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Abstract: Modelling errors and robust stabilization/tracking problems under parameter and model
uncertainties complicate the control of the flexible underactuated systems. Chattering-free sliding-
mode-based input-output control law realizes robustness against the structured and unstructured
uncertainties in the system dynamics and avoids the excitation of unmodeled dynamics. The main pur-
pose of this paper was to propose a robust adaptive solution for stabilizing and tracking direct-drive
(DD) flexible robot arms under parameter and model uncertainties, as well as external disturbances.
A lightweight robot arm subject to external and internal dynamic effects was taken into considera-
tion. The challenges were compensating actuator dynamics with the inverter switching effects and
torque ripples, stabilizing the zero dynamics under parameter/model uncertainties and disturbances
while precisely tracking the predefined reference position. The precise control of this kind of system
demands an accurate system model and knowledge of all sources that excite unmodeled dynamics.
For this purpose, equations of motion for a flexible robot arm were derived and formulated for the
large motion via Lagrange’s method. The goals were determined to achieve high-speed, precise
position control, and satisfied accuracy by compensating the unwanted torque ripple and friction
that degrades performance through an adaptive robust control approach. The actuator dynamics
and their effect on the torque output were investigated due to the transmitted torque to the load side.
The high-performance goals, precision and robustness issues, and stability concerns were satisfied by
using robust-adaptive input-output linearization-based control law combining chattering-free sliding
mode control (SMC) while avoiding the excitation of unmodeled dynamics. The following highlights
are covered: A 2-DOF flexible robot arm considering actuator dynamics was modelled; the theoretical
implication of the chattering-free sliding mode-adaptive linearizing algorithm, which ensures robust
stabilization and precise tracking control, was designed based on the full system model including
actuator dynamics with computer simulations. Stability analysis of the zero dynamics originated
from the Lyapunov theorem was performed. The conceptual design necessity of nonlinear observers
for the estimation of immeasurable variables and parameters required for the control algorithms
was emphasized.

Keywords: flexible robot arm; robust-adaptive control; sliding mode control; actuator dynamics;
zero dynamics

1. Introduction

The fast stabilization and precise tracking of systems (underactuated) are regarded
as a hard control issue, whose solution will address implementation from space robotics
and weapon platforms to the control of air/sea/ground vehicles and systems exposed
to unpredictable actuators failure [1–3]. The control of underactuated systems presents
challenges even in the nonappearance in terms of uncertainty; however, modelling errors
and disturbances add to the complications due to the active and passive degrees of freedom
(DOFs) coupling [4,5].

Many favorable results have been presented, addressing robust stabilization and
robust tracking control problems for classes of underactuated systems offering nonlinear
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control designs dealing with uncertainties. It is important to define and address robust
stabilization/tracking issues for classes of underactuated systems. The underactuated
systems with parametric uncertainties are driven through a set of structured nonlinear
equations of motion (EOM) that can be exploited for the construction of Lyapunov functions
to be used in the robustness analysis [6–10].

The flexible robotic arms constitute an underactuated system due to the structural
flexibilities, leading to a system with higher DOFs than the total number of actuators.
The DD flexible robot arm system model inherently covers significant flexibility modes,
Coriolis, centripetal and gravitational effects, as well as dynamics of the actuator [11,12]. Its
complex dynamic structure arises from the interaction of structural flexibilities and actuator
dynamics. The high-performance goals require using high torque, lightweight direct drive
systems (DDS), which involve the direct coupling of motors with their loads, due to the
removal of transmission mechanisms, such as gearboxes, belts, harmonic drives, and so on.
The elimination of joint elasticity, and backlash and friction, as a result, gives rise to a system
with a higher servo stiffness and improved stabilization characteristics over systems that
include gears. The DD structure also allows the actuator to position the shaft more precisely
in comparison to a geared system. With typical gearing, the backlash contributes to a “dead
zone”, which falls in the region of the system null point and reduces positional accuracy. In
a DDS, however, the positional accuracy is, in practice, limited only by the error-detecting
transducer system. These characteristics are the major reasons why DD actuation should
be preferred over-geared systems for high-performance positioning systems. Jaritz and
Spong [13] presented the results of a systematic comparison of passivity-based robust
control algorithms for a 2 DOF, DD robot arm. Reyes and Kelly [14,15] presented an
experimental evaluation of model-based control algorithms on a direct-drive robotic arm.
The above studies on DD robotics consider the manipulator dynamics only and assume
a perfectly linear variation of the generated torque with the control input, neglecting
the effects of non-uniform torque. However, an important problem with DD actuators
is the non-uniform distribution of the motor windings, the saliencies in the rotor/stator,
and their interaction with the winding currents, which give rise to undesirable torque
pulsations, named as “torque ripple” and “cogging torque” in the literature, depending
on their source. What creates a problem is that with a DD system, these pulsations are
directly reflected on the load side, leading to speed oscillations, which cause deterioration
in the system performance. The problems related to torque pulsations or torque ripple
range from small influence on accuracy to total instability. Statically, torque ripple can be
thought of as load torque that varies with the rotor position, thus causing position/tracking
error. Dynamically, due to its richness in high frequency, it may also excite the unmodeled
dynamics of the system, giving rise to instability. Therefore, in the modelling and control
of DD systems, actuator dynamic effects should be taken into account as well as the
manipulator dynamics, especially when high-performance goals are involved.

