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Abstract: This paper presents an analysis of galloping-based wind energy harvesters with piezoelectric
and electromagnetic transductions. The lumped parameter models of the galloping-based piezoelectric
energy harvester (GPEH) and galloping-based electromagnetic energy harvester (GEMEH) are
developed and the approximate analytical solutions of the equations are derived using the harmonic
balance method (HBM). The accuracy of the approximate analytical solutions is validated by the
numerical solutions. A parametric study is then conducted based on the validated models and
solutions to understand the effects of the dimensionless load resistance, r, and electromechanical
coupling strength (EMCS) on various quantities indicating the performance of the harvesters, including
the dimensionless oscillating frequency, cut-in wind speed, displacement, and average power output.
The results show that both r and EMCS can affect the dimensionless oscillating frequencies of the
GPEH and GEMEH in a narrow frequency range around the natural frequency. A significant decrease
in the displacement around r = 1 for GEPH and at a low r for GEMEH indicates the damping effect
induced by the increase in EMCS. There are two optimal r to achieve the maximal power output for
GPEH given strong EMCS while there is only one optimal r for GEMEH. Both GPEH and GEMEH
show similar characteristics in that the optimal power outputs can reach saturation with an increase
of the EMCS. The findings from the parametric study provide useful guidelines for the design of
galloping-based energy harvesters with different energy conversion mechanisms.

Keywords: harmonic balance method; galloping; energy harvesting; piezoelectric effect; electromagnetic
induction

1. Introduction

In recent years, the field of energy harvesting has received significant research interest due to the
quest to exploit renewable energy sources. The objective of energy harvesting is to convert ambient
energy sources into usable electrical energy to operate small electronic devices, such as wireless
sensors [1], health monitoring sensors [2], and medical implants [3]. A number of ambient energy
sources have been recognized to be promising for energy harvesting, including sunlight, wind, ocean
wave, thermal gradient, and mechanical vibration. Among them, wind energy is a kind of ubiquitous
energy source existing in outdoor and indoor environments, such as the natural wind outside a room
and the wind flow in ventilation and air conditioning ducts inside the room. Large scale wind turbines
have been developed to generate high power output in strong wind conditions. It is impractical to
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shrink the size of wind turbines to harvest small wind energy due to higher manufacturing costs
and lower energy harvesting efficiency. One promising solution is to utilize wind flow-induced
aerodynamic instability (such as galloping [4,5], flutter [6,7], and vortex-induced vibration [8]) to
extract vibration energy. The extracted energy from an vibration-based energy harvesting system can
be converted into electricity using piezoelectric or electromagnetic means [9].

Transverse galloping is a fluid-elastic instability that appears in some elastic bluff bodies when the
velocity of the incident flow exceeds a critical value [10]. Earlier efforts focused on how the angle of the
attack and Reynolds number affect the behavior of galloping [10,11]. Some studies also investigated
the effect of the geometry of the cross-section of the bluff body on the amplitude of the structure [12].
In recent years, the transverse galloping phenomenon induced by wind flow has attracted increasing
research interest from the field of energy harvesting. Many researchers have studied the effect of various
geometries of cross-sections of the bluff bodies on energy harvesting performance [13–18], where
square [14], triangular [15], rectangular [16], and D-section [17] sections are available in the literature.
Theoretical and experimental methods are adopted to evaluate the dynamic response of the harvesters
and their electrical outputs. Available theoretical models include the lumped parameter model [14],
the single- and multi-mode distributed-parameter models [19], and the equivalent circuit model [20],
where the galloping force is modeled by a quasi-steady approximation [11]. Abdelkefi et al. [21]
theoretically studied the effect of the cross-section geometry (square, triangle, and D-section) on the
onset speed of galloping and the level of the output power. Using a linear form, it was demonstrated
that the isosceles triangle with δ = 30◦ and square cross-sections are the best-sections to harvest energy
at low freestream velocities. Using the nonlinear normal form, it demonstrated that, for small wind
speeds, the isosceles triangle with a δ = 30◦ cross-section is the best cross-section for enhancing the
level of harvested power. In an experimental case study, Yang et al. [22] compared the electrical outputs
of the GPEH with different cross-section geometries (square, triangular, rectangle, and D-shape) and
concluded that the square cross-section geometry is superior to other cross-section geometries. Many
studies have investigated the effect of the load resistance on the performance of the GPEH and GEMEH
with a resistive circuit [21–24]. Some other researchers focus on the galloping-based energy harvester
with a sophisticated circuit. Tan et al. [25] studied the intrinsic effect of inductance and load resistance
on the performance of a GPEH with a resistive-inductive circuit. Zhao et al. [26] derived the explicit
output responses of a GPEH with the sophisticated interface circuits by using the energy balance
method. The optimal load and coupling were calculated for maximum power generation. In terms
of the influence of electrical and electromechanical parameters, some attention has been given to
GPEHs while very little attention has been given to GEMEHs. A comprehensive understanding on
the influence of these parameters on galloping-based harvesters with different energy transduction
mechanisms is important and thus worthy of further investigation.

