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Abstract: Relativistic mean-field models are successfully used for the description of finite nuclei
and nuclear matter. Approaches with density-dependent meson-nucleon couplings assume specific
functional forms and a dependence on vector densities in most cases. In this work, parametrizations
with a larger sample of functions and dependencies on vector and scalar densities are investigated.
They are obtained from fitting properties of finite nuclei. The quality of the description of nuclei and
the obtained equations of state of symmetric nuclear matter and neutron matter below saturation
are very similar. However, characteristic nuclear matter parameters, the equations of state and the
symmetry energy at suprasaturation densities show some correlations with the choice of the density
dependence and functional form of the couplings. Conditions are identified that can lead to problems
for some of the parametrizations.

Keywords: relativistic mean-field model; density-dependent coupling; equation of state; nuclear
matter parameter; symmetry energy

1. Introduction

A realistic description of dense matter is essential for the physics of compact stars and the
simulation of core-collapse supernovae and neutron-star mergers; see, e.g., [1] for details. Depending
on the thermodynamic conditions, a variety of particle species has to be considered in the construction
of microscopic models; in particular, nucleons and electrons are indispensable in astrophysical
applications. The thermodynamic properties of such matter are encoded in the equation of state (EoS).
In general, the EoS depends on several variables, e.g., the baryon number density nB, the temperature
T and the electron fraction Ye. They cover several orders of magnitude in the application, and the
properties of matter change dramatically within the corresponding ranges. The main theoretical
challenge is the description of the hadronic component, i.e., the subsystem composed of nucleons (and
possibly other baryons such as hyperons at very high densities) that interact strongly. The leptonic
component can be well treated in a simple Fermi gas model in most cases.

At baryon densities below the nuclear saturation density nsat ≈ 0.16 fm−3 and temperatures not
exceeding approximately 1.7× 1011 K or kBT ≈ 15 MeV, matter is not homogeneous, and structures
develop due to the competition of the short-range strong interaction, the long-range Coulomb
interaction and the entropy. For instance, neutron-rich nuclear clusters can form that arrange on
a lattice in the crust of neutron stars. At densities around and above nsat, e.g., in the core of compact
stars, or at high temperatures, matter is expected to be homogeneous. The description of such uniform
hadronic matter is the subject of this work.

There are many microscopic theoretical approaches to construct EoSs of strongly-interacting
matter. One class of models is based on realistic interactions, which are fitted to nucleon-nucleon
scattering data and properties of light nuclei, in combination with sophisticated techniques to solve
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the many-body problem. In contrast, in a second class of models, phenomenological approaches
proceed more heuristically employing effective interactions with a number of parameters that can
be determined from experimental data of different origin. These approaches are often derived from
self-consistent mean-field (MF) models [2]. They can be expressed as energy density functionals
(EDF), which, in principle, are able to capture the essential features of the system. Amongst them,
EDFs based on non-relativistic Hartree–Fock calculations with Skyrme or Gogny potentials are most
familiar [3,4]. Relativistic or covariant EDFs can be constructed from relativistic mean-field (RMF)
models that describe the strong interaction by an exchange of mesons, which are are usually assumed
to couple minimally to nucleons.

For a quantitative description of nuclei and nuclear matter, medium effects of the effective
interaction have to be included. This can be achieved in different ways. In a large number of RMF
models [5], nonlinear (NL) self-interactions of the mesons are incorporated in the Lagrangian density
L that defines the model. Alternatively, the meson-nucleon couplings in L can contain an explicit
dependence on the nucleon field operators that is mapped to a density dependence of the couplings in
the derived EDF. The choice of the functional form of this dependence facilitates a very flexible variety
of models. The parameters of the density dependence are customarily determined by applying the
EDF to the description of finite nuclei and by fitting to a selected set of their properties.

A particular property of RMF models is the occurrence of two different particle number densities:
vector densities and scalar densities. Their interplay is essential to describe the saturation of nuclear
matter in the model. RMF models with density-dependent (DD) couplings were first applied to the
description of finite nuclei by Fuchs and Lenske [6,7] considering dependencies on vector and scalar
densities. The couplings were obtained from microscopic Dirac–Brueckner–Hartree–Fock calculations
of nuclear matter. The first self-consistent RMF model with density-dependent couplings that were
fitted to properties of finite nuclei used the so-called vector density in the couplings and specific
forms for the functional dependence [8]. Many subsequent models and parametrizations followed
this approach, sometimes introducing different functions; see, e.g., [9–15]. A dependence on other
densities, in particular the scalar density, in the description of nuclei was not really explored. The aim
of this work is a comparison of RMF models and the corresponding nuclear matter EoSs with DD
couplings of different functional form and dependencies on vector and scalar densities that were fitted
to the same set of nuclear observables.

The formalism of RMF models with DD couplings is presented in Section 2 with applications to
homogeneous nuclear matter and finite nuclei. The parametrization of the meson-nucleon couplings is
introduced in Section 3. The determination of the parameters and the form of the couplings is
discussed in Section 4. Properties of nuclear matter and the EoS are summarized in Section 5
including the characteristic nuclear matter parameters and the density dependence of the symmetry
energy. In Section 6, constraints on the possible density dependence of the couplings are considered.
Conclusions are given in Section 7, and the actual values of the different parameter sets are collected in
Appendix A. Natural units with h̄ = c = kB = 1 are used throughout this paper.

2. RMF Model with Density-Dependent Couplings

The theoretical description of nuclei and nuclear matter in the present RMF approach proceeds
in the usual way as presented, e.g., in [8]. The strong interaction is described by an exchange of
isoscalar σ and ω mesons and isovector ρ and δ mesons. They carry the same quantum numbers as
the corresponding experimentally-known mesons, but they are not necessarily the same. However,
in this way, it is possible to capture the main features of the effective in-medium nuclear interaction.
The mesons couple minimally to the nucleons i = n, p that are represented by four-spinor operators Ψi
forming an isospin doublet. The coupling with a meson j = σ, ω, ρ or δ is denoted by Γ̃j, a functional
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that can depend on suitable combinations of Ψi and Ψi = Ψ†
i γ0, where γµ is a Dirac matrix. In the

present work, a dependence on the vector density:

$v =
√

jµ jµ (1)

with the nucleon current:
jµ = ∑

i=n,p
Ψiγ

µΨi (2)

or the scalar density:
$s = ∑

i=n,p
ΨiΨi (3)

is considered. Despite the name, the vector density (1) is a Lorentz scalar, as well as the scalar
density (3). This guarantees the Lorentz covariance of the approach. In addition to the meson fields,
a coupling to the electromagnetic field, represented by the vector field Aµ, with constant coupling
strength Γγ is taken into account.

