.

Putting the result in a wider context, we note that our observation is not confined to a linear
relative flow between two fluids. In Figure 1, we show the analogy between our system and the case of a
rotating star where certain oscillation modes suffer the so-called Chandrasekhar-Friedman-Schutz (CFS)
instability [26,40], which manifests itself in the emission of gravitational waves. In this figure, we have
sketched the mechanism for f -modes—“fundamental” modes of the star whose instabilities are driven
by dissipation or gravitational radiation [41,42]. However, the phenomenologically more interesting
instability is predicted for r-modes [43] because it sets in at much smaller rotation frequencies. For
a recent review about f -mode and r-mode instabilities and their significance for gravitational wave
emission of isolated neutron stars, see Reference [44]. The r-modes only exist in a rotating star
and, in the absence of any damping mechanism, become unstable at infinitesimally small rotation
frequencies. Translated to our two-fluid system, r-modes would find an analogy if there is a mode that
only propagates in the presence of a counterflow and which, if dissipation is switched on, becomes
immediately unstable. We demonstrate the existence of such a mode if entrainment between the two
fluids is taken into account. Intriguingly, this observation provides us with a system that is much
simpler than the rotating star coupled to gravitational waves and yet shows qualitatively the same
instability. This suggests that the r-mode instability is a more general phenomenon than previously
thought and not only a consequence of the complicated details of rotating stars and general relativity.
It would be interesting to exploit the analogy to the two-fluid system further in the future.
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Figure 1. Analogy between the two-stream instability (upper row, discussed in this paper), and the
Chandrasekhar-Friedman-Schutz (CFS) instability in neutron stars, here schematically shown for
f -modes (lower row). Left column: The thick (black) arrow indicates the relative velocity v of the
second fluid, viewed in the rest frame of the first fluid, or the rotation of the star with frequency Ω,
viewed from an inertial frame. Middle column: In the absence of a relative motion of the fluids or
a rotation of the star, a given mode can propagate with the same speed in two opposite directions,
indicated by two thin (red and blue) arrows of the same length. Right column: At a sufficiently large
counterflow between the fluids or a sufficiently large rotation frequency of the star, one of the modes
flips over. This point marks the onset of an energetic instability. In astrophysics literature, instabilities
indicated by negative energies are often referred to as “secular instabilities” [45,46]. If the system is now
allowed to interact with its environment by dissipative effects (both cases) or losing angular momentum
through the emission of gravitational waves (star), the energetic instability turns dynamical.

2. Single Fluid

2.1. Setup

To prepare the two-fluid calculation and establish our notation, we start by discussing a single
dissipative fluid in first-order hydrodynamics. We are interested in oscillatory modes, which will be
obtained in the usual way by evaluating the hydrodynamic equations to linear order in the fluctuations.
With the two-fluid application in mind, we shall discuss these modes in a general rest frame. This
generalizes the well-known results of Reference [29], which are obtained in the rest frame of the fluid.
The present formalism for relativistic dissipative fluids has of course been frequently applied in the
literature (see, for instance, References [28,47–49]).

Our starting point is the conserved current jµ and the stress-energy tensor Tµν,

jµ = nvµ , (1a)

Tµν = Tµν
ideal + Tµν

diss , (1b)

where n is the number density in the rest frame of the fluid, and vµ is the four-velocity, which obeys
vµvµ = 1. We work in Minkowski space with metric convention gµν = (1,−1,−1,−1). We have
adopted a formulation in which the current does not receive dissipative corrections. This is referred to
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as the Eckart frame [50], in contrast to the Landau/Lifshitz frame formulation [51]. Up to first order in
derivatives, the ideal and dissipative contributions are

Tµν
ideal = εvµvν − P∆µν , (2a)

Tµν
diss = −τ∆µν + qµvν + qνvµ + τµν , (2b)

where ε and P are energy density and pressure in the rest frame of the fluid, and ∆µν ≡ gµν − vµvν.
Here, qµ is four-transverse to vµ (i.e., q · v ≡ qµvµ = 0), and τµν is four-transverse to vµ, traceless, and
symmetric. The explicit form of the dissipative contribution in terms of the transport coefficients is
given by

τ = −ζ∂ · v , (3a)

qµ = κ∆µγ[∂γT − T(v · ∂)vγ] , (3b)

τµν = η∆µγ∆νδ

(
∂δvγ + ∂γvδ −

2
3

gγδ∂ · v
)

, (3c)

with temperature T, shear viscosity η, bulk viscosity ζ, and heat conductivity κ. For the explicit
calculation, it is useful to write the heat and shear terms in the stress-energy tensor as

qµvν + qνvµ = 2κ
[
v(µ∂ν)T − vµvν(v · ∂)T − Tv(µ(v · ∂)vν)

]
, (4a)

τµν = 2η

[
∂(µvν) − v(µ(v · ∂)vν) − 1

3
∆µν∂ · v

]
, (4b)

where we have used vγ∂µvγ = 0 and abbreviated A(µBν) ≡ 1
2 (AµBν + AνBµ).

The hydrodynamic equations are given by the conservation of current, energy, and momentum,

∂µ jµ = ∂µTµν = 0 . (5)

It is instructive to compute the entropy production, which also serves as a consistency check for the
signs of the dissipative contributions. We treat the chemical potential p and the temperature T as our
independent thermodynamic variables. The slightly unusual notation for the chemical potential is
employed because in Section 3 we shall denote the chemical potentials in the laboratory frame—in
which both fluids have a nonzero velocity—by µ1 and µ2, while the chemical potentials in the rest
frames of the fluids will be denoted by p1 and p2. Denoting the entropy density by s, we compute:

∂µ jµ = n∂ · v +
∂n
∂p

(v · ∂)p +
∂s
∂p

(v · ∂)T , (6a)

∂µTµν = pvν∂µ jµ + pn(v · ∂)vν + sT[vν∂ · v + (v · ∂)vν]

+

[(
n + T

∂n
∂T

)
vνv · ∂− n∂ν

]
p +

[(
s + T

∂s
∂T

)
vνv · ∂− s∂ν

]
T + ∂µTµν

diss , (6b)

where all derivatives with respect to p are taken at fixed T and vice versa. We have used the
thermodynamic relations dP = ndp + sdT, dε = pdn + Tds, n = ∂P

∂p , s = ∂P
∂T , and ε + P = pn + sT,

which imply dn = ∂n
∂p dp + ∂s

∂p dT and ds = ∂n
∂T dp + ∂s

∂T dT. With ∂µ jµ = 0 and the definition
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of the dissipative part of the stress energy tensor (2b), the contraction of Equation (6b) with the
four-velocity yields

vν∂µTµν = T∂µ(svµ) + τ∂ · v + ∂ · q + vν(v · ∂)qν + vν∂µτµν , (7)

where the transversality of qµ has been employed. The terms on the right-hand side are rewritten with
the help of the explicit forms of the dissipative terms (3),

τ∂ · v = −τ2

ζ
, vµ(v · ∂)qµ =

qµqµ

κT
− (q · ∂)T

T
, vν∂µτµν = −

τµντµν

2η
. (8)