The motivation of this paper is to conduct a comprehensive analysis of the effect of electrical and
electromechanical parameters on the performance of both the GPEH and GEMEH. Lumped parameter
models are established for the GPEH and GEMEH and the approximate analytical solutions of the
equations for the GPEH and GEMEH are derived using the HBM. The accuracy of the approximate
analytical solutions is validated by the numerical solutions. Parametric studies are performed to
investigate the effects of the load resistance and EMCS on the dimensionless oscillating frequency,
cut-in wind speed, displacement, and average power output for the GPEH and GEMEH based on the
validated models and the approximate analytical solutions. The effect of the EMCS on the optimal
average power outputs of the GPEH and GEMEH is also investigated.

2. Configurations of GPEH and GEMEH

Figure 1a,b show a GPEH and GEMEH, respectively. Both have a similar mechanical structure,
i.e., a cantilever beam with a tip bluff body at the free end. The bluff body has a square cross-section
with the length of l and the frontal dimension of h facing the wind flow. The bluff body can oscillate in
the direction normal to the wind flow when the wind speed, U, exceeds a critical value. In Figure 1a,
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a piezoelectric sheet is bonded to the cantilevered beam, which can convert the vibration into electricity
due to the mechanical strain of the beam induced by the oscillation of the bluff body. In Figure 1b, a
magnet is installed inside the bluff body approaching the side of the planar fixed coil. The oscillation
of the bluff body with the magnet can induce current generated in the planar coil due to the motion
of the magnet relative to the coil. Figure 1c,d show the simplified lumped parameter models for
the GPEH and GEMEH, respectively. The mechanical structure of the harvester is simplified as a
similar single degree of freedom (SDOF) model, which consists of the mass of the bluff body, M;
spring stiffness, K; and damping, C. In Figure 1c, the piezoelectric element with the capacitance, Cp,
and the electromechanical coupling coefficient, θp, is inserted between the base and the mass, M, for
piezoelectric energy harvesting. In Figure 1d, an electromagnetic member with the coil resistance,
Rc, the inductance, Lc, and the electromechanical coupling coefficient, θe, is used for electromagnetic
energy harvesting. In Figure 1c,d, Fz is the aerodynamic force acting on the bluff body, which is induced
by the wind flow; u is the deflection of the bluff body in the z direction; and R is the load resistance.
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Figure 1. (a,b) Physical models for GPEH and GEMEH; (c,d) simplified models for GPEH and GEMEH.

3. Numerical Model

3.1. GPEH

The single-mode lumped parameter model of a GPEH is often written as [20]:

M
..
u + C

.
u + Ku + θpV = Fz =

1
2
ρhLU2

A1

( .
u
U

+ βu
)
+ A3

( .
u
U

+ βu
)3, (1)

− θp
.
u + Cp

.
V + V/R = 0, (2)

where (·) = ∂/∂t; V is the voltage across the load resistor, R; ρ is the air density; A1 and A3 are the
empirical coefficients using polynomial fitting for the aerodynamic force [22]; and β is the coefficient
relating the transverse displacement and the rotational angle at the free end of the cantilevered beam.
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The state space vector is defined as:

X =


x1

x2

x3

 =


u
.
u
V

 (3)

We can write the governing equations of the GPEH in the state space form as:

.
X =


.
x1
.
x2
.
x3

 =


x2

−
C
M x2 −

K
M x1 −

θp
M x3 +

ρhLU2

2M

[
A1

( x2
U + βx1

)
+ A3

( x2
U + βx1

)3
]

θp
Cp

x2 −
1

RCp
x3

 (4)

The numerical solution can be obtained by numerically solving Equation (4) using ODE45
in MATLAB.

3.2. GEMEH

The governing equation of a GEMEH can be written as:

M
..
u + C

.
u + Ku + θeI = Fz =

1
2
ρhLU2

A1

( .
u
U

+ βu
)
+ A3

( .
u
U

+ βu
)3 (5)

− θe
.
u + Lc

.
I + (Rc + R)I = 0, (6)

where I is the current through the load resistor, R.
Due to the small inductance (using a printed spiral planar microcoil based on micromaching

technology) and low frequency, the internal impedance caused by the coil inductance is much less than
the internal resistance and is thus negligible [27–29]. Rearranging Equation (6), we can express the
current as:

I =
θe

Rc + R
.
u. (7)

Substituting Equation (7) into Equation (5) gives:

M
..
u +

(
C +

θe
2

Rc + R

)
.
u + Ku =

1
2
ρhLU2

A1

( .
u
U

+ βu
)
+ A3

( .
u
U

+ βu
)3. (8)

The state space vector is defined as:

X =

{
x1

x2

}
=

{
u
.
u

}
(9)

We can write the governing equation of the GEMEH in the state space form as:

.
X =

{ .
x1
.
x2

}
=

 x2

−
K
M x1 −

1
M

(
C + θe

2

Rc+R

)
x2 +

ρhLU2

2M

[
A1

( x2
U + βx1

)
+ A3

( x2
U + βx1

)3
] . (10)

4. Approximate Analytical Solution

In this section, HBM is used to find the approximate solutions of the governing equations of the
GPEH and GEMEH.
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4.1. GPEH

It is assumed that the higher order harmonics are negligible and the steady state solution of
Equations (1) and (2) is in the form as:

u = um cosωt, V = Vm cos(ωt + ϕ), (11)

where um and Vm are the amplitude of the displacement and the voltage, respectively; ω is the
oscillating frequency, which is near but not always exactly the same as the natural frequency of the
GPEH, since the aerodynamics can cause a change of the stiffness of the system; and ϕ is the phase
difference between V and u.

Substituting the solutions given in Equation (11) into Equations (1) and (2), expanding the terms
and then omitting higher-order terms, and after balancing the first-order harmonic terms, sinωt, cosωt,
a set of the first order approximate differential equations can be obtained:

Kum −Mumω
2 + θpVm cosϕ−

1
2
ρhLU2

(
A1βum +

1
4

A33βu3
mω

2

U2 +
3
4

A3β
3u3

m

)
= 0, (12)

(
1
2
ρhLU2

(
A1

U
+

3
4

A3u2
mω

2

U3 +
1
4

A33β2u2
m

U

)
−C

)
umω− θpVm sinϕ = 0, (13)

CpVmω cosϕ+
Vm

R
sinϕ = θpumω, (14)

CpVmω sinϕ−
Vm

R
cosϕ = 0. (15)

Four unknowns, φ, um, Vm, and ω, can be solved from the set of algebraic equations given in
Equations (12)–(15). Firstly, from Equation (15), the phase difference can be determined to take the
following form:

tanϕ =
1

RCpω
. (16)

Hence, we have:

sinϕ =
1√

1 +
(
RCpω

)2
, cosϕ =

RCpω√
1 +

(
RCpω

)2
. (17)

After squaring Equations (14) and (15) and adding them together, and after rearranging, the
following relationship between Vm and um is obtained as:

Vm =
θpRω√

1 +
(
RCpω

)2
um. (18)

In order to ease the analysis, we introduced the following dimensionless parameters as:

ωn =

√
K
M

, k2
p =

θp
2

KCp
, ζ =

C

2
√

KM
, Ω =

ω
ωn

, r = RCpωn, M̂ =
M
ρh2L

, Û =
U
ωnh

, (19)

where ωn is the natural angular frequency of the galloping-based harvester, and ωn = 2πfn, where fn is
the short circuit fundamental frequency of the harvester.
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Substituting the first term in Equation (17) and Equation (18) into Equation (13), and using the
dimensionless parameters given in Equation (19), the explicit expression of the displacement can be
obtained as:

um =

√√√√√√√√√[
ζ+

k2
pr

2(1+r2Ω2)
−

1
4

Û
M̂

A1

]
3

16
Û
M̂

A3
(

Ω2

Û2h2 + β2
) . (20)

Rewriting Equation (20) in a dimensionless form yields:

ûm =
um

h
=

√√√√√√√√√[
ζ+

k2
pr

2(1+r2Ω2)
−

1
4

Û
M̂

A1

]
3

16
Û
M̂

A3
(

Ω2

Û2 + β2h2
) . (21)

For Equation (18), using the dimensionless expression, ûm = um/h, and the terms given in
Equation (19), the relationship between Vm and ûm is obtained as:

Vm =
Kh
θp

k2
prΩ

√
1 + r2Ω2

ûm. (22)

The average power at steady state is then expressed as:

Pave =
V2

m
2R

= ωnKh2
k2

prΩ2

2(1 + r2Ω2)
û2

m. (23)

By rewriting Equations (22) and (23) and introducing the expression of ûm given in Equation (21),
the dimensionless voltage can be obtained as:

V̂m = Vm
Kh
θp

=
k2

prΩ
√

1+r2Ω2

√√√√√ ζ+ k2
pr

2(1+r2Ω2)
−

1
4

Û
M̂

A1


3

16
Û
M̂

A3

(
Ω2
Û2 +β

2h2
) (24)

The dimensionless average power is:

P̂ave =
Pave

ωnKh2 =
k2

prΩ2

2(1 + r2Ω2)