2.1. Lagrangian Density and Energy Density Functional

The starting point of the formalism is the Lagrangian density:

L = Lnucleon + Lmeson + Lγ (4)

with three contributions. The first:

Lnucleon = ∑
i=n,p

Ψi

(
γµiDµ

i −M∗i
)

Ψi (5)

contains the covariant derivative:

iDµ
i = i∂µ − Γ̃ωωµ − Γ̃ρ~ρ

µ ·~τ − Γγ Aµ 1 + τ3

2
(6)

where τk (k = 1, 2, 3) are isospin matrices in analogy with the Pauli matrices σk, but acting in isospin
space. The effective mass operator has the form:

M∗i = mi − Γ̃σσ− Γ̃δ
~δ ·~τ (7)

with the nucleon masses mi in vacuum. The ρ and δ terms carry an arrow since they have three
components in isospin space. In contrast, the σ and ω fields are isoscalar quantities. The meson term
in Equation (4) has the standard form:

Lmeson =
1
2

(
∂µσ∂µσ−m2

σ σ2 + ∂µ~δ · ∂µ~δ−m2
δ
~δ ·~δ (8)

−1
2

GµνGµν + m2
ω ωµωµ −

1
2
~Hµν · ~Hµν + m2

ρ ~ρ
µ ·~ρµ

)
with meson masses mj and field tensors: Gµν = ∂µων − ∂νωµ and ~Hµν = ∂µ~ρν − ∂ν~ρµ for
the vector mesons. The last contribution in Equation (4) is the Lagrangian density of the
electromagnetic/photon field:

Lγ = −1
4

FµνFµν (9)

with Fµν = ∂µ Aν − ∂ν Aµ. It is only relevant for finite nuclei, and not for homogeneous nuclear matter.
The field equations for all degrees of freedom are derived with the help of the Euler–Lagrange

equations in the standard mean-field and no-sea approximation. Mesons and photons are treated as
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classical fields. This leads to the Dirac equation for the nucleons, Klein–Gordon and Proca equations
for scalar and vector mesons, respectively, and the Maxwell equation for the electromagnetic field.
Using symmetries, e.g., by a restriction to a stationary system and choosing a particular frame of
reference, i.e., breaking Lorentz covariance, the equations simplify further.

In the MF approximation of the present approach, the coupling functionals Γ̃j become simple

functions Γj(n(v), n(s)) of the total vector density n(v) = n(v)
n + n(v)

p with:

n(v)
i = ∑

k
wikψikγ0ψik (10)

and the total scalar density n(s) = n(s)
n + n(s)

p with:

n(s)
i = ∑

k
wikψikψik (11)

where wik denotes the occupation factor of the single-particle state k of nucleon i. The nucleon wave
functions ψik are solutions of the time-independent Dirac equation:[

~α · ~̂p + β (mi − Si) + Vi

]
ψik(~r) = Eikψik(~r) (12)

with scalar and vector potentials Si and Vi, respectively. They are given by:

Si = giσΓσσ + giδΓδδ + S(R) (13)

Vi = giωΓωω0 + giρΓρρ0 + giγΓγ A0 + V(R) (14)

with factors gnσ = gpσ = gnω = gpω = −gnρ = gpρ = −gnδ = gpδ = gpγ = 1 and gnγ = 0 that
reflect the different coupling of neutrons and protons to the fields. Due to symmetries, only a single
component of the Lorentz vector and isospin vector fields remains; hence, the notation is simplified to
δ, ω0, ρ0 and A0 without an additional index for the isospin in the following.

The potentials (13) and (14) contain the rearrangement terms:

S(R) =
∂Γσ

∂n(s)

∣∣∣∣
n(v)

nσσ +
∂Γδ

∂n(s)

∣∣∣∣
n(v)

nδδ− ∂Γω

∂n(s)

∣∣∣∣
n(v)

nωω0 −
∂Γρ

∂n(s)

∣∣∣∣
n(v)

nρρ0 (15)

V(R) =
∂Γω

∂n(v)

∣∣∣∣
n(s)

nωω0 +
∂Γρ

∂n(v)

∣∣∣∣
n(s)

nρρ0 −
∂Γσ

∂n(v)

∣∣∣∣
n(s)

nσσ− ∂Γδ

∂n(v)

∣∣∣∣
n(s)

nδδ (16)

that arise due to the density dependence of the couplings Γj. These terms are identical for all particles
since the couplings depend only on the sum of the scalar and vector densities, n(s) and n(s) in the
present work. The source densities in Equations (15) and (16) are found from:

nj = ∑
i

gijn
(s)
i (17)

for scalar mesons j = σ, δ and:
nj = ∑

i
gijn

(v)
i (18)

for vector mesons j = ω, ρ by simple summations over the nucleons.
The energy density:

ε = 〈T00〉 = εnucleon + εfield (19)
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is obtained from the energy-momentum tensor Tµν where the brackets denote the summation over all
occupied states in the system. The contribution of the nucleons has the form:

εnucleon = ∑
i=n,p

∑
k

wikEikn(v)
ik (20)

and the contribution of the fields reads as:

εfield =
1
2

(
~∇σ · ~∇σ + m2

σσ2 + ~∇δ · ~∇δ + m2
δδ2 − ~∇ω0 · ~∇ω0 −m2

ωω2
0 (21)

−~∇ρ0 · ~∇ρ0 −m2
ρρ2

0 − ~∇A0 · ~∇A0

)
−V(R)n(v) − S(R)n(s) .

The energy density (19) is a functional of the nucleons (ψik, ψik), the fields (σ, ω0, δ, ρ, A0) and their
derivatives (~∇σ, ~∇ω0, ~∇δ, ~∇ρ0, ~∇A0). Similar to the Lagrangian density (4), it can be used to derive
the field equations:

−∆σ + m2
σσ = Γσnσ (22)

−∆δ + m2
δδ = Γδnδ (23)

−∆ω0 + m2
ωω0 = Γωnω (24)

−∆ρ0 + m2
ρρ0 = Γρnρ (25)

−∆A0 = Γγnγ (26)

with the source density:
nγ = ∑

i
giγn(v)

i (27)

in the Poisson Equation (26) for the electromagnetic potential A0.

2.2. Homogeneous Nuclear Matter

In this case, the theoretical description simplifies further. The solutions of the Dirac Equation (12)
are plane waves with momentum p and energy:

E(η)
i (p) =

√
p2 + (mi − Si)

2 + ηVi (28)

for particles (η = +1) and antiparticles (η = −1), which have to be included when finite temperatures
are considered. The meson fields and densities are constants in space. There is no contribution from
the electromagnetic field because the source density nγ is constant, and, thus A0 = 0. The energy
density can be written as:

ε = ∑
i=n,p

εkin
i +

1
2 ∑

j=σ,δ

(
Cj + n(s)D(s)

j

)
n2

j +
1
2 ∑

j=ω,ρ

(
Cj − n(s)D(s)

j

)
n2

j (29)

with the quantities:

Cj =
Γ2

j

m2
j

(30)

and:

D(s)
j =

∂Cj

∂n(s)

∣∣∣∣
n(v)

= 2
Γj

m2
j

∂Γj

∂n(s)

∣∣∣∣
n(v)

(31)
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and the kinetic contribution:

εkin
i = gi

∫ d3 p
(2π)3 ∑

η=±1

(
E(η)

i − ηVi

)
f (η)i (32)

in the continuum limit containing the degeneracy factor gi = 2 for the spin 1/2 nucleons.
Rearrangement contributions in the energy density (29) appear only if the couplings depend on
the scalar density n(s), i.e., D(s)

i 6= 0. The Fermi–Dirac distribution functions:

f (η)i =

[
exp

(
E(η)

i − ηµi

T

)
+ 1

]−1

(33)

in Equation (32) depend on the energy E(η)
i , the chemical potential µi and the temperature T.

