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Abstract

This study examines the complex interactions among soil moisture, evaporation, extreme
weather events, and lightning, and their influence on fire activity across the extratrop-
ical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from
2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall trend test,
and assessments of interannual variability to key variables including soil moisture, fire
frequency and risk, evaporation, and lightning. Results indicate a significant increase
in dry days (up to 40%) and heatwave events across Central Eurasia and Siberia (up to
50%) and Alaska (25%), when compared to the 1980–2000 baseline. Upward trends have
been detected in evaporation across most of North America, consistent with soil mois-
ture trends, while much of Eurasia exhibits declining soil moisture. Fire danger shows
a strong positive correlation with evaporation north of 60◦ N (r ≈ 0.7, p ≤ 0.005), but
a negative correlation in regions south of this latitude. These findings suggest that in
mid-latitude ecosystems, fire activity is not solely driven by water stress or atmospheric
dryness, highlighting the importance of region-specific surface–atmosphere interactions in
shaping fire regimes. In North America, most fires occur in temperate grasslands, savannas,
and shrublands (47%), whereas in Eurasia, approximately 55% of fires are concentrated
in forests/taiga and temperate open biomes. The analysis also highlights that lightning-
related fires are more prevalent in Eastern Europe and Southeastern Asia. In contrast,
Western North America exhibits high fire incidence in temperate conifer forests despite
relatively low lightning activity, indicating a dominant role of anthropogenic ignition.
These findings underscore the importance of understanding land–atmosphere interactions
in assessing fire risk. Integrating surface conditions, climate extremes, and ignition sources
into fire prediction models is crucial for developing more effective wildfire prevention and
management strategies.

Keywords: Potential Fire Index; soil moisture–evaporation coupling; lightning-induced
wildfires; surface conditions

1. Introduction
Accurately forecasting wildfires remains a major scientific challenge due to the com-

plex interactions across spatial and temporal scales that govern fire ignition, spread, and
severity. A key limitation in current fire prediction models is their incomplete representa-
tion of surface conditions, particularly variables such as mid-term droughts, soil moisture,
and evaporation, which play a critical role in shaping fire regimes [1].
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These surface variables interact with extreme weather events, including heatwaves
and dry spells, which are unevenly distributed in space and time, contributing to the
observed increase in wildfire frequency and intensity [2–4].

In mid-latitude and extratropical regions, summer climatic conditions often resem-
ble those in tropical environments, creating persistent fire-prone conditions [1,5]. These
conditions are further exacerbated by irregular precipitation patterns during spring and
summer, where prolonged droughts combined with elevated temperatures can drastically
reduce soil moisture, thereby increasing fire risk [6,7]. Importantly, soil moisture influences
fire dynamics differently across climates: in arid regions, wetter-than-average soils can
promote biomass accumulation that later fuels large fires, while in humid regions, fires are
often preceded by anomalously dry soils [8,9]. These soil moisture dynamics affect canopy
dryness and vegetation health by modulating evaporation rates, which in turn increase
litter accumulation and flammability [10].

Soil moisture (SM) and evaporation (Ea) are thus central to understanding fire suscep-
tibility, as they govern vegetation dynamics, biomass availability, and surface–atmosphere
interactions [8]. Evaporation also influences key atmospheric variables such as vapor
pressure deficit (VPD), air humidity, and regional water balance, which are directly linked
to plant water stress and fuel flammability [11]. Therefore, integrating soil moisture and
evaporation metrics offers valuable insights into the conditions that precede fire outbreaks.

Despite recent advancements, identifying the dominant drivers of wildfire occurrence
and severity remains challenging due to the spatial heterogeneity and temporal variability
of contributing factors. While many studies have explored weather-related influences
on fire behavior, fewer have examined how these interact with remote climate modes or
vegetation dynamics [6,12]. Fire weather indices (FWIs) and environmental models offer
predictive tools for assessing fire potential [13], yet their performance is often limited by a
lack of high-resolution, multivariate environmental data. Moreover, while seasonal climate
conditions shape fire regimes, sub-seasonal processes, including soil moisture anomalies,
flash droughts, and thermal stress, can have an outsized impact on vegetation health and
ignition potential [14,15].

