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Abstract: The method of Zubarev allows one to construct a statistical operator for the nonequilibrium.
The von Neumann equation is modified introducing a source term that is considered as
an infinitesimal small correction. This approach provides us with a very general and unified
treatment of nonequilibrium processes. Considering as an example the electrical conductivity,
we discuss the modification of the von Neumann equation to describe a stationary nonequilibrium
process. The Zubarev approach has to be generalized to open quantum systems. The interaction of the
system with the irrelevant degrees of freedom of the bath is globally described by the von Neumann
equation with a finite source term. This is interpreted as a relaxation process to an appropriate
relevant statistical operator. As an alternative, a quantum master equation can be worked out where
the coupling to the bath is described by a dissipator. The production of entropy is analyzed.
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1. Electrical Conductivity-Phenomenology

Transport processes. The method of the nonequilibrium statistical operator (NSO) invented by
D. N. Zubarev [1] is an important step working out a general approach to the statistical mechanics
of nonequilibrium processes. It covers different fields of nonequilibrium theory, in particular the
thermodynamics of irreversible processes, kinetic theory, linear response theory, open quantum
systems, quantum master equations, and hydrodynamics; see [2,3]. The method of NSO provides us
with a consistent and coherent approach to nonequilibrium statistics. However, it gives also a view
of the sensible points, deriving equations of evolution for irreversible phenomena (e.g., transport
processes and reaction rates) from the reversible basic equations of motion such as Hamilton equations,
Maxwell theory, and quantum field theory.

Let us start with a simple example for a transport process, friction. Friction transforms mechanical
work into heat. It is one of the fundamental processes that are considered to introduce irreversibility
and the production of entropy according to the second law of thermodynamics.

A particular case is electrical conductivity. We consider a system containing two species of
charged particles, the ions (charge Zie) and the electrons (charge −e), for instance a hydrogen plasma
consisting of electrons and protons, or a piece of copper as a system of ions, fixed on lattice sites,
and quasi-free electrons. The system is assumed to be charge neutral, so that the densities are related
as Zini = ne, where nc = 〈Nc〉/Ω0 is the average of the particle number Nc per volume Ω0. Without
loss of generality, we assume in this work Zi = 1. Under the influence of a constant external electrical
field Eext, an electrical current with density j is induced. As an empirical fact, below a critical value of
|Eext|, the current is proportional to the field. For isotropic systems, we have:

j = σEext, (1)
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with the transport coefficient σ being the electrical conductivity. Note that the electrical conductivity is
defined with the screened, intrinsic electrical field, j = σEint. In the case considered here, the intrinsic
electrical field Eint coincides with the external field.

To have an irreversible process, the mechanical work Ω0 j · Eext dt must be transformed to heat Q,

1
Ω0

δQ
dt

= j · Eext =
1
σ

j2, (2)

if no other forms of work are performed by the system. The increase of heat is related to the production
of entropy, dS = δQ/Teq, if the system remains near thermodynamic equilibrium with temperature Teq.

We consider a quasi-stationary situation where the electrical field, in general Eext(r, t), and the
current density, in general j(r, t), are constant with respect to time. Furthermore, we consider the
homogeneous case where both quantities are not depending on position. In addition, the densities nc

of charged particles and the temperature T are considered as constant, also not depending on position.
We denote this as the external conditions that we demand from the experiment.

Open systems. These quasi-stationary, homogeneous conditions with constant electrical current
density, particle number density, and temperature are only possible for open systems. We characterize
them by the finite volume, here a cylinder Ωh

R with the axis parallel to j taken as the z axis, between
z = 0 and z = h, and with radius R. The electrical field Eext = Eextez is also directed along
the z axis. To sustain the constant electrical current, particles must be introduced through the
surface at z = h (with high potential energy Vext(h)) and extracted through the opposite surface
at z = 0 (with lower potential energy Vext(0)). The difference of the potential energy of an electron is
Vext(h)−Vext(0) = ehEext. Without loss of generality, we omit the current of ions.

The particles injected in the open system at high potential energy gain kinetic energy according
to the conservation law in mechanics, before they leave the open system at low potential energy.
However, because of the demand of homogeneity in space, the electron current that leaves the system
transports the same amount of kinetic energy as the incoming electron current. According to the first
law of thermodynamics, mechanical work is transformed to thermal energy. Heat is produced at the
rate per volume (power density) according to Equation (2).

More precisely, to stay in quasi-equilibrium, this amount of energy must be extracted from the
system to a bath. Instead of an isolated, closed system as frequently considered in physics, described
by well-defined dynamical degrees of freedom, we have to consider an open system for the stationary
transport process. The contact with the surroundings (the “bath”, or additional degrees of freedom)
is necessary not only to sustain the current of electrons, but also for the export of heat to sustain
a constant temperature. We assume for the bath thermodynamic equilibrium at the external (bath)
temperature Text. Below, in Section 8, we consider it as a local property Text(r, t). In the case that the
open system is in contact with a material bath, we have thermal conductivity, e.g., by phonon transport.
In a vacuum, the transport of energy is performed by radiation. In particular, the bremsstrahlung may
be the primary process to transform mechanical energy into the energy of radiation. Temperature and
heat for radiation are defined after absorption by a hohlraum, where the Planck spectrum of radiation
is established in equilibrium.

The concept of heat is introduced as a process to export energy to a bath. According to the second
law of thermodynamics, the density of entropy production results as:

1
Ωh

R

dS
dt

=
1

Textσ
j2. (3)

The second law of thermodynamics implies σ > 0 (the flow of a river is never up-hill).
As a more general case, periodic dependence in time and space can be considered, and the

optical conductivity or AC conductivity σ(q, ω) depending on the wave vector q and the frequency ω

is introduced. Because of linearity, a general dependence on space and time, such as the switch-on
situation where the field Eext(t) is proportional to the step function, is treated via Fourier decomposition
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and superposition of the solution for the components. This general case can also be treated with our
approach [4–6], but is not considered in this work, where we focus on the coupling to a bath.

2. Electrical Conductivity-Microscopic Approach

Microscopic model. We construct a microscopic approach to friction and electrical conductivity,
which are typical irreversible processes. This means we start from the well-known equations of motion
for the particles and fields according to quantum mechanics and quantum electrodynamics. These
equations, as well as their classical limits (Newton’s or Maxwell’s equations) describe reversible motion.
We consider a simple microscopic model: Electrons move in a system of heavy ions (at positions Ri)
under the influence of an external field Eext. Within the Lorentz model, the electron–electron interaction
is replaced by a mean field to ensure charge neutrality. The given electron–ion interaction Vei(r) defines
the Hamiltonian that characterizes the model system:

HS = ∑
p

Epa†
pap + ∑

p,q
V(q)a†

p+qap. (4)

where p = {p, σ̂} is the single-electron state with wave vector p. The spin σ̂ is treated implicitly.
Ep = h̄2 p2/2me is the kinetic energy, and V(q) = Ω−1

0 ∑Ni
i

∫
d3r eiq·rVei(r − Ri) is the Fourier

transform of the interaction with all ions at positions Ri.
In addition, the influence of the external field Eext(t) (which in general may depend on time and

space) is described by the contribution (electron charge −e):

Ht
F = eR · Eext(t) (5)

with the electron position operator R = ∑Ne
i ri. This is the sum of the potential energies of all electrons

in the system. The total Hamiltonian Ht = HS + Ht
F determines the motion of the electrons in the

microscopic approach, i.e., the dynamics of the system.
Without electron–ion interaction, the solution of the equation of motion for the electrons is simple.

The momentum h̄p = me ṙ of each electron is changed with time according to h̄ṗi = −eEext. We consider
the cylindrical volume Ωdz

R with height h = dz. An electron incoming at dz with momentum h̄p, pz < 0
and leaving the volume at z = 0 after dt = (−me/h̄pz)dz will have the z component of momentum
h̄pz + eEext(me/h̄pz)dz. This corresponds to an increase of kinetic energy by:

dEkin =
1

2me
2eEextmedz +O(dz2) (6)

equal to the loss eEextdz of potential energy, as given by Equation (5). The acceleration of all incoming
electrons to outgoing electrons makes the average momentum and the corresponding electrical current
dependent on the position, which is in contradiction with the requested homogeneity.

The electron–ion interaction, Equation (4), destroys the increase of the average momentum in
the z direction by scattering, which changes the direction of the momentum. In the adiabatic limit
Mi/me → ∞, we have elastic scattering. The average momentum of the electron system gained by
the electrical field is transferred to the ion system (and is compensated by the ion system because of
charge neutrality). The loss of average momentum of the electron subsystem defines the stationary
current and the conductivity, as calculated below for a given Vei(q). Nevertheless, the Hamiltonian
Ht = HS + Ht

F is not sufficient to describe the process of stationary conductivity because it does not
describe the contact with the bath, in particular how the electrons enter and leave the open system and
how energy is dissipated.

Contact with the bath. The conservation of particle number leads to the balance equation for
the particle current and is described by the incoming and outgoing currents of the open system Ω0.
It is assumed that the process of injection and extraction of electrons to sustain the current in the
open system is not relevant for the calculation of the conductivity. We can circumvent this problem
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considering a larger system Ω̄ where the particle number is conserved. This may be a circuit consisting
of a capacitor, an inductor, and a resistor, driven by periodic external electromagnetic fields, so that
a quasi-stationary state with forced oscillations with ω0 is obtained. Examples are absorbed radiation
by an antenna or the second circuit of a transformer.

Let us consider the induction of electrical fields by the change of magnetic field with time,
expressed via the vector potential Aext(r, t) (Coulomb gauge), so that:

Eext(r, t) = − ∂

c ∂t
Aext(r, t). (7)

The coupling to the external field Aext(r, t) is given by the expression (eh̄/c)p · Aext, so that the
average absorbed power density is −j · Ȧext/c = j · Eext. The expression:

Ht
F =

eh̄
c ∑

p
p · Aext(t)a†

pap (8)

has the advantage that it is expressed in second quantization with respect to momentum states, and the
average current density:

j =
−eh̄

meΩ0
Tr

{
ρ

Ne

∑
i

pi

}
=
−eh̄

meΩ0
∑
p

p〈a†
pap〉 (9)

does not depend on position as demanded for the homogeneous situation. Now, we can relax the
problem of particle exchange with the bath because there is particle conservation for the closed circuit.

However, we cannot eliminate the bath with respect to the absorption of the heat, which is
produced by the electrical current flowing across the resistor. The motion of the electrons in the external
field gives an average increase of kinetic energy. The transfer of electrical energy to mechanical energy
per volume and time is given by j · Eext. However, the external conditions are given so that not only
the current density, but also the temperature is constant. This is in conflict with energy conservation.
For the condition that in the stationary case, the electron system is homogeneous, i.e., the averages
are not varying with position, the export of energy cannot be done by the electron system across the
surface of the system, but needs other mechanisms, denoted as coupling to a thermal bath.

A standard device is the export of energy by coupling to a material thermal bath consisting
of matter, which is characterized by the average kinetic energy according to a temperature Text.
The coupling is mediated by collisions between the ions and can be expressed by phonons.
As a characteristic of the bath, back-reaction is excluded, and coherence and correlations are destructed.
This refers, in particular, to the phase of the phonons. The phase is defined in a coherent state,
also in the classical description of the electron–ion interaction, but not in quantum-statistical thermal
equilibrium, which is described by occupation numbers of the phonon states.

