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Abstract: Alzheimer’s disease (AD) is one of the major causes of dementia and its incidence repre-
sents approximately 60–70% of all dementia cases worldwide. Many theories have been proposed 
to describe the pathological events in AD, including deterioration in cognitive function, accumula-
tion of β-amyloid, and tau protein hyperphosphorylation. Infection as well as various cellular 
molecules, such as apolipoprotein, micro-RNA, calcium, ghrelin receptor, and probiotics, are as-
sociated with the disruption of β-amyloid and tau protein hemostasis. This review gives an over-
view on the integrative cellular and signaling molecules that could play a complementary role in 
the dysregulation of β-amyloid and tau proteins. 
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1. Introduction 
Alzheimer’s disease (AD) is the most frequent cause of dementia, accounting for 60–

70% of all cases globally [1,2]. In 2019, AD was ranked the sixth most common cause of 
death in the US, while in 2020 and 2021 AD was the seventh leading cause of death in the 
US [3]. Furthermore, AD is the fifth most common cause of death in US citizens aged 65 
and older [4]. Various molecular theories have been proposed to explain the pathological 
events in AD, including the accumulation of β-amyloid and hyperphosphorylation and 
aggregation of tau protein. The disruption of β-amyloid and tau protein hemostasis are 
associated with several cellular molecules and interactions, such as apolipoprotein, mi-
cro-RNA, calcium, and ghrelin receptor (GHSR1α). Gut microflora and infection are also 
associated with their dysregulation. This review will shed a light on the integrating cel-
lular and signaling molecules that may have a complementary role in β-amyloid and tau 
protein dysregulation (Figure 1). 
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Figure 1. Different molecular modalities and signaling pathways intersecting with β-amyloid and 
tau protein in AD. β-amyloid plaques affect several pathways that may contribute to AD progres-
sion. For example, they facilitate Ca2+permeation, eventually leading to neurotoxicity, and increase 
the extent of inflammation via microglial and astrocyte activation. Furthermore, β-amyloid coun-
teracts the protective effect of GHSR1α and causes cerebral capillary vasocontraction while poten-
tiating tau phosphorylation. Tau hyperphosphorylation has a role in AD etiology together with 
infection and apolipoprotein E-4 (ApoE-4). Probiotics demonstrate protective effects. 

2. β-Amyloid in Alzheimer’s Disease 
β-amyloid (Aβ) aggregation has long been thought to be a key and first event in the 

etiology of Alzheimer’s disease. Amyloid protein precursors (APPs) are enzymatically 
cleaved into Aβ peptides that range in length from 38 to 43 amino acids [5], giving rise to 
oligomers, polymers, and eventually insoluble amyloid aggregates upon linking with 
each other [6]. Aβ released by neurons, then enters the bloodstream and cerebrospinal 
fluid (CSF), with clearance mechanisms preventing Aβ deposition physiologically. 
However, the imbalance between Aβ production and clearance can result in its sedi-
mentation [6], causing synaptic and neuronal dysregulation [7,8], and eventually con-
tributing to AD pathogenesis [9,10]. Furthermore, the relationship between apoptosis and 
Aβ have been investigated, for example, Yao et al. [11] showed that Aβ affect the expres-
sion of Bcl2 family proteins. Aβ significantly reduce expression of the antiapoptotic pro-
teins, Bcl-w and Bcl-xL, together with increasing the mitochondrial release of second mi-
tochondrion-derived activator of caspase (Smac) [11]. Han et al. [12] reported that Aβ 
induces apoptosis via promoting mitochondrial fission, disrupting mitochondrial mem-
brane potential, increasing intracellular reactive oxygen species (ROS) level, and acti-
vating the process of mitophagy. Barrantes et al. [13] also showed that Aβ 42 causes DNA 
strand breaks, leading to p53-mediated apoptosis. 

3. Tau Protein and Formation of Neurofibrillary Tangles 
Neurofibrillary pathology is one of the most common characteristics of AD, and in-

cludes neurotic plaques, neurofibrillary tangles, and threads generated by tau protein 
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aggregation, which is a microtubule-associated protein [6]. In pathological situations, tau 
undergoes hyperphosphorylation, forming insoluble fibers (“paired helical filaments”) 
[14]. Hyperphosphorylated paired helical filaments combine to generate neurofibrillary 
tangles (NFTs). 

Physiologically, tau phosphorylation is controlled by the balance between kinases 
and phosphatases [14,15]. This balance can be disrupted via oxidative stress and through 
an increase in the activity of protein kinases, mainly glycogen synthase kinase 3 
(GSK-3𝛽), which has been shown to be upregulated in AD [15]. Furthermore, the reduced 
phosphatase activity in the brain of AD patients can augment the hyperphosphorylation 
induced by protein kinases [16,17]. 

