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Abstract: The problem of pressure fluctuations in the thermal equilibrium state of some objects is 

discussed, its solution being suggested via generalizing the Bogoliubov–Zubarev theorem. This 

theorem relates the thermodynamic pressure with the Hamilton function and its derivatives 

describing the object in question. It is shown that unlike to other thermodynamic quantities (e.g., 

the energy or the volume) the pressure fluctuations are described not only by a purely 

thermodynamic quantity (namely, the corresponding thermodynamic susceptibility) but also by 

some non-thermodynamic quantities. The attempt is made to apply these results to the relativistic 

ideal gases, with some numerical results being valid for the limiting ultra-relativistic or high-

temperature case. 
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1. Introduction 

The long-standing and rather non-trivial problem of calculating pressure fluctuations in the 

Gibbs equilibrium statistical mechanics is revised. The previous attempts are critically analyzed and 

it is shown that the application of the Bogoliubov’s ideas gives the full and unambiguous solution to 

this problem. The crucial role plays the Bogoliubov’s idea of quasi-average (in our case—quasi-

dynamic) quantities—specifically, the pressure P and the dynamic compressibility Ψ. Following the 

Bogoliubov’s idea of spontaneous symmetry breaking, we introduce the virtual conjugate field, 

which appears to be the singular potential εU of the container impenetrable walls. The translational 

invariance of the Hamilton function H being broken, finally we consider the limiting case ε→0. 

General relations expressing P and Ψ in terms of the derivatives of H are presented and some 

examples are studied. In particular, we consider the cases when the Hamilton function can be 

expressed as the sum of uniform functions (in the Euler sense). 

In our case the virtual conjugate field, which in the limit ε→0 breaks the translational invariance 

of the Hamilton function H, appears to be the singular potential εU of the container impenetrable 

walls. The general relations expressing P and Ψ in terms of the derivatives of H are presented and 

some examples are studied—i.e., the cases of the ideal vs. non-ideal as well as those of uniform vs. 

non- and quasi-uniform (in the Euler sense) Hamilton function H describing the system (here—the 

gas, presumably in the classical regime). 
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The problem of the equilibrium pressure fluctuations is one of the oldest and most difficult 

problems in classical statistical mechanics. In 1902, Gibbs [1] in Ch.VII wrote down the appropriate 

expression, which included the quantity named by him the “dynamical compressibility” (see also 

Fowler [2], Hill [3], Kittel [4], Terletzky [5]), the latter one being important for the problem of 

thermodynamic stability (more precise definitions are given below). 

Many unsuccessful attempts were undertaken for calculating this quantity even for the simplest 

case of ‘ordinary’ non-relativistic ideal gas. One can find the details in the works by Fowler [2], 

Wergeland [6], Münster [7], and M. Klein [8]. 

A ‘pessimistic’ point of view was expressed in [3], Ch. 4, §19 (see also [5], §69), where the 

calculation of the pressure fluctuations was connected with the detailed knowledge of the kind of 

forces acting between the gas particles and the container walls. Some attempts [2,3] to follow this 

route brought physically unsatisfactory—i.e., divergent—results. This appears to be unphysical 

because, due to Maxwell, the gas in the container should relax to the thermal equilibrium state quite 

independently on physical properties of the walls. 

Finally, it was even claimed (see, e.g., [4], Ch. 11) that the solution to the problem of Gibbs’ 

pressure fluctuations is generally outside the scope of the equilibrium theory, so all these failures 

were sometimes considered as the inconsistency of the Gibbs’s approach as a whole. The situation 

becomes even more involved by noting that some of the physically acceptable results for the pressure 

fluctuations obtained earlier [6–8] refer in fact not to the Gibbs’s approach itself, but to the Einstein’s 

one, which is called “quasi-thermodynamic” by Landau and Lifshitz [9]. These approaches differ 

significantly by the choice of the thermodynamic variables fixed by calculation. For example, in the 

case of the pressure fluctuations it is the entropy in the Einstein’s approach, though it is the volume 

in the Gibbs’s ensemble approach (more details relating to these approaches are given in [10]). The 

goal of our paper is to show the efficiency of the Gibbs approach. 

Concerning the problem of application, it is not obvious that just Gibbs approach (and thus BZ 

and our results) should be more useful than Einstein one. To decide this one should analyze the 

specific experimental situation but it is outside scope of our paper. 

The way out concerning only the Gibbs approach was actually outlined in 1946 by Bogoliubov 

[11], who used the coordinate scale transformation in order to connect the thermodynamic pressure 

with the dynamical quantities—namely, with the first derivatives of the Hamilton function and the 

particles’ pair distribution function. Later on in 1971, Zubarev [12] obtained the analogous expression 

for the dynamic (yet not somehow thermally-averaged) pressure as the function defined only in the 

phase space. 

In fact, in [12] there was implicitly used the idea of quasi-averages—or, in our case, quasi-

dynamic quantities—which was also formulated by Bogoliubov [13] in 1961. From the computational 

point of view, the Zubarev’s result became possible by virtue of the explicit usage of generalized 

functions (in this case—the singular potential of the container walls) following the lines of Vladimirov 

[14]. 

However, it was only in 2000 one of the present authors with Sukhanov [10] succeeded to extend 

the Bogoliubov–Zubarev approach and obtained for the first time the general expression for the Gibbs 

‘dynamical compressibility’ in terms of the second derivatives of the Hamilton function. This 

generalized form of the Bogoliubov–Zubarev theorem is valid for any reasonable kind of the kinetic 

energy and the interaction potential, but only the non-relativistic Maxwell gas was considered in [10] 

as an example. 

Later on in [15–17], these results were extended to the ideal gas with any uniform (in the Euler 

sense) dependence of the Hamilton function upon the (quasi)particle momentum. The most general 

case of the non-uniform Hamilton function—i.e., that of Lorentz as well as Lorentz-violated form 

[16]—was considered for the classical ideal gas. In the present paper the pressure fluctuation problem 

is considered for the more complicated case—the non-uniform gas in the ultra-relativistic limiting 

case—both from dynamic as well as thermodynamic points of view. We stress that the logical and 

computational completeness of the Gibbs statistical mechanics, which was sometimes brought to 
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doubt—especially in connection with the problem of the pressure fluctuations—is fully restored by 

means of Bogoliubov’s seminal ideas. 

This paper is organized as follows. In Section 2, the problem of pressure fluctuations is 

formulated and in Section 3 the solution to this problem is given in general form. Sections 4 and 5 are 

devoted to some illustrative examples, whereas Section 6 contains the main result for the 

thermodynamic properties of the ideal gas in the ultra-relativistic approximation. Section 7 provides 

the short summary. Appendix A clears some computational problems encountered in Section 6. 

2. Rigorous Formulation of the Pressure Fluctuations Problem 

The equilibrium pressure fluctuations <(ΔP(Г))2> are defined in a standard way as <(ΔP(Г))2> = 

<(P(Г))2> − <P(Г)>2, where Г = {q,p} is the phase space of coordinates q and momentapand <…> denotes 

the canonical averaging for the system in the isothermal-isochoric ensemble with fixed values of the 

inverse temperature β and the volume V. The value of β is introduced by the canonical distribution 

function whereas V—by the restriction of the region of Г.  

Following Gibbs [1], if the Hamilton function H(Г) for the dynamic system is given, then 

<…> = Z−1(β,V)∫dГexp[−βH(Г)](…),   Z(β,V) = ∫dГexp[−βH(Г)],    Φ(β,V) = lnZ(β,V), (1) 

where the partition function Z(β,V)is supposed to be finite and strictly positive, so that the Massieu—

Planck thermodynamic potential Φ(β,V) does exist. The latter one is usually a smooth function of 

βand V, so there exist also the relevant thermodynamic derivatives, in particular the equilibrium (i.e., 

isothermal) pressure P(β,V) and the compressibility χ(β,V) < 0 

P(β,V) = (1/β)[∂Φ(β,V)/∂V],        χ(β,V) ≡ ∂P(β,V)/∂V = (1/β)[∂2Φ(β,V)/∂V2]; (2) 

the expressions (2) being known in thermodynamics as thermic equations of state. 