Understanding these fire–environment interactions requires a multiscale framework
that accounts for feedbacks among surface conditions, vegetation characteristics, and
atmospheric variables. This is particularly critical in large continental regions where
fire regimes are influenced by diverse climate zones, biomes, and human pressures [16].
However, a comprehensive understanding of how fire danger co-evolves with surface and
atmosphere interactions, particularly in high-latitude and extratropical zones, remains
limited. Most existing studies have focused on isolated relationships, such as between soil
moisture and burned area, or lightning and fire ignition, without jointly analyzing the full
suite of interacting variables in a spatially explicit, multivariate framework.

To address this gap, the present study investigates the co-variability and trends of soil
moisture, evaporation, lightning activity, and fire weather indices across North America
and Eurasia, with an emphasis on the Pan-Arctic and extratropical regions. While earlier
regional studies have assessed individual components of this system [6,17], this is, to our
knowledge, the first continental-scale analysis that integrates reanalysis products, satellite-
based fire detections, and lightning observations to evaluate both surface preconditioning
and ignition mechanisms during recent climate extremes (2000–2020).

Using cross-correlation analysis, a modified Mann–Kendall trend test, and evaluations
of interannual variability, we identify where and when fire risk is most sensitive to surface
dryness, lightning activity, or their interactions. This integrated approach provides new
insights into fire regime dynamics in boreal and temperate ecosystems, regions historically
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underrepresented in global fire assessments, and enhances our ability to characterize
vulnerability in the face of accelerating climate change.

2. Data and Methods
Datasets from ERA5 (0.25◦), GLEAM (0.5◦), MODIS (250 m–1 km), and LD (0.5◦)

were unified onto a common 0.5◦ regular latitude–longitude grid. Flux variables were
conservatively remapped, while state variables were interpolated using bilinear methods.
Upscaling from finer to coarser resolutions was performed by employing area-weighted
averaging to preserve the quantitative integrity of each grid cell by reflecting the weighted
contribution of high-resolution inputs. Temporally, all datasets were aggregated to a
consistent daily resolution.

This approach was deemed appropriate given the continental-scale focus of the study,
where sub-grid heterogeneity becomes less critical, and the use of a 0.5◦ resolution of-
fers a suitable balance between computational efficiency and spatial representativeness.
Although the re-gridding process may introduce spatial smoothing, particularly in precipi-
tation extremes and temporal aggregation biases in daily fluxes, these effects are generally
acceptable in large-scale climate analyses where broader spatial patterns and trends are
prioritized over local-scale variability.

2.1. Climate Data

Weather patterns (surface temperature and relative humidity) are based on ERA5
which is the fifth-generation reanalysis released by ECMWF [18]. ERA5 combines vast
amounts of historical observations into global estimates using advanced modeling and
data assimilation systems. With respect to ERA-Interim, ERA5 increases the temporal
resolution from 3-hourly to hourly. For a better understanding of the main regions affected
by lightning, the ERA5 Convective Available Potential Energy (CAPE), is employed to
locate instability of the atmosphere. The ERA5 is very appropriate, particularly in remote
and data-scarce regions where gauge-based precipitation observations are limited.

ERA5’s high spatial (0.25◦) and temporal (hourly) resolution, combined with its physi-
cally consistent data assimilation framework, makes it a robust choice for assessing climate–
fire relationships in high-latitude and sparsely monitored areas [18]. However, regional and
global studies have demonstrated that ERA5 struggles to reproduce precipitation extremes,
and the errors are larger in the summer extratropics [19,20]. In addition, the depiction of
localized precipitation extremes is challenging, especially in complex terrain or regions
with sparse observational data [21].

