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Abstract: The kinetic-equation approach to particle production in strong, time-dependent external
fields is revisited and three limiting cases are discussed for different field patterns: the Sauter
pulse, a harmonic pulse with a Gaussian envelope, and a Poisson-distributed stochastic field.
It is shown that for transient subcritical electric fields E(t) a finite residual particle number density
n(∞) would be absent if the field-dependence of the dynamical phase in the Schwinger source
term would be neglected. In this case the distribution function of created particles follows the law
f (t) ∼ E2(t). Two lessons for particle production in heavy-ion collisions are derived from this
exercise. First: the shorter the (Sauter-type) pulse, the higher the residual density of produced
particles. Second: although the Schwinger process in a string-type field produces a non-thermal
particle spectrum, a Poissonian distribution of the (fluctuating) strings produces a thermal spectrum
with an apparent temperature that coincides with the Hawking–Unruh temperature for the mean
value of the string tension.

Keywords: kinetic theory; particle production; Schwinger effect; Zitterbewegung;
low density approximation

1. Introduction

The kinetic equation (KE) approach to particle production in strong, time-dependent external
fields by the dynamical or dynamically assisted Schwinger mechanism (see, e.g., reference [1] for
a recent review) has a broad spectrum of applications in different fields of Physics, ranging from
high-intensity laser colliders to nuclear collisions and graphene in an external (laser) field. Even in the
case when spatially homogeneous fields are considered the momentum distribution of the produced
particles shows a complex pattern, reminding of interference fringes [2,3]. Therefore, it is instructive
to consider limiting cases which may already provide valuable insights for phenomenological
applications. In this spirit we shall consider in the present work the case of spatially homogeneous
fields with three approximations to the Schwinger source term in the KE and three examples for the
temporal pulse shape of the external field in order to draw conclusions for the systematics of particle
production in relativistic heavy-ion collisions. Hereby we focus on the questions of how to maximize
the yield of produced particles and how to explain their thermal-like spectra when they would be
produced by a Schwinger mechanism.
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This work is organized in the following way. In Section 2, the KE approach to particle production
is shortly summarized, the differential form of the KE is given and three approximations are derived:
the Markovian limit, the low-density approximation (LDA) and the low-field limit. In Section 3, the full
solutions of the KE for two temporal pulse shapes are given (Sauter and Gaussian envelope harmonic
(GEH) pulse) and compared with the results for the three approximations. In Sections 4 and 5 the two
lessons for the phenomenology of particle production in heavy-ion collisions are presented and in
Section 6 we draw the conclusions.

2. Kinetic Approach to Particle Production

Our investigation is based on a KE which is a nonperturbative consequence of the fundamental
equations of motion of QED. The KE for the (quasi-)particle distribution function can be derived from
the Dirac equation by a canonical time-dependent Bogoliubov transformation [4]. This method is
valid only in a spatially-uniform time-dependent field. In the case of a linearly polarized electric
field with the vector potential Aµ(t) = (0, 0, 0, A(t)) (Hamiltonian gauge) we obtain a non-Markovian
integro-differential collisionless KE [5]

d f ( p̄, t)
dt

=
1
2

λ( p̄, t)
∫ t

t0

dt′λ( p̄, t′)
[

1− 2 f ( p̄, t′)
]

cos
(

2[Θ( p̄, t)−Θ( p̄, t′)]
)

, (1)

where

λ( p̄, t) =
eE(t)ε⊥
ω2( p̄, t)

(2)

is the amplitude of vacuum transitions governing the rate of particle production. The dynamical phase,

Θ( p̄, t) =
∫ t

t0

dt′ω( p̄, t′) , (3)

describes the vacuum oscillations (Zitterbewegung) with a frequency of the energy gap 2ω( p̄, t)
between lower (ω < −m) and upper (ω > m) continua (one can regard particle creation as an
excitation of massive field quanta from lower to upper continua just like electrons and holes in the
solid state physics models). Due to the fact that our calculations are performed in Hamiltonian gauge
it is convenient to use a cylindrical system of coordinates, so it is natural to express the dispersion
relation,

ω( p̄, t) =
√

ε2
⊥( p̄⊥) + P2( p̄‖, t) , (4)

in terms of the transverse energy and the parallel canonical momentum,

ε⊥( p̄⊥) =
√

m2 + p̄2
⊥, (5)

P( p̄‖, t) = p̄‖ − eA(t) . (6)

Here m is the electron mass, e is the charge, p̄⊥ is the momentum component perpendicular to the
field vector, whereas p̄‖ is the momentum component parallel to the field.

