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Abstract: Self-mixing interferometry (SMI) is suitable to sense and measure vibrations of amplitudes
ranging from picometers to millimeters at frequencies from sub-Hz to MHz’s. As an optical probe,
SMI has the advantage of being non-invasive with the ability to measure without any treatment of
the target surface and operate from a substantial standoff distance from the target. As an additional
advantage, the SMI configuration is much simpler than that of conventional interferometers as it does
not require any optical part external to the laser source. After a short introduction to the basics of
SMI, we review the development of configurations of SMI instruments for vibration measurements,
based on both analog and digital processing, with record performance to cover the range of vibration
amplitudes from 0.1 nm to 1 mm, frequencies up to MHz, and stand-off distances up to 100 m. These
performances set a benchmark that is unequaled by other approaches reported so far in the literature.
The configurations we describe are (i) a simple MEMS-response testing instrument based on fringe
counting, (ii) a half-fringe locking vibrometer for mechanical mode analysis and transfer function
measurements, with a wide linear response on six decades of amplitude, (iii) a vibrometer with
analog switching cancellation for µm-to-mm amplitude of vibrations, and (iv) a long standoff distance
vibrometer for testing large structures at distances up to 100 m and with nm sensitivity. Lastly, as the
vibrometer will almost invariably operate on untreated, diffusing surfaces, we provide an evaluation
of phase-induced speckle pattern errors affecting the SMI measurement.

Keywords: optical measurements; interferometry; self-mixing schemes

1. Introduction

Optical techniques are attractive for vibration measurements because they are non-
invasive, fast, and accurate [1,2]. A straightforward optical technique like triangulation [3]
supplies an appreciable sensitivity in the measurement of small vibrations—for example,
resolving 15 µm for a parallax resolution of ∆α = 0.3 mr and a base D and standoff
distance L both of 5 cm [3,4]. However, coherent techniques like interferometry outperform
this result of decades, offering sub-nm resolution, a dynamic range up to mm, standoff
distances up to hundreds of meters, MHz bandwidth, and, last but not least, a compact and
inexpensive setup.

In this introduction, we briefly recall the principle of laser interferometry and the most
recent version of it, self-mixing interferometry (SMI). Among the several applications of SMI that
have been demonstrated, in this paper, we focus exclusively on the measurement of vibrations,
that is, periodic (and most frequently) sinusoidal small movement of the target. We will not
treat other self-mixing measurements or applications like, for example, displacement [5–8],
distance [9,10], velocity and flow rate [11,12], planarity [3], angle [13–15], physical quantities
(thickness and index of refraction [16,17], linewidth [18], and alpha-factor [19]), the use of
self-mix as a detector of optical echoes [20,21], or consumer applications like scroll [22] and
gesture AR/VR [23] sensors. The interested reader may also consult general reviews [24] and
tutorials like those provided by Refs. [25,26].
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1.1. The Laser Interferometer

The first experiments using interferometry date back to 150 years ago. However, only
with the advent of the laser, and thanks to its exceptional coherence, has it been exploited
in a number of scientific and industrial applications.

As interferometry uses the interference of superposed beams and generates a signal
modulated with the wavelength period, its resolution allows the measurement of very
minute displacements down to a small fraction of wavelength.

The concept was implemented into a very successful industrial product called the
“Laser Interferometer” (LI), the famous HP5525 model introduced in 1967 by Hewlett Packard
for the calibration of machine tools, an instrument is capable of resolving displacements
in steps of λ/8 = 79 nm with a counting speed of 5 MHz on a distance range of a few
meters [3,27].

Following a number of variants from several manufacturers, like the one reported in
Figure 1 (top), the LI was then basically made around a λ-stabilized He-Ne laser and an
external optical interferometer—typically, a Fabry–Perot configuration. The two beams
propagated to the target being measured at distance s and to the fixed reference path sr
were superposed at a detector, generating a signal I = I0 cos 2k(s − sr), where k = 2π/λ is
the wavenumber [28].
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Figure 1. (top) Schematic showing a traditional LI based on an external optical Michelson inter-
ferometer, which is used to split the laser output into reference and measurement beams and then
recombine them after propagation on the photodetector PD, which generates a beating in the form of
the cos 2ks signal. (bottom) The self-mixing interferometer mixes the optical field returning from the
target with the in-cavity field to generate an amplitude modulation, again of the form cos 2ks, which
is detected with the photodetector PD placed on the rear mirror of the laser diode.

Counting the zero-crossing of signal I, variations ∆s of a quarter wavelength could be
easily measured. Eventually, after adding a second signal I* = I0 sin 2k(sm − sr) obtained
with polarization splitting of the interferometer [28], the number of zero-crossings was dou-
bled, thus bringing the resolution to λ/8, which is the performance available in commercial
products.

