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Abstract: The vector interaction enhanced Bag model (vBag) for dense quark matter extends the
commonly used thermodynamic Bag model (tdBag) by incorporating effects of dynamical chiral
symmetry breaking (DχSB) and vector repulsion. Motivated by the suggestion that the stability of
strange matter is in tension with chiral symmetry breaking (DχSB) we examine the parameter space
for its stability in the vBag model in this work. Assuming the chiral transition occurs at sufficiently
low density, we determine the stability region of strange matter as a function of the effective Bag
constant and the vector coupling. As an astrophysical application, we construct contours of maximum
mass Mmax and radius at maximum mass Rmax in this region of parameter space. We also study the
stability of strange stars in the vBag model with maximum mass in the 2M� range by computing
the spectrum of radial oscillations, and comparing to results from the tdBag model, find some
notable differences.
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1. Introduction

It has long been hypothesized [1] that the true ground state of strongly interacting matter in bulk
form should comprise of an equal number of up, down and strange quarks, commonly referred to as
strange matter [2]. To date, the ab-initio approach to strong interactions cannot rule out this possibility
since the regime of cold and dense matter presents challenges to lattice simulations of Quantum
Chromodynamics (QCD) [3]. Therefore, studies of bulk strange matter at zero temperature are largely
confined to phenomenological models with applications to the astrophysical realm of neutron stars,
strangelets in cosmic rays [4] or dark matter [5]. In the case of neutron stars, dense nuclear matter may
be in a long-lived metastable state, with a low probability of converting to strange stars. Nevertheless,
the astrophysical possibility of strange stars remains sufficiently interesting to explore with newer
models of QCD, especially ones with more fidelity to non-perturbative aspects of confinement and
dynamical chiral symmetry breaking. In this article, we present a study of the stability of strange
matter in the vector interaction enhanced bag model [6] and explore the mass and radius values
of strange stars. In the vBag model, the vector repulsion is quantified by a coupling parameter Kv

which allows the possibility of massive strange stars (and more generally hybrid stars with quark
matter cores [6]) that are consistent with the 2M� observations inferred from compact binaries [7,8].
This consistency can be achieved in the simple tdBag model with perturbative αs corrections to the
quark pressure, but the applicability of perturbative QCD to the moderate density regime encountered
in neutron stars is dubious. We also present results for the radial oscillation modes of strange stars in
the vBag model model.
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2. Theory

EOS of Strange Matter: The vBag Model

The regime of large baryochemical potential characterizing the cold and dense deconfined quark
phase is commonly investigated in the framework of effective models such as the thermodynamic
bag model [9] (tdBag) or variants of the Nambu–Jona-Lasinio model [10,11] (NJL). In this context,
it is worth pointing out that the original MIT Bag model [12] is a phenomenological approach to
describe a confined system of relativistic quarks and gluon fields, i.e., hadrons, while the tdBag is
applied to bulk quark matter. In the MIT bag model, the bag constant B can be understood as an
effective parameter that stabilizes the hadron by matching the pressure of its constituent free fields at
the boundary of the bag to the pressure of the physical (non-perturbative) QCD vacuum. In the tdBag
model, which describes an extended Fermi gas of free (or weakly interacting) quarks, the bag constant
expresses the energy difference between the physical (non-perturbative) vacuum and the perturbative
one. The tdBag model thereby mimics quark confinement but does not include chiral symmetry
breaking, a fundamental feature of low-energy QCD. In contrast, the NJL model is designed to include
the effects of chiral symmetry breaking in the quark sector (Goldstone phase) but lacks confinement.
Despite this difference, in fact, both the tdBag and NJL-like models can be understood as solutions
of QCD’s in-medium Dyson–Schwinger gap equations within a particular set of approximations [13].
From this perspective, one can make modifications to the tdBag model which brings it into the same
class of models as the NJL models. This modification is referred to as the vector-interaction-enhanced
(vBag) [14] model. The vBag model accounts in parameterized form for (a) the flavor dependent
restoration of chiral symmetry, (b) repulsive vector interactions, and (c) a phenomenological correction
to the EoS that describes deconfinement and generally depends on the nuclear EoS, although in this
work, the latter is not important since we discuss only strange matter. While formally similar to the
tdBag model, the addition of vector repulsion in the vBag model means that it can describe massive
hybrid/strange stars that meet the 2M� constraint [7,8,15]. The introduction of flavor-dependent
chiral bag constants is motivated by fits to the pressure of the chirally restored phase [6]. In addition,
a deconfinement bag constant Bdc is introduced to lower the energy/particle and thereby favor stable
strange matter. The equation of state in the vBag model is then given parameterically by [14]