According to the Gibbs lemma [1] (Ch. VII, Equations (252) and (255), see also [3,5]), the 

equilibrium pressure fluctuations <(ΔP(Г))2> are given by the expression 

β<(ΔP(Г))2> = χ(β,V) + Ψ(β,V),      χ(β,V) = ∂<P(Г)>/∂V,      Ψ(β,V) = −<∂P(Г)/∂V>, (3) 

or, following Gibbs and introducing the additional dynamic quantity Ψ(Г), 

Ψ(β,V) = <Ψ(Г)>,        Ψ(Г) = −∂P(Г)/∂V = ∂2H(Г)/∂V2,       P(Г) = −∂H(Г)/∂V. (4) 

Gibbs called the quantity Ψ(Г) dynamic compressibility, but gave no example of its calculation; 

in general, calculation of quantities in (3) and (4) consists of two stages: firstly, the adequate definition 

of P(Г) and Ψ(Г), and secondly—their correct averaging according to (1). 

Note that for the pressure P the first stage may be in fact bypassed due to the first of Equation 

(2) along with definitions in (1), and thus the pressure P(β,V) is called the ‘thermodynamic’ average. 

On the contrary, though according to (3) Ψ(β,V) also belongs to the set of Gibbs’s averages, it is a ‘non-

thermodynamic’ one because it needs a direct calculation according to (1). 

Furthermore, in order to satisfy the conditions of thermodynamic stability relative to the external 

mechanical disturbance, it is necessary for<(ΔP(Г))2> to be positive. It requires Ψ(β,V) not only to be 

positive but also to exceed −χ(β,V). Hence Ψ(β,V) cannot be equal to −χ(β,V), this fact implying (with 

the account for (3) and (4)) that the operation <…> is in general not permutable with the operation 

∂/∂V—just this circumstance is of decisive significance for further presentation. 

It is worthwhile to note, that due to the Gibbs lemma the expressions analogous to (3) hold also 

for the equilibrium thermal fluctuations of other (thermo)dynamic quantities—e.g., the energy H or 

the generalized force A = −∂H/∂a. In all cases the relevant derivatives in the Gibbs lemma refer to the 

(thermo)dynamically conjugate variables (for H and A those are the inverse temperature β = 1/kBT 

and the relevant generalized parameter a respectively), but in the cases with H and A the terms 

∂H(Г)/∂β and −∂A/∂a = ∂2H/∂a2 fully disappear and thus no difficulties arise at all. Indeed, the energy 

H(Г) is a pure dynamic variable and so—by definition—does not depend upon the thermal parameter 

β, whereas variables A and a are mutually independent and enter H(Г) in the bilinear form (−Aa). 

Quite a different situation takes place for the pair of relevant (thermo)dynamically conjugate 

variables—the pressure P and the volume V. Strictly speaking, all the derivatives of the energy H(Г) 
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with respect to the volume V, entering the definitions (4), are identically zero by definition. Indeed, 

all the quantities H(Г), P(Г), and Ψ(Г) in (4) have pure dynamical origin and do not contain the 

kinematical parameter V. All these quantities are defined in the whole phase space Г for the ‘free’ 

system without any ‘walls’ (therefore, for V→∞), while the finite value V enters only at the final stage, 

that is, after the averaging procedure. 

Let us recall here, that the method of quasi-averages was created by Bogoliubov [13] just in order 

to cope those frequently encountered problems, when the symmetry of the Hamiltonian H of the 

physical system is higher than that of the ground state or of the state of thermal equilibrium. In these 

cases, the formal calculations in accordance with (1) prescribed by the Gibbs approach [1] (as well as 

by its quantum generalization) give unphysical zero results for ordinary average values. It was 

shown by Bogoliubov [13], that the reason lies in the existence of some kind of degeneration in the 

system’s energy, so the notion of quasi-averages was suggested in order to obtain physically 

meaningful results. 

Note that the term ‘degeneration’ is fully deprived here of any ‘quantum’ sense and is used only 

to designate the presence of some additional symmetry in H (e.g., with respect to translations or 

rotations in the configuration part of the phase space Γ). The ingenious—though almost ‘obvious’—

Bogoliubov’s idea was to remove this ‘degeneration’ by means of relevant conjugate (in wide sense) 

infinitesimal ‘external field’ before the averaging procedure is carried out and then, after all 

calculations are made, fully eliminate the field. Spoken figuratively, the quasi-averages are alike to 

such fictitious personages as the Moor of Venice or the Cheshire Cat. 

To be specific, in our case the Hamilton function H(p,q) ≡ H(Γ) describing the energy of the 

system of particles in classical regime, is translation invariant and does not distinguish between the 

‘interior’ and the ‘exterior’ of some ‘container’. Therefore, H(Γ) does not depend upon the volume V 

of this container and thus both quantities P and Ψ are formally identically equal to zero. But in fact, 

any system in thermal equilibrium should be confined in space, so the system’s energy should 

depend upon the value of the volume V—in the opposite case no pressure and no dynamic 

compressibility may be formally defined at all. 

3. Solution to the Problem of Pressure Fluctuations 

In order to overcome this contradiction and to obtain the adequate definitions of P and Ψ, we 

act in the spirit of the Bogoliubov’s method [13] and, following partly to Zubarev [12], violate (may 

be virtually) the translational symmetry of ‘free’ Hamilton function H(Г). To this end, one can simply 

add to H(Г) the singular repulsive potential UV(q) 

HV(ε)(Γ) = H(Γ) + εUV(q);     UV(q) = 
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,,0

V

V

Sq

Sq
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The potential UV(q) is called also the ‘contact delta-like’, or the ‘hard core’ potential, which 

describes dynamically the container of the volume V and the surrounding surface SV with the 

idealized ‘impenetrable’ walls. Evidently, UV(q) should not depend on the form of any actually 

present ‘wall–particle’ interaction. Its role reduces to introducing the dependence of the ε-deformed 

Hamilton function (5) on the volume V. 
By virtue of the suggested properties (5) of UV(q), the configuration part of Γ is divided into the 

‘interior’ and the ‘exterior’ parts (relative to the container). Therefore, the potential UV(q) acquires the 

properties of the generalized function (in particular, see [10]). Possibly, just these circumstances have 

led to the failure of perturbation approaches in papers [2,6]. 

Taking into account these definitions, it is natural to define the quantities P and Ψ in the proper 

and unambiguous way as the ‘quasi-dynamical’ variables in the following ‘limiting’ sense 

PV(Г) ≡ lim[–∂HV(ε)(Γ)/∂V],   ΨV(Г) = lim[∂2HV(ε)(Г)/∂V2] (ε→0);    ΨV(Г) ≠ −∂PV(Г)/∂V. (6) 

Note that the mathematical hallmark of the Bogoliubov’s method of quasi-averages [13] consists 

in their non-analytic dependence upon the infinitesimal parameter ε, and this is just the main reason 
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why the results of the limiting procedure (6) differ drastically from the identically zero results for 

P(Г) and Ψ(Г), when ε is taken equal to zero from the very beginning. 

It can be shown (details of calculation see in [10], App. 6) that in accordance with the definition 

(6), PV(Г) coincides exactly with the previously known result of Zubarev [12], whereas ΨV(Г) in the 

form (6) was presented in [10] explicitly for the first time. It is worthwhile to note that, in [10], the 

quantum generalization of these results was also obtained based on the well-known Hellman—

Feynman theorem for the operator’s parameter differentiation. 