ζ+
k2

pr
2(1+r2Ω2)

−
1
4

Û
M̂

A1

3
16

Û
M̂

A3
(

Ω2

Û2 + β2h2
) (25)

By substituting the second term in Equation (17) and Equation (20) into Equation (12), then
introducing dimensionless parameters given in Equation (19), and after rearrangement, the following
is obtained:

1−Ω2 +
k2

pr2Ω2

1 + r2Ω2 − βhÛ

2ζ+
k2

pr

1 + r2Ω2

 = 0, (26)

from which the explicit expression of the dimensionless oscillating frequency, Ω, is obtained as:

Ω =

√√√(
1 + k2

p − 2βhÛζ
)
r2 − 1 +

√((
1 + k2

p − 2βhÛζ
)
r2 − 1

)2
+ 4r2

(
1− 2βhÛζ− βhÛk2

pr
)

2r2 . (27)

For short circuit (R = 0) and open circuit (R → ∞) conditions at U = 0, Equation (27) can be
expressed as:

Ωsc = 1, Ωoc =
√

1 + k2
p, (28)
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where Ωsc and Ωoc are dimensionless short circuit and open circuit frequencies, respectively.
When the wind speed, U, is nonzero, from Equation (27), two dimensionless frequencies for short

circuit and open circuit conditions can be obtained as:

Ωsc =

√
1− 2ζÛβh, Ωoc =

√
1 + k2

p − 2ζÛβh. (29)

For the bluff body with the square section, the empirical aerodynamic coefficients, A3, is
negative [22]. To ensure a real root of Equation (20), we have:

ζ+
k2

pr

2(1 + r2Ω2)
−

1
4

Û
M̂

A1 ≤ 0. (30)

The dimensionless cut-in wind speed of the GPEH can thus be expressed as:

Ûcr =
M̂
A1

4ζ+
2k2

pr

1 + r2Ω2

, (31)

where the empirical aerodynamic coefficient, A1, must be positive.
The results in Equations (20)–(31) agree well with the derivation based on the energy balance

method [26].

4.2. GEMEH

By substituting the first term given in Equation (11) into Equation (8) and expanding the terms,
and after balancing the first-order harmonic terms, sinωt and cosωt, and omitting the higher-order
terms, a set of the first order approximate differential equations can be obtained:

Kum −Mumω
2
−

1
2
ρhLU2

(
A1βum +

1
4

A33βu3
mω

2

U2 +
3
4

A3β
3u3

m

)
= 0, (32)

(
1
2
ρhLU2

(
A1

U
+

1
4

A33β2u2
m

U
+

3
4

A3u2
mω

2

U3

)
−

(
C +

θe
2

Rc + R

))
umω = 0. (33)

Solving ω and um from Equations (32) and (33), we have:

ω =

√
K −

(
C + θe2

Rc+R

)
Uβ

M
, (34)

and:

um =

√√√
C + θe2

Rc+R −
1
2ρhLUA1

3
8ρhLA3(ω+ β2U)

, (35)

The following dimensionless parameters are introduced as:

ωn =

√
K
M

, k2
e =

θe
2

MωnRc
, ζ =

C

2
√

KM
, r =

R
Rc

, M̂ =
M
ρh2L

, Û =
U
ωnh

. (36)

By substituting the terms given in Equation (36) into Equation (34), the explicit expression of the
frequency, ω, can be obtained as:

ω = ωn

√
1−

(
2ζ+

k2
e

1 + r

)
Ûβh. (37)
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By rewriting Equation (37), the dimensionless oscillating frequency is obtained as:

Ω =
ω
ωn

=

√
1−

(
2ζ+

k2
e

1 + r

)
Ûβh. (38)

When the wind speed, U = 0, the frequency is:

Ω = 1. (39)

When the wind speed, U, is nonzero, the dimensionless oscillating frequency for short circuit (R =

0) and open circuit (R→∞) conditions are given, respectively, as:

Ωsc =
√

1−
(
2ζ+ k2

e

)
Ûβh, Ωoc =

√
1− 2ζÛβh. (40)

For Equation (35), by substituting Equation (34) into Equation (35) and then using the dimensionless
parameters given in Equation (36), after rearrangements, we have:

um =

√√√√√√√√ ζ+
k2

e
2(1+r) −

1
4

Û
M̂

A1

3
16

Û
M̂

A3

(
1

Û2h2 − 2ζ β

Ûh
−

k2
e

Ûh(1+r)
β+ β2

) . (41)

Dimensionless displacement yields:

ûm =
um

h
=

√√√√√√√√ ζ+
k2

e
2(1+r) −

1
4

Û
M̂

A1

3
16

Û
M̂

A3

(
1

Û2 −
2ζ
Û
βh− k2

e
Û(1+r)

