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Abstract: Health surveillance in industries is an important prospect to ensure safety and prevent
sudden collapses. Vibration Based Structure Health Monitoring (VBSHM) is being used continuously
for structures and machine diagnostics in industry. Changes in natural frequencies are frequently
used as an input parameter for VBSHM. In this paper, the frequency shift coefficient (FSC) is used
for the assessment of various numerical damaged cases. An FSC-based algorithm is employed in
order to estimate the positions and severity of damages using only the natural frequencies of healthy
and unknown (damaged) structures. The study focuses on cantilever beams. By considering the
minimization of FSC, damage positions and severity are obtained. Artificially damaged cases are
assessed by changes in its positions, the number of damages and the size of damages along with the
various parts of the cantilever beam. The study is further investigated by considering the effect of
uncertainty on natural frequencies (0.1%, 0.2% and 0.3%) in damaged cases, and the algorithm is used
to estimate the position and severity of the damage. The outcomes and efficiency of the proposed FSC
based method are evaluated in order to locate and quantify damages. The efficiency of the algorithm
is demonstrated by locating and quantifying double damages in a real cantilever steel beam using
vibration measurements.

Keywords: model analysis; finite element models; frequency shift coefficient; damage assessment;
uncertainties on natural frequencies

1. Introduction

Damage identification has drawn increasing interest in the sectors of aerospace, civil
engineering and mechanical structures. The basic components of a structure make it very
sensitive to damage that then require techniques for detecting damage using efficient
methodologies. Damage can occur during manufacturing and in-service loading, such as
fatigue and other object impacts. There are many methods to detect and determine the
severity of damage based on Structure Health Monitoring (SHM). Many SHM methods,
such as ultrasonic [1], guided wave [2], eddy current [3], scaling subtraction method [4–6]
and nonlinear vibro-acoustic wave modulation technique [6], etc., have been developed
to identify structural damage, which are used for various purposes. Although several
Vibration Based Structure Health Monitoring (VBSHM) methods have been also proposed,
they rely on vibration characteristics such as natural frequencies, mode shapes, etc. Some
important VBSHM indicators are Damage Location Assurance Criterion (DLAC) [7], Multi-
ple Damage Location Assurance Criterion (MDLAC) [8] mode shape curvature method [9]
and the flexibility based method [10], which are effective and widely accepted in order to
identify damage and their characteristics. Doebling et al. [11] presented a comprehensive
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review of different damage identification methods and health monitoring of structures
from changes in the vibration characteristics. The damage conditions of the system can be
described in five steps, as discussed in Rytter [12]. These steps are: (1) detection; (2) local-
ization; (3) classification; (4) assessment; and (5) prediction. Dubey et al. [13] introduced
a novel VBSHM strategy for geometry damage identification and size estimation using a
damage library. The strategy was employed to estimate the size of rectangular geometry
damage both numerically and experimentally in a tested cantilever beam. Vibration-based
damage identification was used for a three-span continuous beam, a two-span steel grid [14]
and a reinforced concrete beam [15], considering the effects of temperature variations. More
recently, Toh and Park [16] provided a review applying machine learning algorithms for
damage monitoring using vibration factors and interpretation of deep neural networks in
order to guide further applications for structural vibration analysis.

In recent decades, natural frequencies have been used as an identification parameter
for the detection, localization and quantification of damage. Salawu [17] acknowledged
that natural frequency is a sensitive indicator to detect damage in the structure. Cawley and
Adams [18] proposed a method based on the frequency shift that identifies the position of
the damage in a plane structure. Narkis [19] analyzed the inverse problem for identification
of crack position from frequency measurements. Silva and Gomes [20] proposed a technique
using the frequency shift coefficient (FSC) to detect the crack size and position. Brincker [21]
used a statistical analysis indicator to detect damage by changes in the measured natural
frequencies. Kim et al. [22] developed algorithms to locate and quantify the damage through
changes in the natural frequency. They addressed the damage sizing algorithms to quantify
the size of the damage from a natural frequency perturbation. Armon et al. [23] introduced
the rank ordering of natural frequency shifts for localization of damage. The development
of a damage detection method by Zhang et al. [24] based on the frequency shift curve
caused by auxiliary mass with both the natural frequency and mode shape information for
cylindrical shell structures. Gillich et al. [25] performed crack identification based on natural
frequency change. They established a mathematical model and signal processing algorithm,
which can predict frequency changes for any boundary conditions with the identification
of cracks on multi-span beams. Shukla and Harsha [26] presented a view that the change in
natural frequency is an indication of cracks in the blade geometry. Keye [27] investigated
the advantages of Finite Element (FE) model updating in association with a model-based
method for structural damage localization. Gautier et al. [28] used a 4SID technique in
combination with FE model updating procedure including an iterative domain partitioning
procedure to localize damages. Dahak and Benseddiq [29] presented a normalized natural
frequencies based method for a specific damage position in order to locate the damage in
the cantilever beam. Therefore, the use of the unchanged frequency also gives us more
accuracy when the damage is symmetric to the mode shape node. However, this method is
independent of the beam dimension, material propriety or the severity of the damage.