With these expressions and ∂µTµν = 0, Equation (7) becomes

T∂µsµ =
τ2

ζ
−

qµqµ

κT
+

τµντµν

2η
, (9)

where we have defined the entropy current

sµ ≡ svµ +
qµ

T
. (10)

Each of the terms in the entropy production (9) is non-negative provided that η, ζ, κ > 0, as it should
be. For instance, in the rest frame of the fluid, we can easily write the entropy production terms in the
form of squares,

τ2 = ζ2(∇ · v)2 , qµqµ = −κ2(∇T + T∂0v)2 , τµντµν = η2
(

∂ivj + ∂jvi −
2
3

δij∇ · v
)2

, (11)

where we have kept derivatives of the three-velocity v but set v = 0 otherwise. The three-velocity is
defined via vµ = γ(1, v), where γ = 1/

√
1− v2 is the usual Lorentz factor with v = |v|. Here, and in

the following, the components of the three-velocity are denoted by vi, which should not be confused
with the spatial components of the four-velocity, which generally have an additional factor γ. One
can also write the entropy production (9) in terms of the so-called thermodynamic forces ∂µvν and
[∂µT − T(v · ∂)vµ]/T and the corresponding thermodynamic fluxes πµν = τ∆µν − τµν and qµ,

∂µsµ = −
πµν∂µvν + qµ[∂µT − T(v · ∂)vµ]/T

T
, (12)

which can be compared to the non-relativistic form (see, for instance, Reference [9] and Equation (55b)
in our discussion of the non-relativistic limit).

In order to compute the sound modes of the system, we introduce harmonic fluctuations in
chemical potential, temperature, and three-velocity about their equilibrium values,

p(x, t) = p + δp ei(ωt−k·x) , (13a)

T(x, t) = T + δT ei(ωt−k·x) , (13b)

v(x, t) = v + δv ei(ωt−k·x) . (13c)
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We insert this ansatz into Equation (6) to obtain the non-dissipative contributions (we omit the
exponential ei(ωt−k·x), which multiplies every term on the right-hand sides)

∂µ jµ = iγn
[

ωv

n

(
∂n
∂p

δp +
∂s
∂p

δT
)
− (k− γ2ωvv) · δv

]
, (14a)

∂µTµ0
ideal = iγ4(w + sT)ωvv · δv− iγ2sTk · δv

+i
[

n(γ2ωv −ω) + γ2T
∂n
∂T

ωv

]
δp + i

[
s(γ2ωv −ω) + γ2T

∂s
∂T

ωv

]
δT , (14b)

∂µTµi
ideal = iγ4(w + sT)ωvviv · δv− iγ2sTvik · δv + iwγ2ωvδvi

+i
[

n(γ2ωvvi − ki) + γ2T
∂n
∂T

ωvvi

]
δp + i

[
s(γ2ωvvi − ki) + γ2T

∂s
∂T

ωvvi

]
δT . (14c)

Here, we have used ∂µ jµ = 0, have defined the enthalpy density

w = pn + sT , (15)

and have abbreviated
ωv ≡ ω− k · v . (16)

To compute the dissipative contributions, we linearize in the fluctuations δp, δT, δv. In this
approximation, and using Equations (2b) and (4), we can write

∂µTµν
diss '

(
ζ +

η

3

)
[∂ν − vν(v · ∂)]∂ · v + η[�− (v · ∂)2]vν

+κ
{

vν[�− 2(v · ∂)2] + (v · ∂)∂ν
}

T − κT
[
(v · ∂)2vν + vν(v · ∂)(∂ · v)

]
, (17)

where � ≡ ∂µ∂µ. This yields the spatial and temporal components—again, omitting the exponential—

∂µTµ0
diss ' −γ3

[
η(ω2 − γ2ω2

v − k2) +
(

ζ +
η

3

)
ωv(ω− γ2ωv)− 2κTγ2ω2

v

]
v · δv

+γ
[(

ζ +
η

3

)
(ω− γ2ωv)− κTγ2ωv

]
k · δv

−κγ
[
ω2 − γ2ω2

v − k2 + ωv(ω− γ2ωv)
]
δT , (18a)

∂µTµi
diss ' −γ3

[
ηvi(ω

2 − γ2ω2
v − k2) +

(
ζ +

η

3

)
ωv(ki − γ2ωvvi)− 2κTviγ

2ω2
v

]
v · δv

+γ
[(

ζ +
η

3

)
(ki − γ2ωvvi)− κTγ2ωvvi

]
k · δv

−κγ
[
vi(ω

2 − γ2ω2
v − k2) + ωv(ki − γ2ωvvi)

]
δT

−γ
[
η(ω2 − γ2ω2

v − k2)− κTγ2ω2
v

]
δvi . (18b)

2.2. Sound Modes at T = 0 in the Rest Frame of the Fluid

As a warm-up, let us start with the simplest case: zero temperature, T = s = κ = 0, and vanishing
fluid velocity, v = 0. In this case, the temporal component of the energy-momentum conservation,
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∂µTµ0 = 0, is automatically fulfilled. We contract the spatial components ∂µTµi by ki and δij − k̂i k̂ j
to obtain (three-)longitudinal and (three-)transverse components with respect to the direction of
propagation of the mode. Together with the current conservation, this yields

0 = ωδp− pc2k · δv , (19a)

0 = −k2δp +

(
pω− ik2 4η + 3ζ

3n

)
k · δv , (19b)

0 =
(

pω− ik2 η

n

)
δv⊥ , (19c)

where δv⊥,i = (δij − k̂i k̂ j)δvj, and

c2 =
n
p

(
∂n
∂p

)−1
(20)

is the squared sound speed. From Equations (19a) and (19b), we find the longitudinal modes (where
δv⊥ = 0)

ω = ±k
√

c2 − k2Γ2
0 + ik2Γ0 ' ±ck + ik2Γ0 +O(k3) , (21)

where we have denoted the attenuation constant by

Γ0 ≡
4η + 3ζ

6w
. (22)

Here, at zero temperature, w = pn. The attenuation constant has units of time. Note, however, that the
damping time scale from the imaginary part in the k2 contribution is set by (k2Γ0)

−1, thus depending
on the wavenumber k. The modes (21) are damped since Im ω = k2Γ0 > 0. Imaginary parts of ω with
the opposite sign would indicate unstable modes.

From Equation (19c), we find one transverse mode, where δv⊥ 6= 0 but δp = k · δv = 0, with

ω =
iη
w

k2 . (23)

This is a purely diffusive mode which does not propagate.

2.3. Sound Modes at Nonzero T in General Frame

Let us now discuss the general single-fluid case. In particular, we allow for a nonzero velocity
v. For a single fluid without boundaries, such as walls of a capillary, and without coupling to a
second fluid, this nonzero velocity should of course not lead to any new physics since it is nothing
but a Lorentz boost of the whole system. Nevertheless, the calculation will turn out to be useful as a
preparation for the two-fluid system.