Pq = ∑
f=u,d,s

PvBag, f + Bdc (1)

εq = ∑
f=u,d,s

εvBag, f − Bdc (2)

where PvBag, f and εvBag, f are the pressure and energy density of a single quark flavor, respectively:
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The subscript FG refers to the ideal, zero temperature Fermi gas formula for that thermodynamic
quantity. Kv parameter in the second term on the right side of the equations is a coupling constant that
results from vector interactions, and Bχ, f is the Bag constant of a single flavor. The chemical potential,
µ∗f , allows for a quasiparticle description of dressed quarks consistent with the solution of the vector
gap from Dyson–Schwinger studies and is parameterized by the following relation.

µ f = µ∗f + KvnFG, f

(
µ∗f

)
(5)
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with number density nFG, f

(
µ∗f

)
= n f (µ f ).

3. Strange Stars in the vBag Model

The vBag equation of state can also be expressed as [16]:

Pq =
1
3
(εq − 4 ∑

f
Bχ, f ) +

4
3

Bdc +
Kv

3 ∑
f

n2
f (µ f ) . (6)

which has a non-barotropic form since n f (µ f ) encodes composition information. One can define an
effective Bag constant in the vBag model, much as in the tdBag model, but apportioned into chiral and
deconfinement bag constants with distinct origins.

Beff = ∑
f=u,d,s

Bχ, f − Bdc (7)

The EoS becomes
Pq =

1
3
(εq − 4Beff) +

Kv

3 ∑
f

n2
f (µ f ) . (8)

The parameter Beff can be used, in either case of two or three-flavor quark matter in hybrid stars,
to manipulate the value of pressure at which the phase transition occurs, while Kv controls the stiffness
of the quark matter EoS [17].

Along with the quark EoS, there are also electrons to maintain charge neutrality if the strange
quark’s large current mass is taken into account. The flexbility of the vBag model parameters that
refer to chiral and deconfinement transitions implies that hybrid stars can masquerade as neutron
stars [18] and it has been clearly shown that quark matter is not too soft to support maximum masses
of 2M� or more [6,19], as was the case with the tdBag model. Furthermore, it appears difficult to
distinguish two-flavor from three-flavor quark matter even in cases where a phase transition can be
said to have occurred, as in the presence of a distinct kink in the mass–radius relation [17]. Thus,
high-precision M–R data may still not be enough to draw firm conclusions on the nature of phases
and phase transitions in neutron stars, motivating the study of oscillation modes in this paper.

Although hybrid stars are more likely to exist, in this work, we focus on strange stars within the
vBag model. Strange stars contain strange quark matter (up, down, and strange quarks) in the entire
star, with the exception of a thin nuclear crust [20] (suspended by strong electric fields at the surface
of quark matter) or possibly a crust of quark-alphas [21] or strangelets which is globally neutral [22].
Since the nature of the crust is outside the scope of this work, we apply the vBag EoS to model bare
strange stars. The stability of three-flavor quark matter over nuclear matter is rather straightforward in
the tdBag model, as the argument rests solely on the energy per particle of free or weakly interacting
quarks, including the s-quark [9]. For reasonably small values of αs, ms, we can find a range of values
in B where the energy per particle of three flavor matter (but not two-flavor matter) is lower than
nuclear matter. Typically, for models that also include chiral restoration, the mass of the dressed
s-quark is too large to justify the argument for absolutely stable three-flavor matter in this way, if only
the chiral Bag constant is considered. However, in vBag, we can use the additional free parameter Bdc
to reduce Beff (compared to chiral models) and lower the energy per particle. Whether this is sufficient
to stabilize strange matter depends on the chiral Bag constant for the light flavors Bu/d

