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Abstract: The crack-induced changes in the vertical transient response of a rotating shaft–disc system,
Jeffcott rotor, are investigated for transverse crack detection. The crack is considered as a breathing
crack. A novel breathing function is proposed, in which the partially open–closed crack breathing
behavior is interpolated between the fully open and closed crack behaviors. The breathing crack
excites superharmonic response components of the transient as well as the subharmonic components.
A Hilbert–Huang transform based on an improved empirical mode decomposition algorithm is
subsequently formulated to evaluate the time–frequency representation of the vertical transient
response of the rotor to detect the crack. The results show that the proposed breathing function can
effectively reduce the computational effort without sacrificing the accuracy of the crack breathing
behavior in the presence of small cracks. It is shown that time–frequency representations based on
an improved empirical mode decomposition algorithm can lead to the detection of smaller cracks
compared with those based on the empirical mode decomposition algorithm.

Keywords: transient response; Jeffcott rotor; breathing crack; empirical mode decomposition

1. Introduction

The propagation of a fatigue crack in rotary machines can adversely affect the oper-
ational efficiency of the system and could lead to unscheduled failures. In the past few
decades, a variety of vibration-based methods have been proposed for the detection of
a crack at the onset of its propagation in a rotating shaft. These are mainly based on
identifications of relative changes in steady-state and transient vibration responses of the
system to detect crack properties such as depth and location. The rotor transient response
analysis has been a tool of great interest in crack detection and diagnosis. The start-up and
run-down transient lateral responses of a cracked rotor while passing a critical speed can
provide valuable information for crack detection [1–4].

The equations of the lateral motion of shaft–disc systems have been reported in many
analytical (e.g., [5–10]) and numerical (e.g., [11–18]) studies. These models have been
mostly derived using the Euler–Bernoulli (e.g., [7,19]) and Timoshenko beam theories
(e.g., [10,16,20]). The Jeffcott rotor model, as a simplified lumped analytical model, has also
been used in obtaining the steady-state (e.g., [5,6,21]) as well as transient lateral responses
(e.g., [4,22,23]) of shaft–disc systems. This model considers a single rigid disc on the
midspan of a massless flexible shaft to obtain vibrational properties in the vertical and
horizontal directions.

The local stiffness of the shaft is affected by the presence of the crack and consequently
the dynamic behavior and vibrational properties of the shaft–disc system. Modeling
the crack has been an important challenge in many studies, which involves two distinct
steps: (i) calculation of the shaft cross-section stiffness reduction due to crack and (ii)
determination of relation function between shaft stiffness reduction and shaft rotation. The
changes in shaft cross-section geometry in the vicinity of the crack, and thereby changes
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in the local stiffness of the shaft, strongly depend on the crack depth, which are generally
obtained using the concepts of strain energy release rate and stress intensity factor [24,25]
or changes in area moment of inertia about the transverse coordinates of the cracked
shaft [16,26].

In the case of a crack with negligible thickness in axial direction, the crack geometry
also changes as the shaft static deflection dominates the lateral vibration [14]. A crack is
modeled as an open crack when the variations in the stiffness due to the shaft rotation are
considered negligible [6,27]. Alternatively, in a breathing crack model, the effect of the shaft
rotation on the crack geometry is incorporated to accurately describe the localized stiffness
reduction due to the crack at each shaft angle. [28–30].

The majority of the breathing crack models employ explicit functions such as step
or cosine functions to calculate breathing behavior of the partially open–closed crack by
interpolating between fully open and closed crack behaviors (e.g., [17,31,32]). Some studies
have also reported to evaluate breathing behavior of the crack corresponding to different
shaft angles using linear fracture mechanics [10,21,25] and changes in area moment of
inertia about the transverse coordinates of the cracked shaft cross-section area [14]. These
studies could describe the breathing crack behavior more accurately for a wide range of
crack depths. These, however, impose greater computational efforts compared with the
studies using interpolations.

The crack-induced changes in different vibrational properties such as critical speeds,
emergence of subcritical resonant peaks, whirl orbit evolution at subcritical speeds, torsional-
lateral vibration coupling, and equivalent fictitious loads have been utilized for detection of
cracks in rotating shaft–disc systems (e.g., [14,17,21,26,27,32–35]). The changes in transient
lateral responses of the shaft–disc system have also been investigated in many studies for
crack detection. Plaut et al. [19] have considered the effects of crack parameters, depth and
location, and shaft acceleration and deceleration rate on the maximum transient response
with passing through the first critical speed of the system as a reliable crack indicator.
Sawicki et al. [3] have suggested that the “saw-cut” pattern in the vibration phase response
as the rotor accelerates can be considered as a crack indicator. Darpe et al. [4] have consid-
ered shaft center orbit evolution and relatively stronger superharmonic components in the
horizontal direction than in the vertical direction passing through subcritical resonances
as reliable crack indicators. Sampaio et al. [36] have applied the Approximated Entropy
(ApEn) algorithm to detect breathing cracks during run-up or run-down transient responses
of a rotating shaft. The ApEn algorithm is an efficient method in the identification of irreg-
ularities and unpredictable fluctuations in time data series. Nicoletti et al. [37] merged the
ApEn algorithm with the combination resonances approach to detect cracks while the rotor
operates at constant speeds.

