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Abstract: Available decision-support tools rarely account for the welfare of technicians in maintenance
scheduling for offshore wind farms. This creates uncertainties, especially since current operational
limits might make a wind farm accessible but the vibrations from transits might be unacceptable to
technicians. We explore technician exposure to vibration in transit based on the levels of discomfort
and the likelihood of seasickness occurring on crew transfer vessels (CTVs). Vessel motion monitoring
systems deployed on CTVs operating in the North Sea and sea-state data are used in a machine
learning (ML) process to model the welfare of technicians based on operational limits applied to
modelled proxy variables including composite weighted RMS acceleration (aWRMS) and motion
sickness incidence (MSI). The model results revealed poor to moderate performance in predicting the
proxies based on selected model evaluation criteria, raising the possibility of more data and relevant
variables being needed to improve model performance. Therefore, this research presents a framework
for an ML approach towards accounting for the wellbeing of technicians in sailing decisions once the
highlighted limitations can be addressed.

Keywords: human factors; offshore windfarm; operations and maintenance; whole-body acceleration;
welfare assessment; seasickness; comfort

1. Introduction

The operations and maintenance (O&M) phase of an offshore wind farm can amount
to about a third of the overall life-cycle costs [1]. Efficient maintenance strategies play a key
role in reducing the costs and risks associated with the O&M phase [2]. For most offshore
wind farms, maintenance activities are usually carried out using crew transfer vessels
(CTVs), which transport crew members, spare parts, and technicians to perform various
maintenance activities. The planning process for these maintenance activities usually
involves a criteria-based decision-making process which is strongly dependent on weather
and sea-state conditions [3]. An upper limit of significant wave height of 1.5 m usually
applies for CTV operations, as well as the availability of maintenance resources such as
access vessels, spare parts, technicians, and operational and regulatory guidelines [4]. As
such, decisions are taken on whether transits should be undertaken based on the factors
outlined, and these decisions are sometimes aided using decision-support tools [1].

For technicians onboard CTVs in transit, the main concern is their wellbeing and their
ability to conduct work upon arrival at offshore wind turbines [5]. However, available
maintenance strategies and decision-support models rarely account for the welfare of
technicians in the decision-making process [1]. This is important as the literature on the
human response to vessel motions suggests that vibrations caused by transits on marine
vessels can affect the comfort, health, and ability to work of passengers.

1.1. The Effect of Vessel Motions on Technician Welfare

The effects of vibrations on humans, particularly in relation to seafarers, have been
explored to include health effects and the effects on comfort and performance [6,7]. The
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most common health-based effect of long-term exposure to whole-body accelerations is
lower back pain [6,8–10], while the most cited short-term health-based effect is motion sick-
ness [11], which research shows can even affect experienced offshore wind technicians [12].

The general understanding of motion sickness is the neural mismatch theory presented
by [13]. The available literature suggests that increasing magnitudes of vertical acceler-
ation and frequencies around 0.2 Hz are responsible for inducing motion sickness [14];
however, later publications including [15,16] have explored the impact of axes other than
the z-axis in causing seasickness, suggesting that this phenomenon may not just involve
a vertical mismatch. Past research has also associated motion sickness with nausea and
vomiting, but the modern literature highlights more symptoms including fatigue, sweat-
ing, and reduced cognitive function [17–19]. Therefore, it can be concluded that motion
sickness is a complex phenomenon and knowledge about its mechanisms and symptoms is
continuously evolving.

Vessel motions can also affect the comfort of passengers. There exists a range of
accelerations known to cause discomfort in humans which can lead to distractions and
annoyance [20], can affect human reaction time [21], and can cause fatigue in high-speed
vessels, as expressed by [22,23]. The full range of these short-term effects has not been fully
explored and is not stated in the available standards.

1.2. International Standards

International standards provide the most commonly adopted methods for assess-
ing comfort and motion sickness in passengers including the international standard ISO
2631-1 [24], which is the most recent standard for whole-body exposure to vibration. The
standards present ways of assessing comfort and seasickness using specific frequency
weighting functions which are designed to model, using mathematical digital signal pro-
cessing, the response of the human body to wave phenomena or model human responses
to accelerations based on the axis of acceleration and different postures [24]. This standard
presents a way of assessing comfort and motion sickness using the root-mean-square (RMS)
of whole-body accelerations by integrating a weighted acceleration squared over a dose
period [24], which is the most widely used method for continuous acceleration environ-
ments. The equation below presents an expression for the weighted root-mean-square
of acceleration.

aw =

[
1
T

∫ T

0
a2

w(t)dt
] 1

2

(1)

where aw(t) is the weighted acceleration as a function of time measured in metres per second
squared (m/s2) or, for rotational acceleration, measured in radians per second squared
(rad/s2), while t is the measurement duration in seconds for an exposure range up to 6 h.

To account for multiple acceleration axes, a vector sum combination can be performed
using the expression:

axyz =
√

kxa2
wx + kya2

wy + kza2
wz (2)

where axyz is the weighted frequency RMS vector sum of accelerations, and awx, awy, and
awz are the weighted frequency acceleration in the x, y, and z-axis, respectively, while Kx,
Ky, and Kz are multiplying or scaling factors of 1.4, 1.4, and 1.0 for health assessments and
1.0, 1.0, and 1.0 for comfort assessments, respectively [6].

To assess comfort, magnitudes of RMS accelerations are typically used to describe
levels of discomfort in passengers [6]. Thresholds of acceptable vibrations have been
identified from experimental studies where levels of discomfort have been associated with
magnitudes of RMS accelerations, including [25,26]. These subjective scaling mechanisms
are presented in ISO 2631-1 and shown in Table 1 below.
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Table 1. Estimations of comfort response to vibrations (ISO 2631-1, 1997).