Lovell et al. [18] has shown that tau phosphorylation is significantly increased with 
higher GSK-3𝛽 activity in primary rat cortical neuron cultures, stimulated through cu-
prizone, a copper chelator, in combination with oxidative stress (Fe2+/H2O2) [18]. Moreo-
ver, they demonstrated a reduction in tau hyperphosphorylation through the inhibition 
of GSK-3𝛽 activity with lithium, as confirmed by transglutaminase 3 staining [18]. Con-
sistently with Lovell et al., Su et al. [19] showed that a fragment of tau protein possesses 
copper reduction activity, initiating the copper-mediated generation of hydrogen per-
oxide. The generated hydrogen peroxide has been shown to increase GSK-3𝛽 activity, 
causing tau hyperphosphorylation in human embryonic renal cells 293 [17]. 

Tau hyperphosphorylation also affects the stability of microtubules, resulting in 
axonal and neural dysfunction [20]. Therefore, many efforts have been made to utilize 
microtubule-stabilizing drugs in AD. For example, Zhang et al. [21] showed that the 
administration of paclitaxel in mouse models with tau pathology restored fast axonal 
transport in spinal axons and improved motor impairment. Recently, Zhang et al. [22] 
showed that triazolopyrimidine, a microtubule-stabilizing drug, significantly lowered 
tau pathology and improved cognitive function in transgenic mouse models of tauopa-
thy. 

4. Prion-Like Conformation of β-Amyloid and Tau Proteins 
Prion protein (PrPSc) is a unique protein form that has enhanced infectivity, 

self-replication ability, and persistent survival—even in the denaturing conditions of the 
gut. In humans, prions can cause different neuronal disorders, including Creutzfeldt–
Jakob disease (CJD), and fatal familial insomnia (FFI) [23], which can either develop 
spontaneously from hereditary factors or as a result of infection. 

Aβ aggregates into different forms, including polymorphic amyloid fibrils and a 
variety of intermediate assemblies, including oligomers and protofibrils [24]. Several 
studies reported that Aβ spreads through the brain in a harmful configuration similar to 
PrPSc [25]. Condello et al. demonstrated that the injection of brain-derived Aβ from AD 
patients into the brains of transgenic mice exhibited a prion-like appearance [26] together 
with significant Aβ deposition. In addition, in the human brain prion-like Aβ forms in 
one or more regions before spreading to other regions, suggesting cross-synaptic trans-
mission [27]. Pignataro et al. [28] discussed different findings to explain how Aβ spreads 
through the brain regions. One hypothesis mentioned by Pignataro et al. [28] is that Aβ 
can spread in the AD brain by advancing through synaptically connected regions since 
Aβ is released from synaptic terminals, thus making brain nodes vulnerable to Aβ ac-
cumulation. 

Tau protein has been reported to spread in a prion-like manner in the brain, alt-
hough earlier investigations focused mainly on total insoluble tau, as the presence of NFT 
correlates with the degree of brain atrophy and cognitive impairment in AD [29]. Clifford 
et al. reported that low activity of prion-like tau has been linked to extended life spans. 
Furthermore, they showed that both prion-like Aβ and prion-like tau proteins were 
found in 100 postmortem brain tissue samples from patients who died of AD [30]. Levels 
of both prion-like Aβ and prion-like tau are reported to be associated with age and 
dysregulation in production or clearance [27], however, more investigation is still re-
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quired to uncover the mechanisms by which prion-like Aβ and prion-like tau proteins 
spread through the brain regions, in addition to the ability to target these conformations. 

5. The Intervention of Glial Cells in β-Amyloid and Tau Protein Dysregulation 
5.1. Astrocytes 

Various neuronal cells, including astrocytes and microglia, help in maintaining the 
physiological levels of Aβ and tau protein. Astrocytes are specialized glial cells that con-
struct the central nervous system (CNS) scaffold and can be found in two forms: fibrous 
(mostly in white matter) and protoplasmic (mostly in gray matter) [31]. Astrocytes con-
tribute to various physiological activities, including fluid maintenance, cerebral blood 
flow regulation, neurotransmitter balance, and synaptic hemostasis [32]. Astrocytes also 
constitute the glymphatic system, which eliminates neurotoxic waste products such as 
amyloid and tau species [33]. Astrocytes, which are near amyloid plaques in human 
brains, have been found to contain amyloid-containing granules, implying that astrocytes 
work to remove amyloid accumulation during the disease progression [34]. In vitro and 
in vivo investigations have revealed that astrocytes move towards amyloid plaques and 
work to clear Aβ aggregation [35]. 

