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Abstract: As the speed of high-speed trains increases, the vehicle’s lateral stability steadily deteri-
orates. There have been observations of abnormal vibrations in the tail car, particularly on certain
sections of the railway line. This study built a high-speed train aerodynamic simulation model for
a three-car consist, and a multibody dynamics simulation model for an eight-car consist based on
numerical simulations of train aerodynamics and multibody dynamics. It investigated both steady
and unsteady aerodynamic loads, flow field characteristics, and the dynamic performance of vehicles
under varied aerodynamic loads at 400 km/h. The results indicate that the aerodynamic loads gener-
ated during high-speed train operation exhibit highly unsteady characteristics. Steady aerodynamic
loads have a relatively minor impact on the vehicle’s dynamic performance, whereas unsteady loads
exert a more significant influence. Under unsteady aerodynamic forces, the tail car experiences severe
lateral vibrations. The lateral stability index, displacement, velocity, and acceleration of the tail car
under unsteady conditions were measured at 2.26, 7.54 mm, and 0.53 m/s2, respectively. These values
represent increases of over 17.71%, 148.84%, and 111.24%, respectively, compared to the steady loads.
Large oscillation amplitudes result in more significant lateral displacements and accelerations of the
vehicle. This phenomenon is a crucial factor contributing to the “tail swing” effect observed in high-
speed trains. This study emphasizes the importance of considering unsteady aerodynamic effects in
assessing the lateral stability of high-speed trains and highlights the significance of mitigating the
adverse impacts of such dynamic responses, particularly in the tail car.

Keywords: high-speed train; unsteady aerodynamic load; lateral stability; coupled resonance;
numerical simulation

1. Introduction

The continuous increase in railway operating speeds has posed severe obstacles
to railroad safety. Poor lateral stability during train operation on specific rail lines has
grown increasingly common in recent years. In some cases, the train’s rear end’s stability
deteriorates dramatically in comparison to the front end, resulting in pronounced lateral
oscillations that significantly reduce passenger and crew comfort. Once such periodic
lateral oscillations appear at the rear end, they are difficult to self-attenuate, even after
leaving specific track sections. High-speed trains (HST), characterized by their high length-
to-diameter ratio and operation in proximity to the ground, experience complex turbulent
vortex structures in the near-wake region. In contrast to the front end of the train, the
oscillatory aerodynamic forces generated by these vortex structures lead to reduced lateral
stability at the rear of the train. Consequently, recognizing the impact of aerodynamic loads
on the abnormal lateral oscillations of the tail car of HST has become a critical technological
challenge that must be overcome to enhance railway speeds.