Finally, the averaging of ΨV(Г) according to (1) gives Ψ(β,V) and thus allows one to obtain in 

quite general way the solution of the long standing and rather controversial problem (see [2–8]) of 

thermal equilibrium pressure fluctuations (3) in the isothermal-isochoric Gibbs ensemble for the non-

ideal systems of particles in classical regime. 

The key mathematical device for obtaining the quasi-dynamical equations of state (6) is the 

equality of volume derivatives of the n-th order for the two types of functionals, namely ZV(β) = 

∫dГexp[−βH(Г)] and ZV(ε)(β) = ∫dГexp[−βHV(ε)(Г). In the first case the integral is taken over the 

kinematic-confined coordinate subspace of Г with the volume V. On the contrary, in the second case, 

the integral is taken over the whole coordinate subspace of Г and only after this the limiting procedure 

ε→0 is performed. 

For n = 0 the equality is quite obvious because the dynamical factor ΔV(Г) = exp[−βUV(q)] acts as 

the projection operator onto the relevant coordinate subspace of Г. Indeed, according to the definition 

(5) of the external wall potential UV(q), ΔV(Г) = 1, if UV(q) = 0—i.e., when q belongs to the interior of 

the container, and ΔV(Г) = 0, if UV(q)→∞, when q belongs to the exterior of the container or even to its 

walls. Details of calculations for n = 1 and n = 2, which give the constructive realization of the 

definitions (6), can be found in [10], App. 7, and were repeated in the recent paper [18]. The main 

result is the following. 

Suppose that a macroscopic dynamic system is confined within the finite volume V and is 

described by the Hamilton function of the form (5). Then the explicit expressions for PV(Г) and ΨV(Г) 

are determined only by the ‘free’ part H(Г) of the Hamilton function (5) and are quite independent 

upon the specific form of the “wall potential” UV(Г). This result is quite typical when one works with 

the generalized functions.  

Furthermore, the canonical scale transformation in the phase space Г = (q,p)→Гλ = (λq,p/λ) is 

performed, and thus we obtain the following expressions for PV(Г)and ΨV(Г) in terms of the partial 

derivatives of the Hamilton function H(Гλ) for the “free”, or unconfined, system but with λ-deformed 

phase space (f is the degree of freedom) 

PV(Г) = −(1/fV)[DλH(Гλ)]|λ=1, ΨV(Г) ≡ (1/V)PV(Г) + ΔΨV(Г),  

ΔΨV(Г) = (1/fV)2[Dλ(1 + Dλ)H(Гλ)]|λ=1. 
(7) 

Here Dλ ≡ d/dλ, and 1 ≡ Dλ0 is the symbolic designation of the unity operator in the operator 

family, {Dλn} (n ≥ 0—integer) is the n-fold differentiation with respect to λ. Finally, one should put 

everywhere λ = 1. Expressions (7) are well defined for sufficiently smooth Hamilton function H(q,p)—

i.e., twice differentiable with respect to the arguments pиq, while this operation does not yield the 

dependence of PV(Г) and ΨV(Г) upon V. 

The auxiliary variable λ establishes the connection between the change of the volume V and the 

equivalent change of the coordinates q, where the condition of canonicity requires also the 

corresponding change of the momenta p. In other words, λ is a parameter of canonical scaling 

transformation preserving the Liouville dynamic measure—i.e., the volume element of phase space 

dГ: clearly, dГλ = (λdq)(dp/λ) = (dqdp) = dГ. 

Note that terms of different order in Dλ entering ΔΨV(Г) may give contributions of the same 

order; e.g., in the case (7) and (8) (see below) the terms in (6) take the form—e.g., for Hk(p) (just the 

same expressions will be valid for the contribution of Нp(q)into (6), with replacing m with l.): 

[DλHk(p/λ)]|λ=1 = −mHk(p),        [Dλ2Hk(p/λ)]|λ=1 = m(m + 1)Hk(p),  

PV(p) = (1/fV)mHk(p),         ΔΨV(p) = (1/fV)2m2Hk(p).  
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The expression for PV(Г) in (7) is usually cited as the Bogoliubov–Zubarev theorem [11,12], 

whereas the expression for ΨV(Г) for the first time was obtained in the paper byRudoy and Sukhanov 

[10]. It is natural to call the expressions (7) (quasi)-dynamical equations of state, because they connect 

the (quasi)-dynamic quantities—the pressure P(Г) and the compressibility Ψ(Г) with the main 

characteristic of the dynamic system—the Hamilton function H(Г). 

It is essential that thermodynamic equations of state (7) do not include external thermal 

parameter—the temperature T, but they explicitly depend on the external mechanical parameter—

the volume V. It is evident that the dynamic functions H, P and Ψ are defined in the system’s phase 

space Г. Note also that all functions entering (7) are usually (but not always!) additive, so their 

average values are proportional to particle’s number N. Moreover, functions entering (7) possess 

various – but universal for all dynamical systems – kinds of behavior relative to deformations of the 

volume V, namely H(Г) = O(V0), PV(Г) = O(V−1), ΨV(Г) = O(V−2). Indeed, the external parameter V enters 

the right-hand parts of (6) only as entire negative (or zero) powers, so in the limit V→∞ (i.e., for the 

case of ‘free’ system) quantities PV(Г) and ΨV(Г) really tend to zero in full accord with (2), whereas 

HV(Г) rests in this limit invariable. 

For most non-ideal macroscopic non-relativistic systems the Hamilton functions H(q,p) appear 

to have additive and separable nature in q and p, so they can be represented as sums of three terms: 

the constant rest energy E0, the kinetic energy Hk(p) and the potential energy Hp(q). These energies 

usually are also additive relative to all particles (E0 and Hk(p)) and to their pairs (Hp(q). Evidently, the 

energy E0 gives no contribution to the Equation (7) for the pressure P and the compressibility Ψ. 

4. Uniform Ideal and Non-Ideal Systems 

4.1. Uniform Non-Ideal Case 

In [10] the particular case was considered, where both energies Hк(p) and Hp(q) are uniform (in 

the Euler’s sense) functions of their arguments with exponents m and l respectively. This means that 

Hp(λq) = λlHp(q),         Hk(λ−1p) = λ−mHk(p), (8) 

so the expressions (7) can be represented as 

PV(q,p) = (1/fV)[mHk(p) − lHp(q)],      ∆ΨV(q,p) = (1/fV)2[m2Hk(p) + l2Hp(q)]. (9) 

It should be remarked that the expression for PV(q,p) in (9) includes the quantity (−lHp(q)) = qF(q), 

where F(q) = −∂Hp(q)/∂q, which is in fact the Clausius force virial. Therefore, after the Gibbs averaging 

the resulting expression is nothing else as the virial theorem. The “uniform” expressions (8) and (9) 

possess the following useful properties. Note, that in this approach it is not necessary to invoke the 

dynamical equations of motion with the additional assumptions of their stationary behavior relative 

to the time averaging: here we operate only with the phase space variables without using the time 

variable. 

1. For any non-zero exponents m and l in (8) both energies Hk(p) and Hp(q) enter the right-hand 

parts of (8) linearly, every differentiation with respect to λ increasing by unity both indices m and l. 

2. Physical dimension for the pressure in (9) corresponds to the energy volume density, whereas 

that for the dynamic compressibility being the pressure volume density, and therefore every 

differentiation with respect to λ increases by unity the power of the factor 1/V. 