The Magnitude of Acceleration in ms−2 Comfort Reaction

Less than 0.315 Not uncomfortable
0.315–0.63 A little uncomfortable

0.5–1 Fairly uncomfortable
0.8–1.6 Uncomfortable
1.25–2.5 Very uncomfortable

Greater than 2 Extremely uncomfortable

Table 1 presents the thresholds of estimated human responses to magnitudes of RMS
accelerations as presented by ISO 2631-1. It should be noted that the expressions in Table 1
are approximate thresholds of human reactions to accelerations.

To assess seasickness, the variable most used in the available literature is the likelihood
of a passenger vomiting, termed motion sickness incidence (MSI). This is likely because
while vomiting can be measured, other known symptoms of motion sickness are subjec-
tive. Percentage values between 20% and 25% are typically used as limits of acceptable
conditions [5]. MSI is expressed as:

MSI = Km·
{∫ T

0
[aw(t)]

2dt
} 1

2

, (3)

where Km is a constant equal to 1/3 in a mixed population of men and women but varies
based on the population exposed to motions for up to 6 h. Additionally, aw(t) is the instan-
taneous frequency-weighted acceleration in the z-axis direction, and t is the measurement
of duration in seconds.

Though able to assess the generalised comfort and likelihood of seasickness in pas-
sengers, the application of human exposure to accelerations in the maintenance planning
of offshore wind farms is rare. This can prove problematic as the literature suggests that
the operational limit of a 1.5 m significant wave height set for CTVs can make an offshore
wind turbine accessible, but the exposure to vibrations may be intolerable [7].

This paper presents a novel method of accounting for the welfare of technicians in
the sail or not-sail decision-making process associated with maintenance planning by
modelling the comfort and health of technicians based on proxies including the composite
weighted RMS of acceleration (aWRMS), a term used to define the vector sum of RMS
whole-body accelerations, to describe levels of comfort, and motion sickness incidence
(MSI) to describe the likelihood of seasickness, using a machine learning approach. Both
metrics were chosen as measurable and recognisable metrics for the welfare of technicians
based on their relevance in literature and the availability of data. The next section of this
paper describes the methodology used to achieve the research objective.

2. Materials and Methods
2.1. Scope

This research assumed that the technicians onboard participating CTVs were in a
seated position during transits. Further assumptions were made regarding the placement
and calibration of the accelerometers used to measure vessel acceleration described in the
subsection below. This research used proxy variables to define technician welfare concern-
ing the short-term effects of acceleration exposure. As such, long-term effects of acceleration
exposure such as lower back pain were not considered. The proxies used represented levels
of discomfort and the likelihood of seasickness occurring from transits. Estimations for
the discomfort of technicians were represented using the composite weighted RMS of
acceleration, which described the vector sum of translational RMS accelerations perceived
with time and derived from the mathematical expression in Equation (2) above. Estimations
for seasickness were represented using motion sickness incidence (MSI), which represented
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the percentage likelihood of technicians vomiting and was derived from the mathematical
expression in Equation (3) above.

2.2. Data and Instrumentation

This research combined the use of operational sea-state data licenced from the Coper-
nicus Marine Service (marine.copernicus.eu, accessed 22 March 2022), and secondary
operational in situ data from vessel motion monitoring systems (VMMS) deployed on
12 participating crew transfer vessels ranging in hull length from 18 m to 24 m. The VMMS
measured acceleration data in six degrees of freedom, vessel speed, vessel heading, and
GPS location data with time stamps. The VMMS was developed, calibrated, and deployed
by BMO Offshore [27], a data solution company delivering marine-based operational infor-
mation and decision support systems, and was made available to this research from the
‘Safety and Productivity of Offshore Wind Technician Transit’ (SPOWTT), project which
was aimed at improving the safety and productivity of offshore turbine technicians [28].
The data collection process in this research commenced in January 2019 and ended in
October of the same year, covering eight months, and resulting in eight hundred and fifty
(nt = 850) defined O&M transit days after data processing and cleaning. This research
defined an O&M transit as a transit originating from an exit port, proceeding to a wind
farm, and returning to its or another port of exit.

Operational data products from the Copernicus Marine Service consisted of hindcast
datasets for:

I. Tri-hourly wave data through the Atlantic—European Northwest Shelf product
(NWSHELF_REANALYSIS_WAV_004_015), resampled at a daily resolution and pro-
vided at approximately 1.5 km resolution from the WAVEWATCH III wave model [29].
The product outputs included wave parameters for the significant wave height, wave
period, and directional characteristics.

II. Daily sea surface height and current hindcast data through the Atlantic—European
Northwest Shelf product (NORTHWESTSHELF_ANALYSIS_FORECAST_PHY
_004_013), provided at 1.5 km resolution from the NEMO (Nucleus for European
Modelling of the Ocean) ocean model [30]. The product provided outputs for current
speed, current direction, and sea surface heights.

III. Daily hindcast remotely sensed surface winds from the Global Ocean Wind Prod-
uct (WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006). The product pro-
vided outputs from scatterometers and radiometers for directional wind velocities
and stresses.

All products were expressed between January and October to match VMMS measure-
ments and aggregated by mean to daily mean resolution in order to create daily dose values
for technician welfare following the scope of the project.