As operational speeds have increased, the coupling effects between HSTs and the
surrounding air environment have become increasingly severe [1,2]. In recent years, re-
searchers have principally focused on HST fluid–structure coupling dynamics [3], with an
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emphasis on examining the impact of vortex structures in the surrounding flow field on
the dynamic performance of these trains. Tian’s research [4] discovered that vortices are
formed predominantly by complicated surface discontinuities and regions of considerable
curvature. Vortex distributions were discovered to be localized in the bogies and inside
the wake region. The presence of vortices beneath the train has a substantial impact on
the train’s lateral stability during the hunting of HST. Hemida et al.’s observation [5] that
enormous vortex formations shed in the HST‘s wake zone during crosswinds significantly
affect the unsteady aerodynamic forces. The lateral vibrations of the vehicle are exacerbated
because the aerodynamic forces produced by vortex shedding in the wake region oscillate
at a frequency that closely matches the train’s lateral vibration frequency. For ICE2-type
trains, they also performed Strouhal number analysis. Experiments revealed that the com-
plicated airflow patterns in tunnel environments had a considerable influence on the lateral
translation and yawing motion of the train’s rear. Diedrichs et al. [6] conducted a compara-
tive aerodynamic analysis within tunnels for the ICE2 and 300 series Shinkansen trains,
concluding that the deterioration of train stability is caused by low-frequency unstable
airflow prompted by minimal clearances between the train and tunnel walls. Jeon et al. [7]
observed substantial swaying of the HEMU-430X train during operation and demonstrated
that efficient vibration reduction could be obtained by modifying the placements of anti-
hunting dampers and increasing damping. Gao et al. [8] developed a 42-degree-of-freedom
vehicle dynamics model, indicating that the vertical vibrations of the car body greatly
increase when unstable aerodynamic loads and random track excitations are coupled.
Yao et al. [9] constructed a lateral vehicle dynamics model and used it in conjunction with
a semi-empirical nonlinear vortex-induced vibration model to simulate fluid–structure
coupling lateral dynamics during vortex-induced vibrations. They investigated relevant
mitigating techniques, such as modifications in vehicle suspension characteristics, to under-
stand the process of rear-end lateral vibrations caused by vortex shedding-induced body
vortex vibrations. Liu et al. [10,11] explored carbody vibrations under various conditions
using physical experiments and simulations. According to their results, train body vibra-
tions mostly manifest as low-frequency rolling and lateral swaying under the influence of
aerodynamic forces, with the tail vortex also experiencing vertical oscillations due to train
body rolling. Ji et al. [12] proposed a fluid–structure coupling method and validated its
effectiveness through line tests and dynamic model experiments. Building upon this, they
further investigated the fluid–structure coupling characteristics of HSTs passing through
tunnels, demonstrating that the HST’s tail swinging upon exiting the tunnel results from
the combined effects of aerodynamics and track irregularity. Wang et al. [13] identified
different ranges of aerodynamic coefficients capable of inducing low-frequency oscillatory
behavior under varying aerodynamic loads and concluded that the low-frequency swinging
of the tail car is primarily induced by aerodynamic lift. Dumitriu et al. [14] employed
numerical simulations to investigate the impact of a rigid-flexible coupled car body model
on the vertical vibration characteristics of the car body. Li et al. [15] explored the impact
of a vortex generator installed on the tail car on the aerodynamic characteristics of the
train. This study showed that the vortex generator in front of the separation point triggered
flow separation and destroyed the balance between separation and longitudinal vortex. It
effectively reduces the intensity of the separation vortex at the rear of the train, thereby
reducing the aerodynamic resistance and aerodynamic lift of the tail car.

The central focus of current research lies in unraveling the dynamic mechanisms
responsible for the lateral swaying observed in HSTs. Many prior investigations in the
realm of fluid–structure coupling have made use of constant aerodynamic load coefficients
or simplistic vortex-induced models, which serve as stand-ins for the genuine aerodynamic
features of trains. Unfortunately, these approaches fall short of accurately representing
the intricate, unsteady, three-dimensional airflow patterns surrounding trains. In light
of this, there is an immediate and compelling need to delve into the enigmatic lateral
oscillations of HSTs when exposed to unsteady aerodynamic forces. This research endeavors
to comprehend the intricate interplay between oscillatory aerodynamic loads and the
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hunting motion of the vehicle. The overarching objective is to effectively curtail lateral
vibration accelerations at the rear of the train, prevent train resonance instability, bolster
overall train stability, and enhance operational safety. Consequently, a comprehensive grasp
of the fundamental principles underpinning train tail-swing motion becomes paramount
for realizing future speed enhancements in HSTs while ensuring secure train operations.