For the initial condition we choose

f ( p̄, t)
∣∣∣∣
t=t0

= 0 . (7)

2.1. Differential Form

The numerical evaluation of the integro-differential Equation (1) through straightforward double
time integration is highly ineffective. First of all, one needs to deal with the rapidly oscillating term
cos(2[Θ( p̄, t) − Θ( p̄, t′)]). To address this problem we can take the integration step small enough.
Second, due to the non-Markovian character of the equation, it is required to store the whole pre-history
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of f (t) in the computer memory. Luckily, one can avoid these complications by transforming (1) to a
time local system of differential equations [6,7]. In order to perform the transformation we introduce
two auxiliary functions

u(t) =
∫ t

t0

dt′λ( p̄, t′)
[

1− 2 f ( p̄, t′)
]

cos
(

2[Θ( p̄, t)−Θ( p̄, t′)]
)

, (8)

v(t) =
∫ t

t0

dt′λ( p̄, t′)
[

1− 2 f ( p̄, t′)
]

sin
(

2[Θ( p̄, t)−Θ( p̄, t′)]
)

. (9)

The auxiliary functions u( p̄, t) and v( p̄, t) describe vacuum polarization effects [8].
The differentiation of these functions with respect to t together with

∂t

(
[Θ( p̄, t)−Θ( p̄, t′)]

)
= ∂t

∫ t

t′
ω( p̄, t′′)dt′′ = ω( p̄, t) (10)

and Equation (1) leads to a coupled system of first order differential equations [7]

ḟ =
1
2

λ( p̄, t)u(t), (11)

u̇ = λ( p̄, t)
[

1− 2 f ( p̄, t)
]
− 2ω( p̄, t)v(t), (12)

v̇ = 2ω( p̄, t)u(t) , (13)

with the initial conditions
f (t0) = u(t0) = v(t0) = 0 . (14)

The above system of Equations (11)–(13) is much simpler to solve numerically.

2.2. Three Approximations to the Schwinger Source Term

In this section, we discuss three related approximations which can be obtained when the applied
external electric field, E� Ec, is considerably smaller than the critical field strength [6,9].

Ec =
m2c3

eh̄
' 1.32× 1018 V/m . (15)

The first approximation is the low density limit. When the electric field E is small we expect the
probability of pair creation to be small f ( p̄, t)� 1, hence 1− 2 f ( p̄, t) ≈ 1. Consequently, the source
term (r.h.s. of (1)) in LDA assumes the following form

SLDA(t) =
1
2

λ( p̄, t)
∫ t

t0

dt′λ( p̄, t′) cos
(

2[Θ( p̄, t)−Θ( p̄, t′)]
)

. (16)

2.2.1. Markovian Limit

In the Markovian limit, one replaces the time argument t′ in the statistical factor of (1) by the
actual time t thus neglecting dependence on pre-history of the process [10],

d f M(t)
dt

= [1− 2 f M(t)]SLDA(t) = SM(t) . (17)

Then, for the initial condition f (t0) = 0, the solution of (17) is given by

f M(t) =
1
2

(
1− exp

[
− 2

∫ t

t0

d t′SLDA(t′)
])

. (18)
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2.2.2. Low-Density Approximation (LDA)

The expansion of f M in powers of the argument of the exponential function leads to

f M(t) =
∫ t

t0

d t′SLDA(t′)−
( ∫ t

t0

d t′SLDA(t′)
)2

+O
[( ∫ t

t0

d t′SLDA(t′)
)3
]

. (19)

Provided that the integral in (18) is small we can keep only the leading term and get the
low-density solution

f LDA(t) =
∫ t

t0

d t′SLDA(t′) . (20)

The low-density limit gives us a tool to demonstrate the positive definiteness of the distribution
function. Using the trigonometric identity cos(α− β) = cos α · cos β + sin α · sin β, we rewrite (20) as

f LDA(t) =
1
2

t∫
t0

d t′g1(t′)
t′∫

t0

d t′′g1(t′′) +
1
2

t∫
t0

d t′g2(t′)
t′∫

t0

d t′′g2(t′′) , (21)

g1,2(τ) = λ(τ)

{
cos[2Θ(τ)]

sin[2Θ(τ)]

}
.