Khiem and Toan [30] investigated natural frequency changes from the Rayleigh quo-
tient that are derived for a clamped free beam with an arbitrary number of cracks. The au-
thors compared natural frequencies calculated using the Rayleigh quotient and measured
through an experiment, and they showed that the Rayleigh formula is a simple and con-
sistent tool for modal analysis of cracked structures. Moreover, a crack detection proce-
dure based on natural frequencies was introduced using Rayleigh quotient parameters.
Le et al. [31] presented a method for the localization and quantification of simultaneous
structural modifications based on the dynamic analysis in Euler Bernoulli beams with
or without axial force. This method employs first-order estimation of frequency relative
variation, which is derived from the continuous formulation. With this method, the damage
position was identified, and then the damage was quantified by the relative variations of
axial force, density and bending stiffness with nonlinear coefficients depending on the loca-
tion of density and bending stiffness modifications. Khatir et al. [32] presented an approach
for damage identification based on model reduction where an optimization algorithm
is used to minimize the normalized difference between a frequency vector of the tested
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structure and its numerical model. Yam et al. [33] investigated the occurrence of damage
in plate-like structures using sensitivities of static and dynamic parameters. The authors
suggested two damage indices for damage identification based on the curvature mode
shape and the strain frequency response function.

Serra et al. [34] proposed a strategy to detect and localize damage using various
classical indicators by testing different damage cases. Eraky et al. [35] focused on the
damage index method (DIM) as a tool for determining elemental local damage that occurred
in beam and plate structures. However, this technique depends on an experiment based
on comparing modal strain energies at different degradation stages. More recently, Serra
and Lopez [36] presented a combined modal wavelet strategy. They compared it with
the most frequently used indicators and widely studied methods in order to identify
the damages. The performance of each method is evaluated and the capacity to detect
and localize damage are tested through different cases. Hu et al. [37] used a statistical
based damage-sensitive indicator for the health monitoring of a wind turbine system by
considering environmental and operational influences on the structural dynamic properties.
Karbhari and Lee [38] used a dynamic structural analysis to detect damage by applying
a cosine based indicator and a model assurance criterion for an eight degrees of freedom
structure in order to perform effectively in identifying damages to the structure.

Finally, several studies on damage identification are based on the use of the Frequency
Response Function (FRF) and Particle Swarm Optimization (PSO). Porcu et al. [39] pro-
posed an FRF-curvature based technique (FRF-curvature damage indicator) for damage
identification in structural components and tested it both experimentally and numerically.
The authors show that the FRF curvature method is more effective, compared to other
methods (e.g., natural frequencies, mode shapes or mode-shape curvatures). Furukawa and
Kiyono [40] introduced a technique for the detection of damage in structures that use FRF
data as generated from the harmonic excitation force. The method is based on the fact that
structural damage usually causes a decrease in structural stiffness and an increase in struc-
tural damping, thereby producing changes in vibration characteristics. Mohan et al. [41]
used FRFs with the help of the PSO technique for damage detection and quantification.
The robustness and efficiency of this method are acknowledged after comparing the results
between two methods: Genetic Algorithm (GA) and PSO. Khatir et al. [32] presented
an inverse problem with an optimization algorithm for minimizing the cost function for
damage detection and localization. They implemented FEM with PSO and GA to perform
the inverse computations. Huang et al. [42] proposed an optimization approach, known as
bare bones PSO with a double jump, in order to come up with a solution for the damage
identification. The authors implemented a l1 regularization function for detecting dam-
age cases especially in a noisy environment. Li et al. [43] used the standard PSO-FEM to
compare the performance of fitness functions using natural frequencies. Later, the authors
proposed an algorithm based on multi-component PSO with a cooperative leader learning
mechanism for structural damage detection and further compared with other recent opti-
mization algorithms [44]. Alamdari et al. [45] implemented FRFs in a damaged structure
and a damage sensitive shape was generated by taking the derivatives of operational
mode shapes with the anti-symmetric extension and shape signals that are normalized at
different natural frequencies. Moreover, these studies focused on frequency-based damage
detection strategies.

From this literature review, it is found that several VBSHM techniques using natu-
ral frequencies have been considered for structural damage detection. A few techniques
(wavelet transform, artificial neural network, etc.) have shown reliable results with the
consideration of measurement errors or uncertainties. As we know, uncertainty or noise
is always present on natural frequencies and other modal parameters that can lead to
inadequate structural damage detection. An FSC-based algorithm is introduced, and differ-
ent cases were investigated with or without consideration of uncertainty or measurement
errors on natural frequencies. The algorithm was employed by minimizing FSC using
PSO, where damages are localized and quantified by updating the FE model from the FSC
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algorithm that is based on natural frequency shifts. The damage identification technique
was performed based on bending stiffness reduction using the FE models. For that, 2D
FE models were developed for the healthy and damaged beams, and numerical damage
cases were built artificially to test the proposed algorithm. The difference between healthy
and damaged models were weighted depending on the shift of natural frequencies. It
means the damage localization and quantification can be accurate based on the sensitivity
of frequencies shift to the damage states. The paper is intended to further investigate the
efficiency of the FSC based method by evaluating the identification capacity in uncertain
damaged cases. The FSC-based method is demonstrated by testing a real beam that has
been double damaged using an experimental test.

The paper is organized as follows: Section 2 illustrates the modeling of the beams
and bending vibration theory; Section 3 presents the proposed damage identification
strategy using FSC minimizing algorithm; Section 4 shows different numerical examples
in order to verify the effectiveness of the method and discussion about the influencing
factors, i.e., influence of the damage positions and severity. The artificially damaged cases
are investigated in order to localize and estimate the severity along the cantilever beam.
The effect of the modeling uncertainty on natural frequencies is considered and the test cases
are examined by considering different noise levels; Section 5 shows a simple laboratory
experiment for the vibration measurements in order to find positions and severities of
damage in a real beam structure.