The equations ∂µ jµ = ∂µTµν = 0 are 5 scalar equations for the 5 scalar variables δp, δT, δv. Since
we allow for a general frame, we now have a second three-vector in the problem, namely the fluid
velocity v, in addition to the wavevector k. We align the z-axis with k and the y-axis such that the
fluid velocity v is in the y-z plane. Instead of the components δvx, δvy, δvz, we work with δvx, k · δv,
and v · δv, and instead of ∂µTµi = 0, we work with ∂µTµx = vi∂µTµi = ki∂µTµi = 0. The equation
∂µTµx = 0 decouples because it is the only equation where the transverse fluctuation δvx appears, and
no other fluctuations. The prefactor of δvx is a quadratic polynomial in ω with the solutions

ω = −i
w + 2iγ(η + κT)k · v±

√
w2 + 4iwηk · v/γ + 4ηκTk2(1− v2 cos2 θ) + 4η2k2v2(1− cos2 θ)

2γ(κT + ηv2)
, (24)

where θ is the angle between k and v. Since the velocity oscillations of these modes are transverse to
both k and v, we term them T±. Their expansion up to second order in k is shown in Table 1. We see that
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by setting v = T = 0 in the mode T+, we recover Equation (23). In other words, the purely diffusive
mode T+ now becomes propagating in the boosted fluid. This seems to be a trivial observation, but
we shall see that these modes become particularly interesting in the case of two coupled fluids with
entrainment, where they can couple to other modes, as we will discuss in Section 3.3. The mode T− has
an unphysical instability, which is an artifact of first-order hydrodynamics [29]. Going to second-order
hydrodynamics cures this unphysical instability [30]. The mode T− did not appear in the previous
subsection, where we worked in the limit v = T = 0 from the beginning. It is useful to keep this in
mind for our discussion of the two-fluid system, where we shall work in the zero-temperature limit
and in the rest frame of the dissipative fluid, such that the unphysical instability plays no role.

Mode 1 k k2

L+ 0 +c iΓ0 + iκ[see Equation (27b)]

L− 0 −c iΓ0 + iκ[see Equation (27b)]

T+ 0 v cos θ
iη(1− v2 cos2 θ)

γw

T− − iw
γ(ηv2 + κT)

v cos θ
η(2− v2) + κT

ηv2 + κT
− iη(1− v2 cos2 θ)

γw

0 v cos θ iκ[see Equation (26)]

− iw
κT

0 −2iΓ0 − iκ[see Equation (25)]

Table 1. Coefficients of the single-fluid modes in a low-momentum expansion of ω(k) up to k2, with
v-dependence shown only where the expression is short enough, i.e., for L± and the mode in the 6th
row only the v = 0 result is given. The modes in the 4th and 6th row show an unphysical instability in
first-order hydrodynamics. The modes of the bottom two rows only exist at nonzero temperature and
play no role in our discussion of the two-fluid system, where we restrict ourselves to zero temperature.

The remaining 4 coupled equations give rise to a matrix of coefficients whose determinant is a
polynomial of degree 6 in ω, which factorizes into a quadratic and a quartic polynomial. The quadratic
polynomial gives exactly the same dispersion as for the modes T± (24). The four solutions of the quartic
polynomial are obviously complicated in general. Two of them only exist at nonzero temperatures, i.e.,
they are not connected to any of the modes found in the previous subsection. They are

ω = − iw
κT
− i

2Γ0 +
κn2

Tw2

p2 ∂n
∂p + pT

(
∂n
∂T + ∂s

∂p

)
+ T2 ∂s

∂T
∂n
∂p

∂s
∂T −

∂n
∂T

∂s
∂p

 k2 + . . . (25)

—for brevity we only give the dispersion of this mode for v = 0—and

ω = v cos θ k +
iκn2
√

1− v2(1− v2 cos2 θ)

T
[
n2 ∂s

∂T + s2 ∂n
∂p − ns

(
∂n
∂T + ∂s

∂p

)] k2 + . . . . (26)

The mode (25) shows an (unphysical) instability, just like the mode T−. The two modes (25) and (26)
are included in Table 1 in the last two rows.
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Finally, there are two stable, damped modes that are generalizations to nonzero temperature of
the two modes (21). They have the form ω = ±ck + iΓk2 +O(k3) with—again, we only give the v = 0
result—

c2 =
n2 ∂s

∂T + s2 ∂n
∂p − ns

(
∂n
∂T + ∂s

∂p

)
w
(

∂n
∂p

∂s
∂T −

∂n
∂T

∂s
∂p

) =
∂P
∂ε

, (27a)

Γ = Γ0 +
κn2

2w3c2T

[
s
(

p ∂n
∂p + T ∂n

∂T

)
− n

(
p ∂s

∂p + T ∂s
∂T

)] [
T
(

s ∂s
∂p − n ∂s

∂T

)
+ p

(
s ∂n

∂p − n ∂n
∂T

)]
(

∂n
∂p

∂s
∂T −

∂n
∂T

∂s
∂p

)2 . (27b)

Here, all derivatives with respect to the chemical potential p are taken at fixed temperature T and vice
versa, while the derivative with respect to ε in Equation (27a) is taken at fixed entropy per particle; see,
for instance, appendix E of Reference [52] for a derivation of this change of thermodynamic variables.
At zero temperature, the sound speed (27a) reduces to the expression (20). We term these two modes
L±, see first two rows of Table 1.

In Figure 2, we plot the 3 stable modes that exist at T = 0, i.e., L+, L−, and T+, as a function of v.
It is useful to understand this figure before moving to the two-fluid system. The modes L+ and L−

correspond to sound waves propagating in opposite directions, parallel and anti-parallel to the fluid
velocity v. Equivalently, we can reinstate the dependence on θ and plot a single mode, say L+, for
θ = 0 and θ = π. For an external observer, the mode L+ is sped up by the fluid flow, while the mode
L− is slowed down until it flips over at v = c. This inversion of direction is not accompanied by any
dynamical instability in the case of a single fluid: The attenuation is positive for all fluid velocities.
This is expected since the fluid is stable at rest and isolated and thus no dynamical instabilities should
be created by simply moving the fluid. The figure also illustrates, as already mentioned above, that the
mode T+ only appears to propagate if the fluid moves, and we see that its damping time is determined
solely by the shear viscosity η. This is in contrast to the modes L±, whose damping times are given by
a certain linear combination of shear and bulk viscosity.

L+

L-

T+

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

v

c

4η+3ζ

4η+3ζ

η

L+

L-

T+

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

v

Γ
/Γ
0

Figure 2. Single-fluid, zero-temperature sound speeds c (left) and attenuation Γ (right) of the three
modes L±, T+ (see first three rows of Table 1) as a function of the boost velocity v. Velocities are given
in units of the speed of light, and the attenuation constant is given in units of Γ0 from Equation (22) for
L± and in units of η/w for T+. We have set c(v = 0) = 1/

√
3, but any other value of c < 1 yields the

same qualitative picture.