More general, without the need for a material bath, is the radiation field, which is always present.
The emission of photons is a well-known effect for the export of energy, but this is not the solution
of the problem of irreversibility. A photon has a definite energy, and a radio wave a definite phase.
Neither are thermalized. Only the Planck hohlraum radiation is thermalized and is characterized by
the equilibrium temperature Teq. This black-body radiation is given by the Bose occupation numbers
for the single-photon states:

nB(ω, Teq) =
1

eh̄ω/kBTeq − 1
, $(ω, Teq) =

h̄ω3

4π3c2 nB(ω, Teq) (10)

is the spectral radiance of blackbodies, i.e., the power emitted from the emitting surface, per unit
projected area of emitting surface, per unit solid angle, per angular frequency unit. We use in this
work the Planck hohlraum radiation to define heat and Teq. Other degrees of freedom, in particular
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the kinetic energy of the plasma constituents, may be in thermal equilibrium with the black-body
radiation, which defines the bath. Then, the average energy per classical degree of freedom is kBTeq/2.

Flow of energy. Coming back to the DC conductivity, we discuss the flow of energy. The stationary
current with density j induces a magnetic field, and with the constant electrical field Eext, the Poynting
vector is obtained, which describes the flow density of electromagnetic energy from outer space
into the material. The energy current density of the electromagnetic field is given by the Poynting
vector Sext = Eext × Bext. For the cylindrical configuration considered here, this is a radial vector
perpendicular to the z axis. For the current density j, at radius R, the value Bext = πR2 j/2πR results,
so that the energy current of the electromagnetic field into the volume Ωh

R = πR2h comes out as
the surface integral

∫
dO · Sext = jEextR/2× 2πRh = jEextΩh

R. This verifies the energy conservation:
the power density j Eext absorbed by the electrons moving in the electrical field is imported via the
electromagnetic energy density current Sext. There, it is transformed into mechanical energy, according
to the reversible Maxwell equations of motion for the electromagnetic fields. In the stationary case,
the amount of imported power has to be exported.

We consider the energy export from the system by thermal conduction and thermal radiation.
In both cases, the formation of a Planck spectrum with a definite temperature Text and the
corresponding black-body radiation describes the distribution of the energy with respect to the
quantum states, and this energy can be addressed as heat. The export of energy is also possible in
different forms, such as performing work by evaporating particles with high kinetic energy, phonons
that are not thermalized, or emitting photons out of thermal equilibrium. Thermal conduction can
be realized via the ion system by individual collisions with ions or collective excitations (phonons).
The bottleneck is the transfer of kinetic energy from the light electrons, mass me, to the heavy ions,
mass Mi, owing to collisions. Here, the ratio me/Mi determines the transfer of energy. In the second
case of photon emission, radiation transport does not need contact with a material bath, but the
omnipresent vacuum.

Entropy production. In addition, the production of entropy is of interest, which is related to the
production of heat. We introduced heat as a property of the electromagnetic field, the black-body
radiation. The transfer from external field energy to mechanical energy gives no change in the entropy.
Similarly, the export of energy out of thermal equilibrium is not connected with the entropy production.
Only the transformation to heat gives an increase of entropy. The formation of a Planck spectrum and
the corresponding black-body radiation can be addressed as heat. We need a discussion of the bath,
as well as the coupling of the system to the bath. We focus on the Maxwell field as the bath, but many
relations can also be discussed for a phonon bath.

Bremsstrahlung radiation. We consider in this work radiation transport. The free-free transitions of
electrons moving under the influence of an interaction potential, here the ion potential, lead to the
emission or absorption of the bremsstrahlung. The emission of radiation by a plasma is characterized
by the emission coefficient j(ω), which gives the rate of radiation energy per unit volume, frequency
ω, and solid angle. For a system in thermal equilibrium, the emission coefficient is related to the
absorption coefficient α(ω) by Kirchhoff’s law:

jem(ω) =
h̄ω3

4π3c2
1

eh̄ω/kBTeq − 1
α(ω) (11)

where the spectral power density of blackbody radiation appears, and c is the speed of light.
This expression can be obtained from the Larmor formula for the radiated power of an accelerated
single electron,

P = −dE
dt

=
e2

6πε0c3 (r̈)
2. (12)
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The thermally-averaged emission coefficient for a non-relativistic plasma considering free-free
transitions without particle correlations reads according to Kramers [7]:

jem(ω) =
e6Z2

i neni

24π3
√

6πε3
0c3m3/2

e

e−h̄ω/kBTeq√
kBTeq

ḡff(ω) (13)

with ḡff(ω) ≈ 1. The Gaunt factor ḡff(ω) was introduced by Gaunt [8] in order to account for
quantum-mechanical modifications; see also Section 6 below.

However, the bremsstrahlung radiation emitted during the electron–ion collision has to be
transported across the plasma where self-absorption may occur. If self-absorption can be neglected,
the plasma is optically thin, and the radiation can escape. If the plasma becomes optically thick,
radiation propagates only a short distance before it will be absorbed. At frequencies ω below the
plasma frequency, ω < ωpl =

√
e2ne/ε0me, radiation cannot freely propagate. In the optically-thick

plasma, the upper limit for the emitted radiation is determined by the Planck Formula (10),
see also Section 8. The low-frequency part of the radiation spectrum follows the Raleigh–Jeans
law $(ω, Teq) ≈ ω2kBTeq/4π3c2. It defines the temperature Teq and, via the Planck formula, the heat
deposited in the radiation field.

3. Semiempirical Calculation of the Conductivity of the Adiabatic Lorentz Plasma

Boltzmann equation. In the next step, after discussing microscopic properties of the system and
the bath, we come back to the calculation of the conductivity of the adiabatic Lorentz plasma in
the low-density limit. A semiempirical approach, the Boltzmann equation, considers the transfer
of the ordered, directed motion of electrons to disordered motion owing to collisions. We consider
the single-particle distribution function f1(p, t). Because of homogeneity in space, in the classical
case, there is no dependence on position r. In the quantum case, we have the diagonal elements
f1(p, t) = 〈a†

pap〉t of the density matrix; the spin σ̂ in p = {p, σ̂} is not treated explicitly. The average
is performed with the statistical operator ρ(t). In the inhomogeneous case, the non-diagonal elements
of the density matrix lead to the r dependence of the Wigner function. In equilibrium, neglecting
interaction in the low-density limit, the electron distribution is given by the ideal Fermi gas:

f 0
1 (Ep) =

1

eβ(Ep−µe) + 1
, Ep =

h̄2 p2

2me
, β =

1
kBTeq

. (14)

The electron chemical potential µe is calculated from the electron density ne(t) = Ω−1
0 ∑p f1(p, t).

The electrical current density of electrons, charge −e,

j(t) =
−eh̄

meΩ0
∑
p

p f1(p, t) (15)

is zero in equilibrium.
Owing to external fields and collisions among particles, the distribution function changes with

time. According to Boltzmann [9], we have:

∂

∂t
f1 =

(
∂

∂t
f1

)
D
+

(
∂

∂t
f1

)
St

(16)

which becomes zero for the stationary state. The drift term contains the external force, with v =

h̄p/me following: (
∂

∂t
f1

)
D
= −v

∂

∂r
f1(p)− Fext

∂

h̄∂p
f1(p) = eEext

∂

h̄∂p
f1(p) (17)
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for the homogeneous case. Note that a mean-field term can be added to the external force. The internal
interactions are contained in the collision term (∂ f1/∂t)St for which, from the BBGKYhierarchy, an exact
expression can be given containing the two-particle distribution function [10]. As an approximation,
we assume a balance between gain and loss, (∂ f1/∂t)St = G − L. With some phenomenological
considerations, we find in the quantum case the collision term as:(

∂

∂t
f1

)
St
=
∫ d3 p′Ω0

(2π)3

{
f1(p′)wpp′(1− f1(p))− f1(p)wp′p(1− f1(p′))

}
, (18)

where wpp′ is the transition rate from the momentum state p′ to the state p. The quantum behavior of
the collisions is taken into account via the Pauli blocking factors (1− f1(p)).

In the adiabatic limit, the interaction part of the Hamiltonian (4), matrix elements H′p′p = V(p′ − p)
describe elastic collisions. In Born approximation, the transition rate is given by Fermi’s golden rule,

wp′p =
2π

h̄
|H′p′p|

2δ(Ep − Ep′) = wpp′ . (19)

Relaxation time method. To calculate the electrical conductivity, we make the ansatz that for small
electrical fields, also the deviation of f1(p) from the equilibrium distribution f 0

1 (Ep) is small, and we
assume a linear relation. The deviation from equilibrium is described by the function Φ(p) defined as
(see also [4]):

f1(p) = f 0
1 (Ep)−Φ(p)

d f 0
1 (Ep)

dEp
kBTeq = f 0

1 (Ep){1 + Φ(p)(1− f 0
1 (Ep))}. (20)

For the equilibrium distribution f 0
1 (Ep), we have the detailed balance condition wpp′ f 0

1 (Ep′)(1 −
f 0
1 (Ep)) = wp′p f 0

1 (Ep)(1− f 0
1 (Ep′)). Insertion of Equation (20) into the Boltzmann Equation (16) yields

with (18):

eh̄
mekBTeq

Eext · p f 0
1 (Ep)(1− f 0

1 (Ep)) =
∫ d3 p′Ω0

(2π)3 wpp′ f
0
1 (Ep′)(1− f 0

1 (Ep))(Φ(p′)−Φ(p)),

where we have used the assumption that Φ(p) ∝ Eext and neglected terms with a higher order of Eext

(linearized Boltzmann equation). With the definition of the relaxation time tensor: τ̂(p)

Φ(p) =
eh̄

mekBTeq
Eext · τ̂(p) · p (21)

the equation reads with eE = Eext/|Eext|:

eE · p =
∫ d3 p′Ω0

(2π)3 wpp′
f 0
1 (Ep′)

f 0
1 (Ep)

eE · [τ̂(p′) · p′ − τ̂(p) · p], (22)

which is an equation for τ̂(p), where eE is the unity vector in the direction of the external electric
field eE = Eext/Eext. The electric current density Equation (15) depends only on the deviation of
the distribution function since f 0

1 (Ep) is an even function in p (isotropy). We obtain by insertion of
Equation (20) into Equation (15):

j =
−eh̄
me

2
∫ d3 p

(2π)3 pΦ(p) f 0
1 (Ep)(1− f 0

1 (Ep)). (23)
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For isotropic systems, we have τ̂(p) = τtransp(Ep), so that the solution of Equation (22) is:

τtransp(Ep) =

{∫ d3 p′Ω0

(2π)3 wpp′(1− cos ϑ)

}−1

(24)

as can be verified by insertion, ϑ is the angle between p and p′. The transport relaxation time follows
from h̄/τtransp(Ep) = πni/(2p2)∑q q2V2

ei(q)δ(Ep+q − Ep); see [6] and the result below (35).
Now, the conductivity reads with Equation (19):

σ =
e2h̄2

m2
e kBTeq

2
∫ d3 p

(2π)3 p2
z τtransp(Ep) f 0

1 (Ep)[1− f 0
1 (Ep)]. (25)

With (24), we have derived an analytic expression for the conductivity of the Lorentz model
solving the Boltzmann equation.

Screened Coulomb interaction. To give explicit expressions, we specify the electron–ion interaction
by the screened Coulomb (Debye) interaction:

VD
ei (r) =

e2

4πε0|r|
e−κ|r|, with κ2 =

e2ne

ε0kBTeq
.