3. There exist conditions when the pressure PV(q,p) as well as the compressibility ΨV(q,p) are 

proportional to the total energy H(q,p) = Hk(p) + Hp(q). Under these conditions, according to (9), the 

average value <Ψ> is proportional to <P> and/or <H>; thus, <Ψ> is the usual thermodynamic average 

and its calculation does not amount to any additional problem. Clearly, these conditions can be 

realized only in two cases: at m = −l or at l = 0, while m may be arbitrary. 

In [15–17,19], we concentrated on the case of an ideal dynamic system, where the coordinate-

dependent potential energy Hp(q) of the inter-particle interaction vanishes, so l = 0. The total energy 

H(q,p) for this system is given by the sum of the constant term E0 and of the kinetic energy Hk(p) which 

depends only on the particle’s momentum: 
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Hp(q) = 0, H(Г) ≡ H(q,p) = E0 + Hk(p). (10) 

4.2. Uniform Ideal Gas 

In the case when Hk(p) is a uniform function (in the Euler’s sense) with the exponent m, the 

expressions (8) obtain the following simple form 

PV(p) = μ[Hk(p)/V],        ∆ΨV(p) = (1/V)μPV(p) = (1/V)μ2[Hk(p)/V],          μ ≡ m/f.  

Note that both expressions (11) contain the constant μ = m/f, which is the ratio of the uniformity 

exponent m to the number of degrees of freedom f. The ratio μ characterizes the given dynamic system 

in the course of its dynamic (and also thermodynamic) description in both classic and quantum 

regimes; thus, μ represents some kind of ‘similarity index’ and specifies the whole class of dynamic 

systems. 

For the given values of f = 1,2,3 typical values of index μ may vary from μnr = mnr/f = 2/f up to μur 

= mur/f = 1/f, where the subscripts “nr” and “ur” correspond to the non- and ultra-relativistic limiting 

expressions for the kinetic energy Hk(p) 

Hknr(p) ≈ (cp)2/2E0    (cp/E0«1),      Hkur(p) ≈ cp       (cp/E0»1). (11) 

Note that in the particular case of massless particles (e.g., photons) with E0 = 0 the expression for 

Hkur(p) becomes exact. Obviously, for both limiting cases in (12) the kinetic energy has the form 

Hk(p) = αmpm, mur = 1, α1 ≡ αur = c; mnr = 2, α2 ≡ αnr = (α1)2/2E0, (12) 

which is the exponential—and thus uniform (in the Euler’s sense)—function of the momentum p with 

the uniformity exponent m equal to 2 and 1, respectively. 

In more general situations, for any possible values 1 ≤ f ≤ 3 and 1 ≤ m ≤ 2, one obtains ⅓ ≤ μ ≤ 2, 

but in some models of the ‘ideal gas’ (e.g., used in modern cosmology) the ranges of the parameters 

m, f and μ = m/f may differ in magnitude (and sometimes also in sign); nevertheless, the expressions 

(11) preserve the applicability for these cases too. 

Note that if the energy density is positive, the pressure fluctuations are also positive for any sign 

of μ. This fact means that the system may be mechanically stable (∆Ψ > 0) even if the pressure is 

negative (P < 0), and this is just the case (if μ < 0) due to the unusual value m < 0 (e.g., for the Chaplygin 

gas). As is easily seen, the condition f > 0 is always fulfilled by definition. 

5. Non-Uniform and Quasi-Uniform Ideal Gas 

5.1. Non-Uniform Ideal Gas  

Rather general case of the ideal gas is that of the free isotropic relativistic particles with the non-

uniform Hamilton function H(p) consisting of the rest energy E0 ≡ H(0) and the kinetic energy Hk(p), 

where Hk(0) = 0. Note that study of this model from the point of view of statistical mechanics was 

started by Jüttner [20,21] and Glaser [22] many years ago; however, the problem of pressure 

fluctuations was not even mentioned in these papers. 

The expression for H(p) is given by the Lorentz–Einstein equation 

H(p) ≡ E0 + Hk(p) = [E02 + (cp)2]½,    H(p) = E0h(p),     h(p) = 1 + hk(p); (13) 

which can be rewritten in the dimensionless form 

h(ξ) = 1 + hk(ξ) = (1 + ξ2)½;    hk(ξ) = h(ξ)fμ(−)(ξ),   ξ = cp/E0   (E0 ≠ 0). (14) 

Here c is the velocity of light in vacuum, h and hk being the dimensionless energies (total and 

kinetic). In the case E0 = 0, the ultra-relativistic limit becomes an exact one: it is the uniform case with 

m = 1 (see Equation (13)).  

The dynamic equations of state follow immediately from (7) but differ noticeably from (11). 

Using the dimensionless variable ξ = cp/E0, we obtain instead of (11) the following exact dynamical 

equations of state 
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PV(ξ) = (E0/fV){[h2(ξ) − 1]/h(ξ)} = [H(ξ)/V]ν(−)(ξ) = [Hk(ξ)/V]μ(+)(ξ), (15) 

∆ΨV(p) = E0(1/fV)2{[h4(ξ) − 1]/h3(ξ)} = (1/V)PV(ξ)ν(+)(ξ) = (1/V)[Hk(ξ)/V]μ(+)(ξ)ν(+)(ξ). (16) 

It is evident that the non-uniform expressions (14)–(16) are much more complicated as compared 

to their uniform counterparts (11). In particular, instead of the unique and constant ‘similarity index’ 

μ in (11) one obtains in (14)–(16) a whole family of the variable dimensionless factors ν(±)(ξ) and μ(±)(ξ). 

These factors have the meaning of the generalized ‘similarity indices’ and depend (though weakly 

enough) on ξ through the function h(ξ) 

fμ(±)(ξ) = 1 ± [h(ξ)]−1,    fν(±)(ξ) = 1 ± [h(ξ)]−2,    fκ(±)(ξ) = 1 ± [h(ξ)]−4;  

fμ(+)(ξ)μ(−)(ξ) = ν(−)(ξ),   fν(−)(ξ)ν(+)(ξ) = fκ(−)(ξ),   hk(ξ) = h(ξ)fμ(−)(ξ). (17) 

The system of exact Equations (14)–(17) is rather complicated, but in practice only their 

approximate forms are of real interest, namely, the two limiting cases: the non-relativistic (nr) (ξ→0) 

and the ultra-relativistic (ur) (ξ→∞) one. The lowest order corrections to the functions hк(ξ) and 1/hк(ξ), 

as compared to their ‘uniform’ analogs (12) and (13), have the form 

hk(ξ) ≈ hknr(ξ)[1 − ¼ξ2] = hknr(ξ)[1 − ½hnr(ξ)],     hknr(ξ) = ½ξ2         (ξ→0), (18) 

1/hk(ξ) = [hkur(ξ)]−1{1 − ½ξ2} = [hkur(ξ)]−1{1 − ½[hkur(ξ)]−2},     [hkur(ξ)]−1 = ξ−1  (ξ→∞). (19) 

Note that hknr(0) = 1/hkur(∞) = 0, this fact enabling one to consider the quantities hк(ξ) and 1/hк(ξ) 

as small in corresponding ranges of the variable ξ. 

In some physical problems there may be of interest to obtain the corrections to the limiting 

‘uniform’ Equations (11) and (12), which are stipulated by the variable nature of the functions κ(±)(ξ) 

and μ(±)(ξ) entering the dynamic equations of state (16) and (17) for P(ξ;V) and Ψ(ξ;V). In order to 

carry out some perturbation procedure at small values ξ«1 in the non-relativistic (nr) limit and at large 

values ξ»1 in the ultra-relativistic (ur) limit, it is convenient to use in Equations (17)–(19) as the 

corresponding small parameters not ξ and 1/ξ, but the quantities hк(ξ) and 1/hк(ξ). 