These results can also be obtained by applying a Lorentz boost Λµν with 3-velocity v to kµ =

(ω, k) with ω = ck + iΓk2. Then, denoting the transformed 4-momentum by k′µ = (ω′, k′) with
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ω′ = c′k′ + iΓ′k′2, the relation Λµνkν = k′µ yields the transformed sound speed c′ and the transformed
attenuation Γ′. For boosts in the direction of the wave propagation, we find

c′ =
c + v

1 + vc
, Γ′ = Γ

(1− v2)3/2

(1 + vc)3 . (28)

Obviously, the transformed speed c′ is simply given by the relativistic addition of velocities. One can
check that the velocity dependence of the attenuation shown in the right panel of Figure 2 is indeed
given by Γ′.

3. Two Fluids

3.1. Setup

We set up the two-fluid system by first introducing the currents and stress-energy tensor for
two ideal, coupled fluids at zero temperature. Here, we follow the formalism used, for instance, in
References [5,13,23,53,54]. As a second step, we shall then add the dissipative terms from the previous
section for one of the fluids.

As our independent hydrodynamic variables, we choose the conjugate momenta pµ
n , where

the index n = 1, 2 labels the two fluids. We denote the components of the conjugate momenta
by pµ

n = (µn, pn), where the temporal components µn are the chemical potentials measured in the
laboratory frame, and the spatial components are related to the three-velocities vn by pn = µnvn

(neither here nor anywhere in the following do we use n as a summation index). The chemical
potentials in the rest frames of the fluids are pn = (pn,µ pµ

n)
1/2 = µn(1− v2

n)
1/2. The notation is slightly

ambiguous since non-bold letters are used for the modulus of the three-velocity vn = |vn| and for the
modulus of the four-momentum pn = (pn,µ pµ

n)
1/2. The conjugate momenta are the only four-vectors

for which we employ this notation, and the modulus of pn never appears; therefore, this notation
should not cause any confusion. Conjugate momenta and four-velocities are thus related by

vµ
n =

pµ
n

pn
. (29)

In a superfluid, temporal and spatial components of the conjugate momentum are not independent
since the conjugate momentum can be written as the gradient of a scalar field, pµ = ∂µψ. This ensures
the irrotationality of p (in a nonrelativistic superfluid, v is irrotational, but this is not true in general).
From a microscopic point of view, ψ is the phase of a condensate, for instance a condensed scalar field
in a bosonic theory [13] or the Cooper-pair condensate in a fermionic superfluid.

The central quantity that encodes the microscopic physics is the so-called generalized pressure
Ψ. At zero temperature, it depends on the Lorentz scalars that can be constructed from the conjugate
momenta, Ψ = Ψ(p2

1, p2
2, p2

12), where we have abbreviated p2
12 ≡ p1 · p2. The conserved currents are

obtained by

jµ
n =

∂Ψ
∂pn,µ

. (30)

Consequently, we can write

jµ1 = B1 pµ
1 +A pµ

2 , (31a)

jµ2 = A pµ
1 + B2 pµ

2 , (31b)

where
Bn ≡ 2

∂Ψ
∂p2

n
, A ≡ ∂Ψ

∂p2
12

. (32)
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In general, the currents are not proportional to their own conjugate momentum but, if A 6= 0, receive
a contribution from the conjugate momentum of the other fluid. This effect is called entrainment
or Andreev-Bashkin effect [55], and A is the entrainment coefficient. In the present formalism,
entrainment arises if the generalized pressure depends on p2

12. Of course, even in the absence of
entrainment, the two fluids can be coupled to each other, for instance, through terms in the pressure
proportional to p1 p2. We shall set up the hydrodynamic equations in full generality, including
entrainment terms. Then, for our main result, we ignore entrainment, which simplifies the calculation
significantly, as discussed in Section 3.2. In Section 3.3, where we discuss the analogue of the r-mode
instability, entrainment is included and turns out to be crucial.

In the absence of dissipation, the two-fluid stress-energy tensor is

Tµν
ideal = jµ

1 pν
1 + jµ2 pν

2 − gµνΨ . (33)

The continuity equations for the two conserved currents are

0 = ∂µ jµ
1 = ∂µ jµ

2 , (34)

and we can write the divergence of the (ideal) stress-energy tensor as

∂µTµν
ideal = j1,µω

µν
1 + j2,µω

µν
2 , (35)

with the vorticities
ω

µν
n = ∂µ pν

n − ∂ν pµ
n . (36)

To derive Equation (35), we used the continuity equations (34) and dΨ = jµ1 dp1,µ + jµ2 dp2,µ. We see that
from the total energy-momentum conservation alone, only the sum of the vorticity terms j1,µω

µν
1 and

j2,µω
µν
2 —plus dissipative terms which are not included for now—is required to vanish. It is usually

argued, for instance starting from a variational principle [54], that there are instead two separate
vorticity equations, j1,µω

µν
1 = j2,µω

µν
2 = 0. This corresponds to using two separate Euler equations in a

non-relativistic two-fluid formalism [4,7]. If one of the fluids, say fluid 2, is a superfluid, i.e., pµ
2 = ∂µψ,

then its vorticity vanishes, ω
µν
2 = 0. In this case, the energy-momentum conservation becomes

equivalent to the vorticity equation j1,µω
µν
1 = 0 if fluid 1 is non-dissipative or j1,µω

µν
1 + ∂µTµν

diss = 0
in the presence of dissipation. In Section 3.2, this is the situation we shall consider, i.e., we shall
assume fluid 1 to be dissipative and fluid 2 to be a superfluid. The main results of that section can
also be obtained by simply considering two separate vorticity equations (one of them supplemented
by the dissipative terms). The main result of Section 3.3, however, relies on using only the total
energy-momentum conservation and not assuming the non-dissipative fluid to be a superfluid. We
shall comment on this point in more detail in Section 3.3.

For the explicit evaluation of the current conservation equations (34), we need the derivatives
of the coefficients B1, B2, A, i.e., the second derivatives of the generalized pressure, which we
abbreviate by

bn ≡ 4
∂2Ψ

∂(p2
n)

2 , an ≡ 2
∂2Ψ

∂p2
n∂p2

12
, a12 ≡

∂2Ψ
∂(p2

12)
2

, d ≡ 4
∂2Ψ

∂p2
1∂p2

2
. (37)

The coefficients b1 and b2 are nonzero even in the absence of a coupling between the fluids and are
related to the sound speeds of the fluids. The other coefficients characterize the coupling between
the fluids with a1, a2, a12 being nonzero only in the presence of entrainment, while d describes the
non-entrainment coupling.