χ . Specifically,
if the magnitude of Bu/d

χ is comparable to the chiral condensate one obtains within NJL-type models,
the chiral transition takes place at densities where the energy per baryon is already distinctively larger
than 930 MeV, ruling out stable strange matter. This could hold even if the effective bag constant is in a
domain where tdBag predicts stable strange matter, due to the fact that the vBag effective bag constant
allows to distinguish chiral symmetry breaking and confinement, both acting with opposite signs.
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For the purpose of this paper, we are assuming that the chiral transition has to occur at rather
small densities so that a window in stable quark matter can still be found, and that the effective bag
constant Beff accounts for both chiral and confinement effects, in the same fashion as the Bag constant
in tdBag. Nevertheless, we are going beyond the tdBag model in exploring chiral effects because the
two stability lines (energy/particle = 930 MeV for 2-flavor and 3-flavor quark matter) in Figure 1 can
be understood as setting an upper limit on an effective chiral bag constant. Figure 1 shows contours of
constant maximum mass Mmax and radius at maximum max Rmax in the (Beff, Kv) parameter space
of the vBag model. For strange stars, lower values of Beff and higher value of the vector coupling
provide additional pressure, which implies a higher maximum mass. The dotted lines in the figure
show constant energy/baryon of 930 MeV for the two and three flavor case, narrowing the allowed
parameter space such that there is an upper limit on Beff ≈ 70 MeV/fm3 and a lower limit Kv ≈ 2 if we
demand consistency with the 2M� constraint on the maximum mass. While we do not claim that these
heavy stars are strange stars, it is useful to recall that the maximum mass sets strong constraints on
the strange matter EOS as well. For example, the confirmation of a 2.4M� neutron star (e.g., the Black
Widow pulsar) would rule out the possibility of absolutely stable strange matter in the vBag model.
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Figure 1. Contours of constant maximum mass (left panel) and of constant radius at maximum mass
(right panel) in the vBag parameter model space. Also shown are the two-flavor and three-flavor lines
of constant energy/baryon = 930 MeV (light dotted lines in both panels) and contours corresponding
to values of maximum mass (right panel only) of two heavy neutron stars—J1614-2230 at 1.97M� from
pulsar observations [8] and the neutron star merger event GW170817 at 2.17M� [23]. The apparent
degeneracy of mass (or radius) in this parameter space is due to the fact that both parameters Beff and
Kv can be chosen independently to effectively soften or stiffen the equation of state beyond a desired
baryon density that still admits stable strange matter.

Figure 2 shows the mass–radius plot of strange stars for typical parameters of Kv and Beff used
in this work. The maximum mass Mmax is significant as it is the point where the radial mode turns
unstable, unless one adopts different adiabatic indices for the perturbation and the background EoS.
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Figure 2. The mass–radius plot for strange stars in the vBag model (Kv 6= 0), compared to the tdBag
model (Kv = 0). Parameters Kv and Beff have been chosen to correspond to maximum mass values that
can approach or exceed 2M�.

4. Stability against Radial Oscillations

Having described the EOS for strange stars in the vBag model, we now explore radial oscillations,
which are of general interest to the dynamics of compact stars [24,25]. The radial stability of
self-gravitating gaseous spheres in general relativity was explored first by Chandrasekhar [26] and
subsequently applied to neutron stars and strange stars to determine the mass–radius configuration
that can be realistically supported by a given equation of state [27,28]. In this section, we obtain
(numerically) the frequency of the first two principal radial oscillation modes for different choices of
parameters in the vBag model. The corresponding mass and radius of the densest star that is stable
against radial oscillations is also determined. We aim to ascertain any differences in the trend of mode
frequencies between the vBag and the tdBag models.