These functions also appear in the vector and scalar densities:

n(v)
i = gi

∫ d3 p
(2π)3 ∑

η=±1
η f (η)i (34)

n(s)
i = gj

∫ d3 p
(2π)3

mD
j√

p2 +
(
mD

i
)2 ∑

η=±1
f (η)i (35)

with the Dirac effective mass:
mD

i = mi − Si . (36)

Additional thermodynamic quantities are easily calculated. The entropy density assumes the
standard form:

s = − ∑
i=n,p

gi

∫ d3 p
(2π)3 ∑

η=±1

[
f (η)i ln f (η)i +

(
1− f (η)i

)
ln
(

1− f (η)i

)]
. (37)

The pressure:

p =
1
3

3

∑
k=1
〈Tkk〉 (38)

can be obtained from the energy-momentum tensor. The result is identical to that of the
thermodynamic definition:

p = n2
B

∂(ε/nB)

∂nB

∣∣∣∣
T,δ

= Ts− ε + ∑
i=n,p

µin
(v)
i (39)

as a derivative of the energy density with respect to the total baryon density nB = n(v)
n + n(v)

p for

constant temperature T and isospin asymmetry δ = (n(v)
n − n(v)

p )/nb. The rearrangement terms are
essential for the thermodynamic consistency.

For vanishing temperature, as considered in most cases of this work, there are no antiparticle
contributions, and analytical results are available for the vector density:

n(v)
i =

gi
6π2 (p∗i )

3 (40)

with the Fermi momentum p∗i and the scalar density:

n(s)
i =

gimD
i

4π2

[
p∗i µ∗i −

(
mD

i

)2
ln

p∗i + µ∗i
mD

i

]
(41)
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with the effective chemical potential:

µ∗i = µi −Vi =

√(
p∗i
)2

+
(
mD

i
)2 . (42)

The expression (32) reduces to:

εkin
i =

1
4

[
3µ∗i n(v)

i + mD
i n(s)

i

]
(43)

and the pressure can be written as:

p = ∑
i=n,p

pkin
i −

1
2 ∑

j=σ,δ

(
Cj + n(s)D(s)

j + n(v)D(v)
j

)
n2

j +
1
2 ∑

j=ω,ρ

(
Cj + n(s)D(s)

j + n(v)D(v)
j

)
n2

j (44)

with:

D(v)
j =

∂Cj

∂n(v)

∣∣∣∣
n(s)

= 2
Γj

m2
j

∂Γj

∂n(v)

∣∣∣∣
n(s)

(45)

and the kinetic contribution:

pkin
i =

1
4

[
µ∗i n(v)

i −mD
i n(s)

i

]
. (46)

Obviously, the entropy density (37) vanishes for T = 0.

2.3. Finite Nuclei

The energy of a nucleus with N neutrons and Z protons in the RMF calculation is found as:

E(RMF)
N,Z = ∑

i=n,p
∑
k

wikEik +
∫

d3r εfield(~r) (47)

with single-particle energies Eik and corresponding occupation numbers wik of the single-particle
states k of nucleon i. They satisfy the normalization conditions:

N = ∑
k

wnk and Z = ∑
k

wpk . (48)

Using the field equations, the contribution of the meson and electromagnetic fields in Equation (47)
can be written as:

εfield(~r) =
1
2
(
Gσnσσ + Gδnδδ− Gωnωω0 − Gρnρρ0 − Γγnγ A0

)
(49)

with factors:

Gj = Γj + 2
∂Γj

∂n(v)

∣∣∣∣
n(s)

n(v) − 2
∂Γj

∂n(s)

∣∣∣∣
n(v)

n(s) (50)

that contain derivatives of the coupling functions.
In the present work, only spherical nuclei are considered. In this case, the single-particle wave

functions can be written as:

ψik(~r) =
1
r

(
Fiκk (r)Yκkmk (r̂)
iGiκk (r)Y−κkmk (r̂)

)
(51)

with real radial wave functions Fiκk and Giκk and spin-spherical harmonics Yκkmk . They depend on the
quantum number κk = (jk − lk)(2jk + 1) = ±1,±2, . . . , which determines the total angular momentum
jk = |κk| − 1/2 and the orbital angular momentum lk = |κk| − 1/2− κk/ |κk| of the state, and the
projection mk = −jk, . . . , jk, i.e., there is a 2jk + 1 = |κk|-fold degeneracy of the level with energy
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Eik. Assuming equal occupation of the sub-states, the vector and scalar single-particle densities are
given by:

n(v)
ik =

1
4πr2

[
|Fik(r)|2 + |Gik(r)|2

]
and n(s)

ik =
1

4πr2

[
|Fik(r)|2 − |Gik(r)|2

]
(52)

with the normalization: ∫
d3r n(v)

ik = 1 . (53)

This assures the sphericity of the source densities and potentials.
For a comparison with experimental data, the MF energy (47) and quantities related to the density

distributions have to be corrected. The Coulomb potential A0 in the calculation of the single-particle
wave functions of nucleus with Z protons is multiplied with a factor (Z− 1)/Z to have the correct
asymptotic dependence of the field when a proton is separated from the nucleus. This is necessary
because in the MF approximation, exchange terms are missing that would correct this error. A similar
correction for the meson fields is not applied because they are of short range.

Since the nuclear wave functions are fixed in the calculation to the origin of a spherical
coordinate system, the translation symmetry is broken and a center-of-mass correction has to be
applied. The energy (47) contains a ‘localization’ contribution E(cm)

N,Z that has to be subtracted. Here,
in a non-relativistic approximation, the expectation value:

E(cm)
N,Z = 〈

~̂P2

2MN,Z
〉 (54)

for the nucleus with A = N + Z nucleons with the total momentum ~̂P = ∑A
n=1 ~̂pn is used.

In the same spirit, a correction for the density distributions is implemented. In a first step, the point
particle distributions are converted to form factors by Fourier transformations. These are multiplied
by the correction factor:

fcm = exp

− 3q2

16E(cm)
N,Z MN,Z

 (55)

with MN,Z = Nmn + Zmp for momentum q and form factors for the charge distributions of neutrons
and protons if required. An inverse Fourier transformation yields the corrected distributions that can
be used, e.g., in the calculation of root-mean-square radii. Further corrections, e.g., from pairing or
particle-vibration couplings, are not taken into account. They can be considered in future extensions of
this work.