2. Beam Vibration Theory

It is assumed that the simplest damage detection problem can be explained by testing
beams using a linear equation of motion with undamped free vibration. The equation of
motion for free vibration analysis of an Euler–Bernoulli beam is given by:

M(x)
∂2w(x, t)

∂t2 +
∂2

∂x2

(
EI(x)

∂2w(x, t)
∂x2

)
= 0, (1)

where w(x, t) is the transverse deflection of the beam base axis, M(x) is the mass per
unit length of the beam, EI(x) is the bending stiffness of the beam. Here, a harmonic
time dependency is assumed, and the cantilever beam is taken into consideration that is
clamped in x = 0 and free in x = L; then the solution would satisfy u′′(L) = u′′′(L) = 0
and u′(0) = u(0) = 0. To calculate the normal modes we have to consider the linear homo-
geneous equation related to Equation (1). Then, the differential equation of eigenvalue
problem is written as:

(EI(x)φ
′′
n(x))′′ − λn M(x)φn(x) = 0, (2)

where
√

λn and φn are the associated natural frequencies and the normal modes. In order
to determine the Rayleigh quotient using normal mode shapes (φn) of the undamped
problem the normal modes (φn) are considered as the functions, represented by φn(x),
which is the square integral on [0 L] (i.e., φn(x) ∈ C2(0, L), and C2 denotes for a square-
integrable function) as well as φ

′
n and φ

′′
n(x). Multiplying Equation (2) by any function u(x)

with u ∈ C2(0, L) and taking the partial integration, we obtain:∫ L

0
(EI(x)φ

′′
n(x)u

′′
(x))′′ − λn M(x)φn(x)u(x))dx + bc = 0, (3)

where bc is a vanishing term representing the boundary conditions. The quantity of bc is
equal to zero for any function u(x) by verifying the same boundary condition as the modes.
Similarly, natural frequency (Hz) calculation for the beam is given by:

fn =

√
λn

2π
, (4)
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2.1. 2D Finite Element Models of Beam

The studied model is considered to be an Euler–Bernoulli cantilever beam with a
uniform cross-section area with 2D healthy and damaged FE beam models. The 2D FE
beam models are discretized in N elements and N + 1 nodes. Figure 1 shows a 2D FE
damaged model of a cantilever beam and its cross-section area. Each node of the FE models
has two degrees of freedom, a vertical translation V and a bending rotation θz.

Natural frequencies and mode shapes may be obtained by solving an eigenvalue
problem from the FE model as described by the following equation:

([K]− (ω2
i )[M])yi = 0 (5)

where [M] is the n× n mass matrix of the system, and [K] is the n× n stiffness matrix of
the system, where ωi are natural frequencies and yi are modal shapes.

Here, the damage is assumed at position xl within node i to i + 1 of the beam. If a
defect is introduced in a beam structure, it reduces the stiffness of the beam structure at a
particular element.

1 2 3 N... ...

V

θz

L

x

y

z i i+1

Damage 

Width

Height

(b)

(a)

Figure 1. (a) The 2D FE damaged model of a cantilever beam and (b) cross-section area.

2.2. Numerical Modeling of Damage

In the 2D FE model, damage severity is represented by an elemental stiffness reduction
coefficient αi, which is the ratio of the stiffness reduction to the base stiffness. The stiffness
matrix of a numerical damaged FE model is defined as the sum of elemental matrices
multiplied by the reduction coefficient:

[Kd] =
N

∑
i=1

(1− αi)[Ke] (6)

where Kd is the global stiffness matrix for a damaged beam, Ke is the elemental stiffness
matrix, N is the number of elements and αi is a reduction coefficient, which varies from 0
to 1 for the damaged structure. A value of αi = 0 indicates a healthy element.

3. Proposed Damage Identification Strategy
3.1. Objective Function

Damage positions and severity are estimated using an FSC based method. FSC is
cited by Doebling et al. [11], and was first presented by Silva and Gomes [20] for damage
identification problems. The indicator requires experimental measurements or numerical
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solutions for the frequency shifts as a function of position and size of the damage. The FSC
indicator is written as:

FSC =

√√√√ 1
n

∣∣∣∣∣ n

∑
i=1

(
{Γi}X − {Γi}A
{Γi}X

)∣∣∣∣∣ (7)

and Γi =
f d
i

f h
i

where n is the total number of modes, X is the tested case, A is the updating model, f u
i

is the unknown beam natural frequencies, f h
i is healthy beam natural frequencies and i

denotes modes indices. Here, considering the vectors of l = [lj . . . lp] and α = [α0 . . . αp],
these vectors are the set of testing positions (measured from the clamped area to the end
of the beam) and the corresponding stiffness reduction in each position for the unknown
defect, respectively.

The FSC value arrives at zero or close to zero during the identification of the damage
position and severity using natural frequencies of healthy and damaged beams. For the
noisy and real experimental cases, the values fall close to zero. FSC values are found for
damaged cases, ranging from 1 to 90% stiffness reduction at all beam positions. Overall,
the minimized value from FSC indicates corresponding damage positions and severity.