2.3. Study Area

The study area covered latitudes between 51◦ N and 59◦ N in the North Sea. This was
because VMMS data were collected from vessels deployed in four different wind farms
in the North Sea which were operated by four different wind farm operators for spatial
variability. The plot in Figure 1 presents a map of the North Sea area, showing operational
offshore wind farms in the United Kingdom and the relevant available buoys and met
stations considered in this project for metocean data validation. While the map shows
operational wind farms in the region, the specific wind farms used to achieve the research
aims are not highlighted, following the terms according to which the project data were
made available.
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 Figure 1. Locations of available operational wind farms in red-coloured polygons, with relevant
buoys in blue, and met stations in green. The image contains data provided by The Crown Estate
that are protected by copyright and database rights, Cefas, licensed under the Cefas WaveNet Non-
Commercial Licence v1.0, and the channel coastal observatory (CCO), licenced under the Open
Government Licence v3.0.
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2.4. Modelling the Welfare of Technicians

The objective of this research was to develop a dual-criterion welfare model that
aids sailing decisions using proxy variables of the composite weighted RMS acceleration
(aWRMS) and motion sickness incidence (MSI) to represent the levels of comfort and the
likelihood of seasickness of technicians, respectively. Figure 2 presents the project workflow
for achieving the research aim.
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Figure 2. Project workflow for assessing the welfare of technicians in transit.

Our first target was to validate the metocean data and ensure that the sea-state data
provided sufficient spatial coverage of transit routes travelled by participating CTVs. As
such, data from buoys and met masts were used for validation and selected for their
positions either in the path of the port of exit for participating CTVs or at the participating
wind farms. The data from the in situ instruments were open source data provided by Cefas
and funded by Environment Agency, licenced under the Cefas WaveNet Non-Commercial
Licence v1.0, and from the channel coastal observatory (CCO) licenced under the Open
Government Licence v3.0.

To explore human exposure to accelerations, the meteorological dataset, including
variables of significant wave height, wave direction, wave period, sea surface height,
current speed, current direction, wind speed, and wind direction, was merged into a
dataset using dates as a merging variable in a MATLAB2018a workspace. An additional
tidal range variable was created from the 15 min instantaneous resolution of the sea surface
height variable in the current data rather than the daily mean to explore the impact of lunar
tides on the proxy variables. This was achieved by finding the difference between the daily
maximum and minimum sea surface height expressed in metres.

The proxy variables were developed from VMMS acceleration measurements. A
variable for aWRMS was created from the expression in Equation (2) using the vector
sum of accelerations including the x, y, and z axis, as well as the roll, pitch, and yaw
accelerations following ISO 2631-1 guidance. The MSI variable was created from the
expression in Equation (3) using the z-axis acceleration, also following ISO 2631-1 guidance.
Applied weightings depend on the posture of passengers; as such, weightings in this
study were applied under the assumption that technicians on the CTVs are in seated
positions. As such, whole-body acceleration weighting for persons in seated positions
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was expressed as Wk for z-axis accelerations, Wd for x- and y-axis accelerations, We for
rotational accelerations, and Wf for z-axis accelerations for MSI, including scaling factors of
‘kx = 1.4, ky = 1.4, kz = 1′ for the MSI and ‘kx = 1.0, ky = 1.0, kz = 1.0′ for aWRMS. The dataset
of meteorological variables was then merged with the dataset of VMMS using join functions
and dates as the key merging variables. Following this, a dimensionality reduction process
was used to select a subset of the most relevant variables for the predictive modelling.
This process was conducted to train models faster, simplify the models, improve accuracy,
and reduce over-fitting where a model did not generalise well on unseen data based on
the training data. As such, this process identified which input variables to include and
which irrelevant variables to exclude for predictive modelling. This study used a filtering
method to rank variables based on their correlation coefficient univariate metric [31], and
principal component analysis (PCA) to identify the most relevant variables that make up
most of the variance in predicting the proxy variables. These methods were chosen over the
wrapper and embedding [32], which are embedded in the machine learning process and
are not model-agnostic [33]. As such, domain knowledge could be applied to the dataset,
such as the removal of redundant proxy variables such as the motion sickness dose value
(MSDV), which also describes the likelihood of seasickness [34]. Seven variables were
identified, accounting for 70% of the variation in predicting both proxy variables including
vessel transit duration, vessel speed, vessel heading, significant wave height, current speed,
current direction, and tidal height.

For the modelling process, the dataset of the identified variables was split into a
training set of 637 transits (75% of the dataset) and a testing set of 212 transits (25%) using a
hold-out function. This was performed following a standard machine learning approach to
validate the performance of a model selected [35]. Therefore, the machine learning model
was defined as the following general equation,

ŷi = β0 +
n

∑
i=1

βiXi + ei (4)

where i = 1, 2 . . . n; ŷi is the proxy variable in the ith sample; Xi comprises the in-
put variables in the ith sample; βi is the coefficient for the input variables and ei is the
residual error.

The training set was trained against multiple regression models including linear
regression models, regression trees, support vector machines, Gaussian process regression
models, and ensemble trees. For each iteration, we assessed the model’s performance by
calculating the coefficient of determination (R2) to account for the goodness of fit, and the
mean squared error (MSE) and root mean squared error (RMSE) to provide a measure of
how far apart model predictions were from estimated values. The machine learning process
identified a Gaussian process regression (GPR) model as the model of best fit, which was
tested on the testing set using a ‘ftrgp’ function to predict the proxy variables.

To deliver sailing decisions, we applied defined operational limits to the model’s
predicting the proxy variables. Operational limits were defined by ISO 2631-1 for limits of
human operation and limits of operation based on best seafaring practices. These included
a limit equal to or greater than 0.32 ms−2 for predicted values of aWRMS discretised
as progressively uncomfortable for technicians, and limits applied to the predictions of
MSI equal to or greater than 20% discretised as unfavourable sailing conditions able to
progressively induce seasickness in 20% or more of the population of technicians in transit.
The resulting model was a binary decision support model that predicted sail and not-sail
decisions from ‘if and else’ statements written in code in the MATLAB workspace.

3. Results and Discussion

Our first step was to ensure the accurate description of transit routes in project sites
and validate metocean data spatial coverage. Data from in situ devices such as buoys and
data from met masts were compared with the metocean data at specific points during the
transit of participating crew transfer vessels between ports and wind farms. The variables
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tested included significant wave height (m) and wind speed (ms−2). Table 2 below presents
the results of the comparisons with available in situ devices.