The application of the mathematical identity

t∫
t0

d t′A(t′)
t′∫

t0

d t′′B(t′′) =
1
2

t∫
t0

d t′A(t′)
t∫

t0

d t′′B(t′′) (22)

to (21) leads to the quadratic form

f LDA(t) =
1
4

( t∫
t0

d t′g1(t′)
)2

+
1
4

( t∫
t0

d t′g2(t′)
)2

. (23)

Now it is straightforward to see that the distribution function in the LDA is positive definite as is
required by the interpretation of the distribution function as a probability

f LDA(t) ≥ 0 . (24)

2.2.3. Low-Field Limit

A further simplification of (23) can be obtained by expanding the dispersion relation with respect
to a small external field A ≈ 0,

ω( p̄, t) =
√

m2 + p̄2
⊥ + p̄2

‖ −
p̄‖eA√

m2 + p̄2
⊥ + p̄2

‖

+O
(

A2
)

, (25)

and keeping only the leading order by assuming the smallness of the vector potential

ω( p̄, t) ≈
√

m2 + p̄2
⊥ + p̄2

‖ ≡ a . (26)

Immediately one gets

Θ( p̄, t) =
∫ t

t0

dt′ω( p̄, t′) = a(t− t0) . (27)
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Then, we have to move out λ in front of the integrals in (23),

t∫
t0

d t′g1(t′) = λ(t)
t∫

t0

d t′ cos[2a(t′ − t0)] = λ(t)
sin[2a(t− t0)]

2a
, (28)

t∫
t0

d t′g1(t′) = λ(t)
t∫

t0

d t′ sin[2a(t′ − t0)] = −λ(t)
cos[2a(t− t0)]

2a
, (29)

to obtain
f 0( p̄, t) = λ2(t)

1
16a2 . (30)

Applying a system of units such that m = 1 leads to

f 0( p̄ = 0, t) =
E2(t)

16
. (31)

3. Results for Sauter Pulse and Gaussian-Envelope Harmonic (GEH) Pulse

In this work we consider the simplest model of the external laser-like field, namely the linearly
polarized, time-dependent and spatially homogeneous electric pulse. We solved the KE (1) numerically
for the two field shapes. The first one, the so-called Sauter pulse [11] is defined by

A(t) = −E0τ tanh
t
τ

, E(t) =
E0

cosh2 t
τ

, (32)

with τ being the characteristic duration of action. The second one, called the GEH pulse, is given by

E(t) = E0 cos (ωt + ϕ) exp (− t2

2τ2 ), (33)

A(t) = −
√

π

8
E0τ exp (−1

2
σ2 + iϕ)× erf

(
t√
2τ
− i

σ√
2

)
+ c.c. , (34)

where σ = ωτ is a dimensionless measure for the characteristic duration of the pulse τ connected with
the number of periods of the carrier field [12].

The impact of the above mentioned approximations on the fermionic distribution function for
case of the Sauter have been presented on Figure 1. The analysis of these graphs shows:

1. In case of a critical field strength E0 ∼ Ec and t > 0 > t0 one gets f LDA(t) > f M(t) > f (t).
This happens due to the presence of the factor (1− 2 f ) in (1) and its absence in (16).

2. When E0 ∼ 10−1Ec, the Markovian and the low-density approximation give similar values for
the distribution functions so that f LDA(t) ≈ f M(t) > f (t).

3. In the case when E0 ∼ 10−2Ec we obtain f LDA(t) ≈ f M(t) ≈ f (t).
4. When the external field is E0 ∼ 10−2Ec, the distribution function is given by f (t) ∼ f (0)(t) =

E(t)2/16 at least for some finite period of time. For higher field strength, such an equality may
not hold.

5. When distribution function f (t) follows the trend of E(t)2/16 we are dealing with the
quasi-particle electron-positron plasma (QEPP). However, when the distribution function reaches
its asymptotic (residual) value f (t) = const, the state of the residual electron-positron plasma
(REPP) is attained. In-between, there is a transition region characterized by fast oscillations which
divides the system evolution into QEPP and REPP domains.

6. For high field strengths, it is more difficult to distinguish the QEPP and REPP domains (see bottom
panel of Figure 1).