It is worth noting that the LI works in the digital mode, with up/down counting of
λ/8 displacement variations ∆sm and requires a corner cube as the target for operation.
The corner cube ensures the angular alignment of reference and measurement beams,
relieving the user from painstaking alignment operations, and, importantly, it prevents
retroreflection from the target (which is seen to disturb its λ-stabilization) from entering
the laser cavity. When the retroreflection process is well controlled, we obtain the self-
mixing interferometer (SMI) configuration shown in Figure 1 (bottom), and analyzing this
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configuration, we find that the perturbed cavity field carries both amplitude (AM) and
frequency (FM) modulations in the form of two orthogonal signals, cos 2ks and sin 2ks
(at weak feedback). The AM component is detected using the monitor photodiode PD,
usually mounted in the laser package by the manufacturer for the purpose of controlling
the emitted power.

For a vibration measurement, we shall modify the basic configuration of the SMI
with a lens in place of the measurement corner cube, as shown in Figure 2, to allow the
incoming and outgoing beams to be superposed correctly at the beamsplitter. With this
modification, we obtain a laser vibrometer that reads the vibration amplitude digitally, in
steps of λ/8 (=79 nm for the 633 nm He-Ne laser) and has a dynamic range (or maximum
measurable amplitude) limited by a fraction of the lens focal length (and with typical values
of 5–20 mm in practice).
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Figure 2. To modify the LI so that it works as a vibrometer, we shall use a focusing lens to replace the
measure corner cube, so as to create the necessary transversal displacement of the returning beam.

It is worth noting that the configuration can work with a considerable stand-off
distance (typically, meters) just by increasing the distance of the lens from the beamsplitter.

1.2. The Self-Mixing Interferometer (SMI)

The SMI has several advantages with respect to the LI because (i) it has a minimum
part count (no optical interferometer necessary), so it is potentially low-cost; (ii) it is self-
aligned, as it takes the measurement where the spot falls; (iii) it requires no filter to remove
ambient light, as the laser cavity performs this function; (iv) the vibration signal is available
everywhere on the beam and also at the target side; and (v) it has good performance for
small signals (close to the quantum limit, typically 10 pm) and bandwidths (up to MHz)
and a wide dynamic range (depending on coherence length) [24,25].

On the other hand, the metrological precision of the λ-stabilized LI (typically six
decimal places) is not usually required in vibration measurements and prompts the use of
a cheap and compact laser diode (that also includes the photodiode), offering a precision of
two to three decimal places (three to four in thermally controlled units).

To explain the working principle of the SMI, many approaches have been devised
at increasing levels of coverage [24,25]; yet, the simplest one based on rotating-vector
modeling (Figure 3) already explains the mechanism of operation. Indeed, we represent the
unperturbed cavity field with a rotating vector E (which rotates at the optical frequency)
so that the returning rotating field received by the laser cavity is aE exp iφ, where a is the
attenuation and φ = 2ks the optical phase shift accumulated along the go-and-return path
to the target.
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Figure 3. Model explaining the AM and FM of the SMI field with the rotating field addition of the
unperturbed field E and of the returning field aE exp iφ fed back into the laser cavity by the target.

Now, the summation of rotating vectors E and aE exp iφ, which take place in the cavity,
generates amplitude (AM) and frequency (FM) modulations of the resulting field ER.

The in-phase component of the returning field is aE cos φ and produces the increase
(decrease) in the resultant field according to the positive (negative) sign of cos φ. Thus, an
AM of perturbed field is generated, with a modulation index mAM = a cos φ.

Similarly, the in-quadrature component aE sin φ either accelerates or decelerates the
rotating field according to the sign of sin φ. Thus, it is responsible for an FM with a
modulation index mFM = a sin φ.

In addition, by considering the time-dependent evolution of the rotating vector addi-
tion, it is found that when a is large enough, the trajectory of the resulting field makes a
loop—or there is a switching both in amplitude and frequency [24,25].

In Figure 4, we can see the evolution of the amplitude waveform ER. The evolu-
tion is governed by the feedback parameter C, which is proportional to the distance times
the fraction of returning field [29]. At small C (say, ≤0.05), the waveform of the SMI
field ER is sinusoidal, and the output signal detected by the photodiode PD follows the
dependence I = I0 cos 2ks of a normal interferometer (Figure 4, bottom traces). At increasing
feedback, we first notice a distortion in the cosine waveform, with the leading edge becom-
ing slower than the trailing edge (C = 0.1 to 0.8 in Figure 4). Then, we obtain switching
from top to bottom at increasing phase shifts (C ≥ 1), which will become a bottom-to-top
when phase shift φ = 2ks decreases [24,25].

In the experiment, we change the feedback level using a variable attenuator, drive the
target with a sine wave, and observe the waveforms exactly as predicted by theory.

It is very important to note that the periodicity of the SMI waveform is always λ/2
at any C, and in each period of the SMI signal, the upgoing switching is for increasing
and the down-going switching is for decreasing distance, thus supplying the sign of
the λ/2 variations ∆s of target distance. This circumstance was used to build a single-
channel SMI displacement measuring instrument [8,24] around an 850 nm laser diode,
capable of following the displacement of a diffusive target with a digital readout in steps of
λ/2 = 425 nm, with a bandpass of 1 MHz (or a target speed up to 0.42 m/s), and a 1 to 2 m
distance range.