The equations determining the eigenfrequency of the radial oscillation mode are [28,29]:

dξ

dr
=− 1

r

(
3ξ +

η

γ

)
− dP

dr
ξ

(P + ε)

dη

dr
=ξ

{
ω2
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(
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r− 4
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−8πG
c4 eλ(P + ε)r +
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)2 r
P(P + ε)
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+ η

[
−dP
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ε

P(P + ε)
− 4πG

c4 (P + ε)reλ

]
(9)

where ξ = ∆r/r is related to the Lagrangian displacement ∆r of the radial perturbation, and η = ∆P/P
is related to the Lagrangian displacement ∆r of the associate pressure perturbation. To solve these
equations consistently, an equation of state P = P(ε) is needed, which in our case comes from the
vBag model of the previous section. The first order form of the oscillation equations presented here has
the advantage of not requiring the computation of derivatives of the adiabatic index γ, defined in its
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relativistic form as γ = ε+P
P

dP
dε . λ(r), ν(r) in Equation (9) are standard metric functions of the interior

Schwarzschild metric of the star, which can be obtained from the solution of the TOV equations [30]:

dm
dr
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4πr2
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dr

=− P + ε
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(
Gm
r2 +

4πG
c2 Pr

)(
1− 2Gm

rc2

)−1

dν

dr
=− 2

P + ε

dP
dr

(10)

The oscillation eigenfrequency ω can be determined by the unique solution (up to an arbitrary
normalization of ξ which is here chosen equal to unity) to these equations that are regular at the center
of the star, and satisfy ∆P = 0 at the surface. This implies that η = −3γξ is at the center of the star, and

η = ξ

[(
1− 2GM

Rc2

)−1 (
−ω2R3

GM
− GM

Rc2

)
− 4

]

at the surface. The numerical singularity at r = 0 in Equations (9) can be removed by a Taylor
expansion, and we use a shooting method with corresponding initial values given as ξ(r → 0) =

1 + ξ1r2, η(r → 0) = η0 + η1r2 that also satisfy the surface boundary condition to determine the
eigenfrequencies ω0, ω1, etc. Stability requires ω2 > 0, and the critically stable configuration (which is
also the maximum mass configuration) has ω2

0 = 0 since it is the fundamental mode and the first to
turn unstable.

Significant numerical simplification and speedup are obtained by working in geometrized units
G = c = 1, and using the reduced enthalpy version [31,32] of the TOV equations Equations (10),
as dν(r)/dr = −2dh(r)/dr, where h(r) is the reduced enthalpy with dh = dp/(ε + p). In particular,
since only dν/dr can be obtained directly from a solution of the standard form of the TOV equations
(Equations (10)), the function ν(r) that is required to solve Equations (9) is more easily determined in
terms of the central enthalpy hc.

5. Results and Conclusions

In Table 1 below, we present results for the first two radial oscillation modes of strange stars in the
vBag model, with varying parameter choices to highlight the effect of changing Beff and Kv. We also
present a comparison against the trends of the more familiar and previously studied tdBag model,
finding some differences of note. A check on our numerical result comes from the excellent agreement
(to better than 0.2%) with the published result [28] for the frequency of the first two eigenmodes in
the tdBag model for B = 60 MeV/fm3. Compactness and frequency is presented in geometrized units
M∗(km) = 1.477 M(M�) and ω∗(km−1) = 0.0209 ω(kHz) with G = c = 1.

Table 1. Frequencies of the fundamental (ω0) radial oscillation mode and the first overtone (ω1) in the
vector interaction enhanced Bag model (vBag) model of strange stars. All configurations are stable
against oscillations, i.e., have ω2 > 0. M∗(km) = 1.477 M(M�) and ω∗(km−1) = 0.0209 ω(kHz).