3. Parametrization of Couplings

The density-dependent couplings Γj for j = σ, δ, ω, ρ are the central quantities that determine the
quality of the relativistic density functional. They are usually written in the form:

Γj(n) = Γ(0)
j f j(x) (56)

with a constant coupling Γ(0)
j = Γj(nref) at a reference density nref and an arbitrary function f j that

depends on the ratio x = n/nref. The density n can be any density that is formed as a Lorentz scalar
from the single-particle wave functions ψi and ψj. The most frequent choice is a dependence on the
total vector density that reduces to the sum:

n(v) = 〈$v〉 = ∑
i=n,p

n(v)
i (57)
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with the total neutron and proton vector densities n(n)
n and n(n)

p , respectively, in a system at rest without
nucleon currents. In this work, also a dependence on the scalar density:

n(s) = 〈$s〉 = ∑
i=n,p

n(s)
i (58)

is explored that has been suggested already when the RMF model with DD couplings was
developed, but the quality of describing nuclear matter or finite nuclei was not examined in detail.
For a dependence on n(v), the reference density is chosen as the vector density at saturation n(v)

ref = n(v)
sat ,

whereas the scalar density at saturation n(s)
ref = n(s)

sat is used for a dependence on n(s).
The most widely-used form for f j is a rational function:

f j(x) = aj
1 + bj

(
x + dj

)2

1 + cj
(

x + dj
)2 (59)

with four parameters aj, bj, cj and dj. It was introduced in [8] for the couplings of the σ and ω meson
because such a function could describe very well effective density-dependent couplings that were
extracted from self-energies in Dirac–Brueckner calculations of nuclear matter. For the ρ meson,
a simple exponential form:

f j(x) = exp
[
−aj (x− 1)

]
(60)

with only one parameter ai was used in [8]. Subsequently, also other functions were devised.
For instance, a generalization of (60) as:

f j(x) = aj exp
[
−bj (x− 1)

]
− cj

(
x− dj

)
(61)

was used in [12] with also four parameters as in Equation (59). A specific feature of the functions (59)
and (60) is that they are well-behaved for x → ∞ approaching a constant ajbj/cj or zero, respectively.
In contrast, the function (61) diverges for cj 6= 0. A still different form was introduced in [13] as:

f j(x) = aj +
(

bj + djx3
)

exp
(
−cjx

)
(62)

for all mesons with an additional modification for the ω meson close to the saturation density. The latter
two functional forms will not be used in this work.

In order to reduce the number of free parameters in the rational function (59), several conditions
are demanded. First of all, it is required that f j(1) = 1. This fixes the first parameter in (59) as:

aj =
1 + cj

(
1 + dj

)2

1 + bj
(
1 + dj

)2 (63)

and leads to the fact that the prefactor in Equation (56) can really be identified with the value
of the coupling at the reference density nref. The function (60) automatically conforms to this
condition. In [8], a second condition was introduced, requiring that the curvature of the function (59)
vanishes at x = 0, i.e., the derivative is f ′′j (0) = 0. This is met if the relation 1 = 3cjd2

j holds.
In [8], only the solution with dj > 0 was explored, whereas the second possibility dj < 0 will be
investigated here, as well. Instead of introducing a condition for the second derivative of the function
f j at x = 0, the first derivative at this point can be set to a specific value as a third option. In this work,
the choice f ′j (0) = 0 is examined, corresponding to dj = 0. With these conditions on the function
at x = 0 and x = 1, the number of independent parameters reduces to two, one more than for the
exponential function (60).
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Several combinations for the choice of the density in the argument x, the functional form of the
function f j and the conditions on f j are explored in this work. In order to summarize these options in
a concise form, a three-letter abbreviation is introduced for the identification. There are three cases for
the first letter:

• ‘V’: dependence of all functions f j on x = n(v)/n(v)
ref ,

• ‘S’: dependence of all functions f j on x = n(s)/n(s)
ref ,

• ‘M’: dependence of fω and fρ on x = n(v)/n(v)
ref and fσ and fδ on x = n(s)/n(s)

ref .

The second letter indicates the condition on the rational function for the couplings of the ω and
σ mesons:

• ‘P’: f ′′j (0) = 0, dj > 0 (positive),
• ‘Z’: f ′j (0) = 0, dj = 0 (zero),
• ‘N’: f ′′j (0) = 0, dj < 0 (negative).

The last letter denotes the coupling of the ρ and δ mesons:

• ‘E’: exponential form (60) of the function f j,
• ‘R’: rational form (59) of the function f j with f ′j (0) = 0, dj = 0 and f ′j (1)/ f j(1) = f ′′j (1)/ f ′j (1).

The last condition of the case ‘R’ is motivated by the density dependence of the exponential
function close to x = 1 and reduces the number of independent parameters by one. In total, there are
3× 3× 2 = 18 different combinations of functions tested in this work.

4. Determination of Parameters and Couplings

As every phenomenological model, the RMF approach with DD couplings depends on a number
of parameters that need to be determined by a comparison of model predictions to experimental data.
The resulting values will depend on the chosen observables and the method of the fitting procedure.
In the present model, the parameters comprise the masses of the nucleons mi (i = n, p) and mesons
mj (j = σ, ω, δ, ρ), the couplings Γj(nref) of the mesons at the reference density, the parameters of the
functions f j and the electromagnetic coupling constant Γγ. Not all of them are assumed to be free
parameters that can be varied more-or-less arbitrarily.

The masses of the nucleons and of the mesons, except the σ meson, are taken as preassigned with
mn = 939.565413 MeV, mp = 938.272081 MeV, mω = 783 MeV, mρ = 763 MeV and mδ = 980 MeV.
The coupling Γγ is given by the experimental value. This leaves one mass (mσ), four couplings at the
reference density (Γj(nref)) and six parameters of the functions f j (two for two isoscalar and one for
two isovector mesons) as free parameters of the model. Thus, in total, there are at most 11 parameters
that have to be determined. In this work, a contribution of the δ meson will not be considered, hence
there are Npara = 9 free parameters left, which are denoted by pk in the following. In the actual
fitting procedure, the six parameters for the couplings of the isoscalar mesons are not used directly
because they are highly correlated. Instead, they are replaced by the characteristic values of nuclear
matter parameters, i.e., the saturation density, the binding energy per nucleon and the effective mass
at saturation, the incompressibility and two parameters related to the ratios of the coupling function
f ′ω(nref)/ fω(nref) and f ′′ω(nref)/ f ′ω(nref). The conversion between these parameter sets is analytic and
easily implemented.

The actual set of parameter values {pk} is obtained from a least-squares fit by minimizing
the function:

χ2({pk}) =
Ndata

∑
n=1

[
O(exp)

n −O(model)
n ({pk})

∆On

]2

(64)

in the multidimensional parameter space. The χ2 function is a summation of contributions from Ndata

observables, comparing experimental data O(exp)
n with the parameter-dependent model values O(model)

n
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and weighted by the inverse of an assigned uncertainty ∆On. The latter are not the experimental
errors, but values that reflect the hopefully achievable uncertainties of the model. The relative size
for different observables also determines their relative importance in the fit. The selection of the
observables and their uncertainties directly influences the results. There are different approaches
to set up the fitting protocol. In this work, only observables of finite nuclei are considered, but no
data that are derived more indirectly like nuclear matter parameters. This choice is motivated by the
perception that data should be included that are close to the experimental determination and that
show a different sensitivity to the various model parameters. In the parameter fits presented in this
work, binding energies of nuclei, data related to the charge form factor and spin-orbit splittings are
used as observables as far as available for a set of 12 magic and semi-magic nuclei. See Table 1 for the
selected nuclei, observables and the assumed uncertainties. In principle, a larger set of nuclei could
be included in the fit, but the calculation time would increase substantially. However, the selected
set already contains sufficient information to determine the parameters and to allow a comparison of
different functional forms of the density-dependent couplings.