Omitting simple but lengthy calculations, one obtains the following approximate results 

PV(ξ) ≈ μnr[Hk(ξ)/V][1 − ½hk(ξ)],      ∆ΨV(ξ) ≈ μ2nr[Hk(ξ)/V][1 − (3/2)hk(ξ)]   (ξ→0); (20) 

PV(ξ) ≈ μur[Hk(ξ)/V]{1 + [hk(ξ)]−1},         ∆ΨV(ξ) ≈ μ2ur[Hk(ξ)/V]    (ξ→∞). (21) 

These expressions reveal the tendency of ‘sloping’ the dependence upon ξ both for kinematical 

(κ(+), μ(+)) as well as dynamical (hk, P, ∆Ψ) quantities: at small (but finite) ξ all these quantities become 

smaller than their ‘uniform’ limits at ξ = 0, whereas at large (but finite) ξ, on the contrary, they become 

larger than their ‘uniform’ limits at 1/ξ = 0. 

5.2. Quasi-Uniform Ideal Gas 

Evidently, the most general case of ideal gas includes the Hamilton function H(p) with the non-

uniform dependence upon p. However, in practice only certain limiting cases (e.g., non- or ultra-

relativistic ones) are of interest, where H(p) (and hence also its derivatives) may be presented as an 

expansion in integer powers m of p with m > 0 or m < 0 (i.e., in 1/p), where H0(p) = h0 ≡ E0 = const, m0 ≡ 

0, but mi and hi at i = 1, 2, … may have both signs 

H(p) =  ∑ ��(�)�
���  = ∑ ℎ��

���
��� ,      PV(p) = (1/fV) ∑ ����(�)�

���
 = (1/fV) ∑ ��ℎ��

�� �
���  

(22) 

ΨV(p) = (1/fV)2∑ ��
��

� �� Hi(p) = (1/fV)2 ∑ ��
�ℎ��

�� �
��� .. 

Evidently, every term in (22) is a uniform one, whereas the whole expression (22) is not; so it can 

be considered as a quasi-uniform one and characterized not by the single uniformity exponent but 

by the whole discrete set of them. The examples can be found in [15–17] 

NR-limit: m1 = 2, h1 > 0; m2 = 4, h2 = −¼h1 < 0; UR-limit: m1 = 1, h1 > 0; m2 = −1, h2 =½h1 > 0. (23) 
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Obviously, the final sign of the quantities presented in (22) is determined by the non-trivial 

interplay of the coefficients hi and mi. As a rule, hi contains some small parameter and decreases in 

magnitude with increasing i, whereas mi, on the contrary, increases with i in magnitude. 

Note that nowadays the Lorentz–Einstein expression (14) seems to be not the uniquely possible 

one and therefore in [16] the scheme outlined in that paper was carried out for this more general case. 

In particular, it appears, that in the Lorentz-violated case the UR-limit in (23) is supplemented by the 

third term with h3 > 0, m3 = 2, which has a typical NR-form. This term enters (22) due to the appearance 

in the Lorentz-violated case of the parameter H(p)/EPl (here EPl is the Planck energy) which is always 

small—even in the extreme UR-situation when H(p)/E0 is large. In other words, the ratio E0/EPl is 

always very small for any reasonable choice of particles constituting the system. The analysis of 

relevant expressions shows the existence of some critical value p* defined as cp*~(E02EPl)⅓. When the 

particle’s momentum takes the value p*, then the usual Lorentz behavior breaks and the velocity v(p) 

= dH(p)/dp exceeds the critical value c (details are given in [16]). 

As it was mentioned in Section 2, the calculation of the equilibrium pressure fluctuations (3) in 

terms of β and V (and, may be, N) will be completed after averaging the quasi-dynamic quantities 

obtained in Sections 4–6. This procedure is much more traditional but far from being simple, so we 

give here only its general outline for the ideal system in the case (14) of the non-uniform kinetic 

Hamilton function Hk(p). The partition function is of the multiplicative form 

ZN(β,V) = [Vz(β)]N, z(β) = exp(−βE0)zk(β), zk(β) = ∫dГ(p)exp[−βHk(p)]; 
(24) 

ρk(p) = [zk(β)]−1exp[−βHk(p)],   dГ(p) = Afpf − 1dp (A1 = 1, A2 = 2π, A3 = 4π). 

6. Thermodynamic Equations of State—Relativistic Ideal Classical Gas 

Let us turn now to the derivation of the thermodynamic equations of state for the general, i.e., 

non-uniform, case of the relativistic ideal classical gas with the Hamilton function h(ξ), defined in 

(14). Here and below the dimensionless energetic (h = H/E0) and momentum (ξ = cp/E0) units are used, 

and all the extensive (i.e., proportional to the particle number N) quantities are given per particle. 

6.1. Representations for the Partition Function and Some Moments 

Using the definition (24) for the ‘small’ partition function z(β), we express it in the dimensionless 

temperature units a = βE0 = T0/T, a ≥ 0, putting so far E0 ≠ 0; whereT0 ≡ E0/kB is the characteristic 

temperature and p0 = E0/c = T0(kB/c) is the characteristic momentum for the given sort of particles 

z(a) = ∫dГξexp[−ah(ξ)],    dГξ = dГp(ξ) = Af(p0)fξf−1dξ,     z(a) = ζ(∞;a) − ζ(0;a). (25) 

Here A1 = 1, A2 = 2π, A3 = 4π, the integration limits on ξ in (25) (as well as on p in (24)) being equal 

to 0 and ∞ respectively; ζ(ξ;a) is the indefinite Riemann integral in the left part of (25). 

Clearly, at any a > 0 the convergence of the integral (25) is ensured and improved with the growth 

of a, however the limiting value a = 0 should be excluded. Physically, the limit a = T0/T→0 corresponds 

to the high-temperature approximation T→∞ or to the ultra-relativistic case E0 = T0 = 0. Therefore, the 

representation (25) is convenient at large values a»1 (when T→0 and/or T0→∞) in order to obtain the 

low-temperature (LT) and/or the non-relativistic (NR) expansions, so it is natural to call it the LT/NR-

representation of the partition function z(a) for the classical relativistic gas. The inclusion of the point 

а = 0 implying the high-temperature approximation can be realized through the change of variables 

(see Equation (26)).  

The exclusion of the point a = 0 for the LT/NR-representation is stipulated by the fact that the 

quantity ζ(ξ;0) = ∫dГξ~ξf at any f > 0 diverges on the upper limit at ξ→∞; the same conclusion follows 

from the asymptotic behavior z(a)~∫dГξe−aξ~a−f at a→0, where the property h(ξ) ≈ ξ at large values of ξ 

is used. For the possibility of considering small values a«1, including a = 0 (when T→∞ and/or T0→0), 

i.e., to obtain the high-temperature (HT) and/or the ultra-relativistic (UR) expansions, it is necessary 

to go over from the LT/NR-representation to the HT/UR-representation for z(a).The latter one can be of 

interest in the case of the hot dense quark–gluon–plasma (QGP). 
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To this end, one should carry out in (25) the change of variable ah(ξ) = η, where h(ξ) = (1 + ξ2)½ ≥ 

1, so that η ≥ a. Moreover, it is convenient to introduce the denotation pT = T(kB/c) for the characteristic 

thermal momentum of gas particles, thus obtaining 

z(a) = ∫ �Г�
�

�
[1 − (a/η)2]½(f − 2),        dГη = Af(pT)fe−ηηf − 1dη,      z(a) = ζ(∞;a) − ζ(0;a). (26) 

However, the structure in (26) contrasts with that in the integral (25), since the variable a enters 

not only into the integrand, but also into the lower limit of the integral (26). Moreover, according to 

(26) the quantity z(a)→0 as a→∞, whereas at a = 0 the quantity z(0)/Af(pT)f takes its finite limiting value 

equal to Г(f). 