Initial evaluation discusses regional patterns of climate extreme indices that can be
associated with fire activity, namely consecutive dry days (CDD), the period of droughts
(DD), and the number of heat waves (HW) during the 1980–2020 interval. The CDD is
the largest number of consecutive dry days with daily precipitation amounts below 1 mm.
This index has been extensively used to characterize short-term droughts and dry spells
to evaluate climatic impact on agricultural activities and water shortage and may be very
useful to estimate the environmental susceptibility to fire development [22,23].

The second index is called days of drought (DD). It is based upon the accumulated
precipitation in different intervals during 120 consecutive days [24]. It has been shown
that the DD parameter is highly correlated with the environmental fire danger which is
dependent on vegetation characteristics. Briefly, DD represents accumulated precipitation
for the 11 immediately preceding periods of 1, 2, 3, 4, 5, 6–10, 11–15, 16–30, 31–60, 61–90,
and 91–120 days, applying an empirical exponential function for each period [14]. These
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individual periods are named precipitation factors (PF), from which DD is defined by the
equation below:

DD = 105 × (PF1 × PF2 . . . × PF61−90 × PF91−120) (1)

The constant 105 is included in the drought days (DD) equation to ensure that, in the
absence of precipitation over a 120-day period, vegetation of any type would be sufficiently
dry to support combustion. This threshold was empirically derived based on the estimated
number of rainless days required for evergreen broadleaf forests or tropical vegetation
to reach flammability conditions [14]. The exponential function is applied uniformly at
both regional and global scales. The Potential Fire Index (PFI) methodology was originally
developed to assess fire danger in Brazil, grounded in extensive observational data across
diverse biomes. The use of precipitation accumulated over various time intervals is coupled
with different exponential coefficients to reflect the fact that fire danger is modulated by
moisture availability over short-, medium-, and long-term periods. These coefficients allow
the PFI to adapt to vegetation-specific fuel drying dynamics and regional climatological
variability. The third index is the HW, which characterizes the number of days per time
period (a year), in intervals of at least 6 consecutive days, when the daily maximum
temperature is higher than a reference value by 5 ◦C. The reference value is calculated
as the mean of maximum temperatures in a five-day window for individual grid boxes
centered on each calendar day over the 1980–2020 interval.

2.2. Satellite Based-Fires

The processed Moderate Resolution Imaging Spectroradiometer (MODIS) Collection
6 Near Real-Time (NRT) active fire products (Aqua and Terra), based on the standard
MOD14DL/MYD14 fire and thermal anomalies algorithm have been used as fire prox-
ies [25]. The MODIS hotspots (MCD14DL) are downloaded at 1 km resolution from 2001
to 2020.

The MODIS fire products are essential for monitoring global fire activity, particularly
in remote regions where ground-based observations are limited. However, it is important to
mention that MODIS NRT fire products, while powerful, are not without limitations. One
key issue is the potential for false positives and false negatives. False positives can occur
when non-fire sources of heat, such as volcanic eruptions or gas flares, are misidentified as
fires. False negatives can occur when small or low-intensity fires, especially those obscured
by smoke or vegetation, are not detected. Uncertainties are present in most fire algorithms
but [26] demonstrated that boreal biomes exhibited the highest values of date percent
agreement between burned area pixels and active fires, showing the validity of using
MODIS for large-scale evaluation.

2.3. Lightning Datasets

Cloud-to-ground lightning data used are from The Earth Networks Global Lightning
Network (ENGLN, https://www.earthnetworks.com), that combines the World Wide
Lightning Location Network (WWLLN, http://wwlln.net/, with the Earth Networks
Total Lightning Network (ENTLN). The ENTLN is a global network with more than
1600 wide-band sensors, with location accuracy of 210 m, and detection efficiency and
classification accuracy of higher than 90% for cloud-to-ground strokes [27]. More on its
performance can be found in [28,29]. The WWLLN is a global network consisting of very
low frequency sensors, a collaborative network involving many universities at different
locations. The WWLLN performance has improved with an increasing number of stations
around the world through the improvement of algorithms, with approximately 10 km
spatial accuracy [30].