The interaction Hamiltonian H′ in the momentum representation is obtained from Fourier
transformation with q = p′ − p. It has the matrix elements:

H′p′p =
1

Ω0

∫
d3r eiq·r

Ni

∑
i

VD
ei (r− Ri) = −

1
Ω0

Ni

∑
i

eiq·Ri
e2

ε0(q2 + κ2)
(26)

so that |H′p′p|
2 = Sion(q)ni/Ω0

[
e2/ε0(q2 + κ2)

]2 , with the ion structure factor Sion(q) =

1
Ni

∑Ni
i ∑Ni

j eiq·(Ri−Rj). The inverse relaxation time (24) follows as:

τ−1(Ep) = ni
1

4π

e4

ε2
0

me

h̄3 p3
Λ(p), (27)

with the Coulomb logarithm Λ(p) =
2p∫
0

1
(q2 + κ2)2 q3dq = ln

√
1 + b− 1

2
b

1 + b
, b = 4p2kBTeqε0/(e2ne),

where an uncorrelated ion distribution Sion(q) = 1 is assumed. In the low-density limit at fixed
temperature considered here, the Fermi distribution function is replaced by the Boltzmann distribution
function. For the conductivity, we finally obtain:

σ =
25/2

π3/2

(kBTeq)3/2(4πε0)
2

m1/2
e e2

1
Λ(ptherm)

=
nee2

me
τ̄transp, (28)

where the Coulomb logarithm is approximated by the value of the average p, with h̄2 p2
therm/2me =

3kBTeq/2; see also [6].
Virial expansion. In the more general case where electron-electron collisions are included, we find

for the hydrogen plasma (Z = 1) the following low-density (virial) expansion [11,12]:

σ−1(T, n) = A(T) ln n + B(T) + C(T) n1/2 ln n± . . . (29)

with:

A(T) = −1
s

e2m1/2
e

(4πε0)2(kBT)3/2 . (30)
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For the Lorentz plasma, the value s = 25/2/π3/2 is an exact result. It is changed if electron-electron
collisions are included, s = 0.591; see [4,11–15]. At low temperatures, the plasma is degenerate,
and the Fermi function for the distribution of the electrons cannot be approximated by the Boltzmann
distribution function. The value of s is changed and becomes s = 3/(4

√
2π) for the limit of strong

degeneracy. The values of the higher virial coefficients B(T), C(T) are determined by many-body
effects and the short-range behavior of the effective interaction. Expressions are given, e.g., in [11],
but their exact values are under discussion.

Boltzmann entropy. The Stosszahlansatz of the Boltzmann equation is a semi-empirical assumption,
which was highly and controversially discussed for a long time. It makes the Boltzmann equation
an irreversible equation of evolution, which is able to describe non-equilibrium processes. It can be
shown, see, e.g., [4], that a particular quantity, the Boltzmann entropy:

SBoltzmann(t) = −kB ∑
p

f1(p, t) ln f1(p, t) ≈ −2 kB

∫ d3 p Ω0

(2π)3 f1(p, t) ln f1(p, t) (31)

(classical case), can increase with time and remains constant in thermodynamic equilibrium. It is
a main puzzle of nonequilibrium statistical physics how this property can arise on the basis of the
reversible equations of motion that define the microscopic approach in physics. It was the merits
of Bogoliubov, Zubarev, and others, to give a bridge between both positions, which is presented in
Section 4.

It is obvious that the Boltzmann entropy (31) is not the thermodynamic entropy defined by
the second law. The evaluation in thermodynamic equilibrium yields in the classical case, where
f 0
1 (Ep) ≈ (ne/2)(2πh̄2/mekBT)3/2 exp(−h̄2 p2/2mekBT) (see Equation (14)), the well-known relation:

SBoltzmann = Seq,class(T, Ω0, Ne) =
3
2

kBneΩ0 − neΩ0
µe

T
=

Uclass
T
− µe

Ne

T
(32)

with Uid
class = (3/2)NekBT valid for the ideal, noninteracting gas, neglecting the contribution

of two-particle correlations, etc. The relation between the Boltzmann entropy and the correct
thermodynamic entropy, which takes the correlations in the system into account, becomes clear
after introducing the relevant entropy in the subsequent section.

Let us come back to the increase of the Boltzmann entropy. Owing to energy conservation, we have
in the external field Eext = Eextez the increase of internal energy of the electron system dUclass/dz =

eNeEext if we shift all electrons by dz. The Boltzmann entropy changes as dSBoltzmann/dt = eNeEextv/T
where v is the mean velocity of the electron system. This value coincides with the imported power
dUclass/dt = Ω0j · Eext. The chemical potential µe, which is connected with the electron density,
remains constant. If we assume that by reason of any unknown strong relaxation process, the electron
system remains near the thermodynamic equilibrium, and the change of internal energy Uclass is
described by the temperature T. Then, the change of the temperature would be:

dT
dt

=
2

3kBne
j · Eext =

2
3kBne

σE2
ext. (33)

However, the properties of the open system are not time dependent in the stationary case.
Because the energy balance is of second order in Eext, it is neglected in linear response theory.
Nevertheless, it is not clear whether the kinetic energy of moving bodies can be denoted as heat
and interpreted as entropy, for instance considering the motion of celestial bodies.

Energy export to ions. To have a stationary state, the gain of internal energy must be transferred
to the bath. We mentioned already the emission and absorption of photons; see Equation (11) and
Section 8 below. Another microscopic model for the energy transfer is the collision with ions. Kinetic
theory describes not only the dissipation of the total electron momentum, but also the transfer of
the kinetic energy of electrons to the ion subsystem. We consider ions with finite mass Mi so that
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recoil effects are possible at collisions, which are no longer elastic. A second model is the excitation of
collective modes of the ion system, the phonons, which may give a different picture.

Considering the energy transfer to the ions, we have a two-temperature situation with Te > Ti.
According to Landau and Spitzer [15], the energy density ekin = (3/2)nekBTe is decreased as:

d
dt

ekin =
3
2

nekB(Te − Ti)
me

Miτ̄
(34)

with the relaxation time (slightly different from the transport relaxation time (24)),

τ̄ =
βh̄2

6neΩ0
∑
p

p2τ(Ep) f 0
1 (Ep)[1− f 0

1 (Ep)], (35)

with h̄/τ(Ep) = 2πni ∑q V2
ei(q)δ(Ep+q − Ep); see [6]. This compensates the gain nee2E2

extτ̄/me so that:

kB(Te − Ti) =
2Mi
3m2

e
τ̄2e2E2

ext. (36)

As already mentioned, the difference is of second order in Eext and may be neglected in linear
response theory, but it becomes large in the adiabatic limit me/Mi → 0. The exact value of the energy
current may be changed within a more detailed description, but these arguments remain. Furthermore,
the correlations in the ion system given by the pair distribution function, as well as collective modes in
the excitation spectrum leading to dressed states will change the magnitude of the energy transfer to
the (ionic) bath.

4. The Zubarev Method of Nonequilibrium Statistical Operator

The von Neumann equation. Whereas the Boltzmann equation used the semiempirical
“Stosszahlansatz”, the systematic derivation of the kinetic equation for f1(p, t) from a microscopic
description was intended by Bogoliubov [10] using the principle of weakening of initial correlations.
A more general formulation of this important step to work out the theory of non-equilibrium processes
was given by Zubarev [1–3]. To calculate averages 〈A〉t = Tr{ρ(t)A}, we need the statistical operator
ρ(t) = ∑n |ψn(t)〉wn 〈ψn(t)|, which describes the probability distribution wn of microstates |ψn(t)〉
in the thermodynamic macrostate. Let us assume that the equation of motion of each realization,
quantum state |ψn(t)〉, is given by the reversible Schrödinger equation ih̄∂|ψ(t)〉/∂t = Ht|ψ(t)〉.
The Hamiltonian Ht may contain time-dependent external fields (for an isolated system in equilibrium,
usually, the energy eigenfunctions are identified with the eigenstates of ρ, and the time evolution refers
only to the phase of |ψn(t)〉). Then, the von Neumann equation follows as the equation of motion for
the statistical operator,

∂

∂t
ρ(t) +

i
h̄
[
Ht, ρ(t)

]
= 0. (37)

Despite its character as a fundamental equation of motion in statistical physics, the von Neumann
equation has two shortcomings:

(i) To determine ρ(t), the initial value problem has to be solved.
(ii) As a reversible equation of motion, it cannot describe irreversible processes.

The solution of (i) is known for thermodynamic equilibrium, where ρ(t) = ρeq does not depend
on time. We need an additional principle to determine ρeq, the maximum of information entropy:

Sinf[ρ] = −Tr{ρ ln ρ} (38)
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for arbitrary ρ that are consistent with the given conditions Tr{ρ} = 1 (normalization) and the given
constants of motion Cn:

Tr{ρ Cn} = 〈Cn〉. (39)

These are external conditions that describe how we influence the system, for instance preparing
the volume and particle number and coupling this to a thermal bath. These self-consistency conditions
can be implemented in the variational principle using the method of Lagrange multipliers; see [1].
The corresponding maximum value for Sinf[ρ]:

Seq[ρeq] = −kBTr{ρeq ln ρeq} (40)

is the equilibrium entropy of the system at given constraints 〈Cn〉, and kB is the Boltzmann constant.
Well-known solutions of this variational principle are the Gibbs ensembles for thermodynamic

equilibrium. For instance, in the grand canonical ensemble, the average value of energy is realized by
a Lagrange multiplier, which is identified as temperature T, and the average value of particle numbers
Nc is realized by Lagrange multipliers, which are identified as chemical potentials µc. The Lagrange
multipliers are eliminated by solving Equation (39). The corresponding relations are known as the
equations of state.

With respect to Item (ii), the expression Tr{ρ(t) ln ρ(t)} cannot be used to define the entropy in
non-equilibrium, because it cannot increase with time. Using the von Neumann equation,

d
dt

[Tr{ρ(t) ln ρ(t)}] = 0 (41)

follows. The discrepancy with the second law of thermodynamics that entropy may increase with
time for a system in nonequilibrium can be solved according to Zubarev by a modification of the von
Neumann equation.

The relevant statistical operator. Zubarev [1] proposed to extend the concept of information theory
also to construct a relevant statistical operator ρrel(t) for given averages of relevant observables {Bn}
that are not constants of motion, but may change with time. Now, at each time step t, we find the
maximum of information entropy solving:

− δ [Tr{ρrel(t) ln ρrel(t)}] = 0 (42)

with the self-consistency conditions:

Tr {ρrel(t)Bn} ≡ 〈Bn〉trel = 〈Bn〉t. (43)

and Tr{ρrel(t)} = 1. We use time-dependent Lagrange multipliers λn(t) to account for the
self-consistency conditions (43). The solution of the variational problem is the generalized
Gibbs distribution:

ρrel(t) = e
−Φ(t)−∑

n
λn(t)Bn

, Φ(t) = ln Tr
{

e
−∑

n
λn(t)Bn

}
, (44)

where, as in the equilibrium case, the Lagrange multipliers λn(t) (thermodynamic parameters) are
determined by the self-consistency conditions (43) and have to be eliminated. With the thermodynamic
potential Φ(t) (Massieux–Planck function), the normalization condition is realized.

In the generalization of the equilibrium cases, the maximum of information entropy can be
considered as the relevant entropy in nonequilibrium:

Srel(t) = −kB Tr {ρrel(t) ln ρrel(t)} . (45)
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Maxwell relations similar to the relations known from equilibrium thermodynamics can be
derived [1]. In addition, we find for the production of relevant entropy (see also [4]),

dSrel(t)
dt

= ∑
n

λn(t)
i
h̄
〈[Ht, Bn]〉t = ∑

n
λn(t)〈Ḃn〉t. (46)

This relation is well known from the thermodynamics of irreversible processes. In contrast to
Equation (41), this expression can have a positive value so that Srel(t) can increase with time.