2. Computational Model
2.1. Aerodynamic Model of three-Car Formation Train

This study focuses on the Chinese domestically developed HST CR400BF. The aerody-
namic numerical simulation is conducted using a three-car formation consisting of a head
car (HC), an intermediate car (MC), and a tail car (TC). The HC and TC each have a length
of 26.99 m, with a streamlined portion of 9.80 m, while the intermediate car has a length of
25.66 m. The entire length of the three-car train is 79.63 m, and the characteristic height (H)
is 3.80 m. Each vehicle’s chassis includes two bogies that provide support and guidance.
The bottoms of the bogies form the base and rail. The lowest point on the train body is
raised 400.00 mm above the top surface of the base, which is identical to the height utilized
in wind tunnel tests and related experiments. Some complicated surface structures and
pantographs have been eliminated for clarity. The car-end connection adopts a full-cover
windshield (Figure 1). depicts the geometric model for the HST’s aerodynamic numerical
simulation.
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The Inlet boundary at the front of the HC is set to free-flow conditions with a Mach num-
ber of 0.3268, corresponding to an inlet velocity of 400 km/h. The Outlet boundary is iden-
tical to the Inlet boundary with a combined velocity Uinflow of (−111.11 m/s, 0, 0), where the 
negative sign indicates that the airflow is in the opposite direction to the train’s motion. 
The computational domain’s lateral sides and top are defined as symmetric boundaries, 
whereas the ground, base, and rail are classified as moving walls to eliminate ground 

Figure 1. Vehicle geometry and key dimensions.

Figure 2 illustrates the outer flow field region for the aerodynamic numerical simula-
tion of the HST. Apart from the base and rail established at the bottom of the computational
domain, the remaining boundaries consist of the inlet, outlet, ground, lateral sides, and
top. The computational domain is defined based on the train’s characteristic height H,
extending 100 H in the x-direction, 26 H in the y-direction, and 15 H in the z-direction. The
Inlet boundary at the front of the HC is set to free-flow conditions with a Mach number of
0.3268, corresponding to an inlet velocity of 400 km/h. The Outlet boundary is identical
to the Inlet boundary with a combined velocity Uinflow of (−111.11 m/s, 0, 0), where the
negative sign indicates that the airflow is in the opposite direction to the train’s motion.
The computational domain’s lateral sides and top are defined as symmetric boundaries,
whereas the ground, base, and rail are classified as moving walls to eliminate ground
effects [16]. The magnitude and direction of the velocity are the same as the input velocity.
To ensure a smooth transition of grid cells and improve grid quality and simulation accu-
racy, four layers of refinement zones are placed around the train, preventing divergence of
results caused by abrupt changes in grid scale during the computation process.
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The flow field around the train can be thought of as a three-dimensional compressible
viscous turbulent flow field with a Mach number of 0.3268 and a Reynolds number of
around 2.8 × 107. It is critical for simulating turbulent flow while performing numeri-
cal computations of the HST’s external flow field. The turbulence modeling approach
employed is the widely adopted improved delayed detached eddy simulation (IDDES)
method [17]. As a hybrid turbulence model, IDDES combines the advantages of Reynolds-
Averaged Navier–Stokes simulations (RANS) and Large Eddy Simulation (LES) methods,
allowing for more accurate modeling of the train’s boundary layer and the capture of
large-scale turbulent flow in the far wake. This approach is well-suited for the investiga-
tion of the train’s aerodynamic characteristics in this study. For the RANS portion of the
simulation, the k-ω Shear Stress Transport (SST) two-equation model is selected as the
turbulence model. Compared to the standard k-ω model, the SST k-ω model achieves
more accurate solutions for the boundary layer flow on the train’s surface by introducing
additional terms related to transverse dissipation and considering the transport process
of turbulent shear stress [18]. The convective terms in the momentum equations are dis-
cretized using a mixed numerical approach. In the LES portion, a mixed finite-volume
scheme based on the Blended Compact Difference Scheme (BCDS) is utilized, whereas in
the RANS region, a second-order upwind method is used [19]. The time integration is
carried out using a second-order implicit scheme, with a physical time step of approxi-
mately ∆t = 0.015Tin f low = 5 × 10−4 where Tin f low= H/Uin f low, and the number of inner
iterations is fixed at 20. All simulations begin with converged and stable RANS computa-
tions as initial inputs and then transition to unsteady IDDES numerical simulations. The
overall physical simulation duration for unsteady computations and monitoring is set to
5.0 s, corresponding to 104 time steps.