When the C factor is increased above C = 4.6, we enter a strong regime of feedback,
with two switchings per period, at C = 7.85 and above three per period. At still larger values,
the switching becomes erratic [30], and the laser exhibits a regime of chaotic oscillations.
But, staying at 1 < C < 4.6, the moderate feedback regime, the laser works in a stable and
reliable way that is totally suitable for measurements applications.
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Figure 4. The SMI signal out of the detecting photodiode (PD in Figure 1, bottom) is the cosine of
optical pathlength, like in a normal LI for weak feedback (C = 0.05). Then, it becomes distorted at
C = 0.1 to 0.9 and finally exhibits a switching, starting from C = 1.

2. Classification of SMI Instruments and Their Typical Performance

From an application point of view, it is fundamental to classify interferometric instru-
ments into two categories, as shown in Figure 5 (top): (i) displacement-measuring instru-
ments, when the s(t) measurand is aperiodic and the time-dependence is arbitrary—this is
the case of the machine-tool turret positioning—and (ii) vibration-measuring instrument,
when the s(t) waveform is periodic—this is the case of a mechanical transfer response study.

Note that a displacement measurement is incremental, usually based on up/down
counting of fringes or fraction thereof, and thus requires an initial zeroing operation. We can
also develop (iii) an absolute distance meter, typically using sweeping wavelength [9,10,25]
but with lower resolution.

A further classification for interferometric and SMI instruments is according to the
type of signal processing used in the instrument, either analog or digital.

The performance of SMI displacement and the vibration SMI instrument with respect
to the measurable amplitude and bandwidth of s(t) is summarized in the chart shown in
Figure 5 (bottom).

Analog processing is best suited to approach minimum detectable signal set by quan-
tum noise, whereas digital processing has a wider dynamic range of measurement.
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Figure 5. (top) Classes of interferometric measurements: displacement sensors are for aperiodic signals
s(t) and vibrometer sensors are for small periodic signals s(t). In both cases, processing can be either
analog or digital, with corresponding different working ranges of amplitudes. (bottom) Diagram
showing performance, with the amplitude of measurable displacement plotted versus the bandwidth
of measurement or frequency of vibration. The operation of state-of-the-art design is inside the
perimeters of the curves. Typical performances are indicated, for both analog (dotted lines) and
digital (full lines) processing. In the bottom right corner, the quantum noise limit for 1 µW of received
power is indicated.

For each class of instrument, we find a minimum and maximum measurable signal
amplitude as well as a low- and high-frequency cutoff, to which we shall add the Doppler
limit due to the target speed v = ds(t)/dt, which increases the bandwidth content of the
interferometric signal as v/λ and thus introduces a boundary at −45 degrees, as shown
in Figure 5.

Regarding vibrometers, in the following, we review preferred design schematics to
implement vibrometers that offer full coverage of the range of performance reported in
Figure 5 as well as a range of standoff distances for operation. Then, we briefly discuss the
applications for which these vibrometers have been developed.

These case studies represent benchmarks of vibrometer performance that should
be borne in mind when developing new solutions because of their proven performance,
particularly simple and cheap structure, and minimal requirement for processing the
detected signals.

Other than measuring displacements in λ/2 steps, the SMI basic configuration can
obviously be used as a vibrometer giving a digital readout with an amplitude resolution



Vibration 2023, 6 631

of about ∆s = λ/2 = 0.4 µm, a dynamic range of counting up to s0 = 1 m with a counting
speed of f2 = 1 MHz, and coverage of frequency of oscillation given by f2 ∆s/s0. The
digital readout is adequate for measuring vibration amplitudes of say, 50 µm at a frequency
f = 10 kHz but suffers from the inverse s0 dependence of bandwidth at a large dynamic
range.

3. Transfer Function Measured Using a Digital Readout (DR) SMI Vibrometer

To illustrate the performance of an SMI interferometer used as a digital readout vibrome-
ter, we now describe its application to the measurement of the mechanical transfer frequency
response of a miniature device, a MEMS (micro-electro-mechanical system) [31,32]. The device
is a MEMS gyroscope, with a suspended test mass and 2-D comb structure to actuate and
read the Coriolis’ force developed by inertial rotation.

As we can see in Figure 6, the SMI is in the basic setup, and we read the signal at the
output of the photodiode. A lens focuses the 850 nm laser beam on the 100 × 100 µm2 test
mass at a slant angle of 20 degrees to develop a measurable component when the mass
vibrates in plane. The gyroscope is kept under vacuum to eliminate the damping due to
the air. By exciting the device with the operating square wave (Figure 7, left), we obtain an
SMI signal containing fringes that are easily measured (or even simpler, counted by sight).
By repeating the measurement at several excitation frequencies, we can easily build up the
frequency response of the MEMS, as shown in Figure 7 on the right.
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Figure 7. (left) A 7 V, 12.5 Hz square wave exciting the oscillation of the MEMS test mass, and the
resulting SMI signal at the photodiode output. (right) The frequency response of the device, at several
drive voltage amplitudes (from Ref. [32], with permission from the IEEE).