Coming back to the electrical conductivity as an example for an irreversible process,
the nonequilibrium state is characterized by the current density j, and with the density of heat
production j · Eext = σE2

ext, Equation (2), the density of entropy production is given by:

dSrel(t)
dt

=
Ω0

T
j · Eext =

Ω0

T
σE2

ext. (47)

This result is obtained if the position R of the electrons, which couples to the external field,
is considered as a relevant observable, so that 〈Ṙ〉 = (h̄/me)〈P〉 = −(Ω0/e)j. The Hamiltonian
contains also the external field Eext, which must be compensated to obtain the stationary, homogeneous
case. For this, the value ~λ = βEext is needed. It acts like a position-dependent chemical potential
µrel(r), which couples to the local electron density. Other choices of relevant observables are given
below in Section 5.

A well-known example is the Boltzmann entropy (31). This expression is the relevant entropy
in nonequilibrium if the single-particle distribution function f1(p, t) is considered as a relevant
observable. It can increase with time, as proven by the famous H-theorem. However, it is not the correct
thermodynamic entropy, because in thermodynamic equilibrium, the contribution of correlations to
the potential energy is missing.

The introduction of the relevant statistical operator does not solve the problem of nonequilibrium
statistical physics. It is a semiempirical approach, and the selection of the set of relevant observables
{Bn} is arbitrary, but determines the result for the relevant entropy. Srel(t) is not the thermodynamic
entropy because it is based on the arbitrary choice of the set {Bn} of relevant observables, and not all
possible variables are correctly reproduced. The possible increase of the relevant entropy with time (47)
is the effect of coarse graining introducing the reduced set of relevant observables. A main deficit is
that it does not respect the equations of motion; it does not obey the Liouville-von Neumann equation.
The dependence on time is parametric, but not dynamic. An important step to solve the problem of
dynamics is given by the Zubarev method of the Nonequilibrium Statistical Operator (NSO).

The Zubarev solution of the initial value problem. The formal solution of the von Neumann
Equation (37) is easily found,

ρ(t) = U(t, t0)ρ(t0)U†(t, t0). (48)

The unitary time evolution operator U(t, t0) is the solution of the differential equation:

ih̄
∂

∂t
U(t, t0) = HtU(t, t0) , (49)

with the initial condition U(t0, t0) = 1. If the Hamiltonian is not time dependent, we have:

U(t, t0) = e
−

i
h̄

H(t−t0)
. (50)

If the Hamiltonian Ht is time dependent, the solution is given by a time-ordered exponent.
However, we do not know the initial state ρ(t0). An answer was given by Zubarev [1]. In the first

step, we can take instead ρ(t0) the relevant statistical operator ρrel(t0) at some initial time t0,

ρt0(t) = U(t, t0)ρrel(t0)U†(t, t0). (51)
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According to the Bogoliubov principle of the weakening of initial correlations [10], the missing
correlations that are not correctly implemented in ρrel(t0) are produced by the dynamical evolution of
the system. This procedure is well known from molecular dynamics simulations where, starting from
an artificial initial configuration, the stationary distribution is approximated after an initial relaxation
time (synchronization). The crucial point is that one should consider the limit t0 → −∞ so that enough
time is available to establish all missing correlations. As known from ergodic theory, at least the
conserved observables have to be correctly implemented in ρrel(t0) because they cannot be produced
dynamically. The more observables {Bn} are correctly described by ρrel(t0), the less time is necessary
to produce the remaining correlations. Notice that the self-consistency conditions (43) valid at t0 are
not automatically valid also at t averaging with ρt0(t), if the time evolution according to Equation (51)
is taken. Below, we discuss the case of incomplete dynamics if the open system is in contact with a bath.

In the second step, instead of selecting a special instant of time t0, the average over the past is
performed. According to Abel’s theorem (see [1–3]), the limit t0 → −∞ can be replaced by the limit
ε→ +0 in the expression:

ρε(t) = ε
t∫
−∞

eε(t1−t)U(t, t1)ρrel(t1)U†(t, t1)dt1. (52)

This averaging over different initial time instants means a mixing of phases so that long-living
oscillations are damped out. Finally, we obtain the nonequilibrium statistical operator as:

ρNSO(t) = lim
ε→0

ρε(t) . (53)

This way, ρrel(t1) for all times −∞ < t1 < t serves as the initial condition to solve the
Liouville–von Neumann equation according to the Bogoliubov principle of weakening of initial
correlations. The past that is of relevance, given by the relaxation time τ, becomes shorter, if the
relevant (long-living) correlations are already correctly implemented. The limit ε → +0 is to be
considered as ε� 1/τ. The limit ε→ +0 has to be performed after the thermodynamic limit.

Selection of the set of relevant observables. An open issue is the appropriate selection of the set of
relevant observables {Bn} to characterize the nonequilibrium state of the system. The method of the
nonequilibrium statistical operator allows one to extend the set of relevant observables arbitrarily
so that the choice of the set of relevant observables seems to be irrelevant. All missing correlations
are produced dynamically. As a minimum, the constants of motion Cn have to be included because
their relaxation time is infinite, and their averages cannot be produced dynamically. The resulting
ρNSO(t) (53) should not depend on the (arbitrary) choice of relevant observables {Bn} if the limit ε→ 0
is correctly performed. However, usually perturbation theory is applied, so that the result will depend
on the selection of the set of relevant observables. The inclusion of long-living correlations into {Bn}
allows one to use lower order perturbation expansions to obtain acceptable results. In the context with
the electrical conductivity, the selection of different sets of relevant observables has been extensively
discussed; see, e.g., [4–6,11–14,16].

Entropy in the Zubarev NSO approach. An intricate problem is the definition of entropy for the
nonequilibrium state. In nonequilibrium, entropy is produced, as investigated in the phenomenological
approach to the thermodynamics of irreversible processes, considering currents induced by the
generalized forces. Such a behavior occurs for the relevant entropy defined by the relevant
distribution (45). A famous example that shows the increase of the relevant entropy (31) with time is
the Boltzmann H (capital eta) theorem, where the relevant observables to define the nonequilibrium
state is the single particle distribution function.

Note that the entropy puzzle cannot be solved by the relevant entropy. Not only the well-defined
thermodynamic entropy in equilibrium is not reproduced. A so-called coarse graining has been
performed. The information about the state is reduced because the degrees of freedom to describe
the system are reduced. This may be an averaging in phase space over small cells. Furthermore,
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the average over different phases of the quantum state, the destruction of quantum interference
(dephasing), and other projection techniques will destroy information. The loss of information then
gives the increase of entropy. This procedure is artificial, depending on our way of describing the
details of a process, or anthropomorphic, related to our technical possibilities to prepare and measure
the state of a system and control the dynamics. In certain situations, such as quantum master equations
(see [17,18]), kinetic theory (see [16]), and linear response theory (see [19]), the choice of relevant
observables becomes quite natural (see also [4]). In general, there is no first principle approach
that gives the decision about how the relevant degrees of freedom have to be selected out. From
a fundamental point of view, this situation is unsatisfactory.

A possible definition of the entropy would be:

SNSO(t) = −kBTr {ρNSO(t) ln ρNSO(t)} . (54)

It is an open question whether the entropy SNSO(t) will increase also in the limit ε→ +0. Coming
back to our example of DC conductivity, the stationary state means that ρNSO(t) should not depend on
time t. The entropy in the open system is constant, but there is also a constant production of entropy,
which is not derived from (54).

The extended Liouville–von Neumann equation. We consider a closed system with known
dynamics Ht. The nonequilibrium statistical operator ρε(t), Equation (52), obeys the extended von
Neumann equation:

∂ρε(t)
∂t

+
i
h̄
[Ht, ρε(t)] = −ε(ρε(t)− ρrel(t)). (55)

as can be seen after simple derivation with respect to time. In contrast to the von Neumann
Equation (37), a source term arises on the right-hand side that becomes infinitesimally small in
the limit ε→ +0. This source term breaks the time inversion symmetry so that, for any finite value of
ε, the solution ρε(t) describes in general an irreversible evolution with time.

The source term implements the “initial condition” in the equation of motion as expressed by
ρrel(t). Formally, the source term looks like a relaxation process. In addition to the internal dynamics,
the system evolves towards the relevant distribution.

The construction of the source term is such that the time evolution of the relevant variables is not
affected by the source term (we use the invariance of the trace with respect to cyclic permutations),

d
dt
〈Bn〉t = Tr

{
∂ρε(t)

∂t
Bn

}
= −Tr

{
i
h̄
[Ht, ρε(t)]Bn

}
− ε

[
〈Bn〉t − 〈Bn〉trel

]
=

〈
i
h̄
[Ht, Bn]

〉t
= 〈Ḃn〉t . (56)

The source term cancels because of the self-consistency conditions (43). Thus, the time evolution of
the relevant observables satisfies the dynamical equations of motion according to the Hamiltonian Ht.

Any real system is in contact with the surroundings. The intrinsic dynamics described by the
Hamiltonian Ht is modified owing to the coupling of the open system to the bath. Within the quantum
master equation approach (see Section 6 below), we can approximate the influence term describing the
coupling to the bath by a relaxation term similar to the source term. However, at present, we consider
the source term as a purely mathematical tool to select the retarded solution of the Liouville–von
Neumann equation, and physical results are obtained only after performing the limit ε→ 0.

5. Generalized Linear Response Theory

Linearization of the NSO. We use the Zubarev NSO method to calculate the electrical conductivity.
It unifies kinetic theory and linear response theory. An extended discussion of this generalized linear
response theory can be found in the literature [4,6,11,13,14,16], which will not be repeated here.

The main idea is to consider small fluctuations near the thermodynamic equilibrium. In the
relevant statistical operator (44) containing the observables Bn with the Lagrange parameters λn(t),
we extract the conserved observables Cn with the Lagrange parameters β, µe, which determine
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the thermodynamic equilibrium. The remaining observables with Lagrange parameters βFn(t) are
considered as small fluctuations, so that we can expand with respect to Fn(t). In first order, we have:

ρrel(t) = ρeq + β

1∫
0

dλ ∑
n

Fn(t)Bn(ih̄βλ) ρeq. (57)

Here, we made use of the modified Heisenberg picture O(τ) = exp(iHτ/h̄)O exp(−iHτ/h̄) with
τ → ih̄βλ and replacing in the exponents HS by H = HS − µeNe. Note that H does not contain the
external field Ht

F. Because of homogeneity, in ρrel, any position-dependent external field has to be
compensated by a position-dependent chemical potential.

After integration by parts, the NSO (52) with Ht = HS + Ht
F has the form:

ρε(t) = ρrel(t)−
t∫

−∞

dt1eε(t1−t)U(t, t1)

{
i
h̄

[
(HS + Ht1

F ), ρrel(t1)
]
+

∂

∂t1
ρrel(t1)

}
U†(t, t1). (58)

In our case of DC conductivity, where Ht
F = eEext · R (5), we expand up to first order in Eext and

assume Fn ∝ Eext. Since HS commutes with the equilibrium ρeq, the curly bracket is of order O(Eext).
In the stationary state, the statistical operators are not depending on t. With (i/h̄)[HS, R] = P/me,
we arrive at (in this section, we use the notation P = ∑Ne

i h̄pi for the total momentum):

ρε = ρrel − β

0∫
−∞

dt1 eεt1

1∫
0

dλ

[
− e

me
Eext · P(iλβh̄ + t1) ρeq + ∑

n
Fn Ḃn(iλβh̄ + t1) ρeq

]
. (59)

In the stationary case considered here, there is no dependence of Eext(t), ρε(t), ρrel(t), Fn(t)
on time t. After fully linearizing the statistical operator (59) with (57), we have for the electrical
current density:

j =
e

meΩ0
〈P〉 = eβ

meΩ0

{
∑
n

[
(P|Bn)− 〈P; Ḃn〉iε

]
Fn + 〈P; P〉iε ·

e
me

Eext

}
= σEext. (60)

Here, we introduced the Kubo scalar product (the particle number commutes with the
observables):

(A |B) =
1∫

0

dλTr
{

A e−λβH B eλβH ρeq

}
=

1∫
0

dλ Tr
{

A B(iλβh̄) ρeq
}

, (61)

and its Laplace transform, the thermodynamic correlation function:

〈A; B〉z =
0∫

−∞

dt e−izt(A |B(t)) =
∞∫

0

dt eizt(A(t) |B). (62)

Note that similar expressions can be given for time-dependent (periodic) fields [4,16]. In the
classical limit where the variables commute, additional integrals expanding the exponential
are avoided.