Table 1. Selected nuclei and values of experimental observables used in the fitting procedure:
binding energies per nucleon BE/A, charge radii rcharge, diffraction radii rdiff, surface thicknesses

σsurf and spin-orbit splittings ∆(n)
so (nl) and ∆(p)

so (nl) for neutron and proton levels, respectively,
with principal quantum number n and orbital angular momentum l. The last line gives the
assumed uncertainties.

Nucleus AZ BE/A (MeV) rcharge (fm) rdiff (fm) σsurf (fm) ∆
(n)
so (nl) (MeV) ∆

(p)
so (nl) (MeV)

16O 7.976206 2.7013 2.7642 0.8508 6.18 (0p) 6.32 (0p)
24O 7.039685 − − − − −

40Ca 8.551303 3.4764 3.8495 0.9682 − −
48Ca 8.666686 3.4738 3.9633 0.8903 2.02 (1p), 8.39 (0f) −
56Ni 8.642779 − − − 1.11 (0f), 7.16 (0f) −
68Ni 8.682466 − − − − −
90Zr 8.709969 4.2696 5.0399 0.9573 − 1.51 (1p)

100Sn 8.252974 − − − − −
114Sn 8.522566 4.6103 − − − −
132Sn 8.354872 4.7093 − − − 1.48 (1d), 6.14(0g)
140Ce 8.376317 4.8770 − − 0.475 (2p), 5.88 (0h) −
208Pb 7.867453 5.5010 6.7760 0.9190 0.898 (2p) 1.33 (1d), 5.55 (0h)

uncertainty 0.1/A 0.01 0.01 0.005 0.1 0.1

The binding energies are taken from the 2016 atomic mass evaluation (AME2016) [16]. Information
on the size of a nucleus and the density distribution is encoded in the charge form factor F(q).
It determines the charge radius rcharge, the diffraction radius rdiff and the surface thickness σsurf.
These three quantities are related to the curvature of F at momentum transfer q = 0, the position of
the first zero and the height of the second extremum. For details, see [17]. The most recent updated
values for charge radii are taken from [18]. Diffraction radii and surface thicknesses are extracted from
charge form factors calculated with charge distributions of nuclei in [19]. Spin-orbit splittings are
deduced from the level spectra of the nuclei included in the fit and their neighbors; see [20]. There is,
however, sometimes an ambiguity in extracting the level energies due to their uncertain identification
and possible level splittings. In all cases, absolute errors for the observables are employed, in particular
for the total binding energy, because a percentage error, as used, e.g., in [9] or [11], would determine
the energy of a light nucleus like 16O much more precisely than that of a heavy nucleus like 208Pb.

The parameters of the obtained best fits are given in Appendix A in Tables A1–A3 for the vector,
scalar and mixed functional dependencies of the couplings on the densities. The quality of the fits can be
assessed from the quantity χ2/Ndof with the number of degrees of freedom Ndof = Ndata− Npara = 35.
Explicit values are given in Table 2. They are much larger than one, indicating that the assumed
errors (see Table 1) are estimated too small. This is particularly true for the binding energies BE and
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can be seen from their root-mean-square errors ∆BE that are also presented in Table 2. The results
are very similar for all parametrizations without a strong preference for a particular functional form
of the density dependence of the couplings. Perhaps the pure vector density dependence has a
small advantage.

Table 2. Quality of the parametrizations measured with the quantities χ2 per number of degrees of
freedom Ndof = Ndata − Npara and the root-mean-square error ∆BE of the binding energy.

Parametrization χ2/Ndof ∆BE (MeV)

VPE 96.3 1.497
VZE 92.6 1.456
VNE 91.6 1.369
VPR 96.9 1.504
VZR 93.1 1.461
VNR 92.2 1.382

SPE 97.1 1.520
SZE 94.3 1.481
SNE 96.6 1.436
SPR 97.6 1.522
SZR 94.7 1.491
SNR 96.7 1.439

MPE 98.0 1.520
MZE 96.9 1.493
MNE 96.9 1.436
MPR 98.5 1.523
MZR 97.1 1.494
MNR 97.7 1.453

Larger differences between the parametrizations are seen when the density dependencies of the
couplings are compared for a wide range of densities. The couplings of the ω, σ, and ρ meson are
depicted in Figure 1. The parametrizations of the ω meson couplings with dω > 0 and dω = 0 (full and
dashed lines in Panel (a) of Figure 1) show a smooth decreasing trend with increasing density without
a strong variation. In contrast, the functional form of Γω for parametrizations with dω < 0 (dotted lines
in Panel (a) of Figure 1) is very different with a minimum at densities slightly above the nuclear
saturation density and a strong increase for larger densities, in particular for the vector (light and dark
blue lines) and scalar (light and dark green lines) dependencies. A less strong increase is observed for
a mixed dependency (orange and red lines). There is no strong influence on the ω meson coupling
from the choice of the functional form of the ρ meson coupling, whether exponential or rational.
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Figure 1. Density dependence of the meson-nucleon coupling Γj on the vector density n(v) or scalar
density n(s) for the ω meson (a), σ meson (b) and ρ meson (c). The coding of the lines is given in the
legend on the right.
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The density dependencies of the σ meson couplings, depicted in Panel (b) of Figure 1, show a very
similar pattern as the ω meson couplings. The main differences are the somewhat smaller absolute
values. Again, the parametrizations with dσ < 0 stick out with a rising trend of the couplings at
high densities.

The density dependence of the ρ meson couplings, shown in Panel (c) of Figure 1, is almost the
same for all parametrizations. There is a slightly larger spread at densities above saturation, but in
all cases, a decrease of the coupling with increasing density is obtained. The difference between the
exponential and rational form of the functions can be recognized in the region close to zero density.

5. Properties of Nuclear Matter and Equation of State

Studying the EoS allows a further comparison of the different parametrizations. The nuclear
matter parameters that characterize the EoS close to the saturation point and the EoS for symmetric
matter and neutron matter can be examined. The density dependence of the symmetry energy is of
particular interest for astrophysical applications.

5.1. Nuclear Matter Parameters

The energy per nucleon can be written as a power series:

E(nB, δ) = E0(nB) + Esym(nB)δ
2 +O(δ4) (65)

in squares of the isospin asymmetry:

δ =
n(v)

n − n(v)
p

nB
, (66)

which depends on the difference between the neutron and proton vector densities. Here, the
neutron-proton mass difference is neglected in the expansion. The first contribution in Equation (65) is
the energy per nucleon in symmetric nuclear matter:

E0(nB) = mnuc − Bsat +
1
2

Kx2 +
1
6

Qx3 + . . . (67)

that only depends on the total baryon density:

nB = n(v)
n + n(v)

p . (68)

It can be expanded close to the saturation point in powers of:

x =
nB − nsat

3nsat
(69)

measuring the deviation from the saturation density nsat. Similarly, the symmetry energy can be
expanded as:

Esym(nB) = J + Lx +
1
2

Ksymx2 + . . . (70)

with explicit terms up to second order in x. The coefficients in Equation (67) are the average nucleon
mass, mnuc = (mn + mp)/2, the binding energy per nucleon at saturation, Bsat, the incompressibility,
K, and the skewness, Q. There is no term linear in x because the expansion is around the minimum
of the energy in symmetric matter where the pressure vanishes. The coefficients in (70) are the
symmetry energy at saturation, J, the slope parameter, L, and the symmetry incompressibility, Ksym.
All coefficients can be obtained from appropriate derivatives of the energy per nucleon E(nB, δ) with
respect to nB and δ at n(v)

n = n(v)
p = nsat/2.