The emergence of low-amplitude subcritical resonant peaks in rotor transient response
has been considered as a reliable crack indicator. The subcritical resonant peaks are affected
by several parameters such as start-up/run-down rotational acceleration/deceleration
rates and unbalance phase as reported in [4,38]. The subcritical resonant peaks, however,
are usually hard to detect in time response, especially in the presence of small cracks.
Analyzing the transient response using signal processing techniques may reveal useful
information to find subcritical resonant peaks, which are not detectable in the time domain.

Darpe et al. [4] applied the Fourier transform technique to extract the frequency con-
tent of transient response near subcritical speeds. Fourier transform is a suitable signal
processing method for analyzing signals, when their frequency contents do not change in
time (stationary signals). The transient responses of rotor–disc systems, however, exhibit
notable changes in the frequency content in time (nonstationary signals), which could be ex-
tracted using advanced signal processing techniques such as the Wigner–Ville distribution
transform, wavelet transform (WT) and Empirical Mode Decomposition (EMD).

The performance of the Wigner–Ville distribution in crack identification using the
transient response has been evaluated by Zou et al. [22]. The study concluded that the
Wigner–Ville distribution is highly sensitive to small shaft stiffness changes due to small
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cracks. Sekhar [39] suggested that the continuous wavelet transform (CWT) could serve
as a powerful tool for crack detection in a Jeffcott rotor coasting down through its critical
speed. The energy of the CWT has been shown to be sensitive to the crack depth and can be
applied as an efficient crack indicator. Sekhar [40] also showed that the CWT is a powerful
tool in crack detection, particularly in high start-up accelerations.

The wavelet transform yields high-resolution frequency analysis for the entire time
signal, although the time and frequency resolutions are highly affected by the chosen mother
wavelet [41]. Alternate methods, such as empirical mode decomposition (EMD), have been
applied to obtain high-frequency resolution analysis without using preselected kernels. The
EMD technique decomposes signal into a set of orthogonal components representing local
characteristics of the time signal, which consequently yields local high-resolution frequency
analysis. The Hilbert–Huang transform is a EMD-based transformation for finding the
instantaneous frequency components of the signals [42]. Guo and Peng [43] and Ramesh
et al. [20] have effectively applied the Hilbert–Huang transform for crack detection using
transient responses. Guo and Peng [43] established the effectiveness of the Hilbert–Huang
transform for detecting propagating transverse cracks, while Ramesh et al. [20] showed
that the Hilbert–Huang transform outperforms the limitations of the CWT. Chandra and
Sekhar [44] employed the EMD for the detection of shaft misalignment, cracks, and rotor
stator rubbing faults in rotor bearing systems. From comparisons of the results of the time–
frequency representations obtained from EMD with those obtained from CWT, the study
concluded that the EMD method can lead to the detection of relatively smaller cracks with
less computation time. Teyi et al. [45] have summarized all the signal processing techniques
which have been applied in different crack detection methods in the past decade.

While time–frequency representations of the signals obtained from EMD methods
exhibit a relatively higher local resolution frequency analysis, few studies have established
their limitations [46,47]. A number of alternate approaches have been proposed to address
these limitations of EMD, which include end effects (e.g., [48–50]), extremum interpolation
(e.g., [51,52]), and mode mixing [53]. These studies have proposed extension methods, alter-
nate interpolation approaches, and noise-assisted data analysis methods. Lei et al. [41] have
presented a comprehensive review of improved EMD algorithms and their applications in
rotating machine fault diagnosis.

In the present study, start-up transient responses of a shaft–disc system with different
crack depths are considered. The shaft–disc system is analytically modeled as a Jeffcott
rotor with a transverse fatigue crack to obtain the transient lateral response of the system
as it passes through its critical speeds. The excitations of superharmonic components of the
transient response and the emergence of subcritical peaks are considered for crack detection.
The crack is modeled as a breathing crack using the model proposed by Darpe et al. [4],
and an alternate explicit breathing function is also proposed to reduce its computational
costs. The performances of the proposed crack detection methodology to find small size
cracks based on EMD and an improved EMD method are compared.