According to the results of Section 4, all the thermodynamic quantities of the relativistic ideal 

classical gas can be expressed through the ordinary (not central) moments of the partition function; 

these moments being defined in the following way (the quantities zк(а) and hк(ξ) all will be analogous, 

replaced with the h(n)(а) with hк(n)(а)) 

h(n)(a) ≡ ∫ �Г�
�

�
[h(ξ)]nexp[−ah(ξ)],   h(0)(a) = z(a),  h(n)(a) = ζ(n) (∞;a) — ζ(n)(0;a). (27) 

After changing the variable ξ→η the quantities h(n)(a) will have the form 

h(n)(a) = (1/a)n∫dГηηn [1 − (a/η)2]½(f − 2). (28) 

It is natural to call the quantities h(n)(a) (or hк(n)(a)) the Jüttner integrals for the total and kinetic 

energies (in analogy with Maxwell, Bose, Fermi, and other similar integrals in statistical mechanics). 

Indeed, the definition of the canonical averages (9) reads <[h(ξ)]n> = h(n)(a)/h(0)(a), so for the caloric 

quantities—i.e., the internal energy and its fluctuations—we obtain immediately from their 

definitions 

H(a) = E0[h(1)(a)/h(0)(a)], <(ΔH)2> = E02[h(2)(a)/h(0)(a)] − [H(a)]2. (29) 

For the thermal quantities—i.e., the pressure and its fluctuations—one obtains 

P(a,V) = (E0/fV)[h(1)(a) − h(−1)(a)]/h(0)(a) = E0(1/V)(1/a), (30) 

<(ΔP)2> = (1/β)∆Ψ(a,V) = E02(1/a)(1/fV)2[h(1)(a) − h(−3)(a)]/h(0)(a). (31) 

6.2. Perturbation Expansion for the HT/UR-Representation 

Obviously, the exact expressions for the partition function in the representation (26) and the 

corresponding Jüttner integrals (28) are not available, and so we are not able to construct the 

corresponding asymptotic behavior as a→0. Therefore, we obtain only approximate expressions for 

h(n)(a) (nis any integer including zero), namely, the expansion in degrees of hк(m)(a) with positive m. 

Expansions of this kind for all thermodynamic quantities arise in the limit of large values of the 

parameter 1/a = T/T0»1 (including the value a = 0 at E0 = 0). Physically, this corresponds to the 

smallness of the ratio E0/Hк(T), i.e., to the high temperature case (if the rest energy E0 is fixed) or, on 

the contrary, to the small values of E0 (at fixed temperature T). As can be seen from (19), E0/Hкur(T) = 

κur(T0/T) = aκur, where κur = 1/f is the factor of the order unity. 

In order to obtain the desired expansions, we use the binomial power series at ν ≥ 0 

[1 − (a/η)2]ν − ½ = ∑ [ν, �]�
��� a2mη−2m, [ν,m] = (−1)m(2mm!)−1∏ {2ν − (2� − 1)}���

��� . (32) 

The coefficients in (32) satisfy the recurrence relation [ν,m + 1] = −½[ν,m]{2ν − (2m + 1)}(m + 1)−1, 

so that [ν,0] ≡ 1, [ν,1] = −½(2ν − 1), [ν,2] = [ν,1](−¼)(2ν − 3) = (1/8)(2ν − 1)(2ν − 3). Furthermore, it is more 

convenient to designate these coefficients [f,m], going over from the variable ν ≡ ½(f − 1) (ν ≥ 0) to the 

variable f = 2ν + 1 (f ≥ 1). 

Let us substitute the expansion (32) into the integrand of the Jüttner integral (26) and introduce 

the special denotation for the combined exponent k(m) 

k(m) ≡ 2ν + n − 2m + 1 = k(0) − 2m, k(0) = f + n  (all f, n, m, k being integers) (33) 
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This exponent at given values of the number of particle’s degrees of freedom f = 1, 2, 3 as well as 

the order of the Jüttner integral n = 0, ±1, ±2, … depends only upon the value m ≥ 0. Then for the 

h(n)(f;a) one obtains the infinite sum of the following integrals 

h(n)(f;a) = Af(pT)fa−n ∑ [�, �]�
���  a2mГ[k(m);a],   Г[k(m);a] ≡ ∫ ��

�

�
e−ηηk(m)−1. (34) 

The quantity Г[k(m);a] is the incomplete gamma-function (related to the integral exponential 

function, see, e.g., [23]), and its expansion into the power series in a (at fixed value of k(m)) depends    

significantly upon the sign of k(m). According to the definition (33), the quantity k(m) decreases 

linearly with the increase of m and changes at the critical value m = m0, where 

m0 = ½k(0) (k(0) > 0 even),   m0 = ½(k(0) + 1) (k(0) > 0 odd),   m0 = 0 (k(0) ≤ 0). (35) 

Therefore, the infinite sum (34) is appropriate to be presented in the following form 

h(n)(f;a) = Af(pT)fa−n{∑ [�, �]����
� a2mГ[k(m) > 0;a] + ∑ [�, �]�

���� a2mГ[k(m) ≤ 0;a]}, (36) 

where the desired power expansions in a for Г[k(m);a] at k(m) > 0 and k(m) ≤ 0 are qualitatively 

different and should be considered separately (all the definitions are given in Appendix A, Equations 

(A5–A7)). 

Finally, the expression (36) for h(n)(f;a) with the account for only lowest corrections in degrees of 

a may be written in the following form (recall that pT = T(kB/c), a = T0/T = E0/kBT) 

h(n)(f;a) = Af(kB/c)fTfa−n{Σ(f,n;a) + S(f,n;0)af + n}. (37) 

Clearly, however, that if the values of the parameters f and n (just their sum defines k(0) in (33)) 

are such that k(0) < 0 and m0 = 0, then the first summand on the right-hand side of (36) vanishes. In 

the second summand, pole divergences arise in of the form a−|k(0)| = (T/T0)|f+n| which are now not 

compensated, so the corresponding Jüttner integral h(n)(f;a) exists only at finite values of a, the same 

being valid for T0. 

Using this fact, let us consider qualitatively the problem of thermodynamic stability of the so-

called Wien gas, or the ideal gas of massless particles (E0 = kBT0 = 0, a = 0), in the context of its 

dependence upon the dimension f. In order to ensure such a stability, it is necessary that in the limit 

a = 0 the corresponding Jüttner integrals h(n)(f;a)should exist, since according to Section 4 they 

determine the main thermodynamic quantities and their fluctuations. 

Recall that for the partition function the similarity index n = 0, for the average energy n = 1 and 

for its fluctuation (specific heat) n = 2. However, for the average pressure it is necessary to choose the 

values n = 1 and n = −1, whereas for the pressure fluctuations (compressibility)—the values n = 1 и n 

= −3. Note that in the structure of the perturbation theory expansions there appear two specific 

dependences: upon the dimensionality f (i.e., upon the particle’s spatial degrees of freedom) as well 

as upon the order n of the moment (i.e., the average value of the n-th power of the particle’s energy). 

That is why in the HT/UR-representation it is impossible to write down general expressions for 

the coefficients of expansions in (34). Thus, one should enumerate all the terms, considering 

consequently different combinations of integer values of f and n. 

Note that all the thermodynamic parameters and their fluctuations are determined by the 

dimensionless quantity χ(n)(f;a) = h(n)(f;a)/h(0)(f;a). Indeed, we obtain for the average energy, the specific 

heat, the pressure and the compressibility the following expressions 

H(f;a) = E0χ(1)(f;a),CV(f;a) = E02{χ(2)(f;a) − [χ(1)(f;a)]2},  

P(f;a) = (E0/fV)[χ(1)(f;a) − χ(−1)(f;a)] = kBT/V, (38) 

ΔΨ(f;a) = (E0/fV)2(1/a)[χ(1)(f;a) − χ(−3)(f;a)],  

χ(n)(f;a) = a−n[Σ(f,n;a) + S(f,n)af + n]/[Σ(f,0;a) + S(f,0)af].  