Table 2. Comparisons between metocean data and in situ measurements showing statistical relevance.

Category R2 RMSE p-Value Locations

Significant wave height 0.89 0.20 <0.05 Project site 1
Significant wave height 0.84 0.25 <0.05 Project site 3
Significant wave height 0.86 0.15 <0.05 Project site 4

Wind speed 0.54 1.74 <0.05 Project site 1
Wind speed 0.847 0.213 <0.05 Project site 4

The comparisons between metocean data and in situ data revealed good relationships
between datasets, suggesting that metocean data products were able to provide accurate
spatial coverage of the CTV routes when compared with available in situ data. Better
relationships were found in the comparisons with significant wave height than with sea
surface height and wind speed. This is likely due to the significant amount of missing data
points in wind speed data.

Welfare Modelling

The process of dimension reduction revealed the most relevant variables to predict
aWRMS and MSI, including vessel journey duration, vessel speed, tidal range, current
speed, significant wave height, and current direction. Some identified variables are typi-
cally present in the parameters used when exploring comfort or the incidence of motion
sickness, including journey duration due to the negative relationship between duration
and magnitudes of acceleration [36,37], the relationship between vessel speed and mag-
nitudes of acceleration [38], and significant wave height and MSI [34,39–41]. While other
variables such as current speed, current direction, and tidal range are not typically present
in parameters used in studies evaluating comfort and MSI, the dimensionality reduction
process identified these parameters as relevant to the variance in predicting aWRMS and
MSI. The identified variables were used as input variables to identify the model of best fit
by training the training set against multiple regression models, shown in Table 3, which
revealed a rational quadratic regression model.

Table 3. Summary of trained models used to identify the model of best fit.

Regression Model R2 (aWRMS)
RMSE

(aWRMS) R2 (MSI) RMSE (MSI)

Linear 0.51 0.08 0.29 4.63
Interactions linear 0.52 0.08 0.27 4.68

Robust linear 0.50 0.09 0.28 4.64
Stepwise linear 0.53 0.08 0.27 4.69

Fine tree 0.40 0.09 0.25 4.77
Medium tree 0.43 0.09 0.30 4.62
Coarse tree 0.46 0.09 0.31 4.57
Linear SVM 0.50 0.09 0.27 4.68

Quadratic SVM 0.54 0.08 0.37 4.35
Cubic SVM 0.54 0.08 0.38 4.32

Fine Gaussian SVM 0.21 0.12 0.24 4.78
Medium Gaussian SVM 0.56 0.08 0.41 4.20
Coarse Gaussian SVM 0.51 0.08 0.33 4.47

Boosted tree 0.58 0.08 0.45 4.02
Bagged trees 0.56 0.08 0.45 4.02

Squared exponential GPR 0.61 0.08 0.43 4.02
Matern 5/2 GPR 0.59 0.08 0.42 4.02
Exponential GPR 0.60 0.08 0.43 4.02

Rational quadratic GPR 0.63 0.07 0.46 4.02
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The Gaussian process regression (GPR) model is a non-parametric method for machine
learning regression which was used on a testing set. We show the results of the model
generated using the MATLAB ‘ftrgp’ function with ‘KernelFunction = rationalquadratic’,
‘BasisFunction = constant’, ‘Standardize = true’, ‘PredictMethod = Exact’, as the model
specification. The accuracy of the models was measured using their R2, MSE, and RMSE
values, which are best used in measuring regression model performance [42]. These
measures were chosen to identify how well the models predicted the proxy variables and
present measures through which improved models can be tested against. Figures 3 and 4
present the results of both models in predicting proxy variables.
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Figure 3. Plots showing the model performance. (A) A response plot showing observed (measured),
in blue, and predicted composite weighted RMS acceleration (aWRMS), in orange, with time. (B)
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Figures 3 and 4 present model results for predicting the proxy variables. The response
plot in (A) of both figures shows that predictions follow similar tracks to measured values.
The plot of the correlation between predicted and measured aWRMS (Figure 3B) shows a
moderate relationship between predicted and estimated values with an R2 value of 0.67.
This shows that for this model, 67% of the variation of estimated aWRMS can be explained
by the independent variables, and as such, only 33% reside in the residual. This provides a
measure of improvements that need to be implemented in improving the model, which
could include less significant measures such as increasing the size of the dataset to improve
predictability and more significant measures such as unexplored or unknown factors that
could influence the measured acceleration on the participating CTVs. The model’s errors
are evaluated from RMSE values of 0.06 ms−2, and the histogram of residuals (Figure 3C)
which shows that model predictions can be off by 0.25 ms−2; however, most data points
are centred around zero, which suggests that the errors are not significant. Additionally,
the presence of data points (the density plot in Figure 3B) above the perfect prediction
line (thin red line) between 0.1 and 0.3 ms−2 and data points below the prediction line
between 0.5 and 1.0 ms−2 shows that the model overestimated more common values of
composite weighted acceleration and underestimates the less common values. Further
statistical significance is presented by a p-value less than 0.05.
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Figure 4. Plots showing the model performance. (A) A response plot showing observed (measured),
blue, and predicted motion sickness incidence (MSI), orange, with time. (B) The correlation between
predicted and observed MSI (%) with a density of data points. (C) A histogram of residuals.

Similarly, Figure 4B presents a poor relationship between the predicted and estimated
values of motion sickness incidence (MSI), with an R2 value of 0.49. This shows more than
half of the variance, up to 51%, resides in the residual. As such, the variables explored
do not make up most of the variation in predicting MSI. This shows that a significant
amount of work needs to be done to improve the models’ prediction, and as such, the
model does not present an acceptable level of performance. The RMSE values of 2.6% and
the histogram of residuals in Figure 4C show that model predictions can be off by 2.6%;
however, a p-value less than 0.05 shows that there is statistical significance. Table 4 presents
the results of both models between training and testing sets.