2. Jeffcott Rotor and Crack Modeling

The Jeffcott rotor model considers a massless flexible shaft with a single rigid disc
mounted on rigid-short bearing supports. The disc is located on the midspan of the shaft as
shown in Figure 1. The governing equations describing the motion in the lateral directions
in the stationary and rotating coordinates have been well-presented in [3,21]. The equations
of motion in the rotating coordinate system, which rotate with the same velocity of the
shaft, can be described as [3]:

[
M 0
0 M

]{
ξ̈
η̈

}
+

[
C −2MΩ

2MΩ C

]{
ξ̇
η̇

}
+

[
Kξξ −MΩ2 Kξη −ΩC−Mαr

Kηξ + ΩC + Mαr Kηη −MΩ2

]{
ξ
η

}
= Mg

{
cos(θ)
−sin(θ)

}
+ Mε

{
Ω2cos(β) + αrsin(β)
Ω2sin(β)− αrcos(β)

} (1)
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where M, C, ε, g, and β are the disc mass, external damping coefficient, unbalance eccentric-
ity of the disc, acceleration due to gravity, and the angle between the unbalance and the ξ
axis, respectively, as shown in Figure 2. In the above equation, θ(t), Ω, and αr denote shaft
rotational angle, rotational speed, and acceleration, respectively. The stiffness matrix of the
shaft, Kr, is defined in the rotating system as:

Kr =

[
Kξξ Kξη

Kηξ Kηη

]
(2)

y

z

x

ξ

η

ζω

ΩL1

L2

Crack Disc

Figure 1. A Jeffcott rotor model with a single crack near the disc in the stationary coordinate (x, y, z)
and rotating coordinate (ζ, ξ, η) frames.
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Figure 2. Stationary (x, y, z) and rotating (ζ, ξ, η) coordinate systems [21].

2.1. Crack Modeling

The presence of a transverse crack on a shaft causes a sudden change in the slope,
which depends on crack depth and exhibits a reduction in the shaft local stiffness at the
crack location. The crack-induced changes in local stiffness can be obtained using linear
fracture mechanics theory [4,21,24,25]. June et al. [21] have obtained the shaft flexibility
due to a fully open crack, as shown in Figure 3a. The study considered the strain energy
density function, J(α), in terms of stress intensity factor K I , as [21]:
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Figure 3. Crack cross-section geometry in rotating (ζ, ξ, η) coordinate system, (a) fully open crack,
(b) partially open–closed crack [4]

J(α) =
1
E

(
K I
)2

K I = K I
Qξ

+ K I
Qη

(3)

where K I
Qξ

and K I
Qη

are the stress intensity factors corresponding to the opening mode of
the crack due to forces Qξ and Qη acting on the cracked shaft cross-section, respectively, as
shown in Figure 3, which can be described as [21]:

K I
Qξ

=
Qξ L2α′/8

I
√

παF
(
α/α′

)
K I

Qη
=

Qη L2w/4
I

√
παF′

(
α/α′

) (4)

where L2 and I are the length and second moment of area of the shaft, respectively, and the
functions F and F′ are giving by:

F
(
α/α′

)
=

√
2α′

πα
tan
(πα

2α′

)0.923 + 0.199[1− sin(πα/2α′)]4

cos(πα/2α′)

F′
(
α/α′

)
=

√
2α′

πα
tan
(πα

2α′

)0.752 + 2.02[1− sin(πα/2α′)]3

cos(πα/2α′)

(5)

for the shaft with diameter, D, I = πD4

64 and α′ =
√

D2 − (2w)2. Using Castgliano’s
theorem, the additional deflections ui (i = ξ, η) due to the crack are obtained from [21]:

ui =
∂Uc

∂Qi
(6)

where Uc represents the additional strain energy due to the crack, which can be written in
terms of the strain energy density function J(α), as [21]:

Uc =
∫ ∫

J(α)dαdw (7)

The additional flexibilities are thus given by [21]:

gijc =
∂2

∂Qi∂Qj

∫ √a(D−a)

−
√

a(D−a)

∫ a− D
2 +

√
D
4

2−w2

0
J(α)dαdw (8)
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Now, substituting Equations (4) and (5) into Equation (3), and the resultant into
Equation (8), one can obtain:

gξξ c =
∫ ∫ 128L2

2α′2

EπD8 αF2(α/α′)dαdw

gηξ c = gξηc =
∫ ∫ 256L2

2α′w
EπD8 αF(α/α′)F′(α/α′)dαdw

gηηc =
∫ ∫ 512L2

2w2

EπD8 αF′2(α/α′)dαdw

(9)

Thereby, adding the flexibilities of the uncracked shaft to the obtained crack-induced
flexibilities, described in Equation (9), the compliance elements of the cracked shaft cross-
area in ξ and η directions and the correspondence cross-coupled flexibilities can be de-
scribed as:

gξξ =
L3

2
48EI

+ gξξ c

gηξ = gξη = gηξ c = gξηc

gηη =
L3

2
48EI

+ gηηc

(10)

Finally, the elements of the stiffness matrix Kr, described in Equation (2), are oobtained as:

Kr = G−1
r =

[
gξξ gξη

gηξ gηη

]−1
(11)

where,

kξξ =
gηη

gξξ gηη − g2
ξη

; kηη =
gξξ

gξξ gηη − g2
ξη

; kξη = kηξ =
−gξη

gξξ gηη − g2
ξη

(12)