https://www.earthnetworks.com
http://wwlln.net/
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The overall detection efficiency is 11% for the cloud-to-ground flashes, with more than
30% for intense flashes [31]. As described in detail by [32], the WWLLN dataset provides the
position, time of occurrence, and energy radiated by lightning discharges, the ENGLN in
addition to those quantities, delivers the polarity and peak current of lightning strokes. Both
datasets present reasonable accuracy in detecting lightning; nevertheless, the ENGLN has
shown higher detection efficiency by up to 90% across US and 57% globally [33,34]. Herein,
the daily number of strokes per square km during the 2010–2020 interval is evaluated.

2.4. Soil Data and Evaporation

The GLEAM is based on satellite near-surface soil moisture active C- and L-band
microwave sensors (European Space Agency Climate Change Initiative, ESA CCI), veg-
etation optical depth, and snow-water equivalent. Climate data based on the reanalysis
of air temperature and radiation and a multi-source precipitation product are also used.
The model version 4.1 currently used (https://www.gleam.eu/) is designed to calculate
potential evaporation (Ep) by integrating several key inputs: surface net radiation (Rn),
near-surface air temperature (Ta), wind speed (u), leaf area index (LAI), and vapor pressure
deficit (VPD). The model outputs include bare soil evaporation (Eb), transpiration (Et),
interception loss (Ei), actual evaporation for water bodies (Ew), and actual evaporation for
ice/snow regions (Es). GLEAM computes root-zone soil moisture (SMrz) using a multi-
layer running-water balance and assimilates satellite observations of surface soil moisture
(SMs), to correct potential errors. The term evaporation instead of evapotranspiration is
used herein based on the analysis of [35], who argued that the former is more suitable
to characterize vaporization of water over land. Calculations of potential evaporation
over bare soils and canopies are converted into actual evaporation using a multiplicative
evaporative stress factor, which is based on observations of microwave Vegetation Optical
Depth (VOD) and estimates of root-zone soil moisture.

2.5. Climate Extremes and Statistical Analysis

Extreme climate indices have been computed as proposed by the joint Expert Team
on Climate Change Detection and Indices (ETCCDI) http://etccdi.pacificclimate.org/)
for daily maximum temperature and daily precipitation amount. Linear correlation and
seasonal boxplot analysis are conducted to identify the relationship between climate and
weather variables. To compute the temporal evolution and trends, modified Mann–Kendall
methods [36] are used and deseasonalized standard deviations are applied to characterize
the spatial variability. While correlation analysis may have limitations when dealing with
nonlinear relationships, studies have demonstrated that for monthly datasets and longer,
linear methods can be generally sufficient, especially after addressing non-stationarity
issues [37]. Our analysis aligns with these findings. It has been demonstrated that the
quantitative impact of nonlinear coupling on the monthly scale is minimal, providing
strong support for the present use of linear methods in analyzing monthly data.

Previous studies have indicated an increase in the frequency, severity, and risk of
wildfires, particularly in regions like Central Europe, East Asia, and Western North America,
driven by changes in temperature, atmospheric dryness, and reduced precipitation. Given
these trends, it is essential to investigate whether regions experiencing extreme climate
conditions are also experiencing increased fire characteristics. Thus, calculating trends
which may be related to fire occurrence is crucial to understanding the relationship between
extreme weather and fire. Trend magnitude was calculated using Sen’s slope method
and its statistical significance was assessed using the modified Mann–Kendall (MK) non-
parametric test at a 95% significance level (p-value ≤ 0.05) [36]. As noted above, the MK
test is robust to non-normal data, insensitive to sudden data gaps, and resistant to outliers.

https://www.gleam.eu/
http://etccdi.pacificclimate.org/
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3. Results and Discussion
3.1. Climate Extremes Indices: CDD, DD, and HW