The coefficient is suitable for locating and quantifying damages from the beginning
to the end of the beam, as is further demonstrated in later sections. With small amounts
of damage, the results are very precise; in other words, the FSC is capable of damage
assessment for cases ranging from small to large damage.

3.2. Proposed Strategy and Minimization Problem

In this section, Figure 2 shows the flowchart of the proposed damage identification
strategy. FSC is used as a function of beam position and elemental stiffness reduction. The
damage is compared between the healthy and damaged FE models using the frequency
shift approach. Here, four beam models with the same beam properties are used for the FSC-
minimization purpose. The damaged and healthy beam natural frequencies are measured,
which are then used for comparison with other healthy and FE updating damaged models.
The aim of FSC minimization is to identify the best-fit values of positions and severities for
the tested damaged cases.

Figure 2. Flowchart of the proposed strategy for structure damage identification.
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The solutions of the minimization problem are obtained using Particle Swarm Opti-
mization (PSO) (Kennedy and Eberhart) [46]. Many other methods can be used, but the
principal purpose behind this choice is to find global solutions and to evaluate or ap-
proximate the solution of the cost function, i.e., the FSC. PSO is implemented by the
particlewarm() function in the MATLAB global optimization toolbox and is adequate for
solving the minimizing problem. The application of the FSC algorithm with PSO directly
reveals solutions as parameters of the damage assessment steps as if the initial damage has
already been detected.

There are several parameters in PSO, i.e., the swarm size, number of iterations, inertia
weight, learning factors, etc. We use default values for most of the PSO parameters
because it allows us to obtain the correct results. In FSC minimization, only the swarm size
and number of maximum iterations with values of 20 and 100 are explicitly specified.

3.3. Steps for Damage Identification Procedure

The proposed algorithm for damage assessment is detailed in the following steps:
1. Generate a damaged case with the reduction in bending stiffness ranging from 0.01

to 0.99. This corresponds to an experimental real damaged case or unknown case.
2. Estimate the natural frequencies for the first n-bending vibration modes by devel-

oping FE models of healthy and damaged states. It leads to the vectors of healthy (H f )
and damaged beam natural frequencies (D f ):[ f1 . . . f n]. In order to simulate measurement
imprecision, we consider introducing a perturbation to the set of natural frequencies for
the case being impaired.

3. Use the FSC function and the minimization strategy for each set of tested natural
frequencies and update the FE model for generic damage.

4. Consider the updated parameters as the damage parameters. In the case of pertur-
bations, find the mean and standard deviation of different identified damage parameters as
the final results.

3.4. Modeling Uncertainty on Natural Frequencies

Measurement errors and sensor noise can be cause of uncertainties in the experi-
mentally determined modal parameters, and it is impossible to completely remove these
uncertainties from the measured data. In this way the proposed algorithm is tested for
numerically generated uncertain cases, i.e., cases with incorrectly estimated natural fre-
quencies. In the case of a damaged beam, uncertain or noisy conditions are introduced
on the natural frequencies with the addition of percentage noise levels and considered
Gaussian distributed random variables. To generate the uncertainty on natural frequencies
the following equation is adopted:

ω̄d
i = ωd

i (1 + ηγi) and i = 1, 2 . . . , n (8)

where ω̄d
i is ith damaged beam natural frequency after noise addition, η is the percentage

of noise and γi is a Gaussian random number between −1 to 1 that is different for each i.
When uncertainties are considered in the rest of the article, we have assumed noise levels
of η = 0.1%, 0.2% and 0.3% in natural frequencies of the tested beam.

4. Numerical Validation of Method

In this section, anFSC minimizing algorithm is considered, and various numerical cases
are evaluated to determine the efficiency of the proposed identification procedure. The FE
models of the cantilever beam structure are developed in order to extract the dynamic char-
acteristics.

To examine the FSC method, various numerically introduced damaged cases are
selected and simulated, where the position of damage and size are varied.
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4.1. Numerical Beam Model

The Euler–Bernoulli cantilever beam is discretized using 100 elements, as described in
Section 2.1, and its material and physical properties are given in Table 1. Modal parameters
for healthy and damaged beams are generated using MATLAB.

Table 1. Beam dimensions and properties.

Beam Properties Value

Length (L) 1000 mm
Width (W) 25 mm
Thickness (T) 5.4 mm
Young’s modulus (E) 210 GPa
Poisson’s ratio (v) 0.33
Mass density (ρ) 7850 kg/m3

First, it is important to update Young’s modulus of the 2D FE model in order to closely
match the natural frequencies of the 2D FE healthy model to a healthy real experimental
beam. To determine the updated Young’s modulus, a maximization problem is formulated
that uses the inverse of the statistical error on implementing the natural frequencies of the
2D numerical and experimental healthy beam. The function of Young’s modulus updating
(E) is as follows:

E = Argmax

 1√
1
m |∑

m
i=1
(

f 2D
i − f h

i
)2|

 (9)

where f 2D
i represents natural frequency of updating 2D FE beam model and f h

i represents
identified natural frequency of healthy experimental beam. Equation (9) is employed to
obtain best-fit maximized value of updated Young’s modulus for 2D FE cantilever beam
model. The Young’s modulus of primary 2D FE model (E = 210 GPa) must be minimized
on the basis of the modeling errors between the natural frequencies of the real structure
and the 2D FE healthy model. The updated Young’s modulus will be then used for damage
identification purpose.