It should be noted that the compliance matrix Gr is defined in the rotational coordinates.
As mentioned before, Equation (11) provides the stiffness of a fully open cracked shaft.
Furthermore, to obtain the localized stiffness of a shaft with a partially open–closed crack
based on the Jun et al. [21] model, Darpe et al. [4] have proposed the concept of crack
closure line (CCL), as shown in Figure 3b. This concept is based on the sign of the stress
intensity factor at the crack edge. The stress intensity factor for each point at the crack
edge on the left side of the CCL has a positive sign, which indicates that the crack is in
tension and thus in open mode. The crack is considered to be closed on the right side of the
CCL due to a negative stress intensity factor. For this case, Equation (8) is still applicable,
however, the lower and upper limits in the double integral should be modified based on
the position of the CCL, as [4]:

gijc =
∂2

∂Qi∂Qj

∫ w0

−a
√

(D−a)

∫ a0

0
J(α)dαdw (13)

In this study, the Darpe et al. [4] breathing crack model has been applied to determine
the transient response of a cracked Jeffcott rotor. While the breathing crack model proposed
by Darpe et al. [4] can reasonably describe the breathing behavior of the crack at each shaft
angle, it requires relatively high computational demand. An alternate explicit breathing
function, obtained through trial and error, named “softly-clipped cosine function”, is
proposed in order to reduce the computational efforts associated with the breathing model
of Darpe et al. [4]. The proposed breathing function is formulated as:

f (t) =
1
2
− 5

9
cos(Ωt)− 1

18
cos(3Ωt− π) (14)
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Figure 4 compares the proposed breathing function, Equation (14), with that of
Darpe et al. [4]. It is also noted that the pattern of the Darpe et al. [4] breathing model
changes as the normalized crack depth (µ = a

R , ratio of the crack depth a to the shaft
radius R) changes. The pattern of the proposed breathing function is, however, indepen-
dent of the normalized crack depth. The comparisons show that the proposed function
provides good approximation of the Darpe et al. [4] breathing model, particularly for
small cracks. Al-Shudeifat and Butcher [14] have also introduced two alternative breathing
functions to describe the changes in the stiffness matrix elements of a rotating cracked shaft.
They showed that the two new breathing functions are more accurate than the typical old
breathing function applied in (e.g., [26,29]).
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Figure 4. Comparison of the proposed breathing function with that reported by Darpe et al. [4]
breathing model.

2.2. Method of Solution

Considering the stiffness matrix described in Equation (12), the governing equation of
motion, Equation (1), is integrated using the fourth-order Runge–Kutta method to compute
the transient start-up responses of the system with different crack depths for a determined
acceleration rate. The integration of Equation (1) is carried out using a sufficiently small
time step (∆t = 0.001) to ensure accurate solutions. In each time step, the stiffness values
and shaft speed are considered to be constant. The shaft speed Ω and angular position θ
are constantly updated using [3]:

Ω(t) = Ω0 + αrt, Ω0 = 0

θ(t) = θ0 + Ω0t +
αrt2

2
, θ0 = 0

(15)

The obtained lateral forces at each shaft angle, described in Equation (16), are also
used to update the stiffness values for the subsequent time step using the crack breathing
behavior models described in Section 2.1.{

Qξ

Qη

}
=

[
kξξ kξη

kηξ kηη

]{
ξ
η

}
(16)

The initial displacement of the rotor in the vertical direction is assumed to be equal to
the static deflection, while the initial horizontal displacement is set to 0. The rotor starts
from the static position with a given constant acceleration rate αr. Figure 5 shows the
flowchart of the proposed solution method for transient lateral response analysis of the
shaft–disc system using the fourth-order Runge–Kutta method.
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No

Yes

Figure 5. The transient lateral response solution flowchart.

The superharmonic components of lateral response of the shaft–disc system passing
through critical speeds are excited due to the presence of the breathing crack. The emer-
gence of these superharmonic components is not clearly observable in the time response,
particularly for the small cracks. However, utilizing time–frequency analysis based on dif-
ferent transform methods may reveal the crack-induced changes in the transient responses.
A brief description of the time–frequency analysis used in crack detection in rotary systems
is presented in the following section.

3. Time–Frequency Analysis

The Fourier transform is a well-known method to analyze stationary vibration signals.
The Fourier transform method, however, is not well-suited for the determination of local
changes in frequency contents of the cracked rotor transient responses, which generally
exhibit nonstationary behavior. The Short-Time Fourier Transform (STFT) has been de-
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veloped to analyze nonstationary signals. In STFT-based time–frequency representations,
an identical window is used for analysis of the entire signal, which leads to a constant
resolution for all frequencies. However, generally wide and narrow windows are required
to obtain a good frequency resolution for low- and high-frequency components of a signal,
respectively.