2.2. Multibody Dynamics Model of Eight-Car Train

The multibody dynamics model of an eight-car formation of the HST consists of four
motor cars and four trailer cars. Each vehicle is composed of one car body, two bogies, eight
suspension arm axle boxes, and four wheelsets. Additionally, each motor bogie includes an
extra traction motor. Elastic deformations of the rigidly coupled system formed with these
components are neglected. Among the mentioned components, only the suspension arms
apply rotational joints around the x-axis, representing only the pitching degree of freedom.
The carbody and bogies account for six degrees of freedom in total, considering longitudinal,
lateral, vertical, roll, pitch, and yaw directions. The vehicle system is simplified into a multi-
rigid-body system with 50 degrees of freedom. The train formation follows the pattern of
“motor-trailer-motor-trailer-trailer-motor-trailer-motor”. Connections between each railcar
are established using force elements to simulate simplified coupler forces and inter-car
windshield forces. The overall HST model has a total of 400 degrees of freedom. For the
suspension system components, a first-stage suspension system is established between the
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wheelsets and bogies, while a second-stage suspension system is established between the
bogies and carbody. The motor car model also includes a traction motor suspension system.
All dampers in the model are simulated using series-connected spring-damper units, and
input functions are configured to simulate the nonlinear characteristics of damper damping
and lateral stoppage forces. The final dynamic model of the train is depicted in Figure 3,
a loaded measured track spectrum from a specific location in China to account for track
irregularities, including lateral and vertical excitations.
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3. Simulation Method Validation

In this study, numerical simulations were conducted using simulation software STAR-
CCM+ and Simpack for both train aerodynamics and multibody dynamics. To validate the
influence of grid scale on simulation results, three sets of grids, labeled Coarse, Medium,
and Fine, were generated with base sizes of 1500 mm, 1300 mm, and 1100 mm, respec-
tively, for grid independence testing. The number of grids for each set was 22.55 million,
28.19 million, and 33.53 million, respectively, resulting in a grid number increase of up to
48.7%. The surface of the train was divided into a 13-layer boundary layer with a first-layer
thickness of 0.015 mm, a growth rate of 1.6, and surface y+ values around 1.5. To eliminate
scaling effects during the validation process, the aerodynamic model was scaled to 1:8, the
same as the wind tunnel test. The computation domain for the train’s external flow field
and boundary layer grids are illustrated in Figure 4.
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The results for pressure coefficient Cp, aerodynamic drag coefficient Cd, and aerody-
namic lift coefficient Cl were compared using dimensionless coefficients among the three
different grid quantities. These coefficients are as follows.

Cp =
P

0.5ρUin f low
2 (1)

Cd =
Fd

0.5ρUin f low
2S

(2)

Cl =
Fl

0.5ρUin f low
2S

(3)

In the equations provided: P represents pressure, ρ stands for air density, S denotes the
maximum cross-sectional area of the train, taken as 0.187 m2, Fd represents aerodynamic
drag, and Fl represents aerodynamic lift, Uinflow represents the inlet velocity, which is equal
to 111.11 m/s.

From Table 1, it can be observed that the predicted drag and lift coefficients for the
three grid sets are close. Taking the Medium grid as the baseline, the drag coefficient for
the HC is 1.8% higher than the Coarse grid and has an error of less than 0.1% for the Fine
grid. The drag coefficient for the TC has an error of less than 0.1% for all grid sets. The
lift coefficient for the HC is 3.7% higher for the Coarse grid and 3.7% lower for the Fine
grid compared to the Medium grid. The lift coefficient for the TC is 3.45% lower for the
Coarse grid and 1.15% lower for the Fine grid compared to the Medium grid. It can be seen
that as the number of grid cells increases, the errors in the train’s aerodynamic coefficients
gradually decrease, and the results converge.

Table 1. Comparison of aerodynamic drag coefficients Cd and aerodynamic lift force coefficients Cl

of HC, MC, and TC predicted using different grids.