Several details in Figure 7 are worth noting. First of all, we are able to measure the
resonance frequency fres of the device and its linewidth ∆fres (due to damping). Also, we
can measure the dependence of fres from the drive voltage and find that it decreases with the
increasing amplitude of the drive. Last and quite important, performing the measurement
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at increasing and then decreasing frequency, we may detect a hysteresis of the response
curve, which is a premonitory of mechanical creep known to eventually lead to soft failure
of the device.

Of course, if we wish to avoid hysteresis, we shall work at a safe drive voltage, as we
can read from Figure 7 on the right. Similarly, hysteresis is also found in the response vs.
residual air pressure inside the MEMS package. Thus, the SMI in its simplicity is a powerful
diagnostic tool for assessing the appropriate working conditions (voltage, pressure, etc.) of
the device.

4. Half-Fringe-Stabilized (HFS) Analog Readout SMI Vibrometer

Stabilization of the LI working point at half-fringe is a well-known technique that
is useful to read vibrations much smaller than the λ/2 fringe amplitude. The scheme is
depicted in Figure 8, where the reference arm of the conventional LI based on a Michelson
interferometer is used to adjust the pathlength difference to λ/4 using a piezo actuator fed
by the detected signal, properly filtered to pass the low-frequency components.
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Figure 8. The half-fringe-stabilized LI has a reference arm driven with a piezoceramic actuator that
keeps the pathlength difference with respect to the measurement arm dynamically locked at λ/4 (or
90 degrees in phase).

Then, if the measurement arm pathlength is sm = s0 + ∆s, where s0 is the standoff
distance and ∆s is the small vibration to be measured, and the reference arm pathlength is
sR = s0 + λ/4, then the SMI signal reads I = I0 cos 2k(sm − sr) = I0 cos 2k(∆s + λ/4) = I0 sin
2k∆s ≈ I0 2k∆s.

Thus, the phase is linearly converted into an amplitude, and we can read it as an
analog signal of the SMI at the high pass output of the filter (Figure 8). The advantage of
the scheme is its immunity to ambient-related vibrations (microphonic effect), which are
canceled by the feedback loop ending on the piezo, while the disadvantage is the λ/2 limit
to large signals (or dynamic range).

With the HFS scheme, small vibrations of SAW (surface acoustic wave) devices can be
measured down to a fraction of Angstrom (=0.1 nm) amplitude (see Figure 9 [33]).
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Figure 9. Detection of sub-nm (1 Å = 0.1 nm) vibrations in a SAW device using the HFS interferometer.
Stoneley and ordinary surface waves are observed at the oscillation frequency of 8 MHz (from [33],
©American Institute of Physics; reprinted with permission).

Refurbishing the HFS interferometer with the SMI concept is not straightforward
because the SMI has just one arm, i.e., no reference arm is available to be actuated. However,
the use of a laser diode as the source of the SMI brings about the advantage (in this case) of
wavelength λ being dependent on bias current Ibias through a coefficient αλ = dλ/dIbias.

Then, the optical phaseshift variation ∆φ = ∆(2ks) = 2(s∆k + k∆s) can be dynamically
kept equal to zero by making s∆k =−k∆s, where ∆k =−2π∆λ/λ2 and ∆λ is obtained using
the change in bias current as ∆λ = αλ∆Ibias [34,35]. To complete the feedback loop, we have
a voltage-to-current drive of bias current, Ibias = GmVout, and the amplified signal of the
photodiode, from which the level Vhf of the half-fringe is subtracted.

A scheme showing the feedback loop of such an HFS SMI is presented in Figure 10.
It has two ‘virtual ground nodes’ with functionality similar to the virtual ground of an
operational amplifier: the phase node, where φ = s∆k + k∆s ≈ 0, and the difference
amplifier inputs, where Vin − Vhf ≈ 0 (where Vhf is the level of half-fringe). With the
notation ≈0, we indicate that the signals are kept dynamically very small, at a level just
enough to be amplified and generate the desired amplitudes along the loop.
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Figure 10. Working at half-fringe with an SMI under the moderate feedback regime (1 < C < 4.6) gives
a quasi-linear response (left panel), which is useful to convert the phaseshift Φ into an amplitude
signal. As the feedback loop (right panel) keeps s∆k = −k∆s at the target and the DL and Gm blocks
provide a linear constant response, the vibration signal ∆s is available at the amplifier output Vout.
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From the condition s∆k + k∆s = 0, where k = 2π/λ, we obtain ∆s/s = ∆λ/λ. After
inspection of the feedback loop in Figure 10, we can write ∆λ = Ibiasαλ = VoutαλGm, and
substituting in ∆s, the signal voltage is found as Vout = (s/λαλGm)∆s.