Alternatively, the wavelet transform can produce a multiscale frequency resolution
to extract more effective time–frequency representations of nonstationary signals. In
wavelet transform, signal features, which are well-correlated with the shape of the selected
wavelet mother function have a higher chance to be observed in the time–frequency
representations, while the features with lower correlations vanish. Therefore, the wavelet
transform is a nonadaptive signal processing method. An alternate self-adaptive method,
namely, the empirical mode decomposition, is capable of determining the time–frequency
representations based on the signal itself rather than the preselected kernels. This method
has shown to overcome the limitations of the STFT and wavelet transform techniques.

Empirical Mode Decomposition (EMD)

Huang et al. [42] presented the empirical mode decomposition algorithm, which is a
postprocessing method to decompose nonstationary signals into a set of intrinsic orthogonal
mode functions (IMFs). The IMFs represent simple oscillatory signals, which are suitable
for computing instantaneous frequencies, and satisfy the following two conditions: (i) in
the entire data set, the number of local extrema and the zero-crossings must either be equal
or differ at most by one; and (ii) at any time instant t, the mean values of the upper and
lower envelopes of an IMF are zero. Using the EMD method, the original signal u(t) can
then be reconstructed as:

u(t) =
m

∑
n=1

cn(t) + xm(t) (17)

where cn(t) is the IMF, m is the number of total extracted IMF, and xm(t) represents the
residual signal. The IMFs are determined by a simple algorithm, namely, the sifting
process, as follows: (i) the local extrema of the signal hn,l−1 (h1,0 = u(t)) are identified,
where the subscripts n and l denote the number of IMF and number of sifting iterations
corresponding to the nth IMF, respectively; (ii) the upper U(t) and lower L(t) envelops are
constructed by interpolating on the local minima and maxima, respectively, using a cubic
spline interpolation algorithm; (iii) the instantaneous mean m(t) of the upper and lower
envelops is then computed from:

m(t) =
U(t) + L(t)

2
; and (18)

(iv) the instantaneous mean is subtracted from the signal hn,l−1, as

hn,l(t) = hn,l−1(t)−m(t) (19)

The steps (i)–(iv) are repeated until the mean of hn,l(t) can be considered zero according
to the stop criterion of the sifting process. The stop criterion in this study is defined using
the normalized mean square error (NMSE) between hn,l(t) and hn,l−1(t), as:

NMSE(hn,l(t), hn,l−1(t)) =
||hn,l(t)− hn,l−1(t)||
||hn,l−1(t)||

(20)

where ||.|| returns the norm of the vector. Once the stop criterion is satisfied (NMSE ≤ 10−6),
the resulting hn,l(t) is taken as the nth IMF, such that:

cn(t) = hn,l(t) (21)
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The subsequent IMF function can be obtained considering the (n + 1)th residual signal,
xn+1(t) = u(t)−∑n

j=1 cj(t), as the new original signal, and the sifting process as explained
above is repeated. The sifting process terminates as the desired number of IMFs (m) are
obtained or the residual signal xn(t) is a monotonic signal (a signal with no extrema). The
flowchart of the sifting process to calculate the IMFs is illustrated in Figure 6.
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Figure 6. Implementation of the empirical mode decomposition algorithm.

The instantaneous frequency, IF, of each IMF is obtained from [54]:

IFn(t) =
d(arctan(H[cn(t)]/cn(t)))

dt
(22)

where H[.] denotes the Hilbert transform operation. Huang et al. [42] introduced the
Hilbert–Huang transform (HHT), in which the combination of the Hilbert transform and
EMD is employed to determine the time–frequency representation or the instantaneous
frequency of nonstationary signals. Furthermore, the obtained IMFs should be independent
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(orthogonal) to accurately represent the frequency content of the signal. The orthogonality
of the decomposed IMFs may be examined by using the dot product formula as:

Orthogonality(ci(t), cj(t)) = ci(t).cj(t), i 6= j; i, j = 1, 2, . . . , n (23)

where ci(t) and cj(t) are orthogonal if their dot product vanishes. The sifting process uses
the cubic spline interpolation algorithm to estimate the upper and lower envelopes of the
signal. This algorithm is of second-order smoothness (second-order derivable), which fits
the local extrema points with adequate flexibility. Qin and Zhong [55] reported that fitting
the local extrema points using the cubic spline interpolation algorithm may lead to over-
and undershoot problems. These problems can shift the instantaneous mean of the upper
and lower envelopes m(t) in the sifting process and may not satisfy the conditions required
by the EMD algorithm.

Shulin et al. [56] proposed a Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) to replace the cubic spline interpolation algorithm in the sifting process to elim-
inate the over- and undershoot problems. The PCHIP is of first-order smoothness with
higher flexibility compared with the cubic spline, which is of second-order smoothness.
It has been shown that the EMD algorithm based on PCHIP, namely, the improved EMD
algorithm, provides more feature information than the cubic spline in reciprocating pump
valves fault diagnosis.