The quantity χ(n)(f;a) below should be approximated in the spirit of the perturbation theory with 

the accepted accuracy in a in the following way 

χ(n)(f;a) − χ(n’)(f;a) = a−n{[Σ(f,n;a) + S(f,n)af + n] − an − n΄[Σ(f,n´;a) + S(f,n´)af + n´]}/[Σ(f,0;a) + S(f,0)af],  
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while for the cases n = 1 at n΄ = −1 and n´ = −3 the contribution of the second summand in braces 

contains additional small factors a2 and a4. Note that for the quantities H and CV this accuracy (within 

the scope of the applied here direct moments method) can be superfluous in comparison to the usual 

method, when the quantities H and CV are expressed through the derivatives with respect to a of the 

function lnh(0)(f;a). In the latter case the final accuracy is confined by that of calculating the partition 

function h(0)(f;a). 

Consider now the HT/UR-expansions for the thermodynamic quantities of the ideal gas of 

particles with various numbers f of degrees of freedom. We start with the dimensionless moments  

h̃(n)(f;a) ≡ h(n)(f;a)/Af(kB/c)fTf, which determine these thermodynamic quantities according to (38) 

n = 0.      h̃(0)(1;a) = 1 + S(1,0)a;  h̃(0)(2;a) = 1 + S(2,0)a2;  h̃(0)(32;a) = 2 —½a2 + S(3,0)a3. 

n = 1.      h̃(1)(1;a)a = 1 + S(1,1)a2;  h̃(1)(2;a)a = 2 + S(2,1)a3;  h̃(1)(3;a)a = 6 —½a2 + S(3,1)a4. 
 

n = 2.     h̃(2)(1;a)a2 = 2 + ½a2 + S(1,2)a3;  h̃(2)(2;a)a2 = 6 + S(2;2)a4; h̃(2)(3;a) a2 = 24 − a2+[3,2] a4 + S(3,2)a5. 

n = −1.     a−1h̃(−1)(1;a) = S(−1;1);  a−1h̃(−1)(2;a) = 1 + S(2;−1)a;  a−1h̃(−1)(3;a) =1 + S(3;−1)a. 

n = −3.     h̃(−3)(f;a) = S(f,−3)af. 

 

Then we write down the quantities (38), with accounting for the lowest (in a) correction terms. 

Average energy H(f;a); Hкur(T) = H(f;0) = fkBT. 

H(1;a) = kBT{1 − S(1,0) + [ S(1,0) + S(1,−1)]}a2;  H(2;a) = 2kBT[1 + S(2,0)a2]; 

H(3;a) = 3kBT [1 + ⅙a2]. 
(39) 

Specific heat CV(f;a); CVur = CV(f;0) = fkB. 

CV(1;a) = kB{1 − [3S(1,0) + 2S(1,1)}a2;  CV(2;a) = 2kB[1 + S(2,0)a2]; CV(2;a)=3kB[1 − ⅙ a2] (40) 

Note that due to the multiplication of a−1 by the ‘small’ factor E0 the quantity H
ur

(T) = H(f;0) 

proves to be not more ‘large’ and coincides with the first of the expressions (33) for the average 

(kinetic) energy of the UR Wien gas (k = 1, κur = 1/f). The correction within the second order of smallness 

in a = T0/T«1 for the expression (39) is stipulated by the account for the corresponding correction in ξ 

to 1/h(ξ) in the second of the expressions (26). This correction in (39) is positive, and physically it 

corresponds to the increase of the average energy with that of the rest energy. 

Analogously, the correction to the specific heat in (40) at f = 2 and 3 is also within the second 

order of smallness in a and differs from the corresponding correction to the average energy only in 

sign. At f = 1 this tendency also takes place (because S(1,0) < 0), but the connection between the 

coefficients looks more intricate due to the fact that the linear in a correction to СV disappears. One 

can easily see that this property always takes place and does not depend upon the specific value of 

the linear in a term for the average energy. Naturally, CVur coincides with the second expression in 

(23) for the specific heat of the UR Wien gas with k = 1 and does not depend upon the temperature T. 

It is worth-while to note that in this case, just as before, both CV(T) and dCV(T)/dT are positive, so the 

thermodynamic stability is guaranteed. 

Pressure vs. temperature P(f;a) = kBT/V at all f and a. 

Pressure vs. kinetic energy P(f;Hк); Pur(f;Hкur) = (κur/V)Hкur. 

P(1;Hк) =1 − S(1,−1)[E0/Hкur];  P(2;Hк)= 1 − 2[E0/Hкur];     P(3;Hк)= 1 − (3/2)[E0/Hкur] (41) 

Compressibility ΔΨ(f;a) is equal 

ΔΨ(f;a) = ΔΨur{1 − S(f,−3)af}. (42) 

Formally, the correction for the κur = 1/fcan be obtained by using the second of the equations (39), 

with the result of the lowest order h̃(−1)(f;a) ≈ a. Taking into account that the small parameter reads a = 

T0/T = (1/κur)(E0/Hкur) = f(E0/Hкue), one obtains (41). Finally, the corrections to the limiting UR-value of 

the compressibility ΔΨur = ΔΨ(f;0) = (κur/V)Pur at a = 0 start with af and in full analogy with the pressure 

they are negative. 



Particles 2019, 2, 11 162  

Therefore, it is obvious that the HT/UR-corrections do not violate the thermodynamic stability 

of the system because these corrections cannot change the sign of fluctuations for the energy (39) and 

the pressure (41). 

7. Conclusions 

In this paper, we have revised the long-standing problem of equilibrium pressure fluctuations 

and showed that its solution can be obtained on the grounds of generalizing the Bogoliubov–Zubarev 

theorem by using the method of quasi-averages (applied to the introduction of the volume) as well 

as that of scale transformation in the phase space of a physical object in question. Besides general 

formulation for the proof of the theorem (which can be found in Refs. [10,18]), we have presented 

some numerical results for the thermodynamic quantities of the relativistic gases. We hope that these 

results could be partly applied to the description of the hot quark-gluon plasma within the scope of 

thermodynamics as well as of statistical mechanics (in this connection see, e.g., papers [24,25]). 

However, for the moment the thermal equations of state for the pressure are formulated mostly 

within the phenomenological approach on the grounds of QCD thermodynamics, whereas the 

application of the generalized Bogoliubov–Zubarev theorem needs some dynamical description in 

the object’s phase space (e.g., if possible, for the Mott–Hagedorn resonance gas described in [24,25]). 

Appendix A. Details of Calculating Sum (36) in Section 6 

1. Case k(m) > 0 

At k(m) > 0 (0 ≤ m < m0) in the expansion for Г[k(m) > 0;a] only positive degrees of a appear 

Г[k(m)>0;a] =  Г[k(m) > 0;0] − ∫ ��
�

�
�� ���(�)�� = Г[k(m)>0] − ∑ (−1)�

���
l(l!)−1ak(m) + l(k(m) + l)−1, (A1) 

where Г[k(m)>0;0] is the ordinary (i.e., complete) gamma-function Г[k(m)] (see, e.g., [22]); for integer 

values k(m) = 1, 2, … it possesses the most simple form [k(m) − 1]! 

In order to obtain the expansion (A1), it is sufficient to expand the exponent e−η, which enters the 

integrand in the definition (34), in the Taylor series and then to integrate over η the relevant 

convergent series. In this course no singularities in (A1) in the limit a→0 arise, because they would 

appear in any of the terms on the right-hand side of (A1) only in the case of violating the condition 

k(m) > 0. Indeed, the function Г[k(m)] in this case would be not well defined and some of the 

denominators k(m) + l might take zero values. 