The problem of modelling error originated from parameter and model uncertainties,
which are solved through a precise control action that demands very accurate system
models and considers all sources that excite unmodeled dynamics. Also, the consideration
of actuator dynamic effect and torque pulsations is critical for high precision demands in
DD robotics [16,17]. A detailed inspection of the existing literature reveals that research
on underactuated DD robotic systems focused on the flexible robot manipulator control
could be divided into two main groups; the first one [18–20] covers the research on the
high-performance control of DD actuators taking only actuator dynamics into account
and dealing with torque pulsation effects, the second one [21–23] is related to the control
of underactuated robot arms, either with the consideration of passive joints or flexible
links, e.g., single-link flexible arm concentrating on the stabilization and tracking of the
performance of the active and passive DOFs. The utilization of high torque is required in
the lightweight DD systems that involve the direct coupling of motors with their loads, due
to the removal of transmission mechanisms, such as gearboxes, belts, harmonic drives etc.
The joint elasticity, backlash, and friction attenuation, as a result, lead to a system having
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higher servo hardness and improved stabilization characteristics over systems that include
gears. This structure also provides the actuator to position the shaft more precisely as
compared to a geared system. The backlash that occurred in the typical gearing contributes
to a “dead zone” falling in the region of the system null point and reducing the accuracy
in the position [24–27]. Uecker et al. [28] demonstrate that methods based on the model
achieve two to four times better performance than the Proportional-Integral-Derivative
(PID); Ayten and Dumlu [29] address the tracking control of a 2 DOF DD arm with adaptive
and robust control schemes; Azizi and Yazdizadeh [30] present a systematic comparison of
passivity-driven robust solution for a 2 DOF DD robot arm; Santibanez et al. [31] demon-
strates the effect of static friction on the set-point control of a DD system. An important
problem with DD actuators is the non-uniform distribution of the motor windings, the
saliencies in the rotor/stator, and their interaction with the winding currents giving rise
to undesirable torque pulsations. In the literature, they are classified as torque ripple [32]
and cogging torque [33] depending on their source. These pulsations are directly reflected
on the load side, leading to speed oscillations, which cause deterioration in the system
performance. Torque pulsations cause inaccuracies or instabilities. Statically, torque ripples
can be accepted as load torque varying via rotor angular position. From the dynamic per-
spective, it can stimulate the unmodeled dynamics, which lead to an unstable mode [34,35].
Therefore, in the modelling and control of DD systems, the actuator dynamic is combined
with the manipulator dynamics, especially when high-performance goals are involved.
The high-performance goals require using high torque, lightweight DD systems, which
involve the direct coupling of motors with their loads, due to the removal of transmission
mechanisms, such as gearboxes, belts, harmonic drives, and so on. In the literature, tech-
niques dealing with torque ripple elimination for DD actuators have been proposed [36,37].
Some techniques focus on the design of electric motors to achieve the production of smooth
torque. Although effective for torque ripple minimization, the proposed methods are
specific to the machine involved and do not offer a flexible solution. Other techniques cover
the minimization of torque ripple, thereby taking a more flexible and less costly approach to
the solution of the problem. Harmonic cancellation is applied through predefined current
waveforms [38]. This method necessitates the torque ripple information of the motor and
utilizes the model of the torque production to evaluate current waveforms injected for
attenuating the unwanted torque components. These methods have parameter variation
sensitivity, and their effectiveness lowers if the conditions change. As a solution to the
problem of parameter and load uncertainty, Fei et al. [33,39] used parameterization tech-
niques to cancel torque pulsations and unknown load effects for precise control. Almakhles
integrated the integral and backstepping SMCs in a double-loop to ensure the position
tracking capability subjected to the disturbance [40]. Petrovic et al. [38,41] presented a
passivity-based adaptive control for suppressing torque ripple while enabling speed control
for a permanent-magnet synchronous motor (PMSM). High-speed lightweight DD systems
also require structural flexibilities to be taken into account for high precision goals. The
resulting system has a higher number of passive DOFs than active control inputs, thus,
it should be viewed as an underactuated system. They demonstrate nonlinearities and
nonminimum phase features, which lead to a hard control problem. Krener [42] performed
a survey on the application of geometric nonlinear control. Energy-based approaches [43]
for the stability and tracking control of underactuated systems were also investigated.
Passivity-based methods such as backstepping [44] have led to dramatic advances in con-
troller design, but are only applicable to certain classes of underactuated systems. Research
has specifically addressed the control of flexible robot manipulators and various techniques
developed and validated by simulations and/or experiments [45–48]. Park et al. [49] de-
veloped input-shaping techniques; Markus [50] applies for feedforward compensation;
Mansor et al. [51] presented a time delay method; Yang et al. [52] applied nonlinear adap-
tive control. Euler-Bernoulli beam with a fourth-order equation is used frequently to derive
the model equations of a flexible link. The rotation angle corresponding to the flexible link
is the common collocated output for a trajectory tracking perspective. The performance of
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this output measurement is not adequate, because it supplies weak vibration control [53].
Therefore, research using non-collocated output sensing, such as the link tip position, has
been initiated, although it causes zero dynamics to have a non-minimum phase. Liu and
Yuan [54] proposed non-collocated outputs for the flexible link; Mattioni et al. [55] used an
infinite-dimensional linear model, while Meurer et al. [56] performed a theoretical study
deriving a non-collocated output; De Luca et al. [3] designed a state-feedback controller to
the non-minimum phase in the nonlinear system model. Full system dynamics should be
considered, and methods should be developed to compensate/reject their effects, besides
those imposed by external disturbances. Accurate modelling is even more crucial for the
stabilization and control of underactuated systems. Problems caused by modelling errors
such as tracking error and instability are even more pronounced in those systems due to
the coupling between active and passive DOFs. Thus, robust methods appear to be good
solutions subject to structured and unstructured uncertainties. SMC is an effective robust
control method for uncertain systems; it has also found an increased application in the
underactuated system control. Among application of SMC to flexible arms, Han et al. [57]
proposed an SM-based observer and controller to be utilized in single-link flexible arm;
Sinha and Mishra [58] used the discontinuous approach in the control design; Hosaka and
Murakami [59] designed a disturbance observer to compensate the flexible modes with
high-order; Lochan et al. [60] utilized an SMC with chattering to exploit the robustness.
The unwanted sides of chattering on unmodeled dynamics are known. Due to the superior
robustness properties to matched uncertainties of the discontinuous high-order SMCs for
the underactuated system under heavy uncertainties, interesting examples of SMCs, with
or without chattering, have been developed for fully actuated and underactuated systems
(mostly, flexible links). However, in those studies, chattering effects appear as a tradeoff be-
tween high robustness to uncertainties and good tracking performance [61,62]. As another
approach to achieve robustness and high tracking performance under heavy uncertainties,
higher-order sliding mode controllers were proposed. The investigation of efficient tuning
methods for the control parameters of the HOSMC (i.e., by online genetic algorithms) is
another beneficial area for research. Another issue limiting the development of high order
sliding mode controllers (HOSMCs) is the difficulty in deriving the system states and their
derivations [63,64]. Besides, there are several studies utilizing H∞ methods for the robot
arm [15,65,66]. A polytopic gain scheduled H∞ controller combined with pole placement
method was represented in [67]. An iterative H∞ filter was designed to improve upon
the initial estimate for the trajectory of a nonlinear underactuated vehicle [68]. H∞-based
sliding mode controller was applied to a human swing leg system in [69]. A predefined
time, predefined bounded attitude tracking control scheme based on nonsingular prede-
fined time sliding mode manifold was proposed to be applied in tracking control of the
rigid spacecraft with bounded external disturbances. The control law guarantees that the
attitude tracking error converges to a vicinity of the origin both satisfying the predefined
bound and time [70]. The problems derived from the actuator faults, measurement errors
of the attitude and angular velocity, unmeasured modal displacements, uncertainties, and
external disturbances in both rigid and flexible dynamic parameters were also solved
in another paper [71] using an adaptive fault-tolerant attitude tracking controller. The
closed-loop stability of the system was proved through the Sequential Lyapunov Method.