As in the case of a single fluid, we introduce fluctuations and linearize the conservation equations.
As our independent fluctuations, we choose the chemical potentials and velocities in the laboratory
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frame, δv1, δv2, δµ1, δµ2. Then, the divergence of the currents becomes—we omit the exponential
ei(ωt−k·x)—

∂µ jµ1 =
[
B1gµν + b1 p1µ p1ν + a1(p1µ p2ν + p2µ p1ν) + a12 p2µ p2ν

]
∂µ pν

1

+
[
Agµν + a1 p1µ p1ν + d p1µ p2ν + a12 p2µ p1ν + a2 p2µ p2ν

]
∂µ pν

2

= i
{

ωv1B1 + ωv1 µ1[µ1b1(1− v2
1) + µ2a1(1− v1 · v2)]

+ωv2 µ2[µ1a1(1− v2
1) + µ2a12(1− v1 · v2)]

}
δµ1

+i
{

ωv2A+ ωv1 µ1[µ1a1(1− v1 · v2) + µ2d(1− v2
2)]

+ωv2 µ2[µ1a12(1− v1 · v2) + µ2a2(1− v2
2)]
}

δµ2

−i(ωv1 µ1b1 + ωv2 µ2a1)µ
2
1v1 · δv1 − i(ωv1 µ1d + ωv2 µ2a2)µ

2
2v2 · δv2 − iB1µ1k · δv1

−iAµ2k · δv2 − iµ1µ2(ωv1 µ1a1 + ωv2 µ2a12)(v1 · δv2 + v2 · δv1) , (38)

and the same with 1↔ 2 for ∂µ jµ
2 . For the energy-momentum conservation, we need the temporal and

spatial components:

∂µTµ0 = i
[
µ1B1(ωv2

1 − k · v1) + µ2A(ωv1 · v2 − k · v2)
]
δµ1

+iµ1(µ1B1ωv1 + µ2Aωv2) · δv1 + (1↔ 2) + ∂µTµ0
diss (39a)

∂µTµi = i
{
(µ1B1ωv1 + µ2Aωv2)v1i − [µ1B1(1− v2

1) + µ2A(1− v1 · v2)]ki

}
δµ1

+iµ1(µ1B1ωv1 + µ2Aωv2)δv1i + iµ1ki(µ1B1v1 + µ2Av2) · δv1 + (1↔ 2) + ∂µTµi
diss , (39b)

where (1 ↔ 2) stands for repeating all preceding terms with subscripts 1 and 2 exchanged. In
the non-dissipative part, one can recover the two contributions from the vorticities (35): All terms
containing fluctuations of fluid 1, i.e., δµ1 and δv1, combine to j1,µω

µν
1 , while the terms containing

fluctuations of fluid 2 combine to the vorticity terms of fluid 2.
Dissipation is added as explained in the Introduction of this paper: We use the single-fluid

dissipative terms for one of the fluids and leave the second fluid unchanged. In particular, we only
consider the dissipative coefficients that already appear in single-fluid first-order hydrodynamics,
thus ignoring any additional dissipative coefficients that occur due to the relative motion of the two
fluids. Since, in this section, we have restricted ourselves to zero temperature, the only relevant
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transport coefficients are η and ζ. Choosing without loss of generality fluid 1 to be dissipative, the
zero-temperature limit of of Equation (18) yields the dissipative contribution,

∂µTµ0
diss ' −γ3

1

[
η(ω2 − γ2

1ω2
v1
− k2) +

(
ζ +

η

3

)
ωv1(ω− γ2

1ωv1)
]

v1 · δv1

+γ1

[(
ζ +

η

3

)
(ω− γ2

1ωv1)
]

k · δv1 , (40a)

∂µTµi
diss ' −γ3

1

[
ηv1i(ω

2 − γ2
1ω2

v1
− k2) +

(
ζ +

η

3

)
ωv1(ki − γ2

1ωv1 v1i)
]

v1 · δv1

+γ1

(
ζ +

η

3

)
(ki − γ2

1ωv1 v1i)k · δv1 − γ1η(ω2 − γ2
1ω2

v1
− k2)δv1i . (40b)

3.2. Dynamical Instability Triggered by Dissipation

We perform the calculation of the sound modes in the rest frame of the dissipative fluid, i.e.,
v1 = 0 (of course, the fluctuations δv1 are allowed to be nonzero). In this frame, there are two particular
directions: the direction of propagation of the sound wave k and the direction of the (uniform) velocity
of the ideal fluid v2. As in the case of a single fluid, we choose the y-z-plane such that both k and v2 lie
in this plane, and rather than working with the x, y, and z components, we work with the x component
and the two contractions with k and v2. Therefore, we have 8 scalar fluctuations,

δµ1 , δµ2 , k · δv1 , k · δv2 , v2 · δv1 , v2 · δv2 , δv1x , δv2x . (41)

As mentioned above, let us assume the non-dissipative fluid to be a superfluid, such that pµ
2 =

(∂tψ,−∇ψ). Hence, ∂t p2 = −∇µ2, which, within our plane wave ansatz, results in the constraint
for the fluctuations ωδp2 = kδµ2 or, equivalently, ωµ2δv2 = (k − ωv2)δµ2. As a consequence,
superfluids only allow for longitudinal modes, where p oscillates in the direction of k. We can thus
express the fluctuations δv2 in terms of δµ2, which reduces the number of independent variables to
5, namely, δµ1, δµ2, k · δv1, v2 · δv1, δv1x. We find that in this setup the temporal component of the
energy-momentum component is automatically fulfilled, ∂µTµ0 = 0. This leaves us with the 5 scalar
equations ∂µ jµ

1 = ∂µ jµ
2 = v2i∂µTµi = ki∂µTµi = ∂µTµx = 0, matching the number of variables. We

neglect entrainment for now, a1 = a2 = a12 = A = 0. As for a single fluid, we find that the equation
∂µTµx = 0 decouples since it is the only equation that contains δv1x. It yields the mode T+ for the
dissipative fluid, in which the only nonzero oscillation is δv1x. Since this mode is completely unaffected
by the second fluid, it is not relevant for the following discussion. Notice that the unphysical mode T−

does not appear because we work in the rest frame of the dissipative fluid. We are left with 4 equations
for 4 variables, which read

ω
p1c2

1

∆1γ2ωv2
p2

−1 0

∆2γ2ωv2
p1

c2
2(ω

2−k2)+(1−c2
2)γ

2
2ω2

v2
ωp2c2

2
0 0

k2

p1
0 −ω + 2ik2Γ0 0

v·k
p1

0 iv · kΓ2 −ω + 2ik2Γ1





δµ1

δµ2

k · δv1

v2 · δv1


= 0 . (42)

Here, we have eliminated Bn and bn in favor of more physical quantities: First, we can relate Bn to the
densities nn = jn · vn in the respective fluid rest frames. With Equations (29) and (31), this yields, in
the absence of entrainment

Bn =
nn

pn
. (43)
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Second, with the sound speed of a single fluid (20) and the definition of bn in Equation (37), we obtain

c2
n =

nn

pn

(
∂nn

∂pn

)−1
=

Bn

p2
nbn + Bn

. (44)

In the absence of a coupling between the fluids, c1 and c2 are the sound speeds of the two fluids,
measured in their respective rest frames. The coupling leads to a different, much more complicated
form of the sound speeds but also affects the thermodynamic quantities Bn and bn themselves, i.e.,
even the quantities c1 and c2 as defined in Equation (44) change as the coupling is varied. Third, we
have introduced the dimensionless “mixed susceptibilities”