Kubo formula. In particular, for the empty set of relevant fluctuations {Bn} so that ρrel = ρeq, we obtain
the Kubo formula (we choose j, Eext parallel to the z axis so that P = P · ez is the z component of P):

σKubo
DC =

e2β

m2
e Ω0
〈P; P〉iε. (63)



Particles 2019, 2 324

A similar expression can also be given for the dynamical, wave-number vector-dependent
conductivity σ(q, ω), which is related to other quantities such as the response function, the dielectric
function, or the polarization function (see [4,14,16,20]). The relation (63) is a special form of the
Fluctuation-Dissipation Theorem (FDT), which connects the time evolution of equilibrium fluctuations,
here the current, with transport coefficients, here the conductivity.

In the lowest order of perturbation theory, we have the result:

σKubo,0
DC =

nee2

me

1
ε

(64)

which diverges in the limit ε→ 0. Perturbation theory cannot be applied immediately to evaluate the
DC conductivity for interacting charged particles. The use of perturbation theory for the Kubo formula
and performing partial summations are discussed in [6]. To avoid perturbation theory, the Kubo
formula can be evaluated numerically, e.g., Molecular Dynamics (MD) simulations. Most recent
approaches use the Kubo–Greenwood formula [6] and treat the electron system via Density-Functional
Theory (DFT). In this approach also, an ε-broadening of the δ-like contributions is needed.

Elimination of the Lagrange parameters Fn. The Lagrange parameters Fn must be eliminated with
Equation (43). After linearization (59), we find the response equations:

〈Bm〉 − 〈Bm〉rel = −∑
n
〈Bm; Ḃn〉iεFn + 〈Bm; P〉iε

e
me

Eext = 0 (65)

to determine the response parameters Fn, and the number of equations coincides with the number of
variables to be determined. The coefficients of this linear system:

∑
n

PmnFn = DmEext (66)

of equations are given by equilibrium correlation functions. Using Cramer’s rule, the response
parameters Fn are found to be proportional to the external field Eext with coefficients that are
ratios of two determinants. The evaluation of the matrix elements that are equilibrium correlation
functions can be performed using different methods such as numerical simulations, quantum statistical
perturbation theories such as thermodynamic Green functions and Feynman diagrams, path integral
methods, etc. Simple expressions for the conductivity are obtained if P is included in the set of relevant
observables {Bn}.

Force-force correlation function. The nonequilibrium state is characterized by the electrical current
density j = e/(meΩ0)〈P〉, which is related to the total momentum P = h̄ ∑i pi,z. This motivates
selecting it as the relevant observable Bn → P. After the solution of the response equation and
performing partial integrations [4,16], the resistance R in the static limit follows as [21]:

R =
1
σ
=

Ω0β

e2N2
e

〈Ṗ; Ṗ〉iε

1 +
β

meNe
〈P; Ṗ〉iε

=
Ω0β

e2N2
e
〈Ṗst; Ṗst〉iε, (67)

where Ṗst = Ṗ − 〈Ṗ; P〉iε
〈P; P〉iε

P is the stochastic part of the force, which is orthogonal (independent)

on P (cf. the Langevin approach to Brownian motion), 〈Ṗst; P〉iε = 0. According to the so-called
second fluctuation-dissipation theorem, the resistivity is given by the equilibrium correlation function of
stochastic forces.

Now, perturbation theory can be applied, and in Born approximation, the Ziman formula,
a standard result of transport theory, is obtained. We conclude that the use of relevant observables
gives a better starting point for perturbation theory. In contrast to the Kubo formula that starts from
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thermal equilibrium as the initial state, the correct current is already reproduced in the initial state and
must not be created by the dynamical evolution.

We give the result for the force-force correlation function in Born approximation:

〈Ṗ; Ṗ〉iε = − ∑
p,p′ ,q,q′

0∫
−∞

dt eεt
1∫

0

dλ e
i
h̄
(Ep−Ep+q)(t−ih̄βλ)

VqVq′qzq′z〈a†
p+qapa†

p′+q′ap′ 〉eq

= ∑
p,q
|Vq|2δ(Ep − Ep+q) fp(1− fp)πh̄

q2

3
. (68)

For the Debye potential, we obtain the result (28), but with the prefactor s = 3/(4
√

2π).
Despite the excellent results using the Ziman formula in solid and liquid metals where the

electrons are strongly degenerate, we cannot conclude that the result (67) with (68) for the conductivity
is already correct for low-density plasmas (the non-degenerate limit if T remains constant) in the
lowest order of perturbation theory considered here. The prefactor s = 3/(4

√
2π) is wrong. If we go

to the next order of interaction, divergent contributions arise. These divergences can be avoided by
performing a partial summation, which will also change the coefficients in Equation (29), which are
obtained in the lowest order of the perturbation expansion. The divergent contributions can also be
avoided extending the set of relevant observables {Bn} (see Ref. [11]).

Higher moments of the single-particle distribution function. Besides the electrical current, also other
deviations from thermal equilibrium can occur in the stationary nonequilibrium state such as a thermal
current. In general, for homogeneous systems, we can consider arbitrary moments of the single-particle
distribution function:

Pn = ∑
p

h̄pz(βEp)
n/2a†

pap (69)

as set of relevant observables {Bn}. It can be shown that with increasing the number of moments,
the result:

σ = s
(kB)

3/2(4πε0))
2

m1/2
e e2

1
Λ(ptherm)

(70)

(cf. Equation (29)) is improved, as can be shown with the Kohler variational principle; see [13,16].
The value s = 3/(4

√
2π) obtained from the single-moment approach is increasing to the limiting

value s = 25/2/π3/2. For details, see [4,13,14], where also other thermoelectric effects in plasmas
are considered.

Single-particle distribution function and the general form of the linearized Boltzmann equation. Kinetic
equations are obtained if the occupation numbers np of single-(quasi-) particle states |p〉 are
taken as the set of relevant observables {Bn}. In thermal equilibrium, neglecting interactions,
the averaged occupation numbers of the single-electron states are given by the Fermi distribution
function (14), 〈np〉eq = Tr {ρeqnp} = f 0

1 (Ep). We consider the fluctuations of the occupation
numbers ∆np = np − f 0

1 (Ep) as relevant observables. The response equations, which eliminate the
corresponding response parameters Fp(t), have the structure of a linear system of coupled Boltzmann
equations for the quasiparticles (see [16]):

e
me

Eext · [(P|np) + 〈P; ṅp〉iε] = ∑
p′

Fp′Pp′p , (71)

with Pp′p = (ṅp′ |∆np) + 〈ṅp′ ; ṅp〉iε. The response parameters Fp(t) are related to the averaged
occupation numbers as:

f1(p) = Tr {ρ(t)np} = f 0
1 (Ep) + β ∑

p′
Fp′(∆np′ |∆np) . (72)
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The general form of the linear Boltzmann equation (71) can be compared with the
expression obtained from kinetic theory. The left-hand side can be interpreted as the drift term,
where self-energy effects are included in the correlation function 〈P; ṅp〉iε. The collision operator
is given by 〈ṅp′ ; ṅp〉iε. Because the operators np are commuting, from the Kubo identity, it follows
(ṅp′ |np) = (1/h̄β)〈[np′ , np]〉 = 0. More precisely, the collision operator can be expressed in terms of
the correlation function of the stochastic part of fluctuations; cf. Equation (67). The further evaluation
of the conductivity is according to the kinetic approach in Section 3.

Two-particle distribution function, bound states. The question arises whether the conductivity,
in particular the virial coefficient A(T) (29) for the Lorentz plasma, is modified if the set of relevant
observables is further extended. In the next step, we can consider the non-equilibrium two-particle
distributions; see [4,11]. However, the corresponding corrections appear only in higher orders of the
virial expansion (29). It seems that the virial coefficient A(T) is an exact result. However, it is not
clear whether in higher orders of density, singularities appear that can modify this result after partial
summation of singular terms.

Another interesting quantum phenomenon is the formation of bound states. Such two-particle
correlations can also be used to extend the set of relevant observables [22,23]. In particular, in low-density
plasmas, such correlations are difficult to form dynamically and need a long relaxation time because a third
particle is needed to fulfill the conservation laws. However, at fixed T, the concentration of bound states
becomes small in the low density limit according to the mass action law.

We considered the interaction with uncorrelated ions, with structure factor S(q) = 1. Multiple
scattering by ordered ions with structure factor S(q) 6= 1 will modify the result (27). In particular, for a
perfect lattice, the electron system is described by Bloch states forming a band structure, and scattering
disappears so that the conductivity becomes infinite (64).

Here, a main problem emerges. The electron Hamiltonian of the adiabatic Lorentz model (4) is
bilinear and can, in principle, be diagonalized. We obtain stationary states as the exact solution, and the
question arises from where dissipation in the system is coming. If an initial state is prepared with
definite momentum by superposition of such exact solutions, the scattering into different directions of
momentum is similar to the spreading out of a wave packet, and dissipation is only possible if the
coherence is destroyed. The scattering by ions changes the total momentum of the electron system,
but this cannot be considered as a dissipative process. In addition, for a closed circuit discussed
above, we do not have asymptotically-free momentum states. Nevertheless, dissipation happens in
real systems.

6. Open Systems

Flow of energy. We presented a nice and consistent approach to the electrical conductivity.
The generalized linear response theory reproduces not only the low-density limit, which is also
correctly described by kinetic theory, but gives the opportunity to treat also dense charged particle
systems. However, the flow of energy is not correctly described. Because this is of second order in the
external field, which determines the deviation from equilibrium, the account of the energy flow will
not modify the results obtained in linear response theory.

Let us consider the system energy HS (4). The dynamics is described by the Hamiltonian
Ht = HS + Ht

F, which includes the field Eext(t). Using the extended von Neumann equation,
we calculate the change of the energy of the electron system:

d
dt

Tr {ρ(t)HS} = Tr
{

ρ(t)
i
h̄
[Ht

F, HS]

}
− εTr {[ρ(t)− ρrel(t)]HS} . (73)

We immediately see the import of electrical power Ω0j · Eext from the first term on the right-hand
side. The second term becomes zero for ε→ 0. Consequently, the average system energy is increasing
with time.
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This is in contradiction to the demand of a stationary, homogeneous solution with constant current
density j. Electrons that enter the open system have the same properties (average particle density,
average current density, average energy density, temperature) as electrons that leave the system,
as demanded by homogeneity. As discussed earlier, this contradiction is solved if the coupling to
a bath is taken into account. Then, the dynamical evolution of the system according to Ht = HS + Ht

F
is not complete, and the influence of the bath is missing. We have to treat an open system where energy
can be exported by coupling to a bath. We expect that the details of this coupling are not relevant for
the calculation of the conductivity. However, the bath coupling is of relevance for the production of
entropy. We discuss here the coupling to a system of harmonic oscillators as realized by phonons or
photons. In the subsequent section, we show how the Zubarev method of the NSO may be modified to
include the effects of the bath.