This paper proposes a precise stabilization and tracking control solution that involves
a robust adaptive scheme combining a continuous chattering-free SMC with adaptive
feedback linearization to the flexible robot arm system, considering the actuator dynamics
in addition to various dynamic effects inherent to this system. In the control design process,
the aim is to reduce or eliminate the undesirable effects of the actuator dynamics on
the torque ripple. With the help of the developed control method, the compensation of
nonlinearities such as gravitational load, friction, and torque pulsations was achieved, and
the stability of zero dynamics caused by passive DOF’s for a certain output was guaranteed,
while also satisfying the desired trajectory tracking performance. The outline of this
paper comprises modelling of the robot arm system dynamics, having flexible links by
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considering the actuator dynamics, structural flexibilities, system disturbances, as well as
dynamic parameter changes, and developing a robust-adaptive linearizing control method
to fulfil high-performance trajectory tracking and high-speed response. Computational
efficiency, precision, speed, and accuracy requirements were ensured in the simulation of
the whole system.

2. Mathematical Modeling of the Flexible Robot Arm

The physical model of the flexible robot arm is represented in Figure 1.
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Figure 1. Representation of the flexible link robot.

Figure 1 shows that the mechanical configurations of the robot have two flexible links
and joints expressed in terms of lumped parameters. The model includes translational and
rotational springs and viscous dampers. Lagrangian mechanical principles are utilized to
derive the equations of motion (EOM’s) of the whole system. The generalized independent
coordinates changing with time are determined as ψ1(t), ψ2(t), l1(t), l2(t). Large motion
and structural variations in the dynamics of the flexible robot arm are investigated in
this paper.

The kinematic constraints and velocities of the mass centres w.r.t inertial reference
frame are stated as in Equations (1) and (2), respectively.

X1(t) = l1(t) sin(ψ1(t)), X2(t) = l1(t) sin(ψ1(t)) + l2 sin(ψ2(t))

Y1(t) = −l1(t) cos(ψ1(t)), Y2(t) = −l1(t) cos(ψ1(t))− l2(t) cos(ψ2(t))
(1)

dX1
dt = sin(ψ1)

.
I1 + cos(ψ1)l1

.
ψ1

dX2
dt = sin(ψ1)

.
l1 + sin(ψ2)

.
l2 + cos(ψ1)l1

.
ψ1 + cos(ψ2)l2

.
ψ2

dY1
dt = sin(ψ1)l1

.
ψ1 − cos(ψ1)

.
l1

dY2
dt = sin(ψ1)l1

.
ψ1 + sin(ψ2)l2

.
ψ2 − cos(ψ1)

.
l1 − cos(ψ2)

.
l2

(2)

The potential energy that contains the gravitational potential; translational and rota-
tional elastic potential parts; kinetic energy that covers translational and rotational parts;
and Rayleigh dissipation function, which highlights the viscous damping loss of the whole
system, are defined in Equation (3), respectively.