∆1 ≡
p2

n1

∂n1

∂p2
=

p2
2d
B1

, (45)

and the same for 1↔ 2, which are only nonzero in the presence of a coupling between the fluids. The
attenuation constant Γ0 is as defined in Equation (22), and additionally, we have abbreviated

Γ1 ≡
η

2p1n1
, Γ2 ≡

η + 3ζ

6p1n1
. (46)

The system of equations (42) is further simplified by the observation that v2 · δv1 only appears in the
last equation, i.e., the 4th column of the 4× 4 matrix has a nonzero entry only in its last component.
This equation can thus be ignored for the calculation of the dispersions. It can later be used to compute
v2 · δv1, if needed. We are left with the determinant of a 3× 3 matrix to determine the dispersion
relations ω(k). This determinant is a quartic polynomial in ω, yielding 4 modes. In the absence of
a coupling between the fluids, these modes simply correspond to the two modes L± for each fluid.
When the fluids are coupled, the dispersions are very complicated, in general. Nevertheless, our main
result can be extracted from the general result and stated in a very compact form. To this end, as in
Section 2, we expand the modes in the momentum up to second order, ω ' ck + iΓk2. We expect
that one of the modes flips over at a certain relative velocity between the fluids, say v2 = v20 such
that c(v20) = 0. This is qualitatively the same effect as for a boosted single fluid, as seen in Figure 2,
and constitutes an energetic instability. However, due to the presence of the second fluid, we now
find that at exactly this point the attenuation constant of this mode changes its sign, too, and as a
consequence, the mode changes from being damped to being dynamically unstable. This observation
can be formulated analytically in the vicinity of the critical velocity v20. To linear order, the sound
speed close to v20 is

c ' −β

(
1− v2

v20

)
, (47)

with

v20 =
c2√

cos2 θ + c2
2(1− cos2 θ)

, β =
c2

2
v20(1− c2

2) cos θ
, (48)

where θ is the angle between the direction of propagation k and the direction of flow of the
non-dissipative fluid v2. The corresponding attenuation is to linear order

Γ ' Γ0
∆1∆2c4

2
(1− c2

2)

(
1− v2

v20

)
. (49)

In particular, close to the critical velocity, Γ does not depend on the angle θ. The dynamical instability
sets in first (i.e., at the smallest relative velocity) for modes (anti-)parallel to v2. In this case, cos2 θ = 1
and thus v20 = c2, and we see that c changes its sign from negative (upstream) to positive (downstream)
as we move through the critical point by increasing the relative velocity, while Γ changes its sign from
positive (damped) to negative (unstable). The time scale for the exponential growth of this mode
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is given by Equation (49). It depends on the bulk and shear viscosity coefficients but also on the
thermodynamic properties of the two fluids and their coupling strength. We recall that for this result
entrainment plays no role. Of course, nonlinear effects will set in as the amplitude of the mode grows,
while in the current linear approach, we can make no prediction about the fate of the system in the
dynamically unstable regime.

To further illustrate this result, we plot all four modes and their attenuation as a function of
the relative velocity. For this numerical evaluation, we need to choose numerical parameters for
the quantities appearing in Equation (42). If we were to choose random numbers, we would have
no control over whether the two fluids can coexist, and thermodynamic instabilities—which we are
not interested in—might manifest themselves in unstable hydrodynamics modes, thus obscuring the
interpretation of our results. Therefore, we employ the following form of the generalized pressure,

Ψ =
λ1(p2

2 −m2
2)

2 + λ2(p2
1 −m2

1)
2 + 2(h + gp2

12)(p2
1 −m2

1)(p2
2 −m2

2)

4[λ1λ2 − (h + gp2
12)

2]
, (50)

which is based on a relativistic field-theoretical model for two complex scalar fields with masses m1, m2,
self-coupling constants λ1 > 0, λ2 > 0, a non-entrainment coupling h, and an entrainment coupling
g [23]. The pressure (50) is valid in the parameter space where condensates of both fields coexist; see
Reference [23] for a systematic discussion of the parameter space. In all following results, we choose
our parameters such that at vanishing relative velocity, this phase of miscible fluids is stable. Strictly
speaking, the pressure (50) refers to a system of two superfluids because the vacuum expectation
values (= Bose-Einstein condensates) of the two scalar fields constitute the fluids. However, for our
purpose, it is sufficient to consider Ψ as an example for a microscopic equation of state even though we
assume one of the fluids to be dissipative. We do not need to provide any microscopic form nor specific
numbers for the viscosity coefficients because the attenuation Γ scales with Γ0 (22) and otherwise does
not depend on η and ζ.

We show the result for the 4 upstream/downstream modes in Figure 3 with parameters
m1 = m2 ≡ m, p1 = 12m, p2 = 10m, λ1 = 0.2, and λ2 = 0.3. Since we have ignored entrainment in
the hydrodynamic calculation, we obviously have to set the microscopic entrainment coupling to
zero, g = 0, for consistency. The results are shown for weak coupling, h = −0.03 (left panels), and
strong coupling, h = −0.12 (right panels). Other than creating a stable system of coexisting fluids
at vanishing counterflow, this particular choice of parameters has no specific physical motivation.
Somewhat different results are obtained for h > 0, but the main qualitative conclusions are the same
and thus we restrict ourselves to h < 0. The main observations are:

• For both weak and strong coupling, the figure shows the onset of the dynamical instability at
the point where the behavior of c indicates an energetic instability. This confirms the analytical
results (47)–(49).

• The sound speeds themselves show a dynamical instability at large velocities: Where the real
parts of two branches coincide, their imaginary parts (not shown in the figure) have opposite
signs, i.e., one of the modes grows exponentially. Since the results linear in k are not affected
by dissipative effects, this is the same observation as already made in References [22,23]. As a
consequence, the system is dynamically unstable for all v2 > v20: First, due to Re Γ < 0 with a
growth time for the instability τ = (k2|Re Γ|)−1, i.e., at the onset the growth time is infinite. Then
, due to Im c < 0 with growth time τ = (k|Im c|)−1, while there is no instability in the k2 terms
in this regime, i.e., Re Γ > 0. Interestingly, just before and just after this regime, Re Γ diverges,
indicating an extreme instability with infinitesimally short growth time. Then, at the highest
velocities, the instability is given again by the second-order contribution, Re Γ < 0.

• There is a “role reversal” between damped and undamped modes as a function of the counterflow
velocity: For small v2, there is a pair of upstream modes (c > 0) and a pair of downstream modes
(c < 0). Each pair has a strongly damped and weakly damped mode. As v2 increases, the strongly
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damped mode becomes weakly damped and vice versa. For small coupling, this role reversal
happens in the stable regime, i.e., before the dynamical instability sets in.
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Figure 3. Real parts of the sound speeds c (upper panels) and corresponding attenuation Γ (lower
panels, with corresponding colors) for upstream (c < 0) and downstream (c > 0) modes as a function
of the velocity of the non-dissipative fluid v2 in the rest frame of the dissipative fluid, for weakly
coupled fluids (left panels) and strongly coupled fluids (right panels). See text for the choice of
parameters. Thin dashed lines are the modes in the uncoupled system. The main result is the change
of sign of Γ and thus the onset of a dynamical instability at the point where one of the modes (blue)
flips over from upstream to downstream.