Table 4. Summary of model results for training and testing datasets.

RMSE R2 MSE Speed (s) Time (s) Model

Training set 0.07 0.63 0.005 25,000 12.11 aWRMS Rational
quadratic GPR (ms−2)Testing set 0.06 0.67 0.004 8800 3.05

Training set 4.02 0.46 16.15 24,000 16.56 MSI Rational quadratic
GPR (%)Testing set 2.64 0.49 6.97 8800 12.11

It should be noted that the models do not predict comfort and seasickness in tech-
nicians, but rather the aWRMS and MSI as proxies for the levels of discomfort using the
magnitude of aWRMS and the likelihood of seasickness using the percentage value of
MSI. In addition, the comfort thresholds presented in the ISO 2631-1 are based on dated
experimental studies [26] which might not be suitable for current assessments or suited
to measurements on CTVs. Furthermore, MSI, as stated in Section 1, is the incidence of
vomiting (a symptom of motion sickness) and does not account for other symptoms of
motion sickness including sweating, changes in temperature, headaches [28], or other
susceptibility factors associated with motion sickness such as temperature and a lack of
visual reference [43]. This is highlighted in a recent publication by [43], who suggested
improvements to the international standard to include more dimensions of motion sickness.
As such, motion sickness incidence may not be a sufficient indicator of seasickness.
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To predict sail and not-sail decisions, operational limits are applied to the model
outputs of the aWRMS and MSI based on the operational limits defined by ISO 2631-1 for
providing an approximate human comfort response to accelerations, and the best seafaring
practices for limiting the incidence of motion sickness [5,8]. The limits applied include the
categorisation of increasing values of RMS acceleration above 0.315 ms−2 as progressively
uncomfortable and MSI values below 20% as limits of acceptable conditions. Therefore,
the model created is based on a dual-criterion system established from magnitudes of
predicted weighted acceleration and the predicted incidence of vomiting. Figure 5 presents
the results of the technician welfare model with predicted sail and not sail decisions over
three months.
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Figure 5. A plot of the technician welfare model showing sail and not-sail decisions based on applied
operational limits.

Figure 5 presents 159 predictions based on the dual criterion operational limits applied
to predictions of aWRMS and MSI. The coloured balls represent model predictions. For the
aWRMS model, the balls range between blue and green showing levels of discomfort based
on ISO 2631, and for the MSI model, the red balls indicate greater than or equal to 20% MSI
values while the blue balls indicate less than 20% MSI. The final well-being model shows
green, for sail, and red, for not-sail, bars which indicate sailing decisions derived from
aWRMS and MSI model outputs. The welfare model predicted 129 sail decisions (shown in
green) and 7 not-sail decisions (in red).

4. Conclusions

This research presents a holistic approach to an aspect of operations and maintenance
planning typically not expressed in accounting for the welfare of technicians in transit by
assessing comfort and the likelihood of seasickness. This can further inform their ability to
perform work upon arrival at offshore turbines. Proxy indicators were used to describe
comfort levels and the likelihood of seasickness in technicians, including aWRMS and MSI,
respectively. These proxies used were selected due to their relationships with whole-body
accelerations, which are supported by findings in the literature, including the relationship
between the magnitude of RMS accelerations and levels of discomfort [6] and MSI as an
indicator of the incidence of seasickness [5]. Significant contributions to the literature
were made in describing the non-homogeneous random variables of sea-state and vessel
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operational parameters, as typically, studies on human exposure to acceleration calculate
the RMS of vessel acceleration using a response amplitude operator (RAO) along with
wave energy spectra to produce response spectra [42] or combine numerical ocean models
to seat models, providing a range of sea state and vessel parameters for analysis [22]. This
is because experimental in situ measurements of sea-state and vessel characteristics have
limited spatial coverage and are time-consuming and expensive [22,44]. This research, how-
ever, benefits from measured vessel accelerations which allowed more variable exploration
of parameters to identify relevant relationships for modelling.

The results of the models created present a framework for assessing welfare based
on proxy variables; however, the performance of the models indicated that more work is
needed to improve model predictability. In application, the welfare of technicians can be
assessed before or alongside a maintenance transfer plan able to make sailing decisions
that can account for the wellbeing of technicians. Therefore, this research can provide
major contributions to the maintenance planning for offshore wind farms once the major
limitations, outlined in Section 4.1, have been addressed. This is particularly important as
typical CTV operational limits can make a wind farm accessible but perceived accelerations
from transits may be unacceptable to technicians [7], potentially causing discomfort and
seasickness [6] which can affect the ability to perform complex functions in technicians,
including manual handling and cognitive tasks [18]. This research can also provide a
framework for regulatory compliance, as the model-set acceleration limit falls below the
limits set in the Control of Vibration at Work Regulations 2005 [45] which came into force
in the UK in 2005, and the limits to MSI also aid wind farm operators with their duties of
care to technicians under the Health and Safety at Work etc Act 1974 [46].

4.1. Limitations and Future Work

There are key limitations in this research that need to be addressed with areas where
future work can be done.

The VMMS data used in this paper were collected for a different purpose than this
project’s objectives and from a project with different objectives. The authors of this paper
had limited control over the measurement of acceleration data, the positioning of the
VMMS devices, and the calibration of the devices. In addition, there were restrictions on
the data made available including the vessels used and subjective measurements, which
prevented the validation of model results. For this reason, some assumptions had to be
made within the course of this research regarding the calibration of the accelerometers in
the VMMS and the placement of the VMMS on the participating vessels, which may have
created errors due to the physical constraints of the device and the location of the device in
relation to the personnel on board. The assumptions were made based on informal requests
to the researchers within the original study, as well as the publication from the study [28].
In addition to this, the research objective had to be amended to the dataset available, which
restricted the type of research questions generated for the project. Future research in this
field will require a dataset designed for the research objectives to eliminate restrictions in
data analysis and exploration, and reduce random errors.