V = m1gY1 + m2gY2 +
1
2 k1(l1 − l10)

2 + 1
2 k2(l2 − l20)

2 1
2 k1(ψ1 − ψ10)

2

+ 1
2 kψ2(ψ2 − ψ20)

2

T = 1
2 m1(

.
X

2
1 +

.
Y

2
1) +

1
2 m2(

.
X

2
2 +

.
Y

2
2) +

1
2 Jψ1

.
ψ

2
1 +

1
2 Jψ2ψ2

2

R = 1
2 d1

.
I

2
1 +

1
2 d2

.
I

2
2 +

1
2 dψ1

.
ψ

2
1 +

1
2 dW2

.
ψ

2
2

(3)
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The parameters stated in Equation (3) refer to the system parameters given in Table 1.

Table 1. The system parameters define the flexible robot arm.

Definition Notation

Gravitational constant g

Translational spring constants k1, k2

Translational viscous damping constants d1, d2

Rotational spring constants kΨ1, kΨ2

Rotational viscous damping constants dΨ1, dΨ2

Unloaded length of the links l10, l20

The unloaded angle of the joints Ψ10, Ψ20

Translational inertia values m1, m2

Rotational inertia values JΨ1, JΨ2

Four nonlinear second-order differential EOMs are obtained by writing down the
Lagrangian equation that describes the dynamics of the flexible robot arm uniquely as in
Equation (4), respectively.

d
dt

(
∂L

∂
.
ψ1

)
− ∂L

∂ψ1
+ ∂R

∂
.
ψ1

= Qψ1 , d
dt

(
∂L

∂
.
ψ2

)
− ∂L

∂ψ2
+ ∂R

∂
.
ψ2

= Qψ2

d
dt

(
∂L
∂

.
l1

)
− ∂L

∂l1
+ ∂R

∂
.
l1
= Ql1 , d

dt

(
∂L
∂

.
I2

)
− ∂L

∂I2
+ ∂R

∂
.
I2

= Ql2

(4)

where Lagrangian (L = T −V) refers to the difference between kinetic and potential energy.
Qi’s imply that the i− th external generalized force corresponds to the generalized source
(i.e., mechanical or electrical). The state equations derived from Equation (4) contain the full
dynamics of the system. To define the system in state-space form, the eight-dimensional
state vector is given in terms of the state variables.

These variables are the angular position, angular velocity of the joints, displacement,
and its derivative of the links, i.e., x1 = ψ1, x2 =

.
ψ1, x3 = ψ2, x4 =

.
ψ2, x5 = I1, x6 =

.
I1,

x7 = I2, x2 =
.
I2.

The state equations can be built by arranging these variables in the form given in
Equation (5).

.
X = f

(
X, u

)
(5)

where X is the state vector, u denotes external input and f (.) is a nonlinear function in a
vector form.

The state equation in Equation (5) can be re-arranged as in Equation (6).

.
x1 = x2,

.
x3 = x4,

.
x5 = x6,

.
x7 = x8;


.
x2.
x4.
x6.
x8

 = f̂ (x1, x2, x3, x4, x5, x6, x7, x8, u) (6)

where f̂ (.) includes nonlinear terms as state variables and external inputs.
After completing the state-space representation, the controller synthesis can be achieved.

The joints are subjected to the external torque vector u =


u1
u2
0
0

 given in Equation (7),

rigidly mounted to a rotating reference frame.
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u1,2 = ktn1,2iq1,2 +
∞
∑

n=1
(K1,2cncos(np1,2θ1,2) + K1,2snsin(np1,2θ1,2))iq1,2

+
∞
∑

j=1

(
K1,2cjµ1,2 cos(jµ1,2θ1,2) + K1,2sjµ1,2 sin(jµ1,2θ1,2)

)
iq1,2

+Lθ1,2 id1,2iq1,2

(7)

where ktn refers to the torque constant (Nm/A); Ld is direct axis stator winding inductance
(H); Lq is quadrature axis stator winding inductance (H); Lθ is proportional to

(
Lq − Ld

)
(H); p corresponds to the pole pair number; id and iq indicate the stator currents in terms
of direct and quadrature axis components (A); n is the harmonic order (n = 1,2,. . . ,∞);
K1,2cn, K1,2sn are harmonic torque components in terms of cosine and sine coefficients
(Nm/A); and K1,2cjµ1,2 , K1,2sjµ1,2 are cogging torque components in terms of cosine and sine
coefficients (Nm).

The actuator dynamics can be embedded to complete the full system dynamics with
electric motor equations as follows in Equation (8),

diq
dt = − Rs

Lq
iq − pLdid −

[kb+∑∞
n=1(Kcm cos npθ+Ksp sin npθ)]

·
θ

Lq
+ 1

Lq
vq

did
dt = − Rs

Ld
id − pLqiq +

1
Ld

vd

vq = Vmsign(irq − iq)|t=kTsW k = 0, 1, 2, . . .

vd = Vmsign
(
ird − id

)
|t=kTsW k = 0, 1, 2, . . .

(8)

where Vm is the maximum driver voltage (V), irq and ird are quadrature and direct axis
reference current components of stator current (A), TsW is the driver switching time constant
(s), vq, vd are quadrature and direct axis components of the stator voltage (V), Rs is the
stator phase winding resistance (Ω), kb is the back-emf constant (V.s/rad), and Kcm, Ksp are
harmonic flux components (V.s/rad).