EOS Mass Radius Compactness R/M∗ Frequency [kHz] Frequency [ ω∗√
M∗ /R3

]

B, Beff [MeV/fm3] Kv[GeV−2] ρc[10−3km−2] [M�] [km] [Dimensionless] ω0 ω1 [Dimensionless]

vBag
Beff = 60.0, Kv = 4, ρc = 0.913 1.902 11.172 3.984 2.114 7.248 0.987 3.384
Beff = 60.0, Kv = 9, ρc = 0.913 2.051 11.527 3.802 1.918 6.928 0.904 3.265
Beff = 65.0, Kv = 6, ρc = 0.886 1.839 10.934 4.032 2.424 7.763 1.114 3.569
Beff = 55.0, Kv = 6, ρc = 0.886 2.068 11.765 3.846 1.808 6.670 0.875 3.328

td-Bag
B = 60.0, ρc = 1.410 1.962 10.799 3.731 0.725 6.165 0.317 2.693
B = 70.0, ρc = 1.410 1.802 10.143 3.817 1.388 6.976 0.576 2.895
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5.1. Eigenfrequencies in the vBag and tdBag Models

We focus our discussion on the fundamental mode, as it is the most likely to be excited in a
binary merger [33] and is the first mode to become unstable. In both vBag and tdBag models, the
eigenfrequency of the fundamental mode increases with increasing (effective) Bag constant, with other
variables such as the vector coupling and central density held constant. Increasing the strength of the
vector coupling, holding other variables constants, leads to lower frequencies. In both models, we
found that increasing the central density for a fixed EOS parameter set decreases the eigenfrequency.
Thus, in a 1-parameter cut of the vBag model, we may conclude that stars with higher compactness
value R/M∗ have higher eigenfrequencies or shorter time period of oscillation.

However, there are also some differences in the trends of the eigenfrequency of the radial modes
between the vBag and tdBag models. In the tdBag model, which is a 1-parameter family of EOS,
the eigenfrequency increases with increasing compactness R/M∗. In the vBag model which is a
2-parameter family of EOS, the eigenfrequency may either increase or decrease with compactness
as both Beff and Kv are varied. This is apparent from comparing parameter sets 2 and 4, and 1 and
3 of the vBag model in Table 1 above. Thus, in the vBag model, one can tune the deformability of
the star independently of compactness. Another difference between the two models regarding the
frequency is that the vBag model produces significantly higher frequencies than in the tdBag model
for configurations close to 2M�. For example, the vBag model applied to a star with M = 2.051 M�
(maximum mass of M = 2.144 M�) gives ω0 = 1.918 kHz, while the tdBag model for M = 1.962 M�
(maximum mass of M = 1.964 M�) gives ω0 = 0.725 kHz. This difference arises on account of the sharp
decrease in frequency as the maximum mass configuration is approached, which is barely below 2M�
for the tdBag model but well above that for the vBag model. Therefore, the radial oscillation frequency
is a good indicator of proximity to the maximum mass configuration, which in turn sheds light on
the EOS.

5.2. Mode Instability

The frequency of stable radial modes has ω2 > 0, while ω2 < 0 signals instability.
The fundamental mode ω0 is the first mode to turn unstable, followed by the first overtone and
so on. The critical stellar configuration at which the frequency goes to zero (infinite time period)
is also the maximum mass configuration, provided it is assumed that the perturbation obeys the
same equation of state as the unperturbed background EOS; in other words, when the Schwarzschild
discriminant is zero [34]. Working under this assumption, we confirm numerically that the mode
becomes unstable at the maximum mass, and list critically stable mass–radius configurations for
typical parameter sets in the vBag model in Table 2 below.

Table 2. Maximum mass and corresponding radius for critically stable stellar configurations in the
vBag model of strange stars. All configurations with higher central densities are unstable against
oscillations, i.e., have ω2 < 0.