βh + β2h2
) . (42)

By introducing the current expression given in Equation (7) and the time derivative of the
displacement expression given in Equation (11), the instantaneous power on R can be calculated as:

P = I2R =
(

θe

Rc + R
.
u
)2

R =
θe

2

(Rc + R)2ω
2u2

m
(1− cos 2ωt)

2
R. (43)

After ignoring the high-order harmonics (cos2ωt) in Equation (43), and then inserting the
expressions of ω given in Equation (37) into Equation (43), and introducing the dimensionless
parameters given in Equation (36), the average power is given as:

Pave =
θe

2

(Rc + R)2ω
2u2

m
R
2
= ωnKh2 k2

e r

(1 + r)2

[
1
2
−

(
ζ+

k2
e

2(1 + r)

)
Ûβh

]
û2

m. (44)

The dimensionless average power is:

P̂ave =
Pave

ωnKh2 =
k2

e r

(1 + r)2

[
1
2
−

(
ζ+

k2
e

2(1 + r)

)
Ûβh

]
û2

m. (45)

Since A3 < 0 for the square-sectioned bluff body, according to Equations (35) and (41), to ensure a
real root of Equation (41), we have:

ζ+
k2

e

2(1 + r)
−

1
4

Û
M̂

A1 ≤ 0. (46)
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Thus, the dimensionless cut-in wind speed of the GEMEH can be calculated as:

Ûcr =
M̂
A1

(
4ζ+

2k2
e

1 + r

)
. (47)

5. Results

In this work, the physical and empirical parameters of the GPEH were from [26]. The parameters
used in the following calculations are listed in Table 1. For the GPEH, the capacitance of the piezoelectric
element was Cp = 25.7 nF. For the GEMEH, the internal resistance of the spiral planar coils was assumed
as Rc = 10 Ω. The other parameters were made the same for both the GPEH and GEMEH.

Table 1. Properties of GPEH and GEMEH.

Properties Values Properties Values

Effective mass, M (kg) 0.002783 Cross section of bluff body, h × h (m) 0.02 × 0.02
Effective stiffness, K (N m−1) 31.5638 Length of bluff body, L (m) 0.1
Damping ratio, ζ 0.011 Fluid density, ρ (kg m−3) 1.2041
Coefficient, β 10.55 Aerodynamic coefficients, A1, A3 2.3, −18
Capacitance, Cp (nF) 25.7 Coil resistance, Rc (Ω) 10

5.1. Validation of Approximate Analytical Solution

5.1.1. GPEH

Figure 2a–c show the time responses of u and V of the GPEH with R = 365.4 kΩ, θp = 0.00009 N/V,
and U = 4 m·s−1 (corresponding to r = 1, k2

p = 0.01, Û = 1.878) and their frequency spectra of the steady
state. The time responses were obtained from the numerical simulation by MATLAB. In Figure 2b,c,
it clearly shows that the dominant frequency of u and V is the fundamental frequency of the GPEH.
The results indicate the feasibility of using the single harmonic approximation (Equation (11)) as the
steady state solution of Equations (1) and (2).Vibration 2019, 2 FOR PEER REVIEW  10 of 19 
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Figure 2. Time response and frequency spectra of u and V for GPEH with R = 365.4 kΩ and
θp= 0.00009 N/V at U = 4 m·s−1. (a) Time responses of u and V; (b) and (c) frequency spectra of u and V.
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Figure 3a–c show the dimensionless average power of the GPEH from the approximate analytical
solutions of the HBM over a range of dimensionless load resistances, r, for various piezoelectric EMCS,
k2

p, at the dimensionless wind speed, Û, of 1.878, 2.817, and 3.756 (corresponding to 4 m·s−1, 5 m·s−1,
and 6 m·s−1, respectively). It can be seen from Figure 3a–c that for a weak EMCS, k2

p = 0.01, the
system gallops throughout the dimensionless load resistance range from 0.01 to 100. The maximal P̂ave

appears at the point, r = 1. With the increase of EMCS, k2
p = 0.04 or 0.09, the behavior of galloping is

significantly affected by the load resistance. When Û = 1.878 (Figure 3a), for both k2
p = 0.04 and 0.09,

galloping ceases in a range of points around r = 1 and two optimal powers appear on both sides of
r = 1. The optimal powers have the same amount, but the range of the ceasing of galloping for k2

p = 0.09
is wider than that for k2

p = 0.04. When Û = 2.817 (Figure 3b), a small valley appears at r = 1 for k2
p = 0.04.