Astrocytes have two major phenotypes: A1, which is neurotoxic, and A2, which is 
thought to be protective. A1 astrocytes are expressed by activation of inflammatory cas-
cades, mainly through NF-κB induction, a finding that is supported by the abundance of 
A1 astrocytes in postmortem brain tissues from persons with AD [36]. On the other hand, 
the A2 phenotype is induced by ischemia through activation of signal transducers and 
activators of the transcription 3 (STAT3) pathway. The neurotoxic A1 cells are marked by 
the expression of inflammatory mediators, while the protective A2 cells are marked by 
the expression of neurotrophic factors [37]. 

Interestingly, in animal models of AD, reactive astrocytes were discovered to release 
excessive GABA and glutamate, leading to impaired memory and synaptic loss [38]. 
Moreover, these cells contributed to microcirculation dysregulation and disruption of the 
blood–brain barrier (BBB), which facilitated Aβ accumulation and therefore disease pro-
gression [39]. Different molecules have been studied as possible treatments of AD 
through modulation of astrocyte phenotypes. One of these molecules is minocycline, 
where its intrathecal injection drastically downregulated A1 and upregulated A2 astro-
cyte levels [40,41]. 

5.2. Microglia 
Microglia are innate immune cells of the myeloid lineage that exist in the CNS. Mi-

croglial activity is thought to be involved in CNS development, maturation, and senes-
cence via the modulation of different regulatory networks [42]. Microglia play critical 
roles in neuronal apoptosis, synaptic maintenance, immune surveillance, and develop-
mental synaptic pruning, in which the process of removing embryonic excess synapses 
improves the effectiveness of the neural network [42,43]. Dysregulated synaptic pruning 
is thought to be linked to autism disorders; moreover, it may be associated with weak-
ened immune surveillance functions found in various neurodegenerative diseases 
[44,45]. 

Microglia express pattern recognition receptors (PRRs) recognizing two types of 
ligands: pathogen-associated molecular patterns (PAMPs) and damage-associated mo-
lecular patterns (DAMPs, including Aβ species). These receptors are responsible for 
triggering a microglial response in the presence of an exogenous or endogenous patho-
logical insult [46]. The pathogenic species are then internalized by activated microglia via 
pinocytosis, phagocytosis, or receptor-mediated endocytosis. Through such endocytic 
processes, microglia attempt to degrade such pathogens and insults, additionally acti-
vating the release of various molecules, including interferons and chemokine receptors 
[47]. This process generally ceases once the immunological stimulus is removed, howev-
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er, microglia have functional impairments and may be persistently activated in older 
brains, playing a role in AD pathogenesis [48]. 

Under pathological conditions, the morphology of microglia changes depending on 
the stage of the disease. In mouse models of AD, transcriptomic investigations have re-
vealed that disease development is mirrored in microglia by progressive changes from a 
homeostatic to a disease-associated state, including less branching, which limits their 
surveillance functions [49]. The transition to the latter stage is often associated with the 
downregulation of homeostatic genes and upregulation of AD-associated genes, includ-
ing apolipoprotein E (ApoE), protein tyrosine kinase binding protein (TYROBP), and 
triggering receptor expressed on myeloid cells 2 (TREM2) [50]. TREM2 plays a critical 
role in microglial activation processes, suggesting its possible role in the pathogenesis of 
neuronal disorders [51]. These studies confirmed the effects of aging on the human mi-
croglial phenotypes, including the downregulation of genes encoding cytoskeleton pro-
teins, adhesion molecules, and cell surface receptors as well as the upregulation of certain 
genes, such as chemokine receptor type 4 (CXCR4), vascular endothelial growth factor 4 
(VEGF4), and interleukin-15 (IL-15) [52]. 

5.3. Cellular Cross Talk between Astrocyte and Microglia 
Aβ has been found to stimulate the NF-κB pathway in astrocytes, increasing com-

plement C3 release, which then causes neuronal impairment and microglial activation 
[53]. The activated microglia secrete several factors, including interleukin 1 alpha (IL-1α), 
tumor necrosis factor (TNF), and complement component 1q (C1q), inducing astrocyte 
differentiation to the A1 phenotype [36]. Under AD inflammatory conditions, the inter-
play between astrocytes and microglia may generate a positive feedback loop, causing an 
inflammatory response [54]. 