For 2D FE Model, Young’s modulus is taken into account by considering it as an
updating parameter. A set of vector parameter is generated, and the Young’s modulus value
of steel beam is updated from an initial value of 210 GPa to 189.26 GPa using Equation (9),
with a maximum value of 0.863.

In addition, the first seven healthy beam natural frequencies (experimental and numer-
ical) are listed in Table 2. An experimental beam test in order to obtain natural frequencies
is detailed in Section 5. Here, relative errors between the natural frequencies of the real
healthy beam and the 2D FE healthy beam, have been reported in Table 2. The mean error
value is 0.687 Hz between the experimental natural frequencies and the numerical updated
natural frequencies.

Table 2. Numerically and experimentally (see Section 5) measured natural frequencies of the healthy
cantilever beam.

Healthy Beam
Natural Frequencies (Hz)

1 2 3 4 5 6 7

Experimental 4.27 26.33 73.26 142.34 240.12 355.66 499.66
2D FE Model (updated E = 189.26 GPa) 4.20 26.35 73.77 144.56 238.96 356.97 498.57

Errors (%) 0.70 0.08 0.69 1.54 0.49 0.36 0.22

Moreover, the reduction in CPU time is an important factor in the identification of
damages. For that, seven natural frequencies are considered to be appropriate for the
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identification of damages that may occur in the structure. During the Young’s modulus
updating procedure, the seven lowest frequencies are assumed to be sensitive enough
to classify the damage position and severity using an FSC. Here, two significant digits
after the decimal in the natural frequencies proves sufficient for the algorithm to solve the
minimization problem for determining the damage parameters.

4.2. Localization and Quantification of Single Damage

Further identification of damage is considered in order to highlight the efficiency of
the proposed FSC minimizing algorithm. In this part, FSC is used for localization and
estimation of artificially introduced 2D damaged cases.

Four single and artificially damaged cases are developed in the 2D FE cantilever beam
model. For a given case, the damages are introduced in different positions from the clamp
to the end sites of the cantilever beam. These cases are given (a) near the clamped site at
0.15 m, (b) before the mid-site at 0.25 m, (c) after the mid-site at 0.65 m and (d) near the
end-site at 0.80 m with 2%, 15%, 8% and 24% along the beam, respectively. Single damages
cases and their first natural frequencies are reported in Table 3.

Table 3. Single damaged cases and numerically identified natural frequencies of damaged beams.

Damaged Cases
Natural Frequencies (Hz)

1 2 3 4 5 6 7

(a) xl = 0.15 m, αl = 2% 4.20 26.34 73.77 144.55 238.92 356.90 498.51
(b) xl = 0.25 m, αl = 15% 4.20 26.34 73.68 144.35 238.88 356.90 497.89
(c) xl = 0.65 m, αl = 8% 4.20 26.35 73.73 144.46 238.92 356.93 498.23
(d) xl = 0.80 m, αl = 24% 4.20 26.33 73.59 144.04 238.37 356.79 492.47

In damaged cases, single damages are assessed to demonstrate the efficiency of the
approach as shown in Figure 2. The proposed technique (see Section 3.2) and algorithm
(see Section 3.3) are implemented to classify the position and severity of the damage.
The technique is evaluated using the FE updating strategy of bending stiffness within 2D
vs. 2D FE models. Based on FSC, the 2D healthy and damaged case natural frequencies are
extracted, performed with other healthy 2D and stiffness updating damaged model natural
frequencies in order to minimize FSC.

At the same time, the PSO (as implemented by Particleswarm() from MATLAB
global optimization toolbox) with the FSC algorithm is then used to locate and estimate the
severity of the damage using the FSC objective function, as defined in Equation (7). FSC
value arrives zero or close to zero. Here, Particleswarm() function works as part of the
algorithm to find optimal global solutions (position and severity).

Figure 3 shows the identification of the given single damaged cases (see Table 3).
FSC is displayed as a function of the position and severity. The white circles denote the
real damaged parameters. Here, cross symbols are obtained by minimizing the FSC by
using the PSO function, and the color bars signify the color value for FSC. In terms of the
results, the damage position and severity values a were obtained at 0.15 m, 0.40 m, 0.70
m and 0.80 m with 2%, 15%, 8% and 24%, respectively. A low value of FSC indicates that
the attempted damaged case and unknown case are similar from the FSC point of view.
We thus present the FSC values for increased understanding. The minimum value can
indicate the damage parameters, especially if it is zero or close to zero. This means that the
algorithm is well adapted for localizing and estimating damage.

In Figure 3a, it is found that minor damage can be better estimated when using more
precise measurements. Indeed, FSC shows (see Figure 3) that the position and severity of
the damage are correctly assessed and does not create uncertainty regarding the actual
position and severity of the damage. It is noted that the processing time is approximately
10 s when using the PSO function. To summarize, FSC has solid performance in these cases
with a low computational time. To verify the accuracy of the FSC algorithms, position



Vibration 2022, 5 68

and severity corresponding to the FSC minimum values are considered to be damage
identification parameters that are precisely consistent with the actual position and severity
values of the damaged cases.
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Figure 3. FSC as a function of position and severity (percentage) of the damage. The white circles
denote real damage scenarios, where cross symbols and color bar indicate the lowest minimized
value (a) 0.15 m with 2%, (b) 0.25 m with 15%, (c) 0.65 m with 8% and (d) 0.80 m with 24%.