For k2
p = 0.09, the optimal powers are the same as those for k2

p = 0.04 and the range of the ceasing of
galloping shrinks as compared to the lower wind speed of Û = 1.878. When Û = 3.756 (Figure 3c), the
GPEH can gallop with all r and a deep valley appears at r = 1 for k2

p = 0.09 with two optimal powers
on both sides. Figure 3d–f show the power curves of the GPEH with various wind speeds from the
numerical simulation using MATLAB. Good agreement between the approximate analytical solution
using the HBM and the numerical solution can be observed.
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(corresponding to 4 m·s−1, 5 m·s−1, and 6 m·s−1, respectively). It can be seen from Figures 3a,b,c that 
for a weak EMCS, 2

pk  = 0.01, the system gallops throughout the dimensionless load resistance 
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pk  at Û  = 1.878, 2.817, 

and 3.756. (a),(b),(c) Approximate analytical solution using HBM; (d),(e),(f) Numerical solution using 
MATLAB. 

5.1.2. GEMEH 

Figures 4a,b show the time response of the displacement and its frequency spectrum at the 
steady state for the GEMEH with R = 10 Ω, θe = 0.172 N/A, and U = 4 m·s−1 (corresponding to r = 1, 

2
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Figure 3. Dimensionless average power output of GPEH versus r for various k2
p at Û = 1.878, 2.817, and

3.756. (a–c) Approximate analytical solution using HBM; (d–f) Numerical solution using MATLAB.

5.1.2. GEMEH

Figure 4a,b show the time response of the displacement and its frequency spectrum at the steady
state for the GEMEH with R = 10 Ω, θe = 0.172 N/A, and U = 4 m·s−1 (corresponding to r = 1, k2

e = 0.01,
Û = 1.878). Similar to the GPEH, it is shown in Figure 4b that the dominant frequency in the response
is the fundamental frequency of the GEMEH.
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Figure 4. Time response and frequency spectrum of u for GEMEH with R = 10 Ω, θe = 0.172 N/A at
U = 4 m·s−1. (a) Time response; (b) frequency spectrum.

Figure 5a–c show the dimensionless average power of the GEMEH from the approximate analytical
solutions using the HBM over a range of dimensionless load resistances, r, for various electromagnetic
EMCS, k2

e , at the dimensionless wind speeds of 1.878, 2.817, and 3.756 (corresponding to 4 m·s−1,
5 m·s−1, and 6 m·s−1, respectively). It can be seen from Figure 5a–c that when k2

e = 0.01, the harvester
gallops throughout the dimensionless load resistance range of r from 0.01 to 100 for three different
wind speed conditions. An increase in the wind speed can obtain improved power peaks. When
Û= 1.878, for k2

e = 0.04, galloping ceases in the range of low r. For k2
e = 0.09, galloping disappears in

a wider range of r than that for k2
e = 0.04 and the peak power shifts to the higher r. It means that a

higher k2
e needs to match a higher r for galloping. When Û = 2.817 and 3.756, Figure 5b,c show the

similar trends as Figure 5a, but with increased maximal dimensionless power outputs. Figure 5d–f
show the power curves of the GEMEH with various wind speeds based on the numerical simulation
using MATLAB. The same trends and almost the same power outputs from the numerical solution
validate the approximate analytical solution using the HBM.Vibration 2019, 2 FOR PEER REVIEW  12 of 19 
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Figure 5. Dimensionless average power output of GEMEH versus r for various k2
e at Û = 1.878, 2.817,

and 3.756. (a–c) Approximate analytical solution using HBM; (d–f) Numerical solution using MATLAB.
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5.2. Parametric Study on Load Resistance and EMCS

Based on the validated models and their approximate analytical solutions using HBM, in this
section, a parametric study was performed to investigate the effects of varying r and EMCS on different
quantities indicating the dynamic response and energy harvesting performance of the GPEH and
GEMEH. The quantities include Ω, Ûcr, ûm, and P̂ave.

5.2.1. Effects on Dimensionless Oscillating Frequency Ω

Figure 6a–c show 3D plots of the dimensionless oscillating frequency, Ω, of the GPEH with a
range of k2

p and r, for three Û of 1.878, 2.817, and 3.756, respectively. r is given from 0.01 to 100. k2
e

is given from 0.01 to 0.09. The region with no data indicates that galloping does not occur with the
given k2

p and r. It can be seen from Figure 6a–c that when Û = 1.878, the ceasing of galloping starts
from k2

p = 0.031 around r = 1. The region of the ceasing of galloping expands with the increase of k2
p.