Figure 1a–c shows zonally averaged anomalies of CDD, DD, and HW in the 1980–2020
period. By removing the zonal mean, we can more effectively highlight hotspot regions. It
is found that CDD is higher across western NA with respect to zonal averages, particularly
in Oregon and California, and south and northeastern Asia (Figure 1a). In fact, these values
of CDD indicate that western North America and southern Asia centered in 45–55◦ N have
more than 30 days without precipitation higher than 1 mm/day in a year, with respect
to the zonal average (Figure 1a). Dry spells across the west coast of NA, by about 120◦

W, interact with a wide variety of plant types, allowing for the presence of conifers and
grasslands which, in summer, can provide fuel loading needed for fire ignition. It is worth
mentioning that a large amount of precipitation across west NA is associated with moisture
transport due to atmospheric rivers which, during the recent decades, have experienced
negative trends in summer, leading to reduced rainfall frequency. Middle latitudes in the
central part of NA are, in general, covered by grasslands, short trees, and shrublands,
vegetation types that are also very susceptible to fire ignition.

 

Figure 1. Zonal anomalies of annual maximum number of days with precipitation lower than
1mm/day in 1980–2020. (a) CDD, (b) averaged days of droughts (DD), and (c) is the same as (a) but
for number of heat waves (HW). See text for details. (d) CDD differences between 2000–2020 and
1980–2000. (e) and (f) are the same as (d) but for DD and HW, respectively.

Although, mostly covered by snow in winter, vegetation in Siberia and eastern Eu-
rope/southwestern Asia responds in summer to increased irradiance and subsequently
warmer conditions. These regions have been affected by a large number of fires with in-
creased severity [38], thus in agreement with the CDD distribution. The dry spot in middle
latitudes nearby Kazakhstan also experiences substantial fire activity as demonstrated by
previous work [3,6,39].

The cumulative distribution of precipitation intervals, calculated using the DD index
(as defined in the previous section), closely aligns with the main patterns observed in the
CDD distribution across central North America (Figure 1a,b). Specifically, regions with
higher DD values tend to correspond to areas with larger CDD values (Figure 1a,b). How-
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ever, the temporal evolution of precipitation intervals exceeding five days, as represented
by the DD index (Figure 1b), suggests that it may provide a more nuanced depiction of
critical drought conditions, by accounting for the longer-term persistence of rainfall deficits.
Indeed, ref. [4] demonstrated that DD higher than 30 is associated with high danger and
potential occurrence of fires. This occurs because vegetation greening or browning, and
consequently its susceptibility to fire, is primarily influenced by the timing and amount of
cumulative precipitation rather than isolated rainfall events [40,41].

Although CDD is able to show the region’s lack of precipitation, it may not properly
represent the soil moisture content because accumulation and evaporation of soil water
responds to changes in the daily rainfall distribution rather than accumulated in a pre-
scribed interval. This has a profound impact on vegetation characteristics and properties,
including biomass production, which is more responsive to soil moisture content in distinct
phenological stages. It has been shown that grasslands and forests are more sensitive to
soil moisture anomalies during the maturity stage, which is achieved according to the
environmental conditions along the plant cycle [42].

The extreme conditions related to temperatures have been examined during the
1980–2020 period. The time averaged HW shows regions in NA and Asia with the largest
number of consecutive days, where maximum temperatures exceeds the 5-day running
mean by 5 ◦C (Figure 1c). Alaska and northern Russia are the hot spots. There are other
regions which experience frequent HW such as the central parts of NA, Balkans, and
far east Russia. This indicates more frequent higher temperatures in summer due to
more persistent anticyclonic circulation in Eurasia [43]. In NA, recent HW episodes have
also been attributed to drought and reduced soil moisture. Dry soils are associated with
increasing sensible heat flux into the atmosphere, further increasing air temperatures [44].
The interannual changes in Alaska’s temperatures and summer warming have a large
contribution from increased greenhouse gases (GHG), with the GHG forcing accounting
for 51% of the Alaska’s winter warming and 75% of Alaska’s annual mean warming over
the 1950–2017 time period [45].

In addition to mean conditions, it is crucial to analyze how those extreme weather
indices have evolved in recent