To better understand this effectiveness, both the cubic spline and the PCHIP algorithms
have been used to obtain the upper envelope of the vertical transient response of a shaft–
disc system with material properties and dimensions summarized in Table 1. The shaft
rotates at speeds near to half of the first critical speed of the system, in which the second
harmonic component of the vertical transient response is excited. Comparing the estimated
upper envelopes derived using both the algorithms, illustrated in Figure 7, suggests that
the over- and undershoot problems were eliminated using PCHIP.

Figure 7. Comparison of the upper envelopes in the sifting process based on cubic spline and PCHIP
for vertical transient response of a cracked Jeffcott rotor at shaft speeds close to half of its first
critical speed.
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Table 1. Material properties and dimensions of the shaft–disc system.

Description Value

Modulus of elasticity (Pa) 69× 109

Modulus of rigidity (Pa) 34× 109

Shaft diameter (m) 0.01905
Shaft length (m) 1.27
Shaft density (kg/m3) 2700
Disc density (kg/m3) 2700
Disc diameter (m) 0.1524
Disc thickness (m) 0.0254
Normalized disc location 0.5
Unbalance mass (kg) 0.01
Unbalance eccentricity (m) 0.0508

4. Results and Discussion

A shaft supported on rigid-short bearings at both ends with a single disc mounted at
its midspan and a breathing crack near the disc is considered for the analysis. The material
properties and dimensions of the system model are identical to those given in Table 1. It
is to be noted that a damping ratio of 0.055 is added to the system in this section. The
shaft–disc system is modeled as a Jeffcott rotor and start-up vertical transient responses
for different crack depths are obtained by solving the governing equations of motion,
Equation (1). The shaft starts from rest and reaches the speed of 16.66 Hz (1000 rpm) with a
constant acceleration of αr = 5 rad

s2 .
Figure 8 compares the vertical transient responses of the system with different crack

depths passing through the first critical speeds using the breathing models proposed by
Darpe et al. [4] and the alternate breathing function proposed in this study in Equation (14).
The comparisons suggest that the two breathing functions yield nearly identical responses
as the crack depth decreases. The differences in the responses due to two breathing
functions are clearly evident for the large crack depth. This may be attributed to the fact that
the proposed softly clipped cosine function gives a better estimation of the Darpe et al. [4]
breathing model for small crack depths. The similarity of the responses was computed
quantitatively considering the normalized Euclidean distance between two signals, as [57]:

distance (ut
1(t), ut

2(t)) =
1

1 + ||ut
1(t)− ut

2(t)||
(24)

where ut
i(t) (i = 1, 2) represents the transient lateral response and ||.|| returns the norm

of the vector. The signals are exactly similar when the normalized Euclidean distance
equals unity, and the similarity between the signals decreases as the normalized Euclidean
distance between the two decreases.

Table 2 summarizes the computational costs and similarities of the obtained transient
responses from both the breathing models using the normalized Euclidean distance between
two signals, described in Equation (24). The computational costs are calculated when the
simulation code developed in MATLAB is run on a personal computer with a 2.8 GHz
Intel(R) Core (TM) i5 CPU and 8 GB RAM. The results show that the alternate breathing
function reduces the computational cost by nearly 97% compared with that imposed by
the Darpe et al. [4] breathing model. It is observed that the computational costs can be
substantially reduced using the proposed softly clipped cosine function without sacrificing
the accuracy in the presence of small-sized cracks.
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Darpe et al. breathing model Proposed breathing function
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Figure 8. Vertical transient response of the Jeffcott rotor system with normalized crack depths of
(a) µ = 1; (b) µ = 0.5; (c) µ = 0.2; and (d) µ = 0.1 using the Darpe et al. [4] breathing model and
alternate breathing function (softly clipped cosine function).
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Table 2. Transient responses deviations and their computational costs with different normalized
crack depths µ using the Darpe et al. [4] breathing model and proposed breathing function

Normalized
Crack Depth

µ

Computational Cost (s)
Transient Responses

SimilarityProposed
Breathing Function

Darpe et al. [4]
Breathing Model

1 12.866 446.942 0.9296
0.5 12.319 408.907 0.9943
0.2 12.673 369.702 0.9995
0.1 12.364 341.060 0.9999

Figure 9 shows the transient response of the intact system in vertical direction and
its frequency spectrum and time–frequency representations using HHT based on EMD
and improved EMD techniques. These time–frequency representations are considered
as the references for finding changes in vertical transient responses of the system in the
presence of a crack. The vertical transient response amplitude in Figure 9a shows a peak at
t = 114.4 s, corresponding to shaft speed Ω = 9.1 Hz. This shaft speed is considered as
the first critical speed Ωcr,1 of the intact system. The corresponding frequency spectrum in
Figure 9b also shows the critical speed of the intact system as Ωcr,1 = 9.07 Hz, while the
corresponding peak amplitude is much lower than that shown in the time response. This
may be attributed to the fact that Fourier transform is suitable only for stationary signals
rather than transient (nonstationary) signals.