7. The higher the external field strength E0, the faster f (t) reaches the residual value.
8. For shorter pulse duration the residual value f (t→ ∞) is closer to maximal one.
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9. The approximation given by (31) assumes time-independence of the dispersion relation (26).
In such circumstances f (t) goes to zero when E(t)→ 0. No real particles are created, only virtual
ones which disappear with the disappearance of the external electric field [7].
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Figure 1. Time evolution of the fermionic distribution function f (p⊥ = 0, p‖ = 0, t). Left panels: for
the Sauter pulse (32) with τ = 8. Right panels: for the Gaussian envelope harmonic (GEH) pulse (33)
with σ = 5, ϕ = 0 and ω = 0.02 nm. From the upper to the lower panel the electric field increases as
E0/Ec = 0.02, 0.2, 1. Time is scaled with the electron mass. Solid curve: full solution f (t), dotted
curve: E(t)2/16, dashed curve: low density approximation f 0(t) given by (23), dot-dashed curve:
Markovian limit f M(t) given by (18).
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4. Lesson 1: Sauter Pulse Asymptotics

Now we are going to discuss the case of the Sauter pulse more in detail. We set ~p = 0 throughout.
Its low-density approximation (LDA) [3] is denoted f LDA and is given by

f LDA(t) =
1
2
|I(t)|2, I(t) =

t∫
−∞

dt′ J(t′), (35)

J(t) =
eE(t)m

m2 + e2 A(t)2 e2iΘ(t), Θ(t) =
t∫

0

dt′
√

m2 + e2 A(t)2. (36)

Following Equations (35) and (32), it is easy to see that for t� −τ

A(t) ∼ E0τ, E(t) ∼ 4E0 e2t/τ , Θ(t) ∼
√

m2 + (eE0τ)2 t, (37)

J(t) ∼ 4eE0m
m2 + (eE0τ)2 e2t/τ+2i

√
m2+(eE0τ)2 t . (38)

From these relations follows

I(t) ∼ 2eE0m
m2 + (eE0τ)2 ·

e2t/τ+2i
√

m2+(eE0τ)2 t

1/τ + i
√

m2 + (eE0τ)2
=: Iasy(t) . (39)

This allows us to define the small-t asymptotics of f LDA, denoted f−∞ as

f−∞(t) =
1
2

∣∣Iasy(t)
∣∣2 =

2(eE0m)2

[m2 + (eE0τ)2]
2
[1/τ2 + m2 + (eE0τ)2]

e4t/τ . (40)

For t� τ, we need the following symmetries

A(−t) = −A(t), E(−t) = E(t), Θ(−t) = −Θ(t), J(−t) = J(t)∗ (41)

and therefore

I(t) = I(∞)−
∞∫

t

dt′ J(t′) = I(∞)−
−t∫
−∞

dt′ J(−t′) = I(∞)−
−t∫
−∞

dt′ J(t′)∗ = I(∞)− I(−t)∗ . (42)

The large-t asymptotic can thus be reduced to the small-t asymptotic and the constant I(∞).
We denote it as f∞ and it is given by

f∞(t) =
1
2

∣∣I(∞)− Iasy(−t)∗
∣∣2 . (43)

In Figures 2 and 3, we present the behavior of the Sauter pulse case together with the asymptotics
introduced above. This comparison shows

1. The shorter the Sauter-type pulse (smaller τ), the higher the residual value of f LDA, f∞ and f .
2. The difference between the maximal value of f and its residual value grows with τ. The same

situation concerns f LDA. This feature is not observed in the case of f∞ and f−∞.
3. Differences in the asymptotic values of f LDA(t) and f (t) grow with E0 and with τ.
4. The curve f∞ exhibits a much weaker oscillatory behavior than f and f LDA.
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Figure 2. Time evolution of the fermionic distribution function f (p⊥ = 0, p‖ = 0, t) in the case of
Sauter pulse for E0 = 0.1Ec. From the upper left to the lower right panel the pulse duration increases
as τm = 1, 2, 5, 10, 20, 50. The solid curve is for the full solution f (t). The dotted curve shows the low
density approximation, the dashed curve depicts the small-t asymptotics f−∞, while the dot-dashed
curve stands for the large-t asymptotics f∞.

The features of f (t) can be useful in explaining phenomena related to heavy-ion collisions (HIC).
Lorentz-contracted pancake-like nuclei at high energies are better sources for producing high parton
densities than spherically-shaped nuclei at lower ones. This fact can be explained on the basis of
Schwinger mechanism. After the collision of two ions, the color glass condensate (CGC) is likely
formed, creating a strong longitudinal color electric field, called a flux tube. In this circumstance,
the decay of the color electric field due to the Schwinger mechanism takes place. As shown in
Figures 2 and 3, particle creation is greatly enhanced when the external field duration is short. Then,
the residual value of the distribution f (t→ ∞) is higher and closer to the maximal value. Similarly,
in HIC the number of created partons increases when nuclei collide rapidly.
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Figure 3. Time evolution of the fermionic distribution function as in Figure 2, but for E0 = 0.2Ec.