6. Aβ Effect on the Cerebral Capillaries in Alzheimer’s Disease 
Angiogenesis abnormalities and decreased cerebral blood flow are considered to be 

the initial changes in early AD [55,56]. According to several studies, blood vessels in the 
brains of AD patients are connected inaccurately, causing a 42% reduction in gray matter 
blood flow. In animal experiments, exogenous Aβ has also been shown to diminish cer-
ebral blood flow [27,57]. Nortley et al. demonstrated that Aβ accumulation caused vaso-
constriction of brain capillaries by about 8.1% and reduced the energy supply in brains of 
AD patients, resulting in a reduction of the blood flow by 50%, which is approximate to 
the 42% drop that is reported in the gray matter of AD patients [58]. Aβ oligomer also 
participates significantly in the production of ROS, mostly by reduced nicotinamide ad-
enine dinucleotide phosphate oxidase 4 (NOX4), and causes the release of endothelin 
(ET)-1, which subsequently binds to ETA receptors to cause pericyte contraction [58]. 
Pericytes become rigid and necrotic, producing persistent capillary constriction and is-
chemia. The vasoconstriction mechanism suggests that several prospective medications 
for the early treatment of Alzheimer’s disease can prevent blood vessel contraction, in-
cluding the vasodilator C-type natriuretic peptide (CNP) and the NOX4 inhibitor 
GKT137831 [58]. 

7. Aβ Reaction with Hippocampal Ghrelin/GHSR1α in Alzheimer’s Disease 
Growth hormone secretagogue receptor 1α (GHSR1α) (or ghrelin receptor) is a 

member of the G protein-coupled receptor (GPCR) family, which is known for its unique 
role in the hippocampus [59] by affecting eating-associated behaviors in the healthy 
hippocampus [60]. Furthermore, GHSR1α regulates the dopamine receptor D1 (DRD1), 
which mediates the activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) 
through the noncanonical Gαq-Ca2+ signaling pathway, which is important for hippo-
campus synaptic physiology and memory function [59,60]. Hippocampal lesions are one 
of the first lesions to occur in AD [61] and they have been linked to GHSR1α. The 
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dysregulation of GHSR1α has a significant impact on metabolic processes and calcium 
signaling of the hippocampus, both of which are associated with the deterioration of 
synaptic and memory functions in AD patients [62]. 

Interestingly, Aβ has been shown to interact with GHSR1α, inhibiting both GHSR1α 
activation and GHSR1a/DRD1 heterodimerization, causing hippocampus synaptic injury 
and memory impairments [63,64]. Thus, GHSR1α may represent a potential therapeutic 
target in AD. In animal and cell culture models, the GHSR1α agonists MK0677 and 
LY444711 demonstrated protective effects [65,66]; however, MK0677 failed to show clin-
ical significance in AD patients. It has been shown that activating GHSR1α and DRD1 
simultaneously with their selective agonists MK0677 and SKF81297, respectively, pro-
tects hippocampus synaptic and cognitive functions in AD mice models from 
Aβ-deleterious effects [63]. Moreover, the dual activation of GHSR1α and DRD1 stimu-
lates neurogenesis in the dentate gyrus of AD mice models [62,63,67]. These data indicate 
the critical role of the GHSR1α signaling pathway in AD. 

8. The Potential Role of Apolipoprotein in Alzheimer’s Pathogenesis 
Apolipoprotein E (ApoE) is a major cholesterol carrier that regulates lipid homeo-

stasis by mediating lipid transportation from one tissue or cell type to another. In the 
periphery, ApoE is produced by the liver and macrophages. In the CNS, ApoE is pro-
duced mainly by astrocytes, transporting cholesterol to neurons via ApoE receptors, 
which are members of the low-density lipoprotein receptor (LDLR) family [68]. ApoE has 
been shown to influence several processes in the brain, including synaptic integrity, 
glucose metabolism, and cerebrovascular function [69]. ApoE has different isoforms, in-
cluding ApoE-1, 2, 3, and 4, with ApoE-4 playing an important role in AD development 
[70]. 

Different mechanisms for Aβ clearance are possible in the CNS, such as perivascular 
drainage and proteolytic degradation of Aβ by proteases [71]. Among these mecha-
nisms, ApoE isoforms play roles in Aβ clearance from the brain interstitial fluid, which 
are mediated via ApoE-2 or ApoE-3. This is not the case with ApoE-4 [72,73]. In vivo 
studies revealed that both VLDLR and LRP1 cleared ApoE-2/Aβ and ApoE-3/Aβ com-
plexes at the blood–brain barrier, while ApoE-4 bound to Aβ altered the clearance path-
way from LRP1 to the VLDL receptor (VLDLR) [74]. VLDLR promotes the internaliza-
tion of the ApoE/Aβ complex at a slower rate than LRP1, contributing to the delayed 
clearance of Aβ [74]. ApoE-4 also influences other Aβ-degrading proteases, including 
neprilysin metalloprotease and insulin-degrading enzyme [71]. Miners et al. [75] and 
Cook et al. [76] have shown that AD patients who have at least one copy of ApoE-4 
showed reduced expression of neprilysin in brain parenchyma and vasculature and 
downregulation in insulin-degrading enzyme level in the hippocampus [75,76]. One of 
the major Aβ clearance mechanisms is the cellular absorption and subsequent break-
down of Aβ by glial cells. Lin et al. recently showed that ApoE-4 homozygous astrocytes 
demonstrated reduced absorption of Aβ 1–42 relative to ApoE-3 homozygous astrocytes 
in vitro. Furthermore, in human induced pluripotent stem cells (iPSC)-derived micro-
glia-like cells, Aβ clearance was observed to be reduced in the cells that expressed Ap-
oE-4 compared to those that expressed ApoE-3 [73]. 