The six characteristic nuclear parameters together with the saturation density, nsat, are presented
in Table 3 for all 18 models of the present study. In addition, the average Dirac effective mass
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mD
av = (mD

n + mD
p )/2, cf. Equation (36), in symmetric nuclear matter and the average Landau effective

mass mL
av = (mL

n + mL
p)/2, which is related to the density of states at the Fermi energy, are given in

units of the average nuclear mass in a vacuum, mnuc. Here, the definition:

mL
i =

√(
p∗i
)2

+
(
mD

i
)2 (71)

of the Landau effective mass with the Fermi momentum p∗i is used. The data are compared to
average values, including uncertainty ranges, of more than 200 existing parametrizations of the
Skyrme–Hartree–Fock (SHF) and RMF models collected in [3] and [5], respectively.

Table 3. Nuclear matter parameters of the DD-RMF parametrizations determined in Section 4 in
comparison with averages of Skyrme–Hartree–Fock (SHF) and RMF models.

Parameter Set nsat (fm−3) Bsat (MeV) K (MeV) Q (MeV) J (MeV) L (MeV) Ksym (MeV) mD
av (mnuc) mL

av (mnuc)

VPE 0.15126 16.076 245.56 339.98 32.283 54.406 −89.093 0.57610 0.63835
VZE 0.15137 16.058 244.54 789.59 32.375 55.316 −82.197 0.57337 0.63592
VNE 0.15111 16.024 261.93 3203.71 31.836 50.421 20.421 0.54927 0.61420
VPR 0.15093 16.073 244.34 293.93 31.952 43.917 −76.208 0.57631 0.63846
VZR 0.15105 16.053 242.56 749.43 32.021 44.612 −70.045 0.57291 0.63542
VNR 0.15082 16.022 256.72 2969.10 31.498 39.611 37.600 0.55041 0.61515
SPE 0.15114 16.102 262.00 655.76 32.532 61.888 −21.728 0.58713 0.64829
SZE 0.15104 16.077 257.90 998.37 32.601 62.321 −24.294 0.58261 0.64418
SNE 0.15004 16.040 252.88 2028.14 32.109 57.186 29.789 0.55683 0.62069
SPR 0.15082 16.097 256.92 560.89 32.207 51.913 −10.488 0.58637 0.64723
SZR 0.15068 16.069 253.78 929.49 32.238 52.002 −12.901 0.58073 0.64238
SNR 0.14983 16.038 250.53 1942.60 31.769 47.103 50.326 0.55783 0.62153
MPE 0.15100 16.099 242.79 223.14 32.507 58.424 −78.658 0.58042 0.64218
MZE 0.15086 16.085 241.49 861.46 32.570 58.925 −70.031 0.57331 0.63572
MNE 0.15097 16.091 279.57 2261.71 32.390 55.086 −36.126 0.55375 0.61817
MPR 0.15070 16.093 240.71 173.89 32.184 48.000 −71.984 0.57911 0.64092
MZR 0.15058 16.079 240.50 826.01 32.193 48.254 −62.835 0.57216 0.63462
MNR 0.15068 16.088 262.79 1678.00 32.093 45.411 −35.555 0.55747 0.62144

SHF av. [3] 0.160 ± 0.005 15.96 ± 0.31 246 ± 41 −328 ± 158 31.2 ± 6.7 41.9 ± 36.1 −186 ± 127 0.830 ± 0.143
RMF av. [5] 0.152 ± 0.008 16.13 ± 0.51 271 ± 86 −160 ± 710 33.4 ± 4.7 91.2 ± 24.3 11 ± 83 0.668 ± 0.086

The scattering of the nsat and Bsat values in the present RMF parametrizations is rather small,
and the obtained data are consistent with the expectations from previous RMF models, but lower
than the average value of SHF models. A larger spread is obtained for the incompressibilities, K, but
their values are within the error bands of SHF and RMF models. A precise determination of K from
fits to properties of nuclei seems to be difficult. A recent comprehensive analysis of experimental
information on giant monopole resonances in [21] indicated an acceptable range of 250 MeV ≤ K ≤
315 MeV, which is on the high side of the values from the present fits. The values for the skewness Q
span a wide range with a clear correlation with the sign of the dj parameters for the ω and σ meson,
i.e., the constraint on the function (59) at zero density. This fact becomes even more evident when the
correlation of the incompressibility K with the skewness Q is investigated as shown in Panel (a) of
Figure 2. For dω > 0 and dσ > 0, the values of Q are the lowest of all parametrizations (diamonds),
but for dω < 0 and dσ < 0, they are the highest (squares). The sets with dω = 0 and dσ = 0 (circles) are
in between. At the same time, there is a systematic trend of larger K values with smaller dj parameters.
The large positive values for Q indicate that the EoS of symmetric matter will be rather stiff at high
baryon densities. From the inspection of Tables A1–A3, also a clear correlation of the mass of the
σ meson with the sign of the dj parameter for j = ω, σ is found. Negative values of dj prefer to be
associated with the largest σ meson masses.

The different parametrizations predict symmetry energies at saturation J within a narrow range,
similar as for the Bsat values. The data are close to the values expected from SHF and RMF models and
inside the uncertainty band. The extracted slope parameters, L, cover a somewhat larger range that
is more consistent with SHF parametrizations than the average of the RMF models. Certain trends
can also be seen in the L-J correlation plot in Panel (b) of Figure 2. If models with exponential (E)
and rational (R) density dependence of the ρ meson are compared separately, there is an indication
that values for L are systematically larger for models with pure scalar density dependence of the
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couplings and smaller for models with pure vector density dependence. Models with a mixed density
dependence lie in between. On the other hand, there is the trend that ‘E’ models have on average a
larger slope parameter L than ‘R’ models.
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Figure 2. Correlation of the incompressibility K with the skewness Q in (a) and of the symmetry energy
J with the slope parameter L in (b).

A large spread of the symmetry incompressibilities Ksym is seen in Table 3, and even the sign
of Ksym cannot be determined unambiguously. Again, a systematic variation is observed as for the
skewness Q or the slope parameter L. The obtained values for Ksym are consistent on the whole
with those of the SHF and RMF models in the compilations. The Dirac and Landau effective masses
at saturation, mD

av and mL
av, are systematically lower as compared to the averages of the RMF and

SHF models. This observation is correlated with spin-orbit splittings that are predicted on average
somewhat larger than in the experiment.