Stator voltage components have produced an equivalent driver circuit that includes
relay functions with a switching facility. The block diagram, which is utilized in the
simulation of the torque input, can be represented as in Figure 2.
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The uncontrollable variable (d) is stated as a disturbance. The non-collocated output 
of the system, which approximates the tip position, is given as:  𝑦ଵ = ቂெయ௠ర 1ቃ் ൤𝑙ଵ𝜓ଵ൨; 𝑦ଶ = ቂெల௠ళ 1ቃ் ൤𝑙ଶ𝜓ଶ൨ 

Based on the model above, robust-adaptive linearizing control laws are evaluated as 
in Equation (10). 𝑖௤ଵ,ଶ = 𝜆ଵ,ଶ𝑣ଵ,ଶ + 𝑣௙௙ଵ,ଶ − 𝑾𝟏,𝟐𝑻 𝐏̂𝟏,𝟐𝑘௧௡ଵ,ଶ  (10) 

where 𝑣௜ (𝑖 = 1,2) refers to the tracking control signals; 𝜆௜ (𝑖 = 1,2) terms correspond to 
a positive scaling number; and 𝑾𝐢𝑻𝐏̂𝒊 (𝑖 = 1,2) terms represent the deviation from the 

Figure 2. The block diagram of the torque input has an actuator dynamics model.

The generated torques in the joints are constituted by torque ripple, reluctance torque,
and cogging torque, respectively (the switching of the Pulse Width Modulation (PWM)
inverter operation and the torque pulsations in the output torque for the current reference
are induced by the input-output control law).

3. Controller Framework: Theoretical Remarks and Implementation

The control laws were presented in the form of full state feedback. Commonly, the
underactuated system control consists of designing a nonlinear observer and developing
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output feedback stabilization. In real conditions, most actuators are limited in their actua-
tion power. Therefore, the effects of bounded control inputs should also be included in the
analysis of nonlinear systems that have saturated nonlinear state feedback.

The system equations obtained in Equation (6) can be rearranged as in Equation (9).

[
M1 M2
M3 m4

][ ..
l1..
ψ1

]
+

[
K1 0
0 0

][
l1
ψ1

]
+

[
C1
c4

]
+

[
G1
g4

]
+

[
0

m4
..
d

]
=

[
0

u1

]
[

M4 M5
M6 m7

][ ..
l2..
ψ2

]
+

[
K2 0
0 0

][
l2
ψ2

]
+

[
C2
c7

]
+

[
G2
g5

]
+

[
0

m7
..
d

]
=

[
0

u2

] (9)

The uncontrollable variable (d) is stated as a disturbance. The non-collocated output
of the system, which approximates the tip position, is given as:

y1 =
[

M3
m4

1
]T
[

l1
ψ1

]
; y2 =

[
M6
m7

1
]T
[

l2
ψ2

]
Based on the model above, robust-adaptive linearizing control laws are evaluated as

in Equation (10).

iq1,2 =
λ1,2v1,2 + v f f 1,2 −WT

1,2P̂1,2

ktn1,2
(10)

where vi (i = 1, 2) refers to the tracking control signals; λi (i = 1, 2) terms correspond to a
positive scaling number; and WT

i P̂i (i = 1, 2) terms represent the deviation from the ideal
torque and contain large amplitude and effective torque ripples, as well as cogging torques,
respectively.

In addition, it also covers gravity terms, k̃ti = kti − ktni terms in slow-speed operation,
and frictional terms. The regressor vector and related parameter values are given below:

WT
i = [1 cos θi sin θi cos piθi sin piθi cos 2piθi sin 2piθi cos 3piθi sin 3piθi . . . cos µiθi sin µiθi]

PT
i =

[
k̂t ĝ4,5c ĝ4,5s K̂ic1 K̂is1 K̂ic2 K̂is2 K̂ic3 K̂is3 . . . K̂icµ K̂isµ

]
where µ is the number of teeth on the stator, and kt is the actual value of the torque constant
for constant velocity operation.

The v f f i (i = 1, 2) terms correspond to feedforward terms: v f f 1 = ĉ4 + m4

..
d̂ and

v f f 2 = ĉ7 + m7

..
d̂, respectively.

At this point, stability analysis is performed by deriving error dynamics.
The chattering-free first-order sliding mode control inputs are stated in Equation (11).

σ1,2 =
.
e1,2 + λ1,2e1,2

e1,2 = ψ
re f
1,2 − y1,2

.
e1,2 =

.
ψ

re f
1,2 −

.
y1,2 =

.
ψ

re f
1,2 −

.
ψ1,2 −

M3,6
m4,7

.
l1,2

..
e1,2 =

..
ψ

re f
1,2 −

..
y1,2 =

..
ψ

re f
1,2 −

..
ψ1,2 −

M3,6
m4,7

..
l1,2

(11)

Lyapunov’s stability criteria and the concept of equivalent control is designed based
on this sliding surface. The Lyapunov function is chosen as:

V = 1
2 σ2,

.
V = σ

.
σ = −Dσ2; D � 0

.
σ1,2 =

..
e1,2 + C

.
e1,2 = ψ

re f
1,2 + 1

m4,7

[
ξ1,2 + P̃

T
W− η

]
− 1

m4,7
v1,2

where;
If

.
σ = 0→v1,2

∼= veqv,1−2,
.
σ1,2 = 1

m4,7

(
veqv,1−2 − v1,2

)
,

1
m4,7

(
veqv,1−2 − v1,2

)
+ D1,2σ1,2 = 0
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If one can discretize v1,2 and their left sides are organized for equivalent control, the
reality is that the equivalent control does not change in one sampling period.