0 50 100 150 200
-0.015

-0.01

-0.005

0

0.005

0.01

Time(s)

D
e
fl
e
c
t
io

n
(
m

)

(a) (b)

(c) (d)

Figure 9. Intact Jeffcott rotor vertical transient response; (a) time response; (b) Fourier spectrum;
time–frequency representation based on (c) EMD and (d) improved EMD.

Figure 9c,d illustrate the instantaneous frequency of the vertical transient response
obtained from HHT based on EMD and improved EMD methods, respectively. The results
show that the instantaneous frequencies (1×Ω), computed based on both the methods,
change linearly from 0 to 16.66 Hz (1000 rpm) as expected considering the linear relation for
the shaft speed, Equation (15), in the transient response solution, as described in Section 2.2.
These instantaneous frequencies are computed using Equation (22) and correspond to
the first IMF based on EMD and improved EMD methods. It is noted that the unbalance
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force can only excite the first harmonic component of the transient response of the intact
Jeffcott rotor. It must be mentioned that the undesirable high frequencies in the time–
frequency representations near t = 0 s are attributed to numerical errors associated with
the algorithms used.

The decompositions of the vertical transient response of the system with a deep crack,
(µ = 1), based on EMD and improved EMD algorithms, are shown in Figure 10. The
vertical transient response has been obtained using the Darpe et al. [4] breathing model.
The results show that the two algorithms could successfully decompose the transient signal
into two IMFs. However, calculating the orthogonality between the obtained IMFs from
each algorithm confirms that those obtained from the improved EMD show less dependency
compared with those obtained from the EMD. The orthogonality between IMFs obtained
from the improved EMD enhanced by 40% compared with those computed from the EMD
algorithm. The orthogonality of the IMFs is examined using the dot product between IMFs,
described in Equation (23). It is further shown that the enhanced orthogonality of the
IMFs in the improved EMD method enable more accurate detection of small-sized cracks
compared with the EMD method (Figure 11).
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Figure 10. Decomposition of the vertical transient response of the system with a deep crack, (µ = 1),
based on (a) improved EMD and (b) EMD algorithms, the shaft speed changes from 0 to 16.66 Hz
(1000 rpm) with a constant acceleration rate of ar = 0.5 rad

s2 .
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(a) (b)

Figure 11. Time–frequency representations of the vertical transient response of the system with a
small crack, (µ = 0.2) using HHT based on (a) improved EMD and (b) EMD algorithms.

In both the EMD and improved EMD algorithms, frequencies in each segment of the
nonstationary signal are extracted from higher to lower values. This means that the first IMF
presents the highest frequency in each signal segment, while other IMFs consist of lower
frequencies. For instance, in the decomposed vertical transient response of the cracked,
(µ = 1), shaft–disc system into IMFs, shown in Figure 10a,b, the first IMF contains the
first harmonic, and second, third, and forth superharmonic components, of the shaft speed
(1×, 2×, 3× and 4×Ω). While the second IMF presents the second and third subharmonic
components of the first critical speed ( 1

2 ×Ωcr,1 and 1
3 ×Ωcr,1).

This can be better realized in Figure 12a,b, which show the time–frequency represen-
tations of the first and second IMFs. Although the first IMF generated in both the EMD
and improved EMD algorithms has clearly extracted the first harmonic and superharmonic
components, it is observed that the second IMF generated in the improved EMD algorithm
is better at distinguishing between the subharmonic components of the first critical speed.
In other words, the second and third subharmonic components of the first critical speed
( 1

2 ×Ωcr,1 and 1
3 ×Ωcr,1) are clearly separated in time domain in the second IMF generated

by the improved EMD algorithm along the 1×Ω line, Figure 12a. However, these subhar-
monic components are not clearly separable in time domain in the second IMF generated by
the EMD algorithm 1×Ω line, Figure 12b. This advantage of the proposed improved EMD
algorithm becomes more essential in the detection of smaller crack depths, as is discussed
in Figure 13.

Deep cracks excite the superharmonic components of the transient response, which
are detectable in time–frequency representations obtained from HHT based on EMD and
improved EMD methods. Smaller crack depths, however, can not effectively excite the
superharmonic components and yield only low-amplitude subcritical resonant peaks at
1
2 and 1

3 of the critical speed in the time–frequency representation of the vertical transient
response. The detection of these small amplitude peaks strongly depends on the applied
method to obtain the time–frequency representation of the vertical transient response. The
improved EMD algorithm used in this study could enhance the performance of the crack
detection based on changes in time–frequency representation compared with the EMD
algorithm. This improvement could be achieved by decomposing the time signal into
IMFs, where the degree of mutual orthogonality is enhanced by using a better interpolation
algorithm in the sifting process.