5.2. Equation of State and Symmetry Energy

The different functional forms of the couplings, as depicted in Figure 1, also influence the equation
of state. Here, we consider two cases for T = 0. The EoS of symmetric nuclear matter is shown in
Panel (a) of Figure 3. For nucleon densities below approximately 0.2 fm−3, all parametrizations
predict energies per baryon that are practically indistinguishable. Only at higher densities can
different trends be seen. The most prominent feature is the large stiffness of parametrizations
with negative dω and dσ and the strong increase of the energy per nucleon with increasing density.
This behavior is expected because of the high values of the skewness parameter Q, cf. Table 3. A similar
observation is made for the case of pure neutron matter, shown in Panel (b) of Figure 3. The curves for
parametrizations with negative dj again stick out because they are the stiffest. All other lines are within
a band that corresponds to a softer neutron matter EoS. At densities below saturation, the curves are
almost identical.

The density dependence of the symmetry energy Esym is also easily extracted from the general EoS.
It is depicted in Figure 4 for all parametrizations of the present work. There are only small differences
between the curves for densities below approximately 0.12 fm−3. Larger variations are found at higher
densities, but a different systematics is observed as compared to the EoS of symmetric matter or of
neutron matter. Parametrizations with a pure dependence of the couplings on scalar densities predict
the stiffest symmetry energy on average, whereas models with a vector densities dependence display
the softest symmetry energies. This observation is consistent with the ordering of the models in Panel
(b) of Figure 2. Parametrizations with larger values of J and L give stiffer symmetry energies; however,
this is partly compensated by smaller values of the symmetry incompressibility Ksym.
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Figure 3. Equation of state of symmetric nuclear matter in (a) and of pure neutron matter in (b) for
T = 0. The coding of the lines is the same as in Figure 1.
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Figure 4. Dependence of the symmetry energy on the baryon density. The coding of the lines is the
same as in Figure 1.

The results clearly show that a fit of parametrizations to properties of finite nuclei fix the EoS at
sub-saturation densities fairly well, but the extrapolation to higher densities depends strongly on the
functional form of the couplings and the choice of the argument, i.e., whether a scalar or vector density
dependence is used.

6. Constraints on the Density Dependence of the Couplings

The selection of a particular density as the argument of the couplings Γj has also consequences
for the EoS under specific conditions. This can serve as a criterion to exclude some parametrizations.
Two particular cases can be distinguished: a dependence of the vector meson couplings on the scalar
densities and a dependence of the scalar meson couplings on the vector densities. In the following,
only symmetric matter is considered to keep the discussion simple.

Usually, the scalar densities n(s)
i and the Dirac effective masses mD

i are larger than zero. However,

if the couplings depend on the total scalar density n(s) = n(s)
n + n(s)

p , there are solutions possible

where mD
i and n(s)

i vanish at some finite total vector density n(v) = nω. The couplings and thus the
functions (30) in general have a smooth dependence on the density. The scalar potential (13) at zero
scalar densities n(s)

i is given by the rearrangement term only as:

Si = −
1
2

D(s)
ω (0)n2

ω (72)
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with the derivative (31) of the ω meson coupling function since n(s) = nσ = 0 in this case. If D(s)
ω (0) < 0,

the Dirac effective mass (36) becomes zero for mi = Si, and there is a limiting (vector) density:

n(lim)
i =

√
− 2mi

D(s)
ω (0)

(73)

up to which the EoS can be calculated in the model for a particle i. This density is usually much larger
than typical vector densities considered in applications of the model. However, in order to avoid
the problem of a collapsing effective mass, the coupling of the ω meson should have a non-negative
derivative at density zero, i.e., D(s)

ω (0) ≥ 0, if it depends on the scalar density. This condition would
exclude parametrizations SPE, SNE, SPR and SNR.

Antiparticles contribute differently than particles to the vector and scalar densities (34) and (35),
respectively. In the former case, their densities partly cancel, and in the latter case, they add to the
total contribution of a particle species i (sum over η). For vanishing baryon densities, i.e., n(v)

i = 0 for
all nucleons i, the effective chemical potentials µ∗i = µi −Vi have to vanish and the vector potentials

ω0 and ρ0 in Equation (14) are zero, as well. However, the scalar densities n(s)
i are positive at finite

temperature and rise with increasing T. Hence, the scalar potential σ is finite. If the couplings of the
scalar mesons depend on the total vector density n(v), the vector potentials have a contribution from
the rearrangement terms. For symmetric nuclear matter, they are given by:

Vi = −
1
2

D(v)
σ (0)n2

σ (74)

with the derivative (45) of the σ meson coupling function. If the derivative D(v)
σ (0) is unequal zero,

the chemical potential µi = Vi is finite and not zero as expected from the condition of vanishing
vector densities. The mismatch between the conditions n(v)

i = 0 and µi = 0 becomes more severe
with increasing temperature. This feature can be avoided by excluding the parametrizations VPE,
VNE, VPR, VNR and VZE to guarantee that the derivative of the vector meson couplings are zero at
vanishing total baryon density. The only the parametrization VZR is admitted.

The two problems above do not appear for the M parametrizations where the couplings of
vector (scalar) mesons depend only on vector (scalar) densities. This form of modeling the effective
in-medium interaction closely corresponds to the structure of most of the earlier RMF models with NL
self-interactions of the mesons. In these approaches, there are no cross-terms of σ and ω contributions
in the Lagrangian density. Only self-couplings of the form:

Lσ
NL =

A
3

σ3 +
B
4

σ4 (75)

and:
Lω

NL = −C
4
(
ωµωµ

)2 (76)

were considered additionally in Equation (4), cf. [5]. This leads to field equations:

−∆σ + m2
σσ = Γσnσ + Aσ2 + Bσ3 (77)

−∆ω0 + m2
ωω0 = Γωnω + Cω3

0 (78)

for the σ and ω mesons without a cross-coupling. Couplings of the form ωµωµ~ρν ·~ρν, which were
introduced later in some models to modify the density dependence of the isovector part of the
interaction, also do not violate the vector-scalar separation.

Taking the above considerations into account, only the SZE, SZR, VZR and all M parametrizations
are really viable since they do not show the identified problems.
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7. Conclusions and Outlook

Relativistic mean-field models are widely-used phenomenological approaches to describe the
properties of nuclear matter and finite nuclei. Within a subclass of these models, i.e., those with
density-dependent meson-nucleon couplings, the effects of choosing different functional forms of the
dependence on vector or scalar particle densities were studied going beyond the standard choice of
functions and assumed vector density dependence. The model parameters were obtained in all cases
by a fit to observables of a selected set of spherical nuclei.

Despite the differences of the obtained energy density functionals, the description of nuclei has
practically the same quality for all parametrizations, and the equations of state of symmetric nuclear
matter and pure nuclear matter below the nuclear saturation density look very similar. In contrast,
differences in some of the characteristic nuclear matter parameters and the equations of state above
saturation are found. This is most evident for the incompressibility K and the skewness Q that correlate
with the dj parameter of the rational function used for the density dependence of the isoscalar mesons.
The differences in the nuclear matter parameters are reflected in the high-density behavior of the
equations of state. Similarly, there is a connection between the symmetry energy at saturation J,
the slope parameter L and the choice of the argument, i.e., scalar or vector density. This also affects the
stiffness of the symmetry energy. Robust constraints at densities above nuclear saturation are clearly
needed to select proper parametrizations for further applications of the model.