4.3. Localization and Quantification of Double Damages

Specific numerical damaged cases, each with two damages, will be assessed along
the cantilever beam structure. Double-damaged cases are generated numerically by the
reduction of bending stiffness of two beam elements.

In the FE beam, the damaged sites were selected close and far from each other, where
the amount of damage ranges from lower to higher percentages. In terms of position and
stiffness reductions, double-damaged cases are given (a) at 0.1 m and 0.2 m with 7% and
2%, (b) at 0.50 m and 0.90 m with 15% and 35%, (c) at 0.45 m and 0.55 m with 15% and
(d) 0.10 m and 0.15 m with 60% and 68%, respectively. Different damaged sites with two
damages are introduced and, for each, their natural frequencies are reported (see Table 4)
solving the eigenproblem using FE.
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In order to minimize FSC, the numerical seven natural frequencies of the damaged
beam were used as inputs. Natural frequencies are extracted from the double-damaged
beam (see Table 4) and are fed to the algorithm based on FSC. There are four parameters
(position 1, position 2, severity 1 and severity 2) unknown to identify for two damage
identification, and two stages are followed to represent identified damaged positions and
severities and the variations of the FSC on Figures 4–7. For a better understanding and a
comprehensive representation, we will split the parameters space in two. First: assuming a
certain percentage of severity for two damages, FSC is represented as a function of the beam
positions. Second: assuming the positions of two damages, FSC is displayed as a function of
severity. Lastly, cross symbols and circles signify global minimized values. However, cross
symbols are obtained using the PSO function with the global FSC minimization. In order
to classify the damages in terms of parameters (positions and severities), vectors of four
parameters are defined in the algorithm. Next, PSO was used to find the global minimum
on the parameters space. Accordingly, there will be only one global minimum indicating
the associate presence of impaired parameters, which is obtained by modal analysis using
FSC between healthy and damaged states. Note that the two damages may happen to have
the same position; in this case, we add the severity and apply the stiffness reduction to a
single element.

Positions and severity of double damaged cases (a) and (b) are identified, and shown
in Figures 4 and 5, where, Figures (a) and (b) are two representations of the same 4+1D
space. FSC is plotted as a function of positions and severity. These examples are localized
at far distances from each other along the beam, while levels of severity are estimated from
lower to higher percentages. Double-damaged case (a) is identified at positions 0.24 m and
0.82 m with 3% and 5% damage severity. Similarly, double-damaged case (b) is found at the
end side of the beam, where damages are localized at 0.60 m and 0.90 with 30% and 17%
severity, respectively. The PSO solver is used to obtain an output of minimizing parameters
that are denoted by cross symbols. However, these symbols are perfectly overlapping to
circles as these circles are defined for real parameters of artificial damaged cases. Hence,
damages are identified in the end sites of the beam since they are located well apart from
each other. Figure 4b shows that the low levels of damage severity are quantified, where
damages are located far from each other. It also indicates that the algorithm is well-suited to
identify the small double damages, as well as if they are located far away from each other.

Table 4. Two damaged cases and their numerically identified natural frequencies.

Damaged Cases
Natural Frequencies (Hz)

1 2 3 4 5 6 7

(a) xl = 0.24 m, αl = 3%,
xm = 0.82 m, αm = 5% 4.20 26.34 73.73 144.43 238.81 356.87 498.47
(b) xl = 0.60 m, αl = 30%,
xm = 0.90 m, αm = 17% 4.20 26.24 73.59 144.30 237.70 356.27 495.61
(c) xl = 0.34 m, αl = 9%,
xm = 0.44 m, αm = 4% 4.20 26.33 73.70 144.51 238.77 356.61 498.35
(d) xl = 0.55 m, αl = 1%,
xm = 0.75 m, αm = 6% 4.20 26.34 73.72 144.46 238.93 356.90 498.25
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Figure 4. FSC as a function of positions and severity (percentage) where, white circles represent real
damaged parameters. Cross symbols and color bars indicate the lowest minimized value. (a) Damage
positions are located at 0.24 m and 0.82 m, and (b) the severity of the localized damage is estimated
at 3% and 5%, respectively.
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Figure 5. FSC as a function of positions and severity (percentage) where, white circles represent real
damaged parameters. Cross symbols and color bars indicate the lowest minimized value. (a) Damage
positions are located at 0.60 m and 0.90 m, and (b) the severity of the localized damage is estimated
at 30% and 17%, respectively.

Other subsequent double damaged cases (c) and (d) are explored at various beam
positions with dissimilar stiffness reductions using FSC based minimizing algorithm. Sim-
ilarly, the algorithm with the PSO function is used to obtain outputs of the minimizing
parameters. Figures 6 and 7 show the identification of double damaged cases (c) and (d).
These two instances are achieved as either low (9% and 4%) or high (60% and 70%) levels
of impaired severity at positions (0.34 m and 0.44 m) and (0.10 m and 0.15 m), respectively.
These identifications also demonstrate that the algorithm is suitable for identifying small
damages and also if the damage is close together. This reveals that the algorithm has a
close correlation between artificially simulated damaged cases and the 2D updating FE
reference model.