When Û = 2.817, the ceasing of the galloping starts from k2
p = 0.0686 around r = 1. When Û = 3.756,

the harvester gallops in the entire given ranges of k2
p and r. In addition, it can be observed from each

graph that in the galloping region with r ≤ 1, the increase of r and k2
p can lead to minor changes of

Ω. While for r > 1, the increase of r and k2
p could significantly increase Ω. This analysis indicates

that the oscillating frequencies of the GPEHs are not always equal to their own natural frequencies.
The difference is due to the effect of r and EMCS.Vibration 2019, 2 FOR PEER REVIEW  13 of 19 

 

 

ˆ 1.878U =

 

  

ˆ 3.756U =

 
(a) (b) (c) 

Figure 6. Three-dimensional plots of the dimensionless oscillating frequency, Ω, for GPEH with 
a series of 2
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Figure 6. Three-dimensional plots of the dimensionless oscillating frequency, Ω, for GPEH with a series
of k2

p and r at: (a) Û = 1.878; (b) Û = 2.817; and (c) Û = 3.756.

Figure 7a–c show 3D plots of the dimensionless oscillating frequency, Ω, of the GEMEH with a
range of k2

e and r, for three Û of 1.878, 2.817, and 3.756, respectively. It can be seen from Figure 7a–c
that when Û = 1.878, galloping ceases for a high k2

e and a small r. With an increase of Û from 1.878 to
2.817 and further to 3.756, the region for the ceasing of galloping shrinks. In addition, it can seen from
each graph that in the regions where galloping occurs, with a given k2

e , an increase of r can induce the
increase of Ω. With a given r, an increase of k2

e can cause the decrease of Ω. It is noted that Ω is close to,
but a bit less than 1. It means that the GEMEH oscillates around their own natural frequencies, but
with a small difference due to the effect of r and EMCS.
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5.2.2. Effects on Dimensionless Cut-In Wind Speed, Ûcr

Figure 8a–c show 3D plots of the dimensionless cut-in wind speed, Ûcr, of the GPEH with a range
of k2

p and r, for three Û of 1.878, 2.817, and 3.756, respectively. It can be seen from Figure 8a–c that all
three graphs are identical, which means the dimensionless wind speed, Û, has no impact on Ûcr. It can
also be observed from each graph that for a given k2

p, the maximal Ûcr appears at r = 1. For a given r
around 1, an increase of k2

p can induce the increase of Ûcr. It thus implies that the higher k2
p makes it

more difficult for galloping to occur. That is the reason of the appearance of the region of the ceasing of
galloping for higher k2

p and around r = 1 (Figure 6a,b). In addition, since Ûcr does not change with Û, it
is no surprise that this region will shrink and disappear with the increase of Û (Figure 6).Vibration 2019, 2 FOR PEER REVIEW  14 of 19 
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Figure 8. Three-dimensional plots of the dimensionless cut-in wind speed, Ûcr, for GPEH with a series
of k2

p and r at: (a) Û = 1.878; (b) Û = 2.817; and (c) Û = 3.756.

Figure 9a–c show 3D plots of the dimensionless cut-in wind speed, Ûcr, of the GEMEH with a
range of k2

e and r, for three Û of 1.878, 2.817, and 3.756, respectively. It can be seen from Figure 9a–c
that for GEMEH, Û has no impact on Ûcr. It can be observed from each graph that both the decrease of
r and the increase of k2

e lead to the increase in Ûcr. This explains the reason that galloping ceased in
the region with higher k2

e and lower r in Figure 7. In addition, similar to the GPEH, since Ûcr does
not change with Û, it is no surprise that this region will shrink and disappear with the increase of Û
(Figure 7).
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Figure 9. Three-dimensional plots of the dimensionless cut-in wind speed, Ûcr, for GEMEH with a
series of k2

e and r at: (a) Û = 1.878; (b) Û = 2.817; and (c) Û = 3.756.

5.2.3. Effects on Dimensionless Displacement, ûm

Figure 10a–c show 3D plots of the dimensionless displacement, ûm, of the GPEH with a range
of k2

p and r, for three Û of 1.878, 2.817, and 3.756, respectively. It can be seen from Figure 10a–c that
when Û increases from 1.878 to 3.756, the maximal ûm increases from nearly 0.5 to nearly 1. A valley is
visible in each graph, where an increase in k2

p can lead to the increase of the width of valley around
r = 1. For a given r around 1, the increase of k2

p can lead to a significant decrease of ûm and even zero
displacement in some regions (galloping ceases for a low Û). It indicates that k2

p has a damping effect
especially for r around 1. This effect is more pronounced under a low wind speed condition.Vibration 2019, 2 FOR PEER REVIEW  15 of 19 
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power output. For a low Û  = 1.878 or 2.817, the power output could reduce to zero in the valley 
since galloping ceases. An increase in Û  can increase galloping regions.  
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Figure 10. Three-dimensional plots of dimensionless displacement, ûm, for GPEH with a series of k2
p

and r at: (a) Û = 1.878; (b) Û = 2.817; and (c) Û = 3.756.