The results of the model-predicted proxies could benefit from validations against
real-life measurements of the comfort and seasickness of technicians in transit in the form
of measured physiological changes or symptomatic questionnaires [43]. This would also
inform the future exploration of input parameters and greatly improve the model. In
addition to this, experimental studies cited in the international standard explored limits of
operation for vessels of varying sizes, some of which are different from the CTVs used in
O&M activities. As such, the operational limits can also be validated against measurements
of comfort for CTVs.

Consideration also needs to be performed for the proxies used, including how dis-
comfort is described and the definition of seasickness. While the relationship between
RMS acceleration and the discomfort of passengers has been explored in the literature, the
available literature is dated, and the nature of questionnaires used to assess discomfort and
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the type of vessels or simulations used can impact the ranges of discomfort experienced.
Similarly, the model predicts the incidence of vomiting rather than the incidence of motion
sickness and does not account for other relevant factors or other susceptibility factors asso-
ciated with motion sickness [43]. For the technicians onboard CTVs completing complex
work, the point of vomiting is well past the point where complex work can be performed,
and as such, MSI may not be a useful benchmark for predicting wellbeing.

Future work also needs to be performed to iteratively improve model predictions by
exploring more relevant variables for predicting aWRMS and MSI, including increasing the
size of the dataset used in making predictions, applying other measurable welfare parame-
ters not included in the welfare model, increasing the spatial variability to account for the
sea-state characteristics of other regions, and improving vessel variability in predictions
such as different sizes of CTVs, and other service vessels such as service operation vessels
(SOVs) and daughter crafts.

Author Contributions: Conceptualisation, T.D.U.; methodology, T.D.U.; software, T.D.U.; resources,
T.W.; data curation, T.D.U.; writing—original draft preparation, T.D.U.; writing—review and editing,
R.F. and T.W.; visualisation, T.D.U.; supervision, R.F. and T.W. All authors have read and agreed to
the published version of the manuscript.”

Funding: This research was supported by funding provided to the lead author by The University
of Hull.

Data Availability Statement: Sea-state data for this study were obtained using Copernicus Marine
Service products. Product information is presented below. Copernicus Marine Service Informa-
tion, n.d. Atlantic- European Northwest Shelf- Wave Physics Reanalysis, NWSHELF_REANALYSIS
_WAV_004_015. [Product] marine.copernicus.eu, https://doi.org/10.48670/moi-00060 [accessed on
20 January 2022]. Copernicus Marine Service Information, n.d. Atlantic—European Northwest Shelf—
Ocean Physics Analysis and Forecast, NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013
[Product] marine.copernicus.eu, https://doi.org/10.48670/moi-00054 [accessed on 20 January 2022].
Copernicus Marine Service Information, n.d. Global Ocean Wind L4 Reprocessed 6 hourly Obser-
vations, WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006. [Product] marine.copernicus.eu,
https://doi.org/10.48670/moi-00185 [accessed on 20 January 2022]. The authors elect to not share
specific vessel data due to personal and commercial confidentiality.

Acknowledgments: This research was supported by funding to the first author from the University
of Hull. The authors would like to thank BMO Offshore for providing access to VMMS.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Scheu, M.; Matha, D.; Hofmann, M.; Muskulus, M. Maintenance strategies for large offshore wind farms. Energy Procedia 2012, 24,

281–288. [CrossRef]
2. Ding, F.; Tian, Z. Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds. Renew

Energy 2012, 45, 175–182. [CrossRef]
3. Shafiee, M. Maintenance logistics organization for offshore wind energy: Current progress and future perspectives. Renew Energy

2015, 77, 182–193. [CrossRef]
4. Seyr, H.; Muskulus, M. Decision Support Models for Operations and Maintenance for Offshore Wind Farms: A Review. Appl. Sci.

2019, 9, 278. [CrossRef]
5. Phillips, S.; Shin, I.; Armstrong, C. Crew Transfer Vessel Performance Evaluation. In Design and Operation of Wind Farm Support

Vessels: RINA International Conference; Phillips, S., Shin, I., Armstrong, C., Eds.; Royal Institution of Naval Architects: London,
UK, 2015; pp. 1–5. Available online: https://app.knovel.com/web/toc.v/cid:kpDOWFSVR5/viewerType:toc/ (accessed on
23 November 2020).

6. Mansfield, N.J. Human Response to Vibration 1; CRC Press: New York, NY, USA, 2005; Volume 1.
7. Scheu, M.; Matha, D.; Schwarzkopf, M.A.; Kolios, A. Human exposure to motion during maintenance on floating offshore wind

turbines. Ocean Eng. 2018, 165, 293–306. [CrossRef]
8. Stevens, S.C.; Parsons, M.G. Effects of Motion at Sea on Crew Performance: A Survey. Mar. Technol. SNAME News 2002, 39, 29–47.