Interestingly, Christensen et al. [77] observed that ApoE-4 is highly expressed in 
postmortem brain tissues from individuals with AD. Furthermore, this protein is thought 
to enhance intraneuronal Aβ accumulation [77], plaque deposition in the brain paren-
chyma [78], generation of Aβ oligomers [79], and the severity of cerebral amyloid angi-
opathy [80]. In mouse models of AD disease, Rodriguez et al. [81] showed that ApoE-4 
enhanced microglial reactivity towards Aβ plaques, while Shi et al. [82] showed that 
ApoE-4 boosted proinflammatory activation and neurodegeneration of the microglia in  
tau-overexpressing transgenic mouse models [82]. Shi et al. [83] found that ApoE-4 con-
tributes to changes in lipid structures on the microglial cell membranes, causing greater 
occurrences of the disease-associated microglia phenotype and deterioration of AD 



Neuroglia 2023, 4 197 
 

 

pathogenesis and neurodegeneration, with these changes potentially being related to 
TREM2 [83]. 

Interestingly, the ApoE-4 genotype contributes to age-related decreases in brain 
glucose metabolism and affects insulin signaling independently of Aβ. Cerebral glucose 
hypometabolism is an early indicator of AD that can be found in presymptomatic people 
before disease onset [84]. Several epidemiological studies have reported that there are 
differences in insulin signaling in the brains of AD patients compared to normal controls 
[85]. Therefore, diabetes and midlife insulin resistance are potential risk factors for AD 
[86]. Furthermore, brain peroxisome proliferator-activated receptor (PPARγ) and PPAR 
coactivator 1 (PGC1α) signaling, which are important in the control of glucose metabo-
lism and uptake, are downregulated in ApoE-4 gene-targeted replacement mice in com-
parison to ApoE-2 gene-targeted replacement mice [87]. In addition, ApoE-4 
gene-targeted replacement mice exhibited more severe cognitive impairment, reduced 
cerebral blood volume, decreased glucose absorption, and altered insulin signaling after 
being fed a high-fat diet [88]. ApoE-4-targeted replacement mice also have changes in 
brain insulin signaling and insulin resistance [88]. Zhao et al. [88] showed that ApoE-4 
binds to insulin receptors and traps them in endosomes, causing insulin receptor sig-
naling to be disrupted [88]. 

These findings highlight the critical role of ApoE-4 in AD pathogenesis and its pos-
sibility to serve as a novel therapeutic target, which indeed requires further investiga-
tions. 

9. Calcium as a Playmaker in Alzheimer’s Disease 
Recently, the association between calcium and Aβ has attracted huge attention. Re-

cent studies showed that Aβ affects several types of voltage-gated calcium channels 
(VGCCs) via facilitating Ca2+ passage through the plasma membrane, increasing 
postsynaptic calcium burden and eventually contributing to excitotoxic neurodegenera-
tion [89,90]. Glutamate also plays a role, as Ca2+ influx via VGCCs (N and P/Q types) di-
rectly triggers spontaneous glutamate release [91]. Furthermore, calcium entry at 
postsynaptic locations is facilitated by glutamate via L-type calcium channels and 
NMDA receptor channels. Aβ aids in the opening of the NMDA receptor, enabling an 
increase in the intracellular Ca2+ concentration [89,90]. Memantine is an NMDA receptor 
antagonist drug that counteracts the effect of glutamate and consequently treats the AD 
symptoms [92]. 

9.1. Calcium Channels 
One of the major reasons for disruption of Ca2+ hemostasis is the excessive Ca2+ in-

flux through the L-type VGCC, which has been linked to AD etiology and thus makes 
these channels an effective target to help AD patients. Nimodipine, an L-type VGCC in-
hibitor, is being investigated for the treatment of senile dementia, including AD [93]. 
Another L-type VGCC inhibitor, nilvadipine, has been shown to lower Aβ levels and is 
currently being tested in a phase III clinical trial [94]. Furthermore, the L-type VGCC in-
hibitors, including isradipine, verapamil, diltiazem, and nifedipine, are suggested to 
have neuroprotective advantages [90,95], however, their efficacies in AD patients require 
further investigations. 