du
dt ≈

u(k)−u(k−1)
T

v1,2(k) = v1,2(k− 1) + m4,7
T [(1 + D1,2T)σ1,2(k)− σ1,2(k− 1)]

dv1,2
dt =

m4,7
T
[ .
σ1,2 + D1,2σ1,2

]
v1,2 =

m4,7
T
[ .
e1,2 + (C1,2 + D1,2)e1,2 + C1,2D1,2

∫
e1,2dt

]
If Equation (9) is re-shaped w.r.t ψ, the equation is transformed into Equation (12)

.
ψ1,2 = − 1

m4,7

[
−M3,6

..
l1,2 −m4,7

..
d− c4,7 − g4,5 + u1,2

]
..
ψ1,2 = 1

m4,7

[
−M3,6

..
l1,2 −m4,7

..
d− c4,7 + ktn1,2

.
iq1,2 + PTW + η

] (12)

η is defined by other harmonic components that are outside the largest torque har-
monics and whose amplitudes are very small.

When Equations (7) and (10) are replaced by Equation (12), Equation (13) becomes.

..
ψ1,2 +

1
m4,7

[
M3,6

..
l1,2 + m4,7

..

d̃ + c̃4,7 +
~
P

T
W− η

]
=

1
m4,7

λ1,2v1,2 (13)

where ~
P = P̂− P, c̃4,7 = ĉ4,7 − c4,7 and d̃ = d̂− d

A sliding mode controller that is not affected by parameter changes and compensates
these error terms is utilized. The error dynamics of the controller that will follow the surface
selected as the sliding surface in a chattering free manner, are given in Equation (14).

−..
e1,2 +

1
m4,7

[
m4,7

..

d̃ + c̃4,7 + P̃
T

W− η

]
= 1

m4,7
λ1,2v1,2

x1 = e1 ;
.
x1 = x2 ; x3 = e2 ;

.
x3 = x4

(14)

Equation (14) is stated in state-space form as in Equation (15).[ .
x1,3.
x2,4

]
=

[
0 1
0 0

][
x1,3
x2,4

]
+

[
0

1/m4,7

](
−λ1,2v1,2 + ξ1,2 + P̃

T
W
)

(15)

where ξ1,2 = m4,7

..

d̃ + c4,7 − η.
Equation (15) is discretized as in Equation (16) to examine the system behaviour on a

discrete controller.[
x1,3(k)
x2,4(k)

]
=

[
1 T
0 1

][
x1,3(k− 1)
x2,4(k− 1)

]
+

T
m4,7

[
T/2

1

](
−λ1,2v1,2(k− 1) + ξ1,2(k− 1) + P̃

T
W
)

(16)

Equation (17) is obtained if the control signal is written in z-domain and put in
Equation (16).

E1,2(z) =
T2(z + 1)

2(z− 1)2m4,7

(
−λ1,2m4,7

T
(1 + D1,2T)z− 1

z− 1
σ1,2(z) + ξ1,2(z) + P̃

T
W

)
(17)

where

σ1,2(z) =
(1 + TC1,2)z− 1

Tz
E1,2(z)

Equation (17) is arranged as in Equation (18)

E1,2(z)

=0︷ ︸︸ ︷[
1 +

(z + 1)

2(z− 1)2 λ1,2
(1 + D1,2T)z− 1

z− 1
(1 + TC1,2)z− 1

z

]
=

T2(z + 1)

2(z− 1)2m4,7

(
ξ1,2(z) + P̃

T
W
)

(18)
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where

E1,2(z) =
T2(z + 1)

2(z− 1)2m4,7

[
−λ1,2m4,7

T

(
(D1,2 + C1,2) + D1,2C1,2

Tz
z− 1

+
z− 1

Tz

)
E1,2(z) + ξ1,2(z) + P̃

T
W
]

The stability of Equation (18) also requires the right-hand side to be bounded. This
condition yields the update law for the parameter adaptation. A stable dynamic can be
obtained under the following conditions:

λ1,2 > 0, T > 0, D1,2C1,2 > 0, D1,2 + C1,2 > 0, [(D1,2 + C1,2)T + 1]λ1,2 < 0

Equivalent expression in steady-state can be obtained using the following transforma-
tions and equation given in Equation (19).

T2(z+1)
2(z−1)2 (.)→ d2

dt2 (.);
Tz

z−1 (.)→
∫
(.)dt; z−1

Tz (.)→ d
dt (.)

m4,7
..
e1,2 +

λ1,2m4,7
T

.
e1,2 +

λ1,2m4,7
T (D1,2 + C1,2)e1,2 +

λ1,2m4,7
T D1,2C1,2

∫
e1,2dt

= ξ1,2 + P̃
T

W

(19)

If α1,2 =
∫

e1,2dt are defined and replaced into Equation (19), Equation (20) is obtained.

m4,7
..
α1,2 +

λ1,2m4,7
T

..
α1,2 +

λ1,2m4,7
T (D1,2 + C1,2)

.
α1,2 +

λ1,2m4,7
T D1,2C1,2α1,2

= ξ1,2 + P̃
T

W
(20)

The Lyapunov stability criterion is applied in Equation (21) under the condition that
ξ1 ≈ 0 and ξ2 ≈ 0 are too small.

V = 1
2
( ..
α1,2 + β1

.
α1,2 + β2α1,2

)2
+ 1

2 β3α2
1,2 +

1
2 β4

.
α

2
1,2 +

1
2 P̃

T
Γ−1

~
P

.
V =

( ..
α1,2 + β1

..
α1,2 + β2

.
α1,2
)( ..