An important consequence is that the response factor s/λαλGm is independent of the
optical power carrying the signal—provided the loop gain Gloop is large enough.

Indeed, the loop gain of the scheme in Figure 10 is easily seen to be Gloop = 2ks I0

RAGm (αλ/λ), and its value can be made Gloop ≈ 103 in practice.
Thus, as it is well known from the general properties of feedback, all sources of

disturbances and deviation from linearity are reduced by a factor given by the loop gain
plus one, or ≈103. In particular, unexpectedly, speckle pattern fluctuations of the signal
amplitude are washed out and absorbed by the loop gain.

The nonlinearity is also very important due to the λ/2 fringe amplitude being affected.
The resulting dynamic range is no longer λ/2 of the plain interferometer, but it is now
(1 + Gloop)λ/2, or a fraction of an mm instead of a fraction of a µm.

Qualitatively, this result is explained considering that as the ∆s signal increases and
tends to escape out of the λ/2 width of the fringe, the feedback action pulls it back to the
middle of the fringe—so a much larger amplitude (1 + Gloop)λ/2 is necessary to finally
reach the boundary of the dynamic range.

Because of the same mechanism, the linearity error is reduced by (1 + Gloop), and for a signal
amplitude of half the dynamic range ∆Φ = ±2k∆s = ±45 degrees (or
∆s = ±(π/4)/2k = λ/16≈ ±50 nm for λ = 800 nm, which becomes (1 + Gloop)λ/16≈±50 µm
with feedback, that is, 100 µm peak-to-peak), we have a linearity error el = (π/4− sin π/4)/2k =
0.078λ/12.56 = 0.0062 800 nm = 4.96 nm, a record result (=0.005%) for such a large 100 µm signal.

Regarding the minimum measurable displacement or NED (noise-equivalent displace-
ment), this is due to the quantum noise in of the beam carrying the phase signal 2k∆s
and is given [34,35] by NED = (λ/4π)(I0/in) = (λ/4π) (2eB/I0)1/2, where I0 is the detected
current and B is the measurement bandwidth, with typical values of 20 to 100 pm/

√
Hz in

practice [34].
A totally different method to linearize the response of the SMI has been recently

introduced [36], and the method is based on working under the strong feedback (or high
C) regime. Indeed, at large C (say, 10 . . . 20) the amplitude of fringes is found to decrease
while increasing intervals of the SMI waveform are dragged by the target displacement
s(t), until at a certain Cmin, the fringes disappear and the SMI signal is just a replica of ∆s(t).
At still larger C = Cmax, however, the system enters the bifurcation regime, and period-1
chaotic oscillations are generated [30]. Thus, we shall adjust the feedback parameter C to
stay in the interval Cmin < C < Cmax, typically 10 to 30. The drawback of the method is that
the C-interval depends on the amplitude of the phase signal k∆s, on the stand-off distance
s and on the drive current Ibias [36], so it is difficult to accommodate a large dynamic range
of signals k∆s.

4.1. Measuring Vibration Modes with the HFS SMI

Thanks to the wide dynamic range extending for several decades, e.g., from≈50 pm to
≥500 µm, the good linearity in the response, and the substantial bandwidth (typically sev-
eral hundred kHz), the HFS SMI can easily supply the spectrum of modes of a mechanical
structure. An example is provided in Figure 11, where we report the frequency spectrum of
the SMI signal (Vout of Figure 10) obtained when pointing the device at the door of a car
with the motor engine running. A complicated set of vibration modes of the structure is
unveiled by the SMI measurement.



Vibration 2023, 6 635
Vibration 2023, 6, FOR PEER REVIEW  11 
 

 

 

Figure 11. Vibration modes of a car structure are obtained by aiming the device at a door of a car. 

The motor rotates at 35 Hz, and two other major peaks are seen, due to spikes at 70 Hz and to the 

suspension resonance at 13 Hz. Many other (unidentified) peaks are found in the structure because 

their intensity is well above the 100 pm noise floor of the instrument (from Ref. [34], ©IoP; reprinted 

with permission). 

4.2. Measuring Mechanical Hysteresis with a Differential HFS SMI 

The SMI can be made quasi-differential by pairing two HFS units and making the 

difference be their output signals [34]. 

The difference Vout1 − Vout2 is not exactly the same as the difference of phases ϕ1 − ϕ2 

= 2k(s1 − s2) made by the superposition of measurement and reference beams in a normal 

LI. However, it closely approaches it inasmuch as Vout is linearly related to Δs, like in an 

HFS interferometer. 

For best results, the noise and dynamic range of two HFS SMIs shall be matched 

within 5%, and then a weighted subtraction Vout1 − ηVout2 is made, adjusting the weight η 

so that when the two units are aimed just to the same point, the difference in the outputs 

is <10−3 of the single component output. 