ST101, a new cognitive enhancer that targets T-type VGCCs, has been shown to be 
beneficial for AD treatment [96]. In neuropathological injury and disease mouse models, 
ST101 enhanced synaptic plasticity, learning, and memory functions, most likely via in-
creasing acetylcholine and dopamine release [96]. ST101 has also been reported to de-
crease Aβ levels in AD mice through inhibition of Aβ generation [97]. 

A plasma membrane Ca2+ channel, Ca2+ homeostasis modulator protein 1 
(CALHM1), is significantly expressed in hippocampus neurons [98] and has been linked 
recently to AD etiology. Dreses-Werringloer et al. [99] showed that CALHM1 expresses a 
multipass transmembrane glycoprotein that controls the cerebral cytosolic Ca2+ concen-
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trations and Aβ levels. Vingtdeux et al. [100] demonstrated the role of CALHM1 in Aβ 
clearance, as CALHM1 increases the extracellular secretion of Aβ, which is then degraded 
by insulin-degrading enzyme (IDE). CALHM1 genetic variations have been associated 
with the onset of AD via disrupting Ca2+ hemostasis and Aβ levels [98,101–103]. 

9.2. Intracellular Calcium 
Emerging evidence suggests that the disruption of intracellular Ca2+ homeostasis, 

particularly aberrant and excessive Ca2+ release, plays a key role in AD neuropathology 
and has been associated with memory impairment and cognitive dysfunction [104]. 

Ca2+ release from the endoplasmic reticulum (ER) has been shown to be increased in 
AD neurons [105] and several molecular mechanisms have been proposed to explain this 
excessive release. Among these mechanisms, presenilins (PS1 and PS2) has attracted 
attention as, upon alteration, they are recognized as deterministic genes that cause AD 
[106]. PS1 and PS2 are found in cellular membranes, including the ER [107], and comprise 
the catalytic core of the secretase complex. The secretase complex is responsible for 
cleaving APPs and therefore controlling Aβ levels [108]. PS mutations have been shown 
to disrupt the normal cleavage of APP and eventually Aβ production [108,109]. Fur-
thermore, synaptic dysfunction in AD results from PS mutations, affecting Ca2+ homeo-
stasis. Cumulative evidence shows that the proteins encoded by mutated PS1 and PS2 
interact with inositol triphosphate receptor (InsP3R), ryanodine receptor (RyR), sar-
co-endoplasmic reticulum calcium ATPase (SERCA) pump, ER and phospholipase. These 
interactions increase the overall sensitivity to calcium or the opening probability for cal-
cium entry into the cell, thus increasing intracellular Ca2+ concentration [110–114]. 
Pharmacological targeting of InsP3R and RyR using xestospongin and dantrolene, re-
spectively, restored the Ca2+ hemostasis and protected cells from apoptosis produced by 
Aβ [115,116]. RyR modulators, including RyCals and carvedilol, improved neuronal 
plasticity and synaptic transmission in AD mice models [117]. 

The sarcoplasmic reticulum has also been linked to Aβ formation via SERCA pump, 
which is critical for sequestering excessive cytoplasmic calcium. Emerging evidence has 
shown that SERCA activity is altered in AD. Inhibition of SERCA, either pharmacologi-
cally via thapsigargin or genetically, regulated Ca2+ and reduced Aβ levels, suggesting 
that targeting SERCA could be a viable strategy in AD treatment [115]. 

10. The Role of MicroRNA-137 in the Onset and Progression of Alzheimer’s Disease 
MicroRNA-137 is an endogenous noncoding short molecule RNA that plays a role in 

the development and function of the nervous system. Interestingly, low levels of it have 
been associated with the onset and progression of AD [118]. Siegert et al.[119] showed 
that microRNA-137 inhibits extracellular Aβ sedimentation, controls calcium homeosta-
sis, and regulates tau phosphorylation, suggesting its role in delaying the onset of AD. 
Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid metabolism and in-
volved in ceramide and Aβ production, consisting of three subunits: serine palmito-
yltransferase long chain 1 (SPTLC1), SPTLC2 and SPTLC3 [120–122]. SPTs contribute to 
Aβ production and eventually the death of neurons when levels are elevated via 
posttranscriptional regulation. MicroRNA-137 decreases Aβ production through 
posttranscriptional regulation of SPTLC1, giving it a protective effect [123,124]. Moreo-
ver, microRNA-137 corrects calcium dysregulation induced by CaV1.2 (L-type volt-
age-dependent calcium channel) overexpression [125]. Recently, Jiang et al. [126] showed 
that microRNA-137 inhibited the hyperphosphorylation of tau protein, with a possible 
effect on the L-type voltage-gated calcium channel subunit alpha-1C together with its 
associated gene CACNA1C [126,127]. 
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11. Gut Microbiota and Alzheimer’s Disease 
Recently, gut microbiota have attracted extensive attention because of their roles as 