Force Grids HC Error MC Error TC Error Total Error

Drag
Coarse 0.112 1.75% 0.070 0.00% 0.113 0.88% 0.295 1.01%

Medium 0.114 — 0.070 — 0.114 — 0.298 —
Fine 0.113 0.88% 0.069 1.43% 0.113 0.88% 0.295 1.01%

Lift
Coarse −0.026 3.70% 0.000 0.00% 0.090 3.45% — —

Medium −0.027 — 0.000 — 0.087 — — —
Fine −0.028 3.70% 0.000 0.00% 0.088 1.15% — —

The analysis indicates that the IDDES algorithm used in this study can reliably and
accurately simulate the aerodynamic characteristics of HSTs. Since computational accuracy
is positively correlated with the number of grid cells, it is important to avoid excessive grid
cell counts that can lead to longer solution times and reduced computational efficiency while
ensuring accuracy. For subsequent modeling, this study selects the grid corresponding to
the Medium grid with a base size of 1300 mm.

4. Results and Discussion

When HSTs operate at a high-speed level, the surrounding flow field becomes com-
plex, and the unsteady characteristics of aerodynamic forces and torque in terms of both
magnitude and frequency become significant; this causes considerable changes in the train’s
dynamic performance. The research on abnormal lateral vibrations of the HST’s TC under
aerodynamic loads is conducted based on two aspects: the steady/unsteady characteristics
of HSTs and the dynamic performance of the train. First, numerical simulations are car-
ried out to investigate the aerodynamic characteristics of each HST vehicle under steady
and unsteady conditions at a speed level of 400 km/h. The aerodynamic loads of three
vehicles in the unsteady flow field and the surrounding flow field structure are compared.
Second, this study focuses on the stability indicators of the TC under different aerodynamic
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loads. Factors leading to abnormal lateral vibrations of the TC are analyzed based on the
amplitude and frequency of the aerodynamic loads.

4.1. Research on Steady and Unsteady Aerodynamic Characteristics of HST

In previous research, scholars often used steady-state computational methods based on
Computational Fluid Dynamics (CFD) to simulate the steady aerodynamic characteristics
of train external flow fields and then load to solve the dynamic response of the train. This
approach is relatively cost-effective and less time-consuming but cannot accurately capture
the unsteady characteristics of the flow field around the train. In this study, both steady-
state (RANS) and unsteady (IDDES) numerical simulations were performed to investigate
the aerodynamic characteristics of the train. Figure 5a displays the velocity contours of the
horizontal cross-section flow field of the train. In the steady flow field, there is no significant
formation or shedding of vortices on either side of the train, except for the development
of a symmetrical vortex street in the wake region. In contrast, in the unsteady flow field,
the vortices around the train exhibit oscillatory shedding at different physical time points,
demonstrating highly noticeable unsteady characteristics in the vortex structures. Similarly,
Figure 5b shows a series of smaller-scale vortices around the bogie region in the unsteady
case, indicating more complex vortex structures compared to the steady case.
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HSTs generate multiple vortex-shedding structures on both lateral sides of the train
at higher speeds, as seen in Figure 6a. Use the Q-criterion to identify the vortex cores on
both sides of the train, where Q is 500 s−2. These changes in vortex structures result in
variations in the velocity boundary layer of the flow field. Figure 6b depicts a vertical
cross-section at the TC’s center of gravity, which is −24.87 m, perpendicular to the x-axis.
The changes in velocity boundary layers over time are primarily observed in the regions
enclosed by the blue dashed lines on both sides of the vehicle. According to the Bernoulli
principle, variations in flow velocity directly lead to fluctuations in surface pressure at the
corresponding locations.
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Figure 6. Comparison of steady/unsteady aerodynamic characteristics of HST: (a) Vortex core
distribution (Q = 500 s−2); (b) cross-section velocity boundary layer at x = −24.87 m.