Harmonic-oscillator bath. The system of harmonic oscillators describing the excitations with wave
vector q and polarization eq is given by the Hamiltonian:

Hh.o. = ∑
q

ωqb†
qbq. (74)

As the dispersion relation, we take ωq = c|q| with c as the velocity of light for the photon system
or as the velocity of sound for acoustic phonons. For the interaction of the electron system with the
phonon bath, the standard Froehlich expression:

Hint =
icep

Ω1/2
0

∑
p,q

√
qa†

p+qap(bq − b†
q) (75)

can be taken, with the electron-phonon coupling parameter cep ∝ M−1/2
i . Note that we can also treat

the electron–phonon interaction as a process to produce electrical conductivity [19].
Photon bath. In this work, we focus on the electron–photon interaction Hint = e ∑Ne

i ri · E.
In contrast to Equation (5) where Eext(r, t) denotes an external field, E(r, t) is the operator of the
fluctuating Maxwell field. In Fourier space, in the long-wavelength limit, we have the dipole
approximation, Hint = eR · E(q = 0). The system of harmonic oscillators is strongly coupled to
a thermal bath so that the temperature Text is fixed. The NSO can be investigated [4] with the selection
of relevant observables as degrees of freedom of the system, and the remaining (irrelevant) degrees
of freedom define the bath. The relevant statistical operator is chosen as the direct product of the
thermodynamic equilibrium for the phonon/photon system, ρbath, fixed by the external temperature
Text, and the reduced system statistical operator obtained after tracing out the irrelevant degrees
of freedom. Performing the Born–Markov and rotating-wave approximation, the quantum master
equation is obtained,

∂ρε(t)
∂t

+
i
h̄
[Ht, ρε(t)] = −

1
h̄2

∫ 0
−∞ dτe−ετ [〈HintHint(τ)〉bathρε(t) + ρε(t)〈Hint(τ)Hint〉bath (76)

−Trbath {Hintρε(t)ρbathHint(τ) + Hint(τ)ρε(t)ρbathHint}] .

The notation 〈. . . 〉bath means average with respect to the phonon/photon bath,
ρbath = Z−1

bathe−Hh.o./kBText . A further thermostat is needed to ensure thermodynamic equilibrium with
temperature Text [4]. The evaluation of the right-hand side is given below, Equation (82).

Electromagnetic field. The evaluation of the field averages with the harmonic-oscillator bath ρbath
can be performed. Finally, we give the result for the blackbody radiation [4,24] with the field E(r, t):

Γij(ω) =
∫ ∞

0
dτ ei(ω+iε)τ〈Ei(τ)Ej(0)〉bath = δij

(
1
2

γ(ω) + iS(ω)

)
(77)
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with γ(ω) = 4ω3 [1 + nB(ω)] /(3h̄c3), and the principal value expression and:

S(ω) =
2

3πh̄c3P
∫ ∞

0
dωqω3

q

[
1 + nB(ωq)

ω−ωq
+

nB(ωq)

ω + ωq

]
. (78)

Note that the Planck distribution (10) satisfies nB(−ω) = −[1 + nB(ω)] such that γ(ω) = 4ω3[1 +
nB(ω)]/(3h̄c3) for ω > 0 and γ(ω) = 4|ω|3nB(|ω|)/(3h̄c3) for ω < 0.

The resulting quantum master equation describing the coupling such as atoms to the radiation
field in dipole approximation, Hint = −eR · E,

∂

∂t
ρε(t)−

1
ih̄
[HS, ρε(t)]−

1
ih̄
[Hinfl, ρε(t)] = D′[ρε(t)]. (79)

has the Lindblad form. We perform the spectral decomposition with respect to the (discrete) eigenstates
|φn〉 of HS,

R(ω) =
∫ ∞

−∞
dt eiω(t−t0) eiHS(t−t0)/h̄Re−iHS(t−t0)/h̄ = R†(−ω)

= 2πh̄ ∑
n,m

δ(ES,n − ES,m + h̄ω)|φn〉〈φn|R|φm〉〈φm| . (80)

The influence Hamiltonian:

Hinfl = e2h̄
∫

dω S(ω)R†(ω) · R(ω) (81)

leads to a renormalization of the system Hamiltonian HS that is induced by the vacuum fluctuations of
the radiation field (Lamb shift) and by the thermally-induced processes (Stark shift). The dissipator of
the quantum master equation reads:

D′[ρε(t)] =
∫ ∞

0
dω

4e2ω3

3h̄c3 [1 + nB(ω)]

[
R(ω)ρε(t)R†(ω)− 1

2
{R†(ω)R(ω), ρε(t)}

]
+
∫ ∞

0
dω

4e2ω3

3h̄c3 nB(ω)

[
R†(ω)ρε(t)R(ω)− 1

2
{R(ω)R†(ω), ρε(t)}

]
(82)

where the integral over the negative frequencies has been transformed into positive frequencies.
The influence term (81) is used to dress the electrons. Only the dissipator (82) is considered for the
export of energy.

This result can be interpreted in a simple way. The application of the destruction operator R(ω)

on a state of the system lowers its energy by the amount h̄ω and describes the emission of a photon.

The transition rate
4ω3

3h̄c3 [1 + nB(ω)] contains the spontaneous emission, as well as the thermal emission

of photons. The term R†(ω) gives the creation of photons with transition rate
4ω3

3h̄c3 nB(ω) describing

the absorption of photons.

7. The Relaxation Term

Dissipator and relaxation. We can introduce the coupling to the thermal bath in different ways.
After we described it by a Lindblad operator (79), based on a detailed description of interaction
processes and performing some approximations, we now discuss whether we can also describe the
influence of the bath by a relaxation term that describes the influence of a bath in a global, macroscopic
way. The use of a relaxation time is very common in nonequilibrium statistical physics; see Section 3.
We introduce the relaxation time as a characteristic, semiempirical quantity, which may be derived
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from a microscopic consideration. We analyze the von Neumann equation with a relaxation term
similar to the source term (55),

∂

∂t
ρη(t)−

1
ih̄
[(HS + Ht

F), ρη(t)] = −η[ρη(t)− ρrel(t)]. (83)

Now, the relaxation parameter (superoperator) η is finite and models the influence of the bath.
The relevant statistical operator ρrel(t) is considered no longer as the memory of the known averages
in the past, to realize the initial, causal conditions. It describes the goal to which the evolution goes,
a teleological distribution. It is determined by the external conditions as discussed below.

The idea is that the irrelevant degrees of freedom are strongly relaxed to a quasi-equilibrium,
similar to the Enskog approach to solve the Boltzmann equation. The influence on the average motion
of the relevant observables is replaced by a transport coefficient similar to the friction force in the
Langevin equation. A more detailed description will relate this macroscopic friction force to the
correlation function of stochastic forces, as known from the Brownian motion.

Ideal gas with friction. Let us consider a simple example for illustration. We have relevant
(the electron variables) and irrelevant (ionic) observables. As discussed above, the relevant part of the
dynamics is described explicitly, whereas the irrelevant one is described globally, e.g., by a relaxation
term. In our simple example, the relevant part of the dynamics is HS,id = ∑i h̄2 p2

i /2me. We disregard

the e–i interaction, but introduce a friction term ηei, of course not as
∂

∂t
ρη(t) = −ηeiρη(t),

but, to conserve normalization, energy, and particle number, we can consider the relaxation term:

∂

∂t
ρη(t)−

1
ih̄
[(HS,id + Ht

F), ρη(t)] = −ηei[ρη(t)− ρeq,id], (84)

with the equilibrium distribution ρeq,id = exp[−βHS,id + βµeNe]/Zeq,id defined by temperature,
chemical potential, zero mean velocity, and the ideal gas Hamiltonian HS,id = ∑p Epa†

pap (Note that Ht
F

is not included. We demand a homogeneous distribution, and the external field would be compensated
by a position-dependent chemical potential.). The norm and particle number are conserved, and for
the average momentum, we have:

d
dt
〈P〉tη = Tr

{
∂

∂t
ρη(t)P

}
= −eEextNe − ηei〈P〉tη (85)

with the stationary result j =
−e

meΩ0
〈P〉stat =

e2ne

meηei
Eext so that σ = nee2/(meηei) results; see

Equation (64). Comparing to the microscopic calculation (28), we identify ηei = 1/τ̄transp.
Dynamical collision frequency. We have shown that the phenomenological relaxation time 1/ηei is

related to the microscopic e–i interaction solved in Section 3. We know from the Langevin equation
that transport (friction) coefficients are related to the correlation function of stochastic forces. We have
to consider a stochastic process, and stochastic forces are needed to maintain thermal irregular motion,
cf. Equation (67). We demonstrate this relation for the ideal gas with friction to describe the collisions
with ions.

Within the Zubarev NSO approach, we derive the response of the system to a time-dependent
external field; see [14,20]. Medium modifications of electromagnetic fields in an isotropic plasma are
described by the dielectric permittivity tensor ε̂(q, ω). In the long-wavelength limit q→ 0 (relevant
for the emission and absorption of visible light considered here), the transverse and longitudinal
dielectric function are identical. The dielectric function is written in the generalized Drude-like form
with ω2

pl = nee2/(ε0me),

ε(q→ 0, ω) = 1 = 1 +
i

ε0ω
σ(q→ 0, ω) = 1−

ω2
pl

ω[ω + iν(ω)]
. (86)
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The dynamical collision frequency ν(ω) is obtained from the frequency-dependent force-force
correlation function; see [25] and Equations (67) and (68).

ν(ω) =
β

Neme
〈Ṗ; Ṗ〉ω+iε . (87)

For the DC conductivity follows σ = ε0ω2
pl/ν(0) = nee2/[meν(0)], so that we identify ηei = ν(0).

Note that this global description of the effect of e–i interaction by a relaxation term is very
crude, but was successfully applied to derive the Mermin dielectric function εMermin(q, ω) [26].
The contribution of e–i interaction for q = 0 is described by the dynamical collision frequency
ν(ω). The extension to finite q was possible taking the conservation laws for particle number, etc.,
into account.

Relaxation of internal energy, ideal gas. The relaxation of the electron momentum owing to e-i
collisions is correctly described. The conservation of the norm and particle number is realized by
construction. For the internal energy US,id(t) = 〈HS,id〉tη , we have with Equation (84):

d
dt

US,id(t) = jEextΩ0 − ηbath

[
US,id(t)−

3
2

kBTextNe

]
(88)

with the stationary result Ustat =
3
2

kBTextNe + jEextΩ0/ηbath. The values jeq = 0 and Ueq =
3
2

kBTextNe

as demanded by the bath are not reached in the stationary state.
The relaxation coefficient ηbath is different from ηei because elastic e-i collisions, which are

relevant for the relaxation of momentum, will not contribute to the relaxation of internal energy.
Other phenomena like bremsstrahlung emission (see Section 8) give the microscopic process for this
relaxation term. The relaxation parameter η should be considered as the superoperator in the space of
the dynamical variables {Bn} of the system, similar to the relaxation time 1/τtransp(Ep) (24) acting on
states |p〉.

Global energy relaxation. As a simple example for energy relaxation, we discuss temperature
relaxation for a system in local thermodynamic equilibrium. For the ideal classical gas of electrons,
we have the equilibrium distribution (see Equation (14)):

f 0
1 (Ep) =

ne

2

(
2πh̄2

mekBT

)3/2

e
−

h̄2 p2

2mekBT . (89)

The change T → Text where Text is the temperature of the bath can be described by the map:

f 0
1 (Ep) = f 0

1

(
h̄2 p2

2me

)
→
(

T
Text

)3/2
f 0
1

(
h̄2 p2Text

2meT

)
. (90)

The equation of evolution for T(t) is obtained from:

∂

∂t
f 0
1 (Ep; T(t)) = −ηbath

[
f 0
1 (Ep; T(t))− f 0

1 (Ep; Text)
]

(91)

so that near T ≈ Text, we find Ṫ(t) = −ηbath[T(t)− Text]. This global relaxation of T scales all momenta
in the same way and can be replaced by a more detailed description within a microscopic approach.