EOS Max. Mass Radius at Max. Mass Central Density
B, Beff [MeV/fm3] Kv[GeV−2] [M�] [km] [10−3 km−2]

vBag
Beff = 60.0, Kv = 4 2.015 10.717 1.536
Beff = 60.0, Kv = 9 2.144 11.069 1.458
Beff = 65.0, Kv = 6 1.997 10.457 1.632
Beff = 55.0, Kv = 6 2.152 11.307 1.395

td-Bag
B = 60.0 1.964 10.724 1.510
B = 70.0 1.818 9.905 1.802

Higher values of maximum mass, beyond 2.2M� can be attained in the vBag model as shown in
Figure 1, but require very large values of Kv and small values of Beff rendering 3-flavor matter barely
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absolutely stable. Similarly, radius at the maximum mass of much more than 11 km is disfavored.
The minimum compactness of the maximum mass strange star in the tdBag model has been shown to
be 3.696 [32]. In some of the configurations supported in the vBag model with absolutely stable quark
matter that are consistent with the observation of 2M� compact stars, the compactness can be even
smaller.

6. Discussion and Conclusions

We have explored the stability of strange matter and of strange stars against radial oscillations
in the vector interaction enhanced Bag model. The novel aspect of this work, compared to previous
such studies, is the use of the vBag model, which includes spontaneous breaking of chiral symmetry
as well as a phenomenological description of confinement. While NJL models and an earlier paper on
the vBag model generally do not find strange matter [6] to be absolutely stable (due to the large value
of the dressed s-quark mass), we assume here that chiral symmetry is at least partially restored for the
s-quark and the light quarks at densities of interest, so that Beff lowers the energy/particle sufficiently.
Consequently, we find that the upper limit to the chiral Bag constants for 3-flavor quark matter can be
higher than for 2 flavors, as chosen in [6].

There are two main results of this work. Our first main result is the stability window for strange
matter in the vBag model, as displayed in Figure 1 by the parametric limits on (Beff, Kv) corresponding
to fixed energy/particle, which is also consistent with the observation of heavy neutron stars and
radius in the 10–12 km range. This reinforces, at least in spirit, the conclusion of more detailed work on
hybrid stars [17] that precision mass and radius measurements alone may not be enough to distinguish
ordinary neutron stars from those containing large fractions of quark matter. The second main result,
following from a dynamical stability analysis against radial oscillations of strange stars, is that the
oscillation frequency appears not to have a monotonic behaviour with compactness, as found in past
works [28,35] that used variants of the tdBag model. We suspect this is due to the flexbility contained
in the vBag model that arises from the distinct scalar and vector part of the quark self-energy, albeit
computed within the same non-perturbative framework of the quark’s gap equations.

Our result for oscillation frequencies also has a different trend than those typically obtained in
pQCD models [36,37]. For example, the scaling relations obtained in [1] and reflected in the the ratio
of oscillation frequencies [36] are based on pQCD models (tdBag models+perturbative corrections),
while in the vBag model, such simple scaling relations are not found. However, it should be possible
to find a domain where the vBag model can mimic the tdBag model with perturbative corrections, and
it would be interesting to confirm the occurrence of scaling relationships in that case.

The relevance of oscillation modes to compact star mergers has been well established and is
actively studied in numerical simulations [23,38]. While we have studied the oscillations of isolated,
non-rotating strange stars, the methods and results outlined here can nevertheless be relevant to study
mergers in which one or both component is a hybrid star with a quark matter core [39]. Since hybrid
stars can masquerade as neutron stars [18] and phase transitions to quark matter can be effectively
camouflaged [17] in mass–radius curves, the unveiling of quark matter in neutron stars may rest on
precise observations of dynamical phenomena, such as the radial and non-radial oscillation modes
that are excited pre or post-merger.
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Abbreviations

The following abbreviations are used in this manuscript:

EOS Equation of State
DχSB Dynamical chiral symmetry breaking
QCD Quantum Chromodynamics
FG Fermi Gas
TOV Tolman-Oppenheimer-Volkov
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