3.3. Analogue of the r-Mode Instability

The dynamical instability just discussed sets in at a certain nonzero critical velocity. As explained
in Section 1, this is analogous to modes in rotating stars, such as f -modes, which become unstable
at a nonzero angular velocity of the star. In contrast, r-modes—whose restoring force is the Coriolis
force—only exist in a rotating star and can become unstable at arbitrarily small angular velocities.
Exploiting this analogy, it seems natural to ask whether there is an unstable mode in the present
two-fluid system with the same properties.

As before, we work in the rest frame of the dissipative fluid. The conservation equations
for the two currents and the stress-energy tensor yield the 6 equations ∂µ jµ

1 = ∂µ jµ2 = ∂µTµ0 =

v2i∂µTµi = ki∂µTµi = ∂µTµx = 0. Now, in contrast to the previous subsection, we do not assume the
non-dissipative fluid to be a superfluid, i.e., we allow for both longitudinal and transverse oscillations;
thus, there are a priori no constraints on the 8 variables (41). Neither do we consider two separate
vorticity equations (one of which would be supplemented by the dissipative terms). This is in
accordance with all conservation laws of the system, but seems to contradict the usual approach of
separating the vorticity equations, or Euler equations in the non-relativistic limit, as already briefly
discussed below Equation (36). The idea behind separate vorticity equations is that the exchange
of energy and momentum between the two fluids occurs on larger length and time scales than the
exchange within the fluids. By using a single vorticity equation, we assume that this difference in scales



Particles 2019, 2 474

is not too large but still sufficiently large to justify the two-fluid picture with independent velocity fields.
It is an interesting general question whether such a regime exists, and we leave a more detailed study
of this question for the future. Here, our main purpose is to point out a solution of the hydrodynamic
equations that shows a dynamical instability for arbitrarily small counterflow. At the very least, this is
an interesting toy version of the r-mode instability in neutron stars. Additionally, it would be very
interesting to see whether it can be realized in a real-world two-fluid system with counterflow.

In order to calculate the possible modes of the system, we first note that, as above, the equation
∂µTµx = 0 decouples because it only contains the fluctuations δv1x and δv2x, and these fluctuations
appear nowhere else. We are thus left with 5 equations for 6 fluctuation variables. We find propagating
modes if we impose the additional constraint δµ1 = 0 or δµ2 = 0. In the following, we shall restrict
ourselves to the case δµ1 = 0, i.e., we are looking for modes in which the chemical potential of the
dissipative fluid does not oscillate. The main qualitative result can also be obtained with δµ2 = 0. Such
constraints on the oscillations can in principle be realized experimentally. An example is the so-called
fourth sound in a superfluid, where the velocity of the normal component is clamped by an external
force and thus cannot oscillate [27,56,57].

We thus consider 5 hydrodynamic equations plus the additional equation δµ1 = 0. The
determinant of the matrix of this system of equations yields a fourth-order polynomial from which
four modes are calculated. For the main observation, it is crucial to include entrainment. This renders
the calculation very tedious, and we have not found any compact analytical results without making
use of an explicit equation of state. Let us, therefore, first plot the results using the generalized
pressure (50) and a particular parameter set, and then show the main result in an analytical form
for this specific equation of state. In Figure 4, the upstream/downstream modes are shown for the
parameters p1 = p2 ≡ p, m1 = m2 = 0, λ1 = 0.2, λ2 = 0.3, h = 0.05 and three different entrainment
couplings g = 0, g = −0.002/p2, g = +0.002/p2. The parameters are chosen such that at zero
counterflow the system of coexisting fluids is stable. Again, we do not need to specify any values
for the dissipative coefficients since the attenuation of the modes we consider scales with Γ0. In the
presence of entrainment, Γ0 as defined in Equation (22) depends on the relative velocity v2; for the
normalization in Figure 4, we use Γ0(v2 = 0). We plot only three of the four modes since the fourth
mode is a purely diffusive mode which does not couple to the other modes.

First of all, we observe the phenomenon already discussed in Section 3.2: There is one mode that
becomes dynamically unstable at a nonzero critical velocity. This is independent of entrainment. The
new observation is related to the mode that, in the absence of entrainment, is given by ω = v2 cos θ.
This is the mode T+ in Table 1. Since we work in the rest frame of the dissipative fluid, it is the ideal
fluid that is in motion; thus, we expect this mode to be undamped if there is no coupling to the fluid at
rest. This expectation is borne out in the left plots, where the entrainment is set to zero. We see that
even in the presence of a non-entrainment coupling h, which is nonzero in all plots of the figure, the
mode does not couple to any other modes, thus the vanishing of its attenuation. Only if we switch on
an entrainment coupling g does this mode couple to the other modes. This mode mixing was already
pointed out in Reference [23]. Here, in the presence of dissipation, we see that this mode acquires a
nonzero attenuation if the entrainment coupling is switched on. Depending on the sign of g, the mode
is damped (middle plots, g < 0) or becomes dynamically unstable (right plots, positive g > 0). For
small g [compared to p−2

1 , p−2
2 , (p1 p2)

−1] and small v2 and setting h = m1 = m2 = 0 for simplicity, we
find ω ' ck + iΓk2 with

c '
(

1−
gp3

1
2λ1 p2

)
v2 cos θ , Γ ' −

g(4η + 3ζ)v2
2 cos2 θ

3p1 p2
. (51)

This confirms analytically that this mode only propagates in the presence of a relative velocity between
the fluids and becomes dynamically unstable for g > 0 and arbitrarily small relative velocities.
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Figure 4. Real parts of speeds (upper panels) and attenuation (lower panels) of three modes in a
coupled two-fluid system in which the chemical potential of the dissipative fluid is clamped, δµ1 = 0.
There is a fourth, purely diffusive, mode, which is not shown here. The entrainment coupling between
the fluids is zero (left panels), negative (middle panels), and positive (right panels). The (black) mode
which only propagates in the presence of a nonzero relative velocity v2 is dynamically unstable (Γ < 0)
for arbitrarily small v2 if the entrainment coupling is positive.

4. Non-Relativistic Limit

The purpose of this section is to start from the non-relativistic hydrodynamic equations and
re-derive the main result of this paper in this limit. As we have seen in Section 2, first-order relativistic
hydrodynamics gives rise to unphysical instabilities. We have argued that our two-fluid calculation
does not suffer from this problem since we have worked in the rest frame of the dissipative fluid and at
zero temperature; thus, we expect the dynamical instability we have found to survive in higher-order
hydrodynamics. Nevertheless, it is useful to confirm our result in the non-relativistic case, where
there are no unphysical instabilities. Here, we focus on the non-relativistic version of the results of
Section 3.2 by considering two separate Navier–Stokes equations for the two fluids and neglecting
entrainment, i.e., we do not set up a non-relativistic version of the analogue of the r-mode instability
from Section 3.3.