In order to localize and estimate more than two damages, the condition should be
assessed by increasing the number of parameters in order to solve the minimization
problem. It is important to note that there is a relationship between input and output
parameters throughout the minimization problem.
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Figure 6. FSC as a function of positions and severity (percentage) where, white circles represent real
damaged parameters. Cross symbols and color bars indicate the lowest minimized value. (a) Damage
positions are located at 0.34 m and 0.44 m, and (b) the severity of the localized damage is estimated
at 9% and 4%, respectively.
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Figure 7. FSC as a function of positions and severity (percentage) where, white circles represent real
damaged parameters. Cross symbols and color bars indicate the lowest minimized value. (a) Damage
positions are located at 0.10 m and 0.15 m, and (b) the severity of the localized damage is estimated
at 60% and 70%, respectively.

4.4. In the Case of Modeling Uncertainty on Natural Frequencies

Numerical damaged cases and their identified natural frequencies are listed in Table 5.
These cases will be tested by the proposed damage identification to investigate the sensitiv-
ity of FSC. Here, uncertainties of natural frequencies are generated from Equation (8) by
adding perturbations of 0.1%, 0.2% and 0.3%.

Figure 8 indicates the identification of the damaged case (a) (xl = 0.30 m and αl = 40%)
with and without consideration of the perturbation in natural frequencies, while the natural
frequencies for the tested case (a) are listed in Table 5. FSC is plotted as a function of
positions and severity, and the plus symbols indicate the actual damage position and
severity depending on the impaired case. White circles (obtained by the FE updating
strategy using FSC), green cross symbols (obtained by PSO using FSC) and color bars
represent the lowest minimized values. The damage is perfectly localized and quantified at
a beam position of 0.30 m with a 40% magnitude without consideration of perturbation
using PSO. In comparison, damage positions and severity (see Figure 8) are reported with
the values of 0.296 m and 40.12%, 0.312 m and 40.6%,and 0.284 m and 38.01% based on
the introduced perturbation levels of 0.1%, 0.2% and 0.3% in the damaged beam natural
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frequencies, respectively. The locus of the FSC minimum values (obtained from FE updating
and PSO) for the estimated results, is found to be close to the actual damage parameters.
Essentially, it shows that the FSC criterion is performed accurately.

Table 5. Damaged cases and numerically identified natural frequencies of damaged beams.

Damaged Cases
Natural Frequencies (Hz)

1 2 3 4 5 6 7

(a) xl = 0.30 m, αl = 40% 4.18 26.31 73.35 144.21 238.86 354.98 496.20
(b) xl = 0.50 m, αl = 50% 4.19 26.08 73.77 143.16 238.94 353.60 498.51
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Figure 8. FSC as a function of position and severity (percentage) of the damage. The red plus symbols
indicate the position and severity of the artificial damaged case (a) (see Table 5). The white circles
(obtained by FE updating strategy using FSC), green cross symbols (obtained by PSO using FSC)
indicate the lowest minimized value, where damage positions and severity are identified (a) without
perturbation, and (b) 0.1%, (c) 0.2% and (d) 0.3% with perturbation levels.

In order to further analyze the strategy and evaluate the sensitivity of the FSC algo-
rithm, damaged case (b) , as given in Table 5, is tested by adding the perturbation on the
natural frequencies as defined in Equation (8). Artificial damaged case (b) (xl = 0.5 m,
αl = 50%) in the beam and its natural frequencies are mentioned in Table 5. Firstly, the dam-
aged test case is localized and quantified (see Figure 9a) using FSC without consideration
of perturbation on the natural frequencies. Here, the white circle denotes a real damaged
case, while the green cross symbol is acquired by a minimization of the FSC with the PSO.
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The color bar and cross symbol indicate damage position and severity. Here, damage
parameters are accurately estimated at the 0.5 m position with 50% severity. The minimum
value refers to the estimated position as well as the severity, which is as low as 0.0001.
Secondly, the damaged case (xl = 0.5 m and αl = 50%) is localized and quantified by the
presence of perturbation (η = 0.1, 0.2 and 0.3%) on the natural frequencies. Note that the
added noise levels do not affect the performance of the algorithm. Therefore, the algorithm
works by precisely localizing and estimating the damage with consideration of perturba-
tion levels. Equation (8) is used to generate 100 random samples using randn MATLAB
function that generates the artificial measurement errors in the natural frequencies of a
tested damaged case. In the FSC minimization, each sample, i.e., each set of seven natural
frequencies, is used to estimate the damage parameters.
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Figure 9. FSC as a function of position and severity (percentage), where white circles denote a real
identified damaged case. The cross symbols and color bars indicate the lowest minimized value.
(a) The damage parameter (position and severity) are estimated at 0.50 m beam position with 0.50%
severity, and (b) the red dot denotes the estimated damage parameter without perturbation, while
green, (c) yellow and (d) cyan dots denote estimated damage parameters concerning for hundred
samples with 0.1%, 0.2% and 0.3% perturbation, respectively.

Damage identification results with perturbations of 0.1%, 0.2% and 0.3%, are shown
in Figure 9b–d, where the red dot represents the real damage parameters without any
perturbation. Green, yellow and cyan color dots indicate the estimated damage positions
and severity with consideration of 0.1%, 0.2% and 0.3% perturbation levels, respectively.
The average values of positions and severity are obtained at 0.499 m, 0.505 m and 0.494 m
with 49.90%, 50.21% and 50.18%, respectively. The standard deviation values for the
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estimated damage positions and severity are 0.063 m, 0.069 m, 0.102 m and 5.81%, 6.93%
and 8.09%, respectively. Here, standard deviation values and estimated average damage
parameters indicate the efficiency of the algorithm. Moreover, almost all of the estimations
fall close to the exact values. Every estimation is embedded in a circle whose center is the
exact result. Note that for each case, there are few results that fall very far from the expected
values. The reason for these outliers is still not clear.