The pressure changes on the train’s surface during vortex shedding result in oscilla-
tions of the aerodynamic load amplitudes and frequencies. The comparison of aerodynamic
loads for the TC is shown in Figure 7a,b. The solid lines represent the unsteady loads of
time history, while the dashed lines represent the steady ones. It can be observed that the
steady solution’s aerodynamic loads are roughly equivalent to the average of the unsteady
ones. However, the steady loads cannot accurately capture the amplitude and frequency
variations over time, especially for the aerodynamic side force, rolling moment, and yawing
moment, where the steady results are approximately 0; this overlooks the characteristic
of these loads oscillating around zero in real-world scenarios. It is evident that the os-
cillations in the aerodynamic side force coefficient of the TC are much more significant,
resulting in larger oscillations in the coefficients of the rolling moment and yawing moment
associated with it. Among these, the oscillations in the yawing moment coefficient induce
attitude changes similar to the train’s lateral hunting motion, making it susceptible to
lateral coupling resonance of the train. Furthermore, The aerodynamic lift coefficient of the
TC remains consistently positive, indicating an upward force perpendicular to the ground.
This upward lift force also contributes to the deterioration of the TC’s stability.

The influence of the direction of these loads on lateral stability is also visible in the
train’s dynamic performance. The oscillation load amplitudes and frequencies can easily
couple with the suspension modes of the vehicle, leading to increased lateral amplitude
and acceleration of the car body during the hunting motion process due to the coupling
effect of aerodynamic forces. Table 2 shows the RMS values of unsteady aerodynamic loads
for each vehicle of the HST.
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namic moment coefficient.

Table 2. RMS value of unsteady aerodynamic forces of the HST.

Cd Cs Cl Cmx Cmy Cmz

TC 0.129 0.024 0.062 0.004 0.136 0.062

4.2. Research on the Stability of the Trailing Car under Aerodynamics Influences

The lateral abnormal vibrations of the TC often occur in long-formations of the HST,
especially when the wheel tread equivalent conicity is low, resulting in relatively intense
swaying. In Section 4.2, the dynamic response simulation used an eight-car formation train
model with S1002CN wheel profiles, and the equivalent conicity matched with the CN60
rail profile is 0.184. The lateral stiffness of the car body windshield is 0.1 MN/m.

Figure 8 shows a scatter plot of the stability indicators of the train without considering
aerodynamic effects, with one datum processed every 2 s. Overall, the stability of each
vehicle is satisfactory, and the maximum values of the lateral and vertical stability indicators
do not exceed 2.0, fully matching the criteria for excellent stability indicators [20]; this
suggests that, without considering the aerodynamic load, although the lateral stability
index is slightly larger than the vertical stability, the overall stability is still far less than the
limit value, and the stability index meets the requirements.
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Figure 8. Sperling index of TC without aerodynamic loads.

Both steady and unsteady aerodynamic loads from the CFD simulations in Section 4.1
were applied to the multibody dynamics model to simulate the train’s dynamic response.
Figure 9 depicts the Sperling index for various aerodynamic loads. When the steady aerody-
namic loads are applied, the impact on the stability of the TC is minor. The index values and
time change trends almost coincide with those without considering the aerodynamic load.
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The maximum lateral Sperling value remains the same as the train without aerodynamics
at 1.92, and the maximum vertical Sperling value is 1.81 for the TC, all of which meet the
excellent rating criteria. However, upon the application of unsteady aerodynamic loads,
considerable variations in the train’s dynamic response emerge. The lateral stability of the
TC exhibits varying degrees of deterioration. The lateral Sperling index of TC completely
exceeds the 2.0 threshold, with the peak reaching the highest value at 2.26; this represents a
substantial 17.71% increase compared to the train without aerodynamics configuration and
the scenario involving steady aerodynamic loads, approaching the boundary of the rating
criteria. The maximum vertical Sperling value is 1.91 for the TC, reflecting a relatively
smaller increase when compared to the train without aerodynamics. As a result, unsteady
aerodynamic loads have a considerable impact on lateral stability in real flow conditions,
notably the car body of the TC. In contrast, the impact on vertical stability is noticeably
less evident.
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Figure 9. Sperling index of each vehicle with different aerodynamic loads.