The comparison between the frequency spectra of the system with a deep crack, shown
in Figure 12c, and the intact system, shown in Figure 9b, confirms that the presence of
the crack is not efficiently detectable from the frequency spectrum of the vertical transient
response. The first critical speed of the intact system is 9.1 Hz, while for the system with
a deep crack it decreases to 8.8 Hz, which is a relatively small change and difficult to
recognize based on test data.
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(a) (b)

(c)

Figure 12. Time–frequency representations of the vertical transient response of the system with
a deep crack, (µ = 1), using HHT based on (a) improved EMD, (b) EMD algorithms (solid line
represents the instantaneous frequency of the first IMF and dotted line represents the instantaneous
frequency of the second IMF), and (c) Fourier spectrum.

Figure 13. Time–frequency representations of the vertical transient response of the system with a
small crack, (µ = 0.2), using HHT based on improved EMD, and the crack is modeled using the
proposed breathing function in this study.

Figure 11 shows the time–frequency representations of the vertical transient response
of the Jeffcott rotor with a small crack with normalized depth of µ = 0.2, while the crack
breathing behavior is modeled using the Darpe et al. [4] breathing model. The results show
that the effect of subcritical resonant peaks due to the small crack on the instantaneous
frequency of the first IMF are only observable in the time–frequency representation based
on the improved EMD. Based on Equation (24), the similarity index between the first IMFs
presented in Figure 11a,b, 0.645, is relatively low. This mathematically describes why the
subcritical peaks are not visible in the first IMF obtained through the EMD algorithm.
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The smallest detectable normalized crack depths considering changes in time–frequency
representation obtained from HHT based on EMD and improved EMD algorithms are 0.25
and 0.2, respectively. The figure shows changes in the time–frequency representations of
the vertical transient response of the system near 1

2 and 1
3 of the first critical speed, which

are obtained from the HHT based on the improved EMD algorithm.
The use of the proposed breathing function, described in Equation (14), also revealed

the smallest detectable crack of µ = 0.2 in a shorter time with fewer computational efforts,
as seen in Figure 13. Although the computational cost is typically not an issue in cracked
Jeffcott rotor modeling, to introduce an agile online model-based crack detection monitoring
based on the method described in this paper, it is essential to decrease the computation time.
In online model-based monitoring, the result of measured signal processing is compared
with those from the twin analytical model of the system to determine the depth of a
potential crack in real time.

5. Conclusions and Future Work

In this study, the Hilbert–Huang transform based on an improved empirical mode
decomposition is employed to obtain the time–frequency representation of the start-up
vertical transient response of a shaft–disc system with transverse fatigue crack. The shaft–
disc system is modeled as a Jeffcott rotor and the breathing behavior of the crack is modeled
using the Darpe et al. [4] breathing model. The results show that the smallest detectable
normalized crack depth using changes in the time–frequency representation of vertical
transient response based on improved empirical mode decomposition is enhanced by 5%
compared with those based on empirical mode decomposition. Furthermore, the proposed
explicit breathing function could reduce the computational cost of the applied breathing
model without sacrificing the accuracy of the crack breathing model in the case of small
crack depths. This is essential in proceeding with the introduced method towards an online
model-based monitoring for crack detection in rotating machinery. It is observed that
the smallest detectable normalized crack depth using both the breathing functions is 0.2.
The future work in this project is to experimentally evaluate the performance of the crack
detection method and its robustness to the presence of noise.
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Nomenclature
The following nomenclatures are used in this manuscript:

a crack depth
C external damping coefficient
cn(t) nth Intrinsic Mode Function, IMF
D shaft diameter
E shaft modulus of elasticity
f (t) crack breathing function



Vibration 2022, 5 426

Gr shaft compliance matrix in the rotating system
g acceleration due to gravity
gξξ , gηξ , gξη , gηη compliance elements of the cracked shaft cross-section

in the rotating coordinates
H[.] Hilbert transform operation
I shaft area moment of inertia about x-axis
IFn(t) instantaneous frequency of the nth IMF
J(α) strain energy density function due to the crack
KI , KI

Qξ
, KI

Qη
stress intensity factors

Kr shaft stiffness matrix in the rotating system
kξξ , kηξ , kξη , kηη stiffness elements of the cracked shaft cross-section

in the rotating coordinates
L(t) lower envelope of the original signal
L1 disc location on the shaft
L2 shaft length
M disc mass
m(t) instantaneous mean of the original signal
Qξ ,Qη forces acting on the shaft cracked cross-area
R shaft radius
U(t) upper envelope of the original signal
Uc additional strain energy due to the crack
u(t) lateral (vertical and horizontal) response of the shaft, original signal
ui additional deflections due to the crack (i = ξ, η)
xm(t) mth residual signal
Ω shaft rotational speed
ω whirling speed of the shaft
αr shaft acceleration rate
ε unbalance disc eccentricity
θ(t) shaft rotational angle
τ short-time Fourier transform parameter
µ = a

R normalized crack depth
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