critical regulators in various central processes, including immunological function, met-
abolic homeostasis, and neurological disorders [128]. The most studied probiotics belong 
to the genera Lactobacillus and Bifidobacterium, with some members that are natural oc-
cupants of the gut microbiota. In a recent clinical trial, Akbari et al. [129] showed that 
probiotic administration for 12 weeks causes a significant improvement in the cognitive 
function of AD patients, as assessed by the Mini-Mental State Examination (MMSE) [129]. 

Among the various fermentation products generated by the gut are short-chain fatty 
acids (SCFAs), including acetate, butyrate, lactate, and propionate [130]. In late-stage AD 
mouse models, an enteric bacterial metabolite, butyrate, has been found to block histone 
deacetylation (HDAc) and improve memory performance [131]. Nankova et al. [132] 
showed that butyrate and propionate have neuroprotective effects using PC12 cells, 
which have been widely employed as a general in vitro model to evaluate neuronal 
damage and neurotoxicity in AD [133]. In addition, they showed that SCFAs significantly 
lowered the expression of APPs [132]. Consistently with Nankova et al. [132], Kobayashi 
et al. [134] showed that the oral administration of Bifidobacterium breve strain A1 partially 
alleviated the cognitive decline of Aβ-induced AD mice [134]. Ho et al. [135] also showed 
that certain SCFAs effectively suppressed the production of detrimental Aβ aggregates 
[135]. 

In congruence with the protective effects of SCFAs, Smith et al. showed beneficial 
effects for SCFAs on immunity, as probiotic acetate supplementation demonstrated a 
reduction in neuroglia activation and proinflammatory cytokine expression in neu-
ro-inflammatory rat models [136,137]. Moreover, SCFAs play a significant role in the 
maturation and activities of microglia [138]. It has also been reported that SCFAs modu-
late numerous signaling pathways, including NF-κB inhibition, HDAc inhibition, and 
activation of GPCRs [139]. In addition to signaling pathways, SCFAs cause modifications 
in cytokine production; alter the distribution and activity of natural killer cells, macro-
phages, granulocytes, and T cells; and promote mucosal and systemic antibody responses 
[137]. 

SCFAs have also been shown to control neurotransmitter production and neu-
rotrophic genes, such as brain-derived neurotrophic factor (BDNF) and nerve growth 
factors [140,141]. BDNF signaling was found to be reduced in both the brain and the se-
rum of AD patients [92]. This reduction in BDNF signaling was reversed by probiotic 
administration, as observed in rodent models [52,95,96]. These findings imply that SCFAs 
may modify crucial molecular signals, forming a network between gut microbiota and 
the host. 

SCFAs are also well known for their significant anti-inflammatory effects [139]. Re-
cently, probiotic utilization to target gut commensals was reported to reduce age-related 
inflammation and cognitive impairment [142]. The probiotic mixture SLAB51, consisting 
of Streptococcus thermophilus (DSM 32245), B. lactis (DSM 32246), B. lactis (DSM 32247), L. 
acidophilus (DSM 32241), L. helveticus (DSM 32242), L. paracasei (DSM 32243), L. plantarum 
(DSM 32244), and L. brevis (DSM 27961) [143], modified the microbial communities in 
3xTg-AD mice, showing an increase in the proportions of Bifidobacterium spp. [144]. These 
findings imply that these bacteria may play a role in the regulation of inflammation in 
AD. The lower plasma concentrations of proinflammatory cytokines in AD animals 
treated with SLAB51 support this theory [144]. Furthermore, certain Bifidobacterium 
strains demonstrate anti-inflammatory capabilities through the inhibition of proinflam-
matory cytokine production by lipopolysaccharide-stimulated macrophages [145]. 

12. Infection and Alzheimer’s Disease 
Inflammation is confirmed to take place in AD brain tissue, as evidenced by the ac-

tivation of microglia and complement system components [146]. Aβ has been reported to 
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act as an antimicrobial peptide that surrounds invaders in the brain and accumulate, 
forming plaques to protect it from further damage [147].  However, after APP mutations, 
the Aβ antimicrobial role is lost, increasing the extent of infection [27,148]. 