Hamiltonian dynamics. Now, we discuss the NSO method presented in Section 4. The dynamical
evolution owing to the e–i interaction, given by HS, is treated microscopically so that it must be taken
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off the relaxation term. However, this microscopic description is not complete because the interaction
with a bath is not included. We obtain from Equation (56):

d
dt
〈Bn〉t =

i
h̄

Tr{[Ht, Bn]ρη(t)]} − ηbath
[
Tr{ρη(t)Bn} − Tr{ρrel(t)Bn}

]
. (92)

Now, the relaxation coefficient ηbath only describes the interaction with the bath. It is clearly
seen that this relation becomes wrong for lim ηbath → 0 if the dynamics Ht = HS + Ht

F is incomplete,
i.e., not containing the coupling to the bath, and 〈Bn〉t is a prescribed time evolution, which respects
the influence of the bath. In particular, in a stationary state, the averages of the dynamical observables
of the system, including the internal energy 〈HS〉t, should not depend on time. The appropriate choice
of the source term, in particular the relevant operator ρrel(t), can be performed so that double counting
of the Hamiltonian dynamics Ht is avoided.

As discussed above for an isolated, closed system, the source term can be constructed such that
the dynamical evolution is projected out. The condition (43):

〈Bn〉t = 〈Bn〉trel (93)

makes the time evolution (56) of the relevant observables Bn purely dynamical, i.e., according to Ht,
and independent of the value of ε. However, in open systems, the dynamical observables of the
system may also be influenced by the bath, so that the Hamiltonian time evolution, neglecting the
influence of the bath, is incomplete, and therefore, it is in conflict with the demanded self-consistency
condition (93).

Maximum production of entropy. We propose another definition of the relevant statistical operator for
open systems in the stationary state. Given properties are only a small number of control observables.
In our case, the relevant operator is characterized by the density ne, the current density j controlled
by the external field Eext, and the internal energy density controlled by the bath temperature Text.
The mean values of further observables are not measured, so that Equation (93) is meaningless. Instead,
an arbitrary number of dynamical observables {Bn} of the system may be considered, and their
averages are determined by the Kohler variational principle [16], where the arbitrary time dependence
of the external field is considered. It can be related to the principle of the extremum of entropy
production given by Prigogine and Glansdorff [1]. The static case ω = 0 has been considered in [4,14].

Coming back to our example of DC conductivity, some control parameters are known in the past
t1 < t: the volume Ω0, the particle density ne, the temperature Text, and the external field Eext, which,
in general, may depend on time t1. A Gibbs ensemble ρeq with HS (remember that Ht

F is compensated
by the chemical potential to have homogeneous solution), and the external conditions Ω0, ne, Text are
compatible with the demanded properties, but not very appropriate to describe the stationary state;
see the discussion of the Kubo formula (63). At least, we expect to have a stationary distribution with
a finite average momentum current density j = (−eh̄/meΩ0)〈P〉, which characterizes the relevant
distribution. We can add further moments or the detailed single-particle distribution function f1(p, t)
as the set {Bn} of relevant observables. The averages of these relevant observables are not prescribed
by the self-consistency relations (93), but by the maximum production of information entropy, as
shown, e.g., by the Kohler variational principle. The principle of maximum information entropy fixes
all remaining (irrelevant) observables, such as missing moments if only a finite number of moments
is taken, or two-particle correlation functions. The construction of the relevant statistical operator
ρrel(t) has to be considered as a variational problem. According to the Kohler variational principle
of the maximum production of relevant entropy at a given external field Eext, we find that the more
relevant observables {Bn} are included, the better (larger) being the result for the conductivity; see the
examples in Section 5.

The approach presented here is known as synchronization or the sequence of different stages of
non-equilibrium. Similar to the Enskog equation, we assume strong equilibration of the higher
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correlation functions (collision time scale), followed by the equilibration of the single-particle
distribution function (free flight time scale) and the position-dependent hydrodynamic scale (transport
and diffusion). The higher correlations are already equilibrated. For the conductivity in the low-density
limit, the single-particle distribution function is sufficient. Higher order distribution functions relax
quickly. An important example is the dressing of free particles to become quasiparticles with self-energy
according to local thermodynamic equilibrium. We can discuss this as a fast synchronization of the
irrelevant observables to the quasi-equilibrium, relevant distribution.

Dynamics and relaxation. It is our main issue to construct the equation of evolution with a relaxation
term avoiding double counting of the dynamical part Ht of the interaction. For our open system,
the time evolution operator U(t, t0), Equation (49), has to be completed to contain also the interaction
with the bath. In the expressions (58) and (59), the interaction with the bath has to be added.
Within a microscopic approach, d〈Bn〉t/dt should also have the contribution of interaction with
the bath. As is well known, a dissipator (76) can be derived so that ρ(t) follows from a quantum
master equation. Because of this additional interaction with the bath, the self-consistency condition (43)
and (93) becomes obsolete for the averages of the relevant observables. Instead, only the external
conditions Eext, Text are given, and the averages of the relevant observables {Bn} are determined from
the maximum production of the relevant entropy.

As before, we approximately introduce a relevant statistical operator ρrel, which is optimized with
respect to the given dynamics HS of the system, i.e., the maximum of production of the relevant entropy
according to the Kohler variational principle. For this, we select out a set of relevant observables {Bn}
and find the corresponding Lagrange parameters Fn solving the linear system ∑n PmnFn = DmEext

of Equation (65). This approximation can be improved taking into account the influence of the bath,
for instance replacing ε by ηbath calculating the correlation functions. Now, we solve the problem of the
intrinsic energy 〈HS〉t, which should be constant in the stationary state. The von Neumann equation
with the friction term (83) gives for the time derivative:

0 = jEext −
3
2

neηbathkB(T − Text) (94)

so that the temperature in the system is T = Text +
2

3ηbathkB
σE2

ext, cf. Equation (36). In linear

response, the temperature difference ∆T = T− Text ∝ E2
ext can be neglected. To estimate ∆T, we need

a microscopic description of the bath coupling as discussed in Section 8.

8. Microscopic Description of the Bath Coupling

Dynamical collision frequency and bremsstrahlung emission. Bremsstrahlung emission has been
considered as a possible process to export the energy from the system to the bath. It is related to
absorption, which is obtained from classical field theory. Quantum field theory is needed to obtain
spontaneous emission, cf. Equations (11)–(13). The dielectric function ε(ω) is connected to the index of
refraction n(ω) and the absorption coefficient α(ω) by n(ω) + (ic/2ω)α(ω) =

√
ε(ω). The absorption

coefficient is related to the bremsstrahlung radiation. In Born approximation, we obtain [14]:

Re ν(ω) =
e4ni

12π2ε2
0me

(
2πme

kBT

)1/2 1
h̄ω

[
eβh̄ω/2 − e−βh̄ω/2

]
K0

(
h̄ω

2kBT

)
. (95)

where K0(z) =
∫ ∞

0 dt cos(z sinh t) is a modified Bessel function. The static ion structure factor is
approximated as Si(q) ≈ 1. Comparing with the Kramers formula (13), the corresponding result for
the Gaunt factor has been obtained. Further changes of Kramers’ expression are obtained from the
account of many-body effects.

As in the case of momentum relaxation described by the relaxation parameter ηei, we estimate
the relaxation parameter ηbath which describes the relaxation of internal energy (94). We consider the
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loss of energy of the electrons owing to bremsstrahlung emission, Equation (13). Integrating over ω,
the total emission power density is [27]:

P[W/m3] = − 1
Ω0

d
dt
〈HS〉 = 1.69× 10−38Z2

i ne[m−3]ni[m−3] (kBT[eV])1/2 . (96)

This expression gives already the result in the corresponding SI units. For instance, typical
experiments to measure the DC conductivity in dense plasmas [28] are performed at kBT ≈ 2 eV
and free electron density ne ≈ 3× 1025 m−3. At electrical fields, Eext ≈ 100 V/m linear behavior
j = σEext has been observed, with σ ≈ 2× 104 [Ω m]−1. Comparison with our results (29) has been
performed in [11]. According to (96), the total emission power density is P ≈ 2× 1013 W/m3. This loss
of energy owing to bremsstrahlung radiation determines the cooling rate of the plasma and the
temperature of the stationary state according to Equation (94). With jEext = σE2

ext ≈ 2× 108 W/m3,
the temperature difference ∆T < 1 K between the emitting system and the emitting bath is relatively
small in the stationary case.

However, this estimation is valid only for a plasma that is optically thin, i.e., the radiation
emitted by the electrons can escape from the plasma without reabsorption. In an optically-thick
plasma, emitted radiation is reabsorbed (self-absorption) after a short distance compared to the
size of the plasma. The balance of both emission and absorption processes in the stationary state
leads to a lower efficiency of the energy transfer from the electrons to the radiation field and
a corresponding higher plasma temperature in the stationary state. Then, the energy spectrum is
constrained to the Planck spectrum (10). In particular, below the plasma frequency, electromagnetic
radiation cannot propagate in the plasma. Radiation transport determines the export of energy, and the
temperature of the radiation field Text(r, t) becomes dependent on the position. The constraining
Planck spectrum in the low-frequency limit (Raleigh–Jeans law) can be used to define the temperature.
According to the Stefan–Boltzmann law, the heat is related to temperature as a property of the Planck
spectrum (10), which gives the occupation numbers of photon states, not showing the phase of the
electromagnetic wave.

Quantum structure of electromagnetic fields. As in the case of momentum relaxation ηei, the energy
relaxation ηbath is related to a microscopic process, the interaction of the electrons with the radiation
field. As known from the Brownian motion, behind the relaxation term, which describes the average
motion, there is a stochastic process. This allows one to calculate the relaxation parameter ηbath
from the correlation function of stochastic forces (fluctuation-dissipation theorem); see Equation (67).
Whereas for ηei, the collision frequency ν(0) was considered, which describes the fluctuations of the
Coulomb forces in the charged-particle system, we consider for ηbath the vacuum fluctuations of the
electromagnetic field. In particular, a quantum field theory is needed to describe spontaneous emission
of radiation; for details, see, e.g., [4,24].

Let us consider the quantum fluctuations E(r, t), B(r, t) in thermal equilibrium. The fluctuation
properties of the electrical field are obtained from the Maxwell equations in free space. The vector
potential in the Coulomb gauge leads to wave equations for the transverse vector potential, which
may be solved by a plane wave decomposition with photon creation and annihilation operators
bλ(q), satisfying bosonic commutation relations. The commutator (where [A, B] = AB− BA) and the
anticommutator (where {A, B} = AB + BA) function can be calculated; see [24]. As a result, for the
anticommutator correlation function of the transverse electric field, averaged over the radiation field
in thermal equilibrium at T, one obtains for the vector components with x = {c∆t, ∆r}:

〈{Ei(x), Ej(0)}〉 = −(δij −
xixj

r2 )
1

2π2τ3
Tr

×
[

cosh[(r/c− t)/τT ]

sinh3[(r/c− t)/τT ]
+

cosh[(r/c + t)/τT ]

sinh3[(r/c + t)/τT ]

]
(97)
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with r = |∆r|, t = ∆t, and τT = h̄/(πkBT) is the thermal correlation time. For r → 0 follows, summing

over i, j, the expression 〈{E(0, t), E(0)}〉 ≈ 6
π2t4 for |t| � τT . This corresponds to vacuum contribution

(T = 0) and diverges near t = 0.
The thermal contribution is:

〈{E(0, t), E(0)}〉th =
1

π2τ4
T

[
6 + 4 sinh2(t/τT)

sinh4(t/τT)
− 6

π2(t/τT)4

]
. (98)

Performing t → 0, we get the energy density of the field in thermal equilibrium as uth =

〈{E(0), E(0)}〉th/2 = 1/(15π2τ4
T), which is the Stephan–Boltzmann law of black-body radiation.