Figure 11a–c show 3D plots of the dimensionless displacement, ûm, of the GEMEH with a range
of k2

e and r, for three Û of 1.878, 2.817, and 3.756, respectively. It can be seen from Figure 11a–c that
when Û increases from 1.878 to 3.756, the maximal ûm increases from nearly 0.5 to nearly 1. There are
regions of zero displacement in low r and high k2

e in each graph, where galloping ceases for a low Û.
In the galloping region, with a given low r, the minor increase of k2

e can lead to a significant decrease of
ûm. It implies that k2

e has a damping effect especially for low r. Similar to the GPEH, this effect is more
pronounced under a low wind speed condition.
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Figure 11. Three-dimensional plots of the dimensionless displacement, ûm, for GEMEH with a series of
k2

e and r at: (a) Û = 1.878; (b) Û = 2.817; and (c) Û = 3.756.

5.2.4. Effects on Dimensionless Power, P̂ave

Figure 12a–c show the 3D plots of the dimensionless average power, P̂ave, of the GPEH with a
range of k2

p and r, for three Û of 1.878, 2.817, and 3.756, respectively. It can be seen from Figure 12a–c
that with an increase of k2

p from 0.01 to 0.09, P̂ave increases, saturates, and then forms two power ranges,
which have an equal height and branch from r around 1, and a valley between the ranges. Thus, for a
small k2

p, there only exists an optimal r around 1 to achieve the maximal power output. While, for a
large k2

p, there exists two optimal r to achieve the maximal power output. For a low Û = 1.878 or
2.817, the power output could reduce to zero in the valley since galloping ceases. An increase in Û can
increase galloping regions.Vibration 2019, 2 FOR PEER REVIEW  16 of 19 
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Figure 12. Three-dimensional plots of the dimensionless average power, P̂ave, for GPEH with a series
of k2

p and r at: (a) Û = 1.878; (b) Û = 2.817; and (c) Û = 3.756.

Figure 13a–c show 3D plots of the dimensionless average power, P̂ave, of the GEMEH with a range
of k2

p and r, for three Û of 1.878, 2.817, and 3.756, respectively. It can be seen from Figure 13a–c that
with an increase of k2

e from 0.01 to 0.09, the power peak increases, saturates gradually, and forms a
power range on the side of r > 1. Thus, for a given k2

e , there exists an optimal r to achieve the maximal
power output. In each graph, there are regions of zero power in low r and high k2

e since galloping
ceases. An increase in Û can enlarge the galloping regions induced by r and k2

e .
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Figure 13. Three-dimensional plots of the dimensionless average power, P̂ave, for GEMEH with a series
of k2

e and r at: (a) Û = 1.878; (b) Û = 2.817; and (c) Û = 3.756.

5.2.5. Optimal Power Outputs

Figure 14a,b plot the envelopes of the optimal P̂ave versus k2
p and k2

e for the GPEH and GEMEH,
respectively. It can be seen from Figure 14a that with a given Û, with the increase of k2

p, the optimal
P̂ave increases rapidly and then barely changes with k2

p. With an increase in Û, the critical k2
p at which

P̂ave saturates increases. The curves for the GEMEH (Figure 14b) show similar trends to the GPEH
(Figure 14a).
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GEMEH at Û = 1.878, 2.817, and 3.756.

6. Conclusions

In this work, we investigated the performance of two types of galloping-based wind energy
harvesters with two different energy conversion mechanisms, namely, the piezoelectric effect (i.e.,
GPEH) and electromagnetic induction (i.e., GEMEH). The lumped parameter models were established
and the approximate analytical solutions of the equations were derived using the HBM. These solutions
were validated by the numerical simulation. The effect of r and EMCS on Ω, Ûcr, ûm, and P̂ave was
investigated for the GPEH and GEMEH based on the validated models and their approximate analytical
solutions. The results showed that r and EMCS can affect Ω in a narrow frequency range around 1.
For the GPEH, Ω was close to 1. For the GEMEH, Ω was close, but a bit less than 1. Larger Ûcr

appeared in the region with a larger EMCS and around r = 1 for the GPEH. Larger Ûcr appeared in the
region with a larger EMCS and a smaller r for the GEMEH. A significant decrease in the displacement
around r = 1 for the GEPH and at low r for the GEMEH indicated a damping effect induced by the
increase of the EMCS. For the power generation of the GPEH, with a given small EMCS, one optimal
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r existed to achieve the maximal power output. With a given large EMCS, two optimal r existed to
achieve the equal maximal power output. For the GEMEH, only one optimal r existed on the side of
r > 1 to achieve the maximal power output regardless of the EMCS. Both GPEH and GEMEH showed
similar characteristics in that the optimal power reached saturation with an increase of the EMCS. This
parametric study provides useful guidelines in the design of galloping-based energy harvesters with
different energy conversion mechanisms.
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