Although the individual process of a particle-antiparticle pair creation leads to a non thermal
spectrum, a statistical ensemble of the (fluctuating) color fields produces an apparently thermal
spectrum with a temperature that is surprisingly given by the mean string tension in exactly the same
functional form as the temperature of Hawking–Unruh radiation in a confining field. This observation
can also be explained by the dynamical Schwinger mechanism.

Lesson 1: the shorter the Sauter-type pulse, the higher the residual density of produced particles.
Therefore, Lorentz-contracted pancake-like nuclei at high energies are better sources for producing
high parton densities than sphere-shaped nuclei at lower ones. Note, that we are speaking here
not about the particle production in binary collisions, but rather by the vacuum decay in strong
color-electric fields.

5. Lesson 2: Thermalization and Hawking Radiation

As an application of the Schwinger process the particle production in heavy-ion collisions has
been considered which may proceed by the decay of color electric flux tubes [13–16]. The flux
tubes are characterized by a linear, stringlike potential between color charges, analogous to the
case of a homogeneous electric field considered by Schwinger. Using this analogy that |eE| = σ
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with σ ∼ 0.19 GeV2 being the string tension, the transverse energy spectrum of produced particles
according to the Schwinger mechanism would be

dNSchwinger

d2 p⊥
∼ exp

(
−

πε2
⊥

σ

)
, (44)

with ε⊥ =
√

m2 + p2
⊥ being the transverse energy (5), often also denoted as “transverse mass” m⊥.

This spectrum of produced particles is Gaussian and thus would contradict the general observation of
exponential particle spectra in heavy-ion collision experiments

dNexp

d2 p⊥
∼ exp

(
− ε⊥

Teff

)
, (45)

with an inverse slope parameter Teff ∼ 160 MeV that can be considered as an effective temperature
at the freeze-out (see, e.g., reference [17]). Thus the question arises how this transformation from a
Gaussian to an exponential behavior of the spectrum (or the “thermalization”) could occur. It has been
suggested that it proceeds via collisions described by a kinetic equation [18,19]. For a most recent
discussion of the issue, see [20–24]. It has been questioned whether in high-energy nuclear collisions
there is enough time for the thermal equilibration and the isotropization [25] of the system by collisions,
after the particle production in a Schwinger process.

As an alternative picture for the emergence of a thermal particle spectrum in ultrarelativistic
particle collisions the analogue of the Hawking–Unruh radiation has been discussed [26–28].
This reasoning predicts thermal spectra of hadrons with the Hawking–Unruh temperature

TH(σ) =

√
σ

2π
∼ 173 MeV , (46)

where for the string tension, σ = 1 GeV/fm has been taken.
In this context it is interesting to note a possible synthesis of both pictures as provided by the

argument elucidated by Bialas [29]. If the string tension in the Schwinger process for flux tube decay
would fluctuate and follow, e.g., a Poissonian distribution

P(σ) = exp(−σ/σ0)/
√

πσσ0 , (47)

which is normalized
∫

dσP(σ) = 1 and has a mean value 〈σ〉 =
∫

dσσP(σ) = σ0/2, then the initial
Gaussian transverse energy spectrum (44) after averaging with the string tension fluctuations becomes
exponential, i.e., thermal with the temperature parameter Teff =

√
〈σ〉/(2π),

∫
dσP(σ) exp

(
−

πε2
⊥

σ

)
= exp

(
− ε⊥

T

)
. (48)

Here the integral
∫ ∞

0 dt exp[−t− k2/(4t)]/
√

πt = exp(−k) has been used [30].
This coincides with the Hawking–Unruh picture of thermal hadron production, where in the

case of fluctuating strings the string tension of Equation (46) is now replaced by its mean value.
We would like to note at this point that a largely thermal spectrum would arise also from the solution
of a kinetic equation with the Schwinger source term, as has been demonstrated by Florkowski in
reference [31] for the case of parton creation (a more detailed calculation has recently been done in [20]).
This demonstrates the dynamical origin of thermal spectra.