Then, the differential SMI can be applied to the measurement of a small sample, for 

example, a bead of a motor damper, subjected to a vibratory stress (one unit) and to the 

base holding the object (the other unit). In this way, we have (i) a common mode signal, 

proportional to the applied stress (or force per unit area) and (ii) a differential signal pro-

portional to the strain (or relative deformation) imparted to the sample. 

The result is shown in Figure 12. Note that the measurement of the hysteresis cycle 

supplies an important design tool because it allows for selecting the right level of stress to 

maximize the power dissipated by the damper (given by the area of the cycle times the 

frequency of operation) while keeping a safe margin to avoid breakdown of the sample. 

For more information on the HFS method, the reader may consult Refs. [34,35,37], 

and Ref. [38] that reports the complete performances of a commercial vibrometer inspired 

by the research described in this Section. 

Figure 11. Vibration modes of a car structure are obtained by aiming the device at a door of a car.
The motor rotates at 35 Hz, and two other major peaks are seen, due to spikes at 70 Hz and to the
suspension resonance at 13 Hz. Many other (unidentified) peaks are found in the structure because
their intensity is well above the 100 pm noise floor of the instrument (from Ref. [34], ©IoP; reprinted
with permission).

4.2. Measuring Mechanical Hysteresis with a Differential HFS SMI

The SMI can be made quasi-differential by pairing two HFS units and making the
difference be their output signals [34].

The difference Vout1 − Vout2 is not exactly the same as the difference of phases
φ1 − φ2 = 2k(s1 − s2) made by the superposition of measurement and reference beams in a
normal LI. However, it closely approaches it inasmuch as Vout is linearly related to ∆s, like
in an HFS interferometer.

For best results, the noise and dynamic range of two HFS SMIs shall be matched
within 5%, and then a weighted subtraction Vout1 − ηVout2 is made, adjusting the weight η
so that when the two units are aimed just to the same point, the difference in the outputs is
<10−3 of the single component output.

Then, the differential SMI can be applied to the measurement of a small sample,
for example, a bead of a motor damper, subjected to a vibratory stress (one unit) and to
the base holding the object (the other unit). In this way, we have (i) a common mode
signal, proportional to the applied stress (or force per unit area) and (ii) a differential signal
proportional to the strain (or relative deformation) imparted to the sample.

The result is shown in Figure 12. Note that the measurement of the hysteresis cycle
supplies an important design tool because it allows for selecting the right level of stress
to maximize the power dissipated by the damper (given by the area of the cycle times the
frequency of operation) while keeping a safe margin to avoid breakdown of the sample.

For more information on the HFS method, the reader may consult Refs. [34,35,37], and
Ref. [38] that reports the complete performances of a commercial vibrometer inspired by
the research described in this Section.
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Figure 12. Mechanical hysteresis cycle of a bead sample measured with the HFS SMI. Up to a force
F = ±5 N, the regime is Newtonian, and then the sample enters the plastic regime and the hysteresis
area (and dissipated power) increases until about F = ±18 N, where the sample breaks down.

4.3. Measuring Acoustic Emission with the High-C Linearized SMI

The high-C linearized SMI has been successfully used to measure the AE (acoustic
emission) from an aluminum rectangular plate excited with a small piezo placed on the
edge of the plate, where the SMI sensor was a fiber-pigtailed DFB laser [36]. The sensing
length of the fiber, glued to the Al plate, was 15 cm, and the total (standoff) fiber length
was 1.50 m. At f = 40 kHz of excitation, the SMI vibration sensor was able to detect 14 µε of
strain (where ε = ∆l/l is the strain unit), corresponding to an amplitude of 2.12 µm, and it
had a noise-limited sensitivity of 0.25 nε/

√
Hz [36].

5. Switching Cancellation (SC) Analog Readout SMI Vibrometer

A simple yet effective method for reconstructing the SMI waveform under the mod-
erate feedback regime (1 < C < 4.6) was introduced in Ref. [39], which was developed for
the measurement of vibrations and oscillation mode of medium-size structures (say, a few
meters in size) in Ref. [40]. It starts from the observation that, if we remove the switching
steps in the SMI signal I = I0 cos 2ks(t), after sliding the waveform to restore its continuity,
the result is practically coincident with the drive waveform s(t) (see Figure 5 in Ref. [39]).

To implement this concept, called switching cancellation (SC), we first time-differentiate
the SMI signal to obtain a sequence of positive and negative pulses in correspondence with
the upgoing and down-going switching, then separate the positive and negative pulses
and send them to a stretcher circuit supplying a step waveform slowly decaying in time
(to avoid a pile-up of tails), and then subtract the steps to the SMI signal, thus removing
the switching.

Theoretically, this procedure is difficult to analyze and justify. However, heuristically,
it proves to be robust and fairly accurate in the moderate feedback range because the error
of reconstruction is just a little fast ripple easily filtered out using a low-pass operation.