α1,2 + β1
.
α1,2 + β2α1,2

)
+ β3α1,2

.
α1,2 + β4α1,2

.
α1,2 + P̃

T
Γ−1

~
P

(21)

where β1, β2, β3, β4 ≥ 0 are coefficients, and Γ is a strictly positive matrix.
Lyapunov function’s derivative w.r.t time should be negative for stability. The equa-

tions and inequalities that make the Lyapunov function’s derivative negative w.r.t time are
stated in Equation (22).

.
V =

(
β1 −

λ1,2
T

) ..
α

2
12 +

(
β1β2 −

λ1,2
T (D1,2 + C1,2)β1

) .
α

2
1,2 −

λ1,2
T β1D1,2C1,2α2

1,2

+
(

β4 + β2 + β2
1 −

λ1,2
T (D1,2 + C1,2)−

λ1,2
T β1

) .
α1,2

..
α1,2

+
(

β1β2 −
λ1,2

T D1,2C1,2 − λ12
T β2

)
α1,2

..
α1,2

+
(

β3 + β2
2 −

λ1,2
T (D1,2 + C1,2)β2 −

λ1,2
T β1D1,2C1,2

) .
α1,2α1,2

+P̃
T
[

Γ−1
.̃
P + W

m4,7

( ..
α1,2 + β1

.
α1,2 + β2α1,2

)]
< 0
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where
β1 =

λ1,2
T

− λ1,2
T β2D1,2C1,2α2

1,2 < 0(
β1β2 −

λ1,2
T (D1,2 + C1,2)β1

)
= 0→β2 =

λ1,2
T (D1,2 + C1,2)(

β4 + β2 + β2
1 −

λ1,2
T (D1,2 + C1,2)−

λ1,2
T β1

)
= 0→ β4 = 0(

β1β2 −
λ1,2

T D1,2C1,2 −
λ1,2

T β2

)
= 0→

− λ1,2
T D1,2C1,2 < 0(

β3 + β2
2 −

λ1,2
T (D1,2 + C1,2)β2 −

λ1,2
T β1D1,2C1,2

)
= 0

→ β3 =
λ2

1,2
T2 D1,2C1,2

P̃
T
[

Γ−1
.̃
P + W (

..
α1,2+β1

.
α1,2+β2α1,2)
m4,7

]
= 0

→

P̃
T 6= 0,

.̃
P = −ΓW (

..
α1,2+β1

.
α1,2+β2α1,2)
m4,7

λ1,2, D1,2, C1,2, T > 0

(22)

The error goes to zero when the parameter errors go to zero under the assumption
that the parameters change slowly. The parameter update law is as follows:

.̃
P =

.
P̂ = −ΓW

( ..
α1,2 +

λ1,2
T

.
α1,2 +

λ1,2
T (D1,2 + C1,2)α1,2

)
m4,7

The fulfilment of these conditions ensures that the error dynamics converge to zero
exponentially. The persistency of excitation of the regressor is proven in [72] for nonzero
velocity; therefore, parameter convergence is guaranteed. With the stability analysis of the
active DOF under the designed control performed as above, the stability of the output zero
dynamics should also be analyzed using the equations of the passive DOF’s.

Zero dynamics are obtained as the output is taken as zero, “y = 0”. In this condition,
Equation (9) becomes that of Equation (23).

M1,2
..
q1,2 + K1,2q1,2 +

—
C1,2 + G1,2 = 0 (23)

where

q1,2 =

[
l1,2
ψ1,2

]
; M1,2 = M1,4 −

M2,5M3,6
M4,7

; C1,2 = M2,5q1,2

(
M3,6
M4,7

.
q1,2

)2
� 1; G1,2 =

G1,2 cos θ1,2; and G is a vector consisting of constant coefficients and θ1,2 = −M3,6
M4,7

q1,2.
To examine the stability of this system, one can say that M and K are positive-

definite. In this case, system stability can be investigated under a Lyapunov function,
as in Equation (24).

V = 1
2

.
qT

1,2M1,2
.
q1,2 +

1
2 qT

1,2K1,2q1,2
.
V =

.
qT

1,2

(
M1,2

..
q1,2 + K1,2q1,2

)
=

.
qT

1,2(−G1,2 cos θ1,2) ≤ 0
(24)

To find the conditions.
V ≤ 0: θ1,2 = −M3,6

M4,7
q1,2→, yielding
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− .
qT

1,2

[
G1,2 cos

(
M3,6

M4,7
q1,2

)]
= − d

dt

[
M4,7

M3,6G1,2

M3,6M2,5
sin
(

M3,6

M4,7
q1,2

)]
≤ 0

Therefore, if A is a scalar constant value, it can be written as:

−M4,7

>0︷ ︸︸ ︷
M3,6G1,2

M3,6M2,5
sin (

θ1,2︷ ︸︸ ︷
M3,6

M4,7
q1,2) ≤ A

For 0 ≤ θ1,2 ≤ π
2 and |sin θ1,2| ≤ 1, the boundedness criteria are assured. In this case,

one can say that
.
V ≤ 0 and the zero dynamics are stable.

The general block diagram of the proposed control system is demonstrated in Figure 3.
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An Extended Kalman Filter (EKF) was designed in the simulation for the estimation
of immeasurable variables and parameters required for the control algorithms. Estimation
was performed based on rotation angles (ψ1, ψ2), strains (ξ1, ξ2), and force disturbance
( f̃ ) measurements.