A recent study of the thermalization and isotropization question in the early stages of heavy-ion
collisions [32] by solving a relativistic Boltzmann transport equation with a Schwinger source term for
particle production from flux-tube decay goes beyond reference [20] by taking into account viscosity
effects and 2→ 2 collisions in the gluon sector. This study finds that for ideal fluid conditions with
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a minimal viscosity at the KSS bound η = s/(4π) [33] already at a timescale below 1 fm/c the ratio
of longitudinal to transverse pressure approaches unity with oscillations being damped out and
the transverse momentum spectrum shows thermal behavior dN/(p2

T dpT dy) ∝ exp(−βpT) with an
inverse slope parameter fulfilling the ideal gas relationship β−1 = Teff ∝ ε1/4

kin , where εkin is the kinetic
energy density. It is interesting to note that this feature is reproduced by the much simpler model
considered here which neglects collisions, spatial evolution and finite size as well as the backreaction
of the produced particles on the field. It has, however, the advantage of being particularly suitable
for discussing the temporal evolution (pulse shape) of the flux-tube field with special emphasis on
subcritical field strengths (we remind that the account for confining boundary conditions in a flux
tube of finite radial extension r0 gives rise to an r0-dependent suppression of the Schwinger pair
production rate [34]).

In order to draw the link to the observed hadron spectra in heavy-ion collision experiments,
it remains to consider also the hadronization process when starting from the parton level of
description. For this purpose one could employ, e.g., kinetic theory approaches built on the basis
of the Nambu–Jona–Lasinio model Lagrangian, see [35–38]. In this context, the dynamical chiral
symmetry breaking in the quark sector plays an essential role as it triggers the binding of quarks into
hadrons (inverse Mott effect). The increase in the sigma meson mass that accompanies the dynamical
chiral symmetry breaking gives rise to additional sigma meson production by the inertial mechanism
(see [39] and references therein). By the dominant decay σ→ ππ this leads to an additional population
of low-momentum pion states and can contribute to the observed effect that s also discussed as a
precursor of pion Bose condensation and may simultaneously resolve the Large Hadron Collider (LHC)
proton puzzle [40] within a non-equilibrium model.

Lesson 2: although the individual Schwinger process of for creating a particle-antiparticle pair
from flux-tube decay has a Gaussian transverse energy spectrum, a statistical distribution of the
(fluctuating) color fields produces an apparently thermal (exponential) spectrum with an inverse
slope parameter (effective temperature) Teff = TH(〈σ〉) that surprisingly is given by the mean string
tension in exactly the same functional form as the temperature of Hawking–Unruh radiation in a
confining field.

6. Conclusions

In the present work, we have revisited the KE approach to particle production by the dynamical
Schwinger effect. We have shown that in the case of subcritical external fields both, the LDA and
the Markovian approximation to the source term give quite accurate estimations for the residual
particle densities, to be observed after the field is switched off. It is an elucidating exercise to retain
only the lowest order term in a low-field expansion of the dynamical phase of the Schwinger source
term. In this case, the time-dependence of the distribution function of produced particles follows the
temporal shape of the external field according to f (t) ∼ E2(t) with the consequence that there are no
produced particles in the final state where the field is absent. Thus the origin of particle production in
subcritical fields can be traced to the self-interference (decoherence) of the virtual fields in the transient
stage, formally accounted for by the time-dependent dynamical phase in the source term.

Two lessons for particle production in heavy-ion collisions are drawn from our exercise.
Lesson 1: The shorter the Sauter-type pulse, the higher the residual density of produced particles.

Therefore, Lorentz-contracted pancake-nuclei at high energies are better sources for producing high
parton densities than sphere-shaped nuclei at lower energies. Note, that in this argument we are
considering only particle production from the vacuum decay in strong color fields as if particle
production by collisions were absent.

Lesson 2: Although the individual Schwinger process of a particle-antiparticle pair has a non
thermal (Gaussian) spectrum, a statistical distribution of the (fluctuating) color fields produces
an apparently thermal (exponential) spectrum with a temperature (inverse slope parameter) that
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surprisingly is given by the mean string tension in exactly the same functional form as the temperature
of Hawking–Unruh radiation in a confining field.

In a more complete kinetic description of particle production in a complex process like a heavy-ion
collision, the subsequent stages following the creation of particles in the initial phase of the process
should be included by adding elastic and inelastic scattering processes in the collision integrals of
the system of kinetic equations for all relevant particle species. Thus, one can address the process of
hadron production in heavy-ion collisions starting from parton production in strong field decay, their
rescattering and conversion to hadrons (hadronization) with chemical equilibration and rescattering in
the hadronic final state.
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LDA Low density approximation
KE Kinetic equation
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