5. Experimental Example for Damage Identification

To estimate positions and severity of the damage in a real structure, a steel beam
has been examined with the same material and geometrical properties (see Section 4.1)
as those stated in the numerical FE Models. Healthy and damaged beams are used for
the experimental test. On the damaged beam, two instances of damage (saw cut) are
done. The damage 1 and damage 2 are placed at 0.25 m and 0.68 m beam positions from
the clamped end. Damage (damage 1 and damage 2) sizes are also measured. The first
(damage 1), was found with a depth of 1.3 mm and a width of 1.15 mm, and the other
(damage 2) was obtained with a depth of 1.55 mm and a width of 1.40 mm. In this case,
the height of both saw cuts is considered with a similar value of the beam’s height.

During the experimental beam tests, two accelerometers are mounted at different
beam positions (0.35 m and 0.75 m). Experimental beam configurations and setup are
shown in Figures 10 and 11. A hammer impact test was conducted, and signals with LMS
multi-analyzer (Siemens LMS software, Plano, TX, USA) were used to record the vibration
measurements. The input excitation was produced by the hammer and output data was
recorded by the monoaxial accelerometer (Brüel and Kjær-DeltaTron Type 4507). The beam
was clamped on one side with a strong mechanical hinge, while the other side was free.
The experimental setup (see Figure 10) was then designed in such a way as to extract natural
frequencies from the beams (healthy and damaged). FRFs (see Figure 12) of the healthy and
damaged cantilever beam, were used to acquire natural frequencies by implementing the
circle fit method with EasyMod Module [47] using MATLAB. Table 6 represents the seven
experimentally measured natural frequencies of the healthy and damaged real beams.

Figure 10. Set up of beam hammer impact test using LMS multi-analyzer system (Siemens
LMS software).
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Figure 11. Experimental setup of real cantilever damaged beam with accelerometers.
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Figure 12. Frequency response functions (FRFs) curve of the healthy beam (blue curve) and damaged
beam (orange curve), at mid position (0.5 m).
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Table 6. Experimentally identified natural frequencies of healthy and damaged beams.

Experimental Beam
Natural Frequencies (Hz)

1 2 3 4 5 6 7

fhealthy 4.27 26.33 73.26 142.34 240.13 355.67 499.66
fdamaged 4.25 26.22 72.82 141.73 239.38 354.36 497.97

Results

To classify damage properties (positions and severity), a test is conducted on the
basis of the frequency shift between healthy and damaged real beams. The real damaged
beam (see Figure 11) is evaluated and compared to the numerical 2D FE healthy and
damaged models using FSC. The beam model (see Figure 1) based on the 2D FE mesh
(100 elements) is used for the purpose of FSC minimization. As similarly illustrated during
double-damaged identification, the representation of Figure 13a,b is done after obtaining
the positions and severity using an FSC-based algorithm with particleswarm() solver.

Damages are found at beam positions of 0.244 m and 0.676 m, and severity of these
localized damages are estimated with 34.2% and 28.5%, respectively. Here, the error
(percentage) for damage positions 1 and 2, are obtained with the values of 2.4% and
0.59%. If we obtain the positions and severity corresponding to the global minimum, then
the representation of Figure 13a,b can be performed to indicate the identified damage
parameters. Each representation is obtained by considering either positions or severity of
respective two damages, which allows FSC to be a function of beam positions and damage
severity. Thus, the results indicate that the FSC-based algorithm is well suited for localizing
and quantifying damages in the real structure.
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Figure 13. Experimentally tested damaged beam where FSC as a function of position and severity
(percentage). The cross symbols and color bars indicate the lowest minimized value. (a) The damage
positions are identified at 0.244 m and 0.676 m, and (b) severity of these localized damage are
estimated as 34.2% and 28.5%, respectively.

6. Conclusions

This work focused on a damage identification algorithm using FE Models and mini-
mization of a frequency shift coefficient. A cantilever beam was investigated throughout
this research work. Different damaged cases were localized and quantified using the FSC
algorithm. The algorithm was effective at identifying smaller to larger-sized damages,
where double damages are located close or far away from each other. In this numerical
investigation, the lowest level of severity was estimated at 1%. The numerical outcomes
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indicate that the proposed algorithm is suitable for identifying single and multiple damages.
The sensitivity of the algorithm to uncertainties on natural frequencies was investigated
by considering small random perturbations. The results show that perturbed natural fre-
quencies indeed cause small errors in terms of position and severity but that the estimation
always falls close to the real damage parameters for small perturbations. The application
of natural frequencies, and their feasibility for damage identification based on numerical
FE models, was examined. Sensitivity of FSC associated with the algorithm under a variety
of damage conditions, as well as an experimental example, was determined. Finally, the
experimental results on a beam with two damaged areas corroborate the numerical study
and show the efficiency of the algorithm. In the future, the algorithm will be explored with
other types of structures, structural behaviors and different boundary conditions in order
to validate its efficiency.
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