Taking into account the form of the product a2mak(m) = ak(0), it can be easily seen that the first term 

in the braces on the right-hand side of Equation (36) contains in general case two groups of expansion 

terms: one running even degrees of a (starting with a0, a2, …), and another running all degrees of a, 

starting with ak(0) and taking subsequent values ak(0) + l, l = 1, 2, … Clearly, the lowest order contribution 

“surviving” in the limit a = 0 is of the form 

[f,0]Г[k(0) ≥ 1]a0 = [k(0) − 1]! = (f + n − 1)!,  

with the values of f and n satisfying the aforementioned condition k(0) ≥ 1. 

If the quantity k(0) = f + n has the minimal possible (for the case in question) value k(0) = 1, the 

lowest order contribution (linear in a) will be given by the first term of the second group ak(0). The next 

order contribution will be given by the second term of the first group, which is quadratic in a. 

However, if k(0) = 2, the terms mentioned will give the contribution of one and the same order in a, 

and only at k(0) = 3 the contributions of the second group (starting with a3) will follow, the two first 

terms of the first group joining the battle. 

2. Case k(m) ≤ 0 

At k(m) ≤ 0 (i.e., at m ≥ m0 ≥ 0), in contrast with the case k(m) > 0, only negative degrees of a enter 

into the expansion for Г[k(m) ≤ 0;a]. This fact implies the arising of the pole singularities of all orders 

from 1 till |k(m)|, as well as also the logarithmic singularity in a, the latter singularity being the only 

“surviving” one even in the limiting case k(m0) = 0. However, as can be seen, these singularities do 
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not become apparent in the final result for h(n)(f;a), since they are fully suppressed by the factor a2m 

appearing in every order at m ≥ m0. 

In order to obtain the expansion for Г[k(m) ≤ 0;a] in degrees of a, it is worth-while to note that 

this quantity is defined by the integral in (34) and the condition of its convergence at the upper limit 

for any value of k(m) (independently on the sign) is guaranteed by the factor e−η. However, at the 

lower limit the convergence condition is violated already for the maximally possible in our case value 

k(m) = 0 implying the logarithmic singularity. Moreover, with the decrease of k(m) (i.e., the increase 

of |k(m)|) there arise pole singularities of maximal order |k(m)|. 

So it is appropriate to use for Г[k(m) ≤ 0;a] the recurrence relation enabling one to increase by the 

unity the value k(m) (and respectively to decrease the value |k(m)|), thus selecting the pole 

singularities. The relation of this kind can be easily found through the integration by parts of the 

original integral in (34), with the result reading 

Г[k(m) ≤ 0;a] = e−aa−|k(m)| − (1/|k(m)|) Г[k(m) + 1 ≤ 0;a]. (A2) 

Finally, the relation (A2) permits one to express Г[k(m) ≤ 0;a] with an arbitrary value k(m) ≤ 0 as a 

function of Г[k(m) = 0;a] 

Г[k(m) ≤ 0;a] = e−a ∑ (−1)�(�)��
��� )l + 1 [|k(m)|…(|k(m)|−l)]−1a−|k(m)|+l + (−1)|k(m)| (|k(m)|!)−1 

Г[k(m) = 0;a]. 
(A3) 

The finite sum entering the right-hand side of (A3) is different from zero only under the 

condition k(m) < 0. Otherwise (at k(m) = 0) the relation (A3) reduces to the identity. In particular, just 

this sum contains all the pole singularities mentioned above. 

The quantity Г[k(m) = 0;a] is the limiting one for all possible values k(m) ≤ 0 and coincides (up to 

the sign) with the integral exponent function Ei(−a) (see, e.g., [23]) 

Г[k(m) = 0;a] = ∫∫ ��
�

�
e−ηη−1 ≡ −Ei(−a),     Ei(−a) = C + lna + ∑ (�! �)���

��� al, (A4) 

where C ≈ 0,577 is the Euler constant. The power series on the right-hand side of (A4) converges for 

all finite real values of a, but the term lna possesses an obvious singularity at the limiting value a = 0, 

corresponding to the case of massless particles with E0 = 0. 

It can be shown that all the singularities mentioned above of the quantity Г[k(m) ≤ 0;a] disappear, 

as was expected, after its substitution into the second term in the braces on the right-hand side of 

Equation (36) due to its multiplication by the factor a2m in every order of the infinite sum over the 

index m ≥ m0 > 0. It is quite clear for the logarithmic singularity (and also for the constant term) 

entering (A4). As to the pole singularities entering the finite sum in (A3) at k(m) ≡ k(0) − 2m ≤ 0, one 

obtains |k(m)| = −k(m) = 2m − k(0) and −|k(m)| = −2m + k(0), so a2ma−|k(m)| = ak(0). 

Thus, the two cases 2 and 1, which look on the first glance as quite different, appear to be in 

sufficiently complete accordance one with another. Indeed, in the case 2 the two groups of the 

expansion terms in degrees of a prove to appear: those with even degrees and also with all degrees, 

starting with ak(0) and taking subsequent values ak(0) + l (l = 1, 2, …). Note that the first group of terms 

in the case 2 starts not with a0 (with the coefficient Г[k(0);0]), as in the case 1, but with the term a 0m  

(with the coefficient C), where according to Equation (35) the value m0, in general differs from zero. 

Otherwise, just this term proves to be the starting one for the whole expansion (36), so that the case 1 

cannot be realized. 

If the case 1 is nevertheless realized, the first group of terms may be represented as 

Σ(f,n;a) ≡ ∑ [�, �]
���� 
���  [k(m) − 1]!a2m = [(f + n) − 1]! + [f,1][(f + n − 2) − 1]!a2 + O(a4), (A5) 

where it was taken into account that [f,0] ≡ 1, k(0) = f + n( ≥ 1) and [f,1] = −½(f − 2), k(1) = k(0) − 2. The 

number of terms in (A5) depends upon the value of the indexm0, which according to (33) и (35) 

depends in turn upon the values f and n. 

As for the second groups of terms in both cases 1 and 2, it follows that they should be unified, 

so that the resulting contribution into the right-hand side of Equation (36) takes the form ak(0)S(f;a). 



Particles 2019, 2, 11 164  

Here S(f,n;a) = S<(f,n;a) + S≥(f,n;a) is the expansion in a, including all the degrees (starting with a0), and 

the quantities S<(a) (with m < m0) and S≥(a) (with m ≥ m0) are the following double sums 

S<(f,n;a) = −∑ [�, �]
���� 
��� [f,m] ∑ (−1)�

���
l(l!)−1al(k(m) + l)−1, 

S≥(f,n;a) = e−a∑ [�, �]�
����  ∑ [�, �]�(�)��

���� ∑(−1)l+1[|k(m)|…(|k(m)|−l)]−1al. 
(A6) 

It is necessary to underline that at the point a = 0 in the “inner” sums over the index l only the 

first term with l = 0 remains. We do not study here the infinite sum (42), but in virtue of definitions 

(32) and (33) for [f,m] and k(m) it is seen that the general term of this sum with alternating signs is of 

the form (−1)m(2mm!)−1 and even in the worst (in the sense of convergence) case m0 = 0 the series (42) 

converges, with S(0) taking the finite value 

S(f,n;0) = − ∑ �(�, �)����
���  +  ∑ �(�, �)�

��� ,        s(f,m) ≡ [f,m](k(m))−1. (A7) 

Here the quantity S(f,n;0) ≡ S(f,n), like Σ(f,n;a), depends on n through m0, which is determined by 

the relations (33) and (35). 
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