Some of the parametrizations studied in this work can lead to problems, e.g., the breakdown of
the description of nuclear matter at a finite baryon density or the non-vanishing of the baryon chemical
potential at finite temperature and zero baryon density. As a consequence, certain combinations
of functional forms and arguments for the density dependence of the couplings have to be rejected,
in particular those where the couplings of the vector mesons depend on the scalar density with negative
derivative or couplings of scalar mesons depending on vector densities.

In the present study, only models with σ, ω and ρ mesons were considered. In a next step,
also the δ meson should be included, which could affect particularly the density dependence of the
symmetry energy at high baryon densities. Furthermore, the effect of tensor couplings of the vector
mesons with the nucleons could be investigated. In this study, no mechanism for taking care of pairing
effects was included in the description. All these future extensions of the model will increase the
number of independent parameters, and a more extensive fitting procedure is required. Furthermore,
the selection of observables and the size of their uncertainties can be reconsidered and will affect the
final predictions of the models.
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The following abbreviations are used in this manuscript:

DD density dependent
EDF energy density functional
EoS equation of state
MF mean-field
RMF relativistic mean-field

Appendix A

Explicit values of the mass of the σ meson, the reference densities, the meson couplings at the
reference densities and the parameters of the functions (59) and (60) are given in Tables A1–A3 for
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the three types of density dependence considered in this work. The parameters aj of the rational
function (59) are not specified since they are determined by Relation (63).

Table A1. Parameter sets from the fitting of DD-RMF models with different vector density dependencies
of the couplings to observables of nuclei.

Quantity Unit VPE VZE VNE VPR VZR VNR

mσ (MeV) 544.929443 545.650146 547.930176 545.250793 545.902039 547.892944
n(v)

ref (fm−3) 0.15125801 0.15137400 0.15110700 0.15093000 0.15105100 0.15081701
n(s)

ref (fm−3) 0.14202256 0.14204837 0.14106791 0.14173270 0.14174370 0.14084541
Γω(n

(v)
ref ) 12.972373 13.020596 13.496406 12.983727 13.045012 13.488939

bω 0.57019352 1.46252795 0.68803968 0.54474910 1.44323308 0.67084499
cω 0.84003228 1.87156006 0.23379376 0.80836122 1.86275602 0.23111957
dω 0.62992869 0.00000000 −1.19405109 0.64215022 0.00000000 −1.20093918

Γσ(n
(v)
ref ) 10.407099 10.453366 10.826948 10.421222 10.475092 10.821014

bσ 0.79862873 1.65747024 0.63412221 0.75851162 1.62304354 0.61917590
cσ 1.16565166 2.11264687 0.23312610 1.11268608 2.08245333 0.23041316
dσ 0.53475515 0.00000000 −1.19575973 0.54733478 0.00000000 −1.20277872

Γρ(n
(v)
ref ) 3.7115331 3.7116771 3.5528619 3.6746919 3.6691670 3.5159609

aρ 0.52801299 0.51739597 0.58847803
bρ 0.09405180 0.09647980 0.07125765
cρ 0.70658221 0.70070777 0.76516974
dρ 0.00000000 0.00000000 0.00000000

Table A2. Parameter sets from the fitting of DD-RMF models with different scalar density dependencies
of the couplings to observables of nuclei.

Quantity Unit SPE SZE SNE SPR SZR SNR

mσ (MeV) 545.769470 546.731262 549.089600 546.156250 547.086670 549.015686
n(v)

ref (fm−3) 0.15114300 0.15103699 0.150036011 0.15082000 0.15068200 0.14982501
n(s)

ref (fm−3) 0.14222754 0.14200704 0.14034841 0.14191435 0.14163363 0.14018976
Γω(n

(s)
ref ) 12.877718 12.961755 13.448970 12.906400 13.011437 13.442950

bω 0.34433303 1.22405089 0.59939861 0.31660607 1.20055525 0.58959910
cω 0.45505569 1.48060171 0.21432481 0.43186581 1.48483466 0.21315500
dω 0.85586861 0.00000000 −1.2471069 0.87854692 0.00000000 −1.25052278

Γσ(n
(s)
ref ) 10.359062 10.434348 10.817383 10.386197 10.475372 10.811744

bσ 0.77548245 1.52648887 0.55598902 0.67921564 1.45332485 0.54781176
cσ 1.02922672 1.86306504 0.21340776 0.92070349 1.80410166 0.21224707
dσ 0.56909379 0.00000000 −1.24978201 0.60169926 0.00000000 −1.25319461

Γρ(n
(s)
ref ) 3.7855101 3.7817090 3.6446130 3.7468100 3.7345510 3.6057999

aρ 0.51056999 0.50244099 0.56340599
bρ 0.09957897 0.10043021 0.078787928
cρ 0.69330517 0.69129044 0.74509791
dρ 0.00000000 0.00000000 0.00000000

Table A3. Parameter sets from the fitting of DD-RMF models with different mixed density dependencies
of the couplings to observables of nuclei.

Quantity Unit MPE MZE MNE MPR MZR MNR

mσ (MeV) 559.114136 565.282898 576.317200 559.953247 566.147888 574.627319
n(v)

ref (fm−3) 0.15099899 0.15085800 0.15096600 0.15069900 0.15058200 0.15068200
n(s)

ref (fm−3) 0.14191137 0.14158116 0.14108534 0.14160347 0.14129915 0.14094776
Γω(n

(v)
ref ) 13.578379 13.975589 14.915496 13.652579 14.043028 14.754153

bω 0.19582295 0.72600089 0.28596668 0.19212490 0.71202843 0.26145579
cω 0.27781695 0.92047055 0.11996222 0.27806993 0.91056398 0.11418520
dω 1.09536788 0.00000000 −1.66692911 1.09486950 0.00000000 −1.70857665

Γσ(n
(s)
ref ) 11.105234 11.513437 12.439312 11.174674 11.579861 12.281559

bσ 0.44211615 0.86901217 0.26729911 0.40997002 0.84117733 0.24893623
cσ 0.60234364 1.08798782 0.11847203 0.56723353 1.06039115 0.11436181
dσ 0.74390454 0.00000000 −1.67738000 0.76658166 0.00000000 −1.70725688

Γρ(n
(v)
ref ) 3.7624700 3.7491491 3.6506290 3.7212999 3.7004030 3.6302810

aρ 0.48768699 0.47859299 0.51697201
bρ 0.10766657 0.10917221 0.099700492
cρ 0.67447743 0.67104831 0.69301708
dρ 0.00000000 0.00000000 0.00000000
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9. Nikšić, T.; Vretenar, D.; Finelli, P.; Ring, P. Relativistic Hartree-Bogolyubov model with density dependent

meson nucleon couplings. Phys. Rev. 2002, C66, 024306, doi:10.1103/PhysRevC.66.024306.
10. Long, W.H.; Meng, J.; Van Giai, N.; Zhou, S.G. New effective interactions in RMF theory with nonlinear terms

and density dependent meson nucleon coupling. Phys. Rev. 2004, C69, 034319, doi:10.1103/PhysRevC.69.034319.
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