The long-time behavior t � τT results as 〈{E(0, t), E(0)}〉th ≈ 16/(π2τ4
T) exp(−2|t|/τT). We can

consider the local, but low-frequency limit of the spectral density (see, e.g., [4]):

Stherm
EE (r = 0, ω) =

∫
dte−iωt〈{E(0, t), E(0)}〉th ≈

4
π2τ3

T

1
1 + ω2τ2

T/4
. (99)

We also have:

Γ(ω) = 1/h̄2
∫ ∞

0
dte−i(ω+iε)t〈{E(0, t), E(0)}〉 = γ(ω)/2 + iS(ω). (100)

The thermal contribution has the low-frequency limit limω→0 Stherm
EE (r = 0, ω) = 4/(π2τ3

T), and
the results give:

γ ≈ 4ω2kBT/(3h̄c3), lim
ω→0

Stherm
EE (ω) =

4ζ[3]
3πh̄c3τ3

T
, (101)

with Apery’s constant ζ[3] = 1.20205, cf. Equation (77). In addition to the vacuum fluctuations, we have
thermal fluctuations of the electrical field proportional T3. Considering this low-frequency limit, we can
introduce a local (r = 0) temperature from the fluctuation spectrum of the electromagnetic fields.

Radiation damping. We cannot give here a detailed discussion of quantum electrodynamic processes.
An interesting process is radiation damping. From classical electrodynamics, it is known that charged
particles emit radiation if they are accelerated. Using the Larmor formula (12), the equation of motion
for an electron that contains the interaction with the radiation field is the Abraham–Lorentz equation:

mev̇(t)− Fext(t) = Frad(t) =
e2

6πε0c3 v̈(t) = meτradv̈(t) , (102)

where Fext(t) denotes an external force. The radiation damping term is determined by the characteristic
time τrad = e2/(6πε0mec3) = 6.3 × 10−24s.

The Abraham–Lorentz Equation (102) can also be derived if the radiation degrees of freedom are
eliminated, as discussed above in Section 6; see [24]. Different problems such as runaway solutions
arise; see [4]. The interaction with the radiation field, in particular bremsstrahlung processes, leads
to a loss of quantum coherence, to localization, and to the transition to classical behavior [24].
The bremsstrahlung is emitted during the collision of charged particles. Emission of photons can be
considered as a measuring process to localize the charged particle during the collision process. A more
detailed discussion of the suppression of quantum coherence can be found in [29]. The balance of
emitted and absorbed power in the classical limit is (12):

d
dt
〈HS〉 = −

2e2

3ε0c3

Ne

∑
i

(
d2ri
dt2

)2

+ e
Ne

∑
i

ṙi · Eext(ri, t), (103)
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if reabsorption and coherence effects given by the ionic structure factor are discarded. The emission
and absorption of radiation, as described by a quantum master equation, are some of the possibilities
to solve the problem of the export of entropy.

9. Conclusions

von Neumann equation with the relaxation term. According to the Zubarev NSO method, a source
term −ε[ρ(t)− ρrel(t)] was introduced into the von Neumann Equation (55), with lim ε → 0 after
the thermodynamic limit. This source term is not a physical process, but rather a mathematical trick
to select out the retarded solution of the equation of motion. Infinitesimal source terms to break
a symmetry are known from other fields in physics such as phase transitions, for instance the direction
of magnetization in the Heisenberg model or a phase in the superfluid phase, but also the Planck
“Staubkorn” to establish the blackbody radiation spectrum in a “hohlraum”. For a closed system with
a known Hamiltonian, this source term has a remarkable property. We can select out an arbitrary set of
relevant observables and construct the source term with the corresponding relevant statistical operator
ρrel(t). As a consequence of the self-consistency conditions (43) and (93), the dynamics of the relevant
observables (56) obeys the Hamiltonian dynamics also for finite ε. The invariance of the dynamics of
the relevant observables with respect to the source term with arbitrary ε is a remarkable property of
the extended von Neumann equation.

Open systems and relaxation term. We discussed open systems, in particular diabatic contact
(exchange of energy, but not particles) with a thermal bath. The system is defined by the dynamical
degrees of freedom and a Hamiltonian Ht = HS + Ht

F, which determines the equations of motion of
the system, including the action of external fields Eext(t). In addition to the Hamiltonian dynamics,
instead of the infinitesimal source term, a relaxation term with finite η is introduced in Equation (83)
to model the influence of the bath, e.g., prescribing the temperature Text. This finite source term is
no longer interpreted as the initial conditions in the past to construct a solution of the von Neumann
equation with time evolution Ht, but to give a final state to which the distribution relaxes, at each
time instant in the past. More generally, a final state is given by the external conditions, and the
influence on the system, the coupling to a bath, is globally described by a relaxation term. The form
of the relaxation term, in our case the relevant statistical operator ρrel(t) and the phenomenological
relaxation coefficient η, which, in general, is an operator, has to be chosen in an appropriate way.
Note that alternative expressions for the relaxation term are possible. For instance, also for ln ρ(t),
a von Neumann equation can be given, and a source term −ε[ln ρ(t)− ln ρrel(t)] and a corresponding
relaxation term with ε→ η can be proposed.

The Bogoliubov principle of the weakening of initial correlations. According to the Bogoliubov principle
of weakening of initial correlations, the missing correlations to get ρ(t) are produced dynamically.
However, this argument is not valid in the case of an open system considered here, if, in addition to
the Hamiltonian dynamics, the coupling to the bath is taken into account. In contrast to the system
described by a Hamiltonian, the dynamical evolution of the bath is not exactly known. The average
with the NSO (53) will not give the empirical averages even if the relevant statistical operator ρrel(t1)

is replaced by the exact ρ(t1). Only for a closed system with a known Hamiltonian, the Bogoliubov
principle of the weakening of initial correlations is valid. For an open system, the missing correlations
are not only produced by the Hamiltonian dynamics within the system, but are also influenced by the
external, in general time-dependent conditions, which characterize the surroundings, the bath.

The self-consistency conditions. Let us consider an arbitrary, dynamical observable Bn of the system.
If we know the history, i.e., 〈Bn〉t1 in the past t1 < t, the correct time evolution from t1 to t should
also contain the coupling to the bath. For example, this can be expressed in some approximation by
a dissipator term (79). In this work, we propose to use a relaxation time approach to describe the
external influence on the system. The time evolution of the average 〈Bn〉t = Tr

{
ρη(t)Bn

}
is given by

Equation (56) replacing ε→ η. In general, the observables of the system are influenced by the bath;
as an example, we considered the internal energy. Therefore, the relevant statistical operator ρrel(t) is
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not determined by the self-consistency conditions (43) and (93), because then the influence of the bath
on the time evolution of the average 〈Bn〉t disappears. We have:

〈Bn〉t = Tr{ρη(t)Bn} 6= Tr{ρrel(t)Bn} = 〈Bn〉trel (104)

so that another prescription is needed to construct ρrel(t), different from the consideration of closed
systems in Section 4.

The relevant statistical operator. The principle of maximum information entropy at given mean
values of a set of relevant observables {Bn} was used to construct ρrel(t), Equation (44), in Section 4.
We applied this condition also in the case of open systems where some parameter values λn,ext

corresponding to {Bn,ext} are prescribed by the external conditions. Other dynamical observables
{Bn,resp} will show a response to the external conditions. Averages 〈Bn,resp〉t of further observables are
not measured. The self-consistency conditions to eliminate the corresponding response parameters
λn,resp(t) become unfounded. In Section 5, the self-consistency conditions have been replaced by the
condition of stationarity, where the time evolution of 〈Bn〉t is determined only by Ht. We propose
another prescription. The response parameters λn,resp(t) of a given set {Bn,resp} of relevant observables
are determined by the principle of maximum entropy production. As discussed in Section 5, in the
case of linear response, the corresponding Kohler variational principle is equivalent to the solution of
the stationarity conditions with (43) and (93). The selection of a set {Bn,resp} of relevant observables is
a variational ansatz to determine an optimal relevant statistical operator ρrel(t) to which the system
tends to evolve, as a response to the external influences. It is not dependent on the initial conditions
and may be discussed in the context with the experimental evidence of universal dynamics far from
equilibrium during the relaxation process observed recently [30].

Relaxation time. The source term to describe the influence of the bath on the time evolution of
ρ(t), Equation (83), contains the parameter η, which may be interpreted as inverse relaxation time and
is, in general, a superoperator acting in the space of observables {Bn} of the system. As an example,
the electrical DC conductivity σ(ne, T) of the Lorentz model plasma was discussed. Different values
ηei, ηbath were considered for the relaxation of the electron current and the internal energy, respectively.
The values were determined from the calculation of the corresponding microscopical processes,
the e–i interaction, and the bremsstrahlung emission, respectively. For comparison, in kinetic theory,
a relaxation time tensor (21) was introduced, which depends on the wave number p. As known
from a variational principle, a larger set {B̂n} of relevant observables will improve the result for the
calculation of σ using perturbation theory, so that the value of σ increases; see Section 5.

Stochastic processes. In Brownian motion, the friction term is connected with a stochastic process.
As a famous relation, the friction coefficient is related to the fluctuation strength of the stochastic forces.
Therefore, we expect that the von Neumann equation with the relaxation term has to be replaced by
some stochastic process; see [4]. In the case of the relaxation of the electron current, we have considered
the dynamical collision frequency, which is related to the correlation function of stochastic forces from
the e–i interaction. The fluctuations of the electromagnetic fields (vacuum, as well as thermal) are
related to the transition rates for photon emission, in particular the bremsstrahlung emission describing
the export of energy.

Energy flow. The incoming power density is given by the classical electromagnetic fields,
in particular the Poynting vector, which couple to the electrons. We do not need any information about
how these fields are produced. The export of energy, described by the relaxation term, is realized
by the interaction with the bath. Details about the interaction with the bath are not of relevance.
The electron-ion system acts via the force-force correlation function. It mediates and limits the flow of
energy, but does not produce entropy. Mechanical energy is transferred to radiation to be described by
quantum electrodynamics. Reabsorption transforms the radiation spectrum to the Planck distribution
as thermal equilibrium with a fixed temperature Text. The corresponding excitation energy in addition
to the vacuum part, the thermal part, may be denoted as heat. The limiting value ω → 0 of the spectral
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density of the radiation field, the Rayleigh–Jeans law B(ω, T) = ω2kBT/2π2c2, can be used to define
a local temperature.

Heat production and entropy. Electrical conductivity describes a non-equilibrium process. Directed
motion that is obtained from the external field is converted into isotropic, undirected motion after
the interaction with ions. This interaction is a reversible motion, so that it is not connected with the
production of thermodynamic entropy Sth. Irreversibility is connected with the production of entropy.
This means that in the case of electrical conductivity, heat is produced. An interesting process to
transfer energy from the system to the bath is radiation, in particular the bremsstrahlung emission.
The formation of a Planck spectrum can be identified as the production of heat. In equilibrium, heat
cannot be transformed back to work, which means irreversible evolution.

Outlook. The results presented here are only a step toward a more fundamental approach to
describe nonequilibrium processes. The stochastic properties of the electromagnetic fields should be
analyzed more in detail to obtain a solution of the problem of irreversible evolution, including the
electrical conductivity of a plasma. Using the Zubarev NSO method, exact results can be given for the
DC conductivity in the low-density limit similar to a virial expansion, as discussed in the present work.
This approach is extended to describe open systems, in particular the coupling to the radiation field.
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