An example of waveforms obtained using the SC circuit is shown in Figure 13. Here,
a loudspeaker with a cone covered with untreated white paper was used as the diffusive
target. It was driven with a sine wave, yielding a peak-to-peak signal amplitude of 5 µm at
20 Hz; the wavelength of the laser was 780 nm, and the feedback factor was estimated to
be C ≈ 3. Similar waveforms were also observed for peak-to-peak signal amplitudes from
400 nm to 20 µm, in a range of frequency going from 0.1 Hz to 100 Hz [40].
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Figure 14. Frequency spectrum of the SC-SMI vibrometer signal in calm environmental conditions. 

The vertical scale is log and covers six decades; the horizontal scale is linear and spans 0 to 100 Hz 

(or 10 Hz per division). The peak at ≈9 Hz is identified as the resonance of the anti-vibration table. 

When the environment is perturbed by people walking nearby, the signal is seen to increase on the 
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6. Frequency-Shifted (FS) Long Standoff Distance Vibrometer (LI and SMI)  

Figure 13. Waveforms obtained using SC processing. Traces from top to bottom: the SMI signal; the
differentiated pulses; the switching removed; and the final reconstructed (low pass filtered) signal
(from Ref. [40], ©SPIE; reprinted with permission).

Observing the SMI reconstructed signal at the (electrical) spectrum analyzer reveals
the ambient-related vibrations collected using the setup and, adding an excitation, the
vibration modes of the structure. As an example, by pointing the beam of the SC-SMI at
the floor when placed on an anti-vibration table at 1.2 m height, we were able to measure
the spectrum of the vibrations collected by the floor, as reported in Figure 14.
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Figure 14. Frequency spectrum of the SC-SMI vibrometer signal in calm environmental conditions.
The vertical scale is log and covers six decades; the horizontal scale is linear and spans 0 to 100 Hz
(or 10 Hz per division). The peak at ≈9 Hz is identified as the resonance of the anti-vibration table.
When the environment is perturbed by people walking nearby, the signal is seen to increase on the
10–50 Hz band (from Ref. [40], ©SPIE; reprinted with permission).

The SC-SMI vibrometer is simple and easy to use and works well on untreated target
surfaces. Its performance is limited by the circuits handling the SMI signal and covering the
middle-to-high range of amplitudes, that is, from ≈0.5 µm to ≈50 µm, and the frequency
components from 0.1 to 100 Hz.

A potential application of this version SC-SMI of the vibration analyzer is the low-cost
intrusion detector for approaching persons.



Vibration 2023, 6 638

6. Frequency-Shifted (FS) Long Standoff Distance Vibrometer (LI and SMI)

Testing large structures using a laser vibrometer is an application that was developed
soon after the advent of the laser. Since the 1980s, He-Ne-based instruments have been
extensively used in the field [41–43] for the remote (standoff distance of≈100 m) monitoring
of structures like dams and towers [44].

The most viable and commonly accepted approach to build a single-channel
(i.e., yielding a cos 2ks signal) laser interferometer yielding a long standoff distance and nm-
capability is the frequency-shifted (FS) approach, in connection with a frequency stabilized
laser (to attain a long coherence length).

The shift is obtained by a Bragg acousto-optic cell, which allows the signal 2ks(t) to
be impressed on a carrier frequency of 20–50 MHz so that by demodulating the received
signal, we can trace back the small vibration s(t) [45]. This operation is carried out using
the arrangement shown in Figure 15.
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Figure 15. Scheme showing a long standoff distance LI using a Bragg cell to shift the interferometric
signal from the baseband to a carrier frequency ∆ω. At the receiver, mixing the signal with the
frequency-shifted oscillation returns the s(t) vibration signal.

The source is a laser stabilized in frequency so that the linewidth (typ. ∆ν = 100 kHz)
is narrow enough to give interference after the long (2 s = 200 m, typically) propagation
path to the remote target and back, and the wavelength is chosen in correspondence with
atmospheric minima of absorption [45]. The He-Ne is a good choice along with the CO2
laser at λ = 10.6 µm for better transmission through haze.

Recently, the GaAlAs diode laser (grating stabilized for low ∆ν) was used in connection
with the SMI version of the vibrometer. This is obtained simply by placing the Bragg cell of
Figure 15 along the propagation path to the target.

Regarding the minimum detectable displacement (or NED), this is determined by the
quantum noise of the detected return and eventually by the limited coherence length, with
a usually substantial contribution of the 1/f component. As we can see from Figure 16, the
NED for a CO2 laser is better than that of a He-Ne, and both are comparable to the GaAlAs
laser diode in the SMI configuration.

The long-distance vibrometer is useful for detecting the vibration mode and frequency
response of a large structure, for example, a tower, as shown in Figure 17.
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Figure 17. Setup for testing the integrity of a tower with a laser vibrometer, taking advantage of the
minute (few nm) vibration imparted to the structure by the vibrodyne. The laser is aimed at different
heights to create a map showing the frequency response.