4. Simulation Results

The simulation results of the designed robust-adaptive linearizing controller are
presented below. The simulation was conducted in Matlab/Simulink with an ode4 (Runge-
Kutta) solver and 1e-3 fixed step size. The manipulator was constructed from two flexible
links connected by a rigid joint. The joint actuators were selected as a permanent-magnet
synchronous motor (PMSM). The simulations performed for control methods were evalu-
ated under the same disturbance effect, which is reflected in the system by the displacement
of the moving mass. To demonstrate the performance improvement achieved with its com-
pensations for both set-point and tracking control, the case with no compensation was also
presented. Simulations were conducted for both step-type and sinusoidal-type end-point
references to show the control scheme performances for both set point and tracking con-
trol while subjected to a periodic disturbance that has a pulse characteristic (presented in
Figures 4 and 5).
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Simulation results are obtained for the implementation of the robust-adaptive lineariz-
ing control law on a 2 DOF, DD arm subject to disturbances represented with a periodic
pulse signal. In the simulations, for simplicity, only cogging torque compensation is taken
into consideration, as it is the only torque component that is independent of the current
dynamics. To demonstrate the performance improvement achieved with its compensations
for both set-point and tracking control, we also presented results with no compensation for
both cases.

Extra simulations with a Proportional-Derivative (PD)-based linearizing controller
were performed for both step-type and sinusoidal type end-point references to demonstrate
the performance of the proposed control scheme for both set point and tracking control in
Figures 6 and 7.
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Inspection of the results demonstrates the significant improvement made with the
robust adaptive linearization-based chattering-free SMC for set-point and tracking control,
in terms of both transient and steady-state precision.

The error variations of the calculated speed and position are sufficient and consistent
with the rest of the results. It should be captured and inferred from the figures that all
transitions can ensure a smooth transition of motor currents without any significant impact,
ensuring the smooth transition of the torque and operational stability. The smooth transition
mechanisms that exist in the literature i.e., Current Harmonic Minimum PWM, Selected
Harmonic Elimination PWM, Hybrid Synchronized PWM, Space Vector PWM etc. can also
be considered for further investigation. Because of the flexibility of the link, rotating the
base of the link causes the entire link to oscillate. The control problem is to move the tip of
the link to the desired setpoint by applying a control input at the base of the link. This is a
classic example of non-collocated control; i.e., the actuator is located away from the point it
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is controlling (the tip). Classic control methodologies such as PD and PID strategies can
only be used to control the motor position. These control techniques essentially ignore the
flexibility of the link, and hence, the position response exhibits lightly damped oscillatory
behaviour. To quickly and effectively remove the vibrations from the system, it is necessary
to incorporate the position of the tip into the control scheme. Several such control strategies
(i.e., bounded input discrete-time H-2 control, H-infinity control, passive control, fuzzy
control, and closed-loop shaped-input control) were successfully implemented on the link
(i.e., [73–79]. These control strategies will not provide adequate performance if the payload
mass is varied.
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5. Conclusive Summary and Discussion

The implementation of SMC based on chattering-free control input, for which realistic
applications are rather rare, was done in this paper. To exploit the well-known robustness
properties of SMC concerning internal and external disturbances, while also improving
accuracy and eliminating the unwanted chattering effects, a robust-adaptive linearization
control scheme combining continuous SMC was proposed. As an underactuated system
with heavy uncertainties, a flexible robot arm was modelled and simulated for designing
a high-precision control system. Structural flexibilities, a high number of passive DOFs
arising from a variety of operation modes, and gravitational effects were taken into con-
sideration when concerning high-speed operation and accuracy. Actuator dynamics with
inverter switching effects, current dynamics, and torque pulsations were also investigated
due to the high-performance controller demands that handle modelling errors arising from
parameter and model uncertainties, and sources that could excite unmodeled dynamics.
Besides, zero dynamic stability was analyzed. The deteriorating effects of torque pulsations
on system performance and the improved performance achieved with their compensations
were also demonstrated. The results taken under disturbances simulated via pulse func-
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tions demonstrate significant improvements in terms of trajectory tracking control and
set-point control. This paper also presents an in-depth analysis of finite-time convergence,
stability, and robustness issues for the application of SMC to systems with heavy uncer-
tainties. The conventional application with discontinuous input was also modified with
the inclusion of the actuator dynamics. The developed method appears to have significant
value in terms of increasing practical applications in nonlinear flexible robot dynamics and
control. The equivalent circuit model and dynamic model of the PMSM motor was utilized
to understand the current and torque shock generation mechanism. A specific scheme
was constructed to see the smooth transition in hybrid PWM among various modulation
modes in the full speed range by proving the feasibility and correctness of the scheme
experimentally. The extent dynamics and disturbances (i.e., harmonic distortion, harmonic
spectrum) considered in the simulations appear satisfactory for performance evaluation.
The drawback of this paper is the lack of experimental results, but the system and the
extent of dynamics and disturbances considered in the simulations appear satisfactory for
performance evaluation. The main difference from the literature is that in this paper, the
internal dynamics of the regressor (for the torque pulsations, gravity force, and friction
torque) were proven to be persistently exciting for nonzero velocity; thus, for online adap-
tation of parameters, particularly for set-point tracking, the problem of parameter drift
was also taken into consideration. Stability analysis of the zero dynamics arising from the
passive DOFs was performed for each controller and the system output.
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