One of the suspected pathogenic factors in AD is the herpes virus. Herpes virus 
mediates Aβ accumulation and neuronal degeneration via suppressing miR-155 and 
HHV-6A. Additionally, herpes virus modifies several AD risk genes, including APBB2 
and BACE1 [149]. Another pathogen, Candida albicans, which is responsible for oral ulcer 
infection, has been shown to cause a gelatinous granuloma, similar to AD, causing Aβ 
plaques and memory impairment [150]. The pathogen Porphyromonas gingivalis (P. gingi-
valis), which causes chronic periodontitis (CP), has also been linked to the formation of 
Aβ plaques. Upon infecting mice with P. gingivalis, the production of the harmful Aβ 1–
42 increased with the activation of the complement pathway in the brain [148,151–153]. 
Moreover, the lipopolysaccharide of P. gingivalis has also been reported in the human AD 
brain, together with the high expression of gingipain, a P. gingivalis virulence factor 
[27,148,154]. P. gingivalis has been also linked to human ApoE [154], tau phosphorylation 
[27,155], and reduction in innate immune function. These data strongly suggest the pos-
sible role of P. gingivalis in the pathogenesis of AD, making P. gingivalis and gingipain 
possible effective targets in AD [27,154]. 

13. Conclusions 
The pathogenic roles of Aβ and/or tau protein are associated with various complex 

events in brain tissues, including cellular interaction and molecular crosstalk. For exam-
ple, astrocyte differentiation and microglial response to immunomodulatory molecules 
play important roles in the development of the pathogenic functioning of Aβ and/or tau 
protein. Other macro- and micromolecules, such as GHSR1α, ApoE-4, calcium, H2O2, and 
some microRNAmolecules, potentially modulated Aβ and tau expression and affected 
disease progression in experimental and clinical studies. Furthermore, infection and gut 
microbiota have been recently linked to Aβ and tau protein dysregulation. 

Although there is controversy over whether Aβ and/or tau protein are among the 
major causes of AD pathogenesis [156–158], many drugs that target them are being in-
vestigated in various clinical trials, with lecanemab and aducanumab approved recently 
by the FDA (Table 1). 

Furthermore, many studies have emerged recently discussing different hypotheses 
for Aβ and/or tau protein nucleation, for example, Kanaan et al. [159] showed that tau 
undergoes liquid–liquid phase separation and forms dynamic liquid droplets. These 
droplets serve as seeds for tau aggregation [160]. 

Table 1. Clinical trials involving β-amyloid and tau protein-targeted drugs. 

Drug Action References/Clinical Trials 

ALZT-OP1a + ALZT-OP1b Amyloid-related and antineu-
roinflammatory 

NCT02547818, [161] 

Plasma exchange with al-
bumin 1 immunoglobulin 

Removes amyloid NCT01561053, [161] 

AADvac-1 Tau immunotherapy [162,163], NCT02579252, NCT03174886 
ACI-35 Tau immunotherapy ISRCTN13033912, NCT04445831, [164] 

ANAVEX2–73 
Anti-tau, anti-amyloid, and an-

tineuroinflammatory NCT03790709, [161] 

GV-971 Amyloid-related NCT02293915, [161] 
Crenezumab Removes amyloid NCT02670083, NCT03114657, NCT03491150, [161] 

E2609 (elenbecestat) Reduces amyloid production NCT02956486, NCT03036280, [161] 
BIIB076 Tau immunotherapy NCT03056729 
RG7345 Tau immunotherapy NCT02281786 



Neuroglia 2023, 4 201 
 

 

PNT001 Tau immunotherapy NCT04096287, NCT04677829 

Gantenerumab Removes amyloid 

NCT02294851, NCT02460094, NCT02658916, 
NCT03068468, NCT03352557, NCT03658135, 
NCT02051608, NCT01224106, NCT03444870, 

NCT03443973. 

Solanezumab Removes amyloid and prevent 
aggregation 

NCT01760005, NCT02008357, [161] 

Semorinemab Extracellular tau NCT02820896, NCT03289143, NCT03828747 

Bepranemab Tau immunotherapy 
NCT03464227, NCT03605082, NCT04185415, 

NCT04658199, NCT04867616 
JNJ-63733657 Tau immunotherapy NCT03375697, NCT03689153, NCT04619420. 
Zagotenemab Tau immunotherapy NCT02754830, NCT03019536, NCT03518073 
Lu AF87908 Tau immunotherapy NCT04149860 

E2814 Tau immunotherapy NCT04231513 

Tilavonemab Tau immunotherapy 
NCT02494024, NCT03413319, NCT02985879, 
NCT03391765, NCT03744546, NCT02880956, 

NCT03712787. 
Donanemab Amyloid-related NCT04437511 

Lecanemab 
Blocks the formation of amyloid 

plaques in the brain FDA-approved, NCT03887455 

Remternetug 
Anti-amyloid, immunomodu-

lator NCT05463731 

Aducanumab Anti-amyloid FDA-approved, NCT02477800, [165] 
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