Here, a vibrodyne—a rotating motor with an eccentric-mounted mass—is mounted
atop the tower and scanned in frequency to measure the frequency response, as shown
in Figure 18.
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Figure 18. A tower has bending vibration modes with nodes (dots) and antinodes (arrows) at integer
fractions of height H, which are revealed by the frequency response measured with the vibrometer.

The laser vibrometer scans spots at selected heights of the tower, and the result is a
chart showing responses that the structural engineer can interpret to diagnose the integrity
of the structure.

7. Speckle Pattern Errors

As native targets are usually diffusive surfaces, the field returning to the measuring
port (either the beamsplitter of the LI or the DL of the SMI) is subject to well-known speckle
pattern statistics [46–51].

Speckle statistics bring about measurement error, and we can consider circumventing
it using a mirror as the target. However, this option is to be absolutely avoided because it is
invasive and requires a clumsy alignment operation. Using a corner cube [52] eliminates
the alignment but aggravates the invasiveness, so it is never used in practice, except in
displacement measurements with tool machines because it can be fastened to the moving
turret. A retroreflector tape (or varnish) over the native surface can be used to obtain an
increase in the retroreflected power by a factor of 20 to 50, together with the mitigation of
speckle errors and the alignment requisite. Yet, the retroreflector tape is also invasive, and
we should possibly avoid it when working on the native, diffusive surface of the target.

On a diffusive surface, speckle statistics [46–48] are generated by the randomness, at
the λ-scale, of the height of individual elemental areas illuminated with the incoming laser
spot. As a result, both the amplitude and phase of the field returning to the measuring port
fluctuate (or have an error) because of the speckle noise, both in LI and SMI.

The statistics of speckle intensity is a negative exponential with a decay constant equal
to the average value: that of amplitude is a Rayleigh distribution, and that of phase is a
uniform distribution over 0–2π [46–48].

Given the point-wise nature of the vibration measurement, amplitude fluctuation is
easily cured. If we unfortunately fall on a dark speckle giving back a signal amplitude
much less than the average, we simply move the aim of the beam away and find another
spot nearby where the amplitude is larger and sufficient.

An SMI with BST (bright speckle tracking) was developed [49] to cure amplitude
fading. Also, remarkably, the HFS SMI can bear a substantial attenuation of speckle
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amplitude thanks to the feedback loop gain, but all the other LI and SMI schemes are
subject to full speckle amplitude fading.

On the other hand, the phase error entirely impacts the measurement because theoreti-
cally, we cannot distinguish it from the useful phase signal φ = 2ks.

An analysis of the phenomenon shows that the phase error can be reduced by making
the spot size as small as possible because the phase-induced error (or NED, noise equivalent
displacement) is given by [46–50] NED = (C/4

√
2)∆(D/2z)2, where ∆ is the amplitude of

the vibration, D is the spot diameter, z is the target distance, and C/4
√

2 is a multiplicative
factor not much different from one. In Figure 19, we plot the NED as a function of
normalized distance z/(D/2). As we can see, the nose contribution can become even
smaller than the quantum noise of the beam (for a detected current of 1 µA) for z > (≈200)
(D/2), that is, for z = 100 mm when D = 1 mm.
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Figure 19. NED of speckle pattern phase noise plotted vs. distance z to spot size D/2 ratio and with
the amplitude of vibration ∆ as a parameter. For a peak amplitude ∆ = 10 µm, two experimental
points are shown (from Ref. [50], ©IEEE; reprinted with permission).

8. Discussion and Conclusions

In Figure 20, we summarize the typical performances of SMI vibrometers described in
the previous Sections with regard to the covered measurement range and standoff distance.

These results demonstrate the suitability of SMI techniques for non-invasive, contact-
less measurement of vibrations and for assessing the parameters of a mechanical system,
all with the fine spatial resolution determined by the laser spot size.

The reported approaches offer case studies and guidelines to develop vibration mea-
surements spanning from tens of picometer to millimeters in amplitude and sub-Hz to
MHz in frequency, with a variety of standoff distances. Thus, they provide a benchmark
and a guide for anyone entering the field of vibration measurement of kinematic quantities.

Vibrations are also called for in several other fields of science and technology, for
example, in biomedical sensing, structural testing, and seismology, where they are still in
their infancy but may lead soon to important breakthroughs, an important event for all
researchers interested in the field. In all the techniques described, the SMI configuration



Vibration 2023, 6 642

demonstrates itself as particularly simple and low-cost, while supplying a high sensitivity
of detection and fast response.
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Regarding the development of new ideas in SMI, a crucial caveat to bear in mind
is that, given the advantages of the simple starting configuration, one with low cost and
minimum part count, any added expensive component should be carefully avoided, as
well as avoiding heavy computer resources. In other words, adding components to the SMI
destroys the inherent simplicity of the configuration and is not at all advisable.

Also, the operation should be on diffusive targets (not mirrors or other components
attached to the target or part of the setup) to maintain the non-invasiveness and non-contact
remote mode of operation.
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