4.1. Single Fluid

As in the relativistic case, let us establish our formalism and notation for a single fluid before
moving on to two coupled fluids. In the non-relativistic limit, the hydrodynamic equations for a single
fluid are [51]

∂ρ

∂t
+∇ · g = 0 , (52a)

∂ε

∂t
+∇ · q = 0 , (52b)

∂gi
∂t

+ ∂jΠji = 0 . (52c)

For a derivation of these equations from the relativistic formalism, see, for instance, Reference [58].
Here, ρ is the mass density of the fluid, g = ρv is the momentum density with the three-velocity v,
and ε = ε0 + ρv2/2 is the energy density with the energy density in the rest frame of the fluid ε0. The
energy flux q and the stress tensor Πij contain dissipative contributions and are given by
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qi = (ε + P)vi + vjπij + jT,i , Πij = ρvivj + δijP + πij , (53)

with

jT = −κ∇T , πij = −η

(
∂ivj + ∂jvi −

2
3

δij∇ · v
)
− ζδij∇ · v . (54)

To rewrite Equation (52), we use the thermodynamic relations ε0 + P = µρ + sT and dε0 = µdρ + Tds,
where µ is the chemical potential per unit mass. This definition of µ is common and useful in the
non-relativistic literature, although here it is a slight abuse of notation since in the relativistic calculation
we denoted the chemical potential itself by µ. Then, we obtain the equivalent, perhaps more familiar,
set of equations in the form of continuity equation, entropy production, and Navier–Stokes equation,

∂ρ

∂t
+∇ · g = 0 , (55a)

∂s
∂t

+∇ ·
(

sv +
jT
T

)
= −

πji∂jvi + jT · ∇T/T
T

, (55b)

∂vi
∂t

+ (v · ∇)vi = −∂iP
ρ
−

∂jπji

ρ
. (55c)

Next, we introduce the fluctuations in µ, T, and v as in Equation (13) and use dP = ρdµ + sdT to find

0 = ωv

(
∂ρ

∂µ
δµ +

∂s
∂µ

δT
)
− ρk · δv , (56a)

0 ' ωv

(
∂ρ

∂T
δµ +

∂s
∂T

δT
)
− sk · δv− i

κ

T
k2δT , (56b)

0 = −ωvδvi + ki

(
δµ +

s
ρ

δT
)
+ i

η + 3ζ

3ρ
kik · δv + i

η

ρ
k2δvi , (56c)

where we have neglected the right-hand side of Equation (55b), which is of second order in the
fluctuations. As explained above Equation (24), we work with the independent velocity fluctuations
δvx, v · δv, k · δv. The transverse component of Equation (56c) decouples from the rest as usual and
gives a mode where only δvx is nonzero with dispersion

ω = v · k + i
η

ρ
k2 . (57)

The remaining modes are found by Equations (56a) and (56b), together with the two equations obtained
from contracting Equation (56c) with k and v,

ωv
c2

ωv
ρ

∂s
∂µ −1 0

ωv
∂ρ
∂T ωv

∂s
∂T − ik2 κ

T −s 0

k2 k2 s
ρ −ωv + 2ik2Γ0 0

v · k v · k s
ρ 2iΓ2v · k −ωv + 2iΓ1k2





δµ

δT

k · δv

v · δv


= 0 , (58)

where

c2 = ρ

(
∂ρ

∂µ

)−1
(59)
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is the squared speed of sound in the rest frame of the fluid and, in analogy to the relativistic case, we
have defined the attenuation constants

Γ0 ≡
4η + 3ζ

6ρ
, Γ1 ≡

η

2ρ
, Γ2 ≡

η + 3ζ

6ρ
. (60)

The determinant of the 4× 4 matrix yields a fourth-order polynomial in ω, such that in total there are
5 modes, all of which are stable.

At T = 0, the second column and the second row of the 4× 4 matrix vanish, and we find the
3 solutions:

ω = ±k
√

c2 − k2Γ2
0 + v · k + ik2Γ0 , ω = v · k + i

η

ρ
k2 . (61)

Together with the mode (57), these are 4 (stable) modes. They are to be compared to the 4 modes
L± and T± in Table 1, one of which suffers an unphysical instability. We see that the only effect of
the nonzero velocity is to add v · k to the dispersion. In particular, the attenuation is independent of
v. We can obtain the modes (61) from the fully relativistic modes shown in Figure 2 by taking the
small-velocity limit, i.e., neglecting terms quadratic in the velocity, which includes neglecting terms
of order vc. See also Equation (28), which shows that the attenuation becomes independent of the
velocity if terms of order v2, vc, and higher are neglected.

4.2. Two Fluids

For the system of two coupled fluids, we restrict ourselves to zero temperature and neglect
entrainment. The pressure is a function of both chemical potentials such that dP = ρ1dµ1 + ρ2dµ2.
We consider separate Navier–Stokes equations for the two fluids such that the relevant system of
equations is

∂ρ1

∂t
+∇ · g1 = 0 , (62a)

∂ρ2

∂t
+∇ · g2 = 0 , (62b)

∂v1i
∂t

+ (v1 · ∇)v1i = −∂iµ1 −
∂jπji

ρ1
, (62c)

∂v2i
∂t

+ (v2 · ∇)v2i = −∂iµ2 , (62d)

where, as in the relativistic case, we have chosen fluid 1 to be dissipative, and where gn = ρnvn. In the
presence of entrainment g1 would receive a contribution from v2 and vice versa. Introducing the
fluctuations as usual, working in the rest frame of the dissipative fluid, v1 = 0, and contracting the
Navier–Stokes equations with k and v2 yields the 6 equations

ω
c2

1
ω∆1 −1 0 0 0

ωv2 ∆2
ωv2
c2

2
0 −1 0 0

k2 0 −ω + 2ik2Γ0 0 0 0

0 k2 0 −ωv2 0 0

k · v2 0 iΓ2v2 · k 0 −ω + iΓ1k2 0

0 k · v2 0 0 0 −ωv2





δµ1

δµ2

k · δv1

k · δv2

v2 · δv1

v2 · δv2


= 0 , (63)
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where, in analogy to the relativistic calculation, we have introduced “mixed susceptibilities”

∆1 =
1
ρ1

∂ρ1

∂µ2
, (64)

and the same for 1 ↔ 2. We find one undamped mode ω = v2 · k and one purely diffusive mode
ω = iΓ1k2. The remaining modes are determined by the 4× 4 subdeterminant in the upper left corner,
which yields a polynomial of fourth order in ω. We expand the dispersion as usual for small momenta,
ω = ck + iΓk2, and find that one of these four modes flips over (sign change of c) at

v20 =
c2

cos θ
, (65)

while the corresponding attenuation constant behaves in the vicinity of this point as

Γ ' Γ0∆1∆2c4
2

(
1− v2

v20

)
. (66)

Comparing with Equation (49), we have rederived the dynamical instability in the limit of small c2.
This confirms that the observation that the energetic instability turns dynamical in the presence of
dissipation is not an artifact of first-order relativistic hydrodynamics.
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