The lateral accelerations and phase portraits of the TC at the carbody rear end were
extracted. In Figure 10a, the amplitude and trend under the conditions of no aerodynamic
load and steady aerodynamic load are almost the same. When steady loads are applied,
the lateral acceleration of the car body exhibits minimal deviation from the train without
aerodynamic configuration. In this case, the lateral vibrations primarily result from the
irregularities of the track, indicating that steady loads have a negligible impact. When
unsteady aerodynamic loads are imposed, the lateral acceleration in the rear end of the car
body experiences a significant increase. The maximum amplitudes of lateral accelerations
at the rear end of the TC corresponding to the above three cases are 0.245 m/s2, 0.249 m/s2,
and 0.526 m/s2, respectively; this shows that when unsteady aerodynamic loads are applied,
the lateral acceleration oscillation amplitude and frequency of the rear end of the TC body
increase significantly. It is more than 111.24% higher than the train without aerodynamic
force. This severe vibration seriously affects the comfort of passengers and the safety of
the journey.

Figure 10b shows the phase portraits of the rear end of the car body with different
aerodynamic influences. In three cases, the maximum amplitudes of the lateral displace-
ment are 3.03 mm, 3.04 mm, and 7.54 mm, respectively. Steady aerodynamic loads have a
minor impact on the lateral displacement plots, suggesting that even steady loads cannot
induce low-frequency lateral instability in the TC. In contrast, unsteady loads result in a
sharp increase in the lateral displacement plots, signifying the presence of low-frequency
oscillations. These oscillations cause the maximum lateral displacement of the TC to reach
7.54 mm, representing an increase of 148.84%; this implies that the larger amplitudes of
aerodynamic lift, lateral force, roll moment, and yaw moment on the TC contribute to a
substantial deterioration in its dynamic performance due to low-frequency lateral oscil-
lations. Consequently, influenced by the varying aerodynamic load amplitudes of each
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vehicle, the entire train formation exhibits a “tail swing” phenomenon that compromises
operational stability and passenger comfort.
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In summary, the lateral dynamic performance of the TC is significantly worse under
the influence of unsteady aerodynamic loads compared to steady ones. Furthermore, the
amplitude and frequency of unsteady aerodynamic loads have a considerable impact on
dynamic responses. Specifically, the TC suffers more adverse effects due to the larger
amplitude and lower dominant frequency of oscillating loads. These characteristics result
in deteriorated lateral stability indicators.

5. Conclusions

Through numerical simulations of a three-car consisting of the HST model traveling
at a speed of 400 km/h and an eight-car consisting of the multibody dynamics model,
this study investigated the influence of steady and unsteady aerodynamic loads on the
abnormal lateral vibrations of the HST’s TC. The following conclusions were drawn:

(1) Aerodynamic loads generated during HST operation exhibit strong, unsteady char-
acteristics. The oscillation amplitude and frequency of aerodynamic loads directly
impact the vehicle’s dynamic performance. It was discovered that using only steady
aerodynamic loads cannot accurately capture the three-dimensional flow field around
the train;

(2) The effect of steady aerodynamic loads on the dynamic performance of the train is
minimal. Under unsteady conditions, however, the lateral Sperling index and the
accelerations in the rear end of the TC considerably rise in value; this causes severe
excessive lateral vibrations in the TC, particularly in cases of low wheel-rail equivalent
conicity, and may result in a lateral stability index that exceeds the prescribed level;

(3) The oscillation amplitude and frequency of unsteady aerodynamic loads are the direct
cause of the deterioration of vehicle lateral stability. The larger the amplitude, the
greater the lateral vibration displacement and acceleration of the carbody caused
by the coupling resonance; this is also an important factor causing the train “tail
swing” phenomenon.

Due to the complex frequency components of aerodynamic forces, this paper did
not conduct detailed frequency analysis for different aerodynamic forces, which is not
conducive to further analyzing their relationship with car body hunting motion frequencies.
As a result, more research is required to determine the dominant modes of the train’s
unsteady flow field and to perform shape optimization based on these flow field modes to
alleviate the issue of resonance-induced “tail swing.” In addition, we have not discussed
the unsteady aerodynamic force at different speed levels in this article. We will further
delve into it in future research.
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