[CrossRef]
9. Griffin, M.J. Handbook of Human Vibration, 1st ed.; Academic Press Limited: London, UK, 1990; Volume 1.

https://doi.org/10.48670/moi-00060
https://doi.org/10.48670/moi-00054
https://doi.org/10.48670/moi-00185
https://doi.org/10.1016/j.egypro.2012.06.110
https://doi.org/10.1016/j.renene.2012.02.030
https://doi.org/10.1016/j.renene.2014.11.045
https://doi.org/10.3390/app9020278
https://app.knovel.com/web/toc.v/cid:kpDOWFSVR5/viewerType:toc/
https://doi.org/10.1016/j.oceaneng.2018.07.016
https://doi.org/10.5957/mt1.2002.39.1.29


Vibration 2023, 6 447

10. Cardinale, M.; Pope, M.H. The effects of whole body vibration on humans: Dangerous or advantageous? Acta Physiol. Hung.
2003, 90, 195–206. [CrossRef]

11. Coyte, J.L.; Stirling, D.; Du, H.; Ros, M. Seated Whole-Body Vibration Analysis, Technologies, and Modeling: A Survey. IEEE
Trans. Syst. Man. Cybern. Syst. 2016, 46, 725–739. [CrossRef]

12. Mette, J.; Garrido, M.V.; Harth, V.; Preisser, A.M.; Mache, S. Healthy offshore workforce? A qualitative study on offshore wind
employees’ occupational strain, health, and coping. BMC Public Health 2018, 18, 172. [CrossRef]

13. Reason, J.T.; Brand, J.J. Motion Sickness, 1st ed.; Academic Press Inc.: London, UK, 1975; Volume 1.
14. O’Hanlon, J.F.; McCauley, M.E. Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal

motion. Aerosp. Med. 1974, 45, 366–369. [CrossRef]
15. Donohew, B.E.; Griffin, M.J. Motion sickness: Effect of the frequency of lateral oscillation. Aviat. Space Environ. Med. 2004, 75,

649–656. [PubMed]
16. Wertheim, A.H.; Bos, J.E.; Bles, W. Contributions of roll and pitch to sea sickness. Brain Res. Bull. 1998, 47, 517–524. [CrossRef]

[PubMed]
17. Dobie, T.G. Motion Sickness: A Motion Adaptation Syndrome; Springer: New Orleans, LA, USA, 2019; Volume 6.
18. Matsangas, P.; McCauley, M.E.; Becker, W. The effect of mild motion sickness and sopite syndrome on multitasking cognitive

performance. Hum. Factors 2014, 56, 1124–1135. [CrossRef] [PubMed]
19. Zhang, L.L.; Wang, J.Q.; Qi, R.R.; Pan, L.L.; Li, M.; Cai, Y.L. Motion Sickness: Current Knowledge and Recent Advance. CNS

Neurosci. Ther. 2016, 22, 15–24. [CrossRef]
20. Marjanen, Y.; Mansfield, N.J. Application of ISO 2631-1 (1997) for evaluating discomfort from whole-body vibration: Verification

using field and laboratory studies. In Proceedings of the 40th International Congress and Exposition on Noise Control Engineering
2011, INTER-NOISE, Osaka, Japan, 4–7 September 2011; pp. 3475–3480.

21. Newell, G.S.; Mansfield, N.J. Evaluation of reaction time performance and subjective workload during whole-body vibration
exposure while seated in upright and twisted postures with and without armrests. Int. J. Ind. Ergon. 2008, 38, 499–508. [CrossRef]

22. Olausson, K. On Evaluation and Modelling of Human Exposure to Vibration and Shock on Planing High-Speed Craft. Licentiate
Thesis, KTH Royal Institute of Technology: Stockholm, Sweden, 2015.

23. Leung, A.W.S.; Chan, C.C.H.; Ng, J.J.M.; Wong, P.C.C. Factors contributing to officers’ fatigue in high-speed maritime craft
operations. Appl. Ergon. 2006, 37, 565–576. [CrossRef]

24. ISO 2631-1; Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration. International Organization
for Standardization: Geneva, Switzerland, 1997.

25. Huston, D.R.; Zhao, X.; Johnson, C.C. Whole-body shock and vibration: Frequency and amplitude dependence of comfort.
J. Sound Vib. 2000, 230, 964–970. [CrossRef]

26. Shoenberger, R.W. Discomfort judgements of translational and angular whole-body vibrations. Aviat. Space Environ. Med. 1982,
53, 454–457. Available online: https://pubmed.ncbi.nlm.nih.gov/7092753/ (accessed on 14 June 2022).

27. Offshore Energy. BMO Offshore Presents CTV Engine Monitoring—Offshore Energy. Offshore-energy.biz. 19 July 2016. Available
online: https://www.offshore-energy.biz/bmo-offshore-presents-ctv-engine-monitoring/ (accessed on 3 November 2022).

28. Earle, F.; Huddlestone, J.; Williams, T.; Stock-Williams, C.; van der Mijle-Meijer, H.; de Vries, L.; van Heemst, H.; Hoogerwerf, E.;
Koomen, L.; de Ridder, E.-J.; et al. SPOWTT: Improving the safety and productivity of offshore wind technician transit. Wind
Energy 2021, 25, 34–51. [CrossRef]

29. Lewis, H.W.; Sanchez, J.M.C.; Siddorn, J.; King, R.R.; Tonani, M.; Saulter, A.; Sykes, P.; Pequignet, A.-C.; Weedon, G.P.;
Palmer, T.; et al. Can wave coupling improve operational regional ocean forecasts for the north-west European Shelf? Ocean Sci.
2019, 15, 669–690. [CrossRef]

30. Tonani, M.; Sykes, P.; King, R.R.; McConnell, N.; Péquignet, A.-C.; O’Dea, E.; Graham, J.A.; Polton, J.; Siddorn, J. The impact
of a new high-resolution ocean model on the Met Office North-West European Shelf forecasting system. Ocean Sci. 2019, 15,
1133–1158. [CrossRef]

31. Kumari, B.; Swarnkar, T. Filter versus Wrapper Feature Subset Selection in Large Dimensionality Micro array: A Review. Int. J.
Comput. Sci. Inf. Technol. 2011, 2, 1048–1053.

32. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
33. Lal, T.N.; Chapelle, O.; Western, J.; Elisseeff, A. Embedded methods. In Feature Extraction. Studies in Fuzziness and Soft Computing;

Springer: Berlin/Heidelberg, Germany, 2006; pp. 137–165. [CrossRef]
34. Cepowski, T. The prediction of the Motion Sickness Incidence index at the initial design stage. Zesz. Nauk. Akad. Morska W Szczec.

2012, 31, 45–48.
35. Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, U.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, C. Machine learning methods for

wind turbine condition monitoring: A review. Renew Energy 2019, 133, 620–635. [CrossRef]
36. Griffin, M.J.; Whitham, E.M. Time dependency of whole-body vibration discomfort. J. Acoust. Soc. Am. 1998, 68, 1523. [CrossRef]
37. Maeda, S.; Morioka, M. Measurement of whole-body vibration exposure from garbage trucks. J. Sound Vib. 1998, 215, 959–964.

Available online: https://www.academia.edu/8126588/MEASUREMENT_OF_WHOLE_BODY_VIBRATION_EXPOSURE_
FROM_GARBAGE_TRUCKS (accessed on 9 January 2022). [CrossRef]

38. Eger, T.; Contratto, M.; Dickey, J. Influence of Driving Speed, Terrain, Seat Performance and Ride Control on Predicted Health
Risk Based on ISO 263I-I and EU Directive 2002/44/EC:. J. Low Freq. Noise Vib. Act. Control 2011, 30, 291–312. [CrossRef]

https://doi.org/10.1556/APhysiol.90.2003.3.2
https://doi.org/10.1109/TSMC.2015.2458964
https://doi.org/10.1186/s12889-018-5079-4
https://doi.org/10.1016/s0022-460x(75)80121-0
https://www.ncbi.nlm.nih.gov/pubmed/15328780
https://doi.org/10.1016/S0361-9230(98)00098-7
https://www.ncbi.nlm.nih.gov/pubmed/10052583
https://doi.org/10.1177/0018720814522484
https://www.ncbi.nlm.nih.gov/pubmed/25277021
https://doi.org/10.1111/cns.12468
https://doi.org/10.1016/j.ergon.2007.08.018
https://doi.org/10.1016/j.apergo.2005.11.003
https://doi.org/10.1006/jsvi.1999.2585
https://pubmed.ncbi.nlm.nih.gov/7092753/
https://www.offshore-energy.biz/bmo-offshore-presents-ctv-engine-monitoring/
https://doi.org/10.1002/we.2647
https://doi.org/10.5194/os-15-669-2019
https://doi.org/10.5194/os-15-1133-2019
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1007/978-3-540-35488-8_6/COVER
https://doi.org/10.1016/j.renene.2018.10.047
https://doi.org/10.1121/1.385078
https://www.academia.edu/8126588/MEASUREMENT_OF_WHOLE_BODY_VIBRATION_EXPOSURE_FROM_GARBAGE_TRUCKS
https://www.academia.edu/8126588/MEASUREMENT_OF_WHOLE_BODY_VIBRATION_EXPOSURE_FROM_GARBAGE_TRUCKS
https://doi.org/10.1006/jsvi.1998.1676
https://doi.org/10.1260/0263-0923.30.4.291


Vibration 2023, 6 448

39. Cepowski, T. On the modeling of car passenger ferryship design parameters with respect to selected sea-keeping qualities and
additional resistance in waves. Pol. Marit. Res. 2009, 16, 3–10. [CrossRef]

40. Rumawas, V.; Asbjørnslett, B.E.; Klöckner, C.A. Human Factors Evaluation in Ship Design and Operation: An Case Study in
Norwegian Sea. In Maritime Safety International Conference (MASTIC 2018); CSP: Bali, Indonesia, 2018; pp. 66–78.

41. Piscopo, V.; Scamardella, A. The overall motion sickness incidence applied to catamarans. Int. J. Nav. Archit. Ocean Eng. 2015, 7,
655–669. [CrossRef]

42. Jenkins, B.; Prothero, A.; Collu, M.; Carroll, J.; McMillan, D.; McDonald, A. Limiting Wave Conditions for the Safe Maintenance of
Floating Wind Turbines. J. Phys. Conf. Ser. 2021, 2018, 012023. [CrossRef]

43. Bos, J.E.; Diels, C.; Souman, J.L.; Rahmatalla, S.; Boileau, P.-É. Beyond Seasickness: A Motivated Call for a New Motion Sickness
Standard across Motion Environments. Vibration 2022, 5, 755–769. [CrossRef]

44. Medina-Lopez, E.; McMillan, D.; Lazic, J.; Hart, E.; Zen, S.; Angeloudis, A.; Bannon, E.; Browell, J.; Dorling, S.; Dorrell, R.; et al.
Satellite data for the offshore renewable energy sector: Synergies and innovation opportunities. Remote Remote Sens. Environ.
2021, 264, 112–588. [CrossRef]

45. UK Government. The Control of Vibration at Work Regulations 2005; UK Statutory Instruments: London, UK, 2005. Available online:
https://legislation.gov.uk (accessed on 16 March 2022).

46. UK Government. Health and Safety at Work etc Act; UK Statutory Instruments: London, UK, 1974; pp. 1–166. Available online:
https://legislation.gov.uk (accessed on 16 March 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2478/v10012-008-0026-4
https://doi.org/10.1515/ijnaoe-2015-0046
https://doi.org/10.1088/1742-6596/2018/1/012023
https://doi.org/10.3390/vibration5040044
https://doi.org/10.1016/j.rse.2021.112588
https://legislation.gov.uk
https://legislation.gov.uk

	Introduction 
	The Effect of Vessel Motions on Technician Welfare 
	International Standards 

	Materials and Methods 
	Scope 
	Data and Instrumentation 
	Study Area 
	Modelling the Welfare of Technicians 

	Results and Discussion 
	Conclusions 
	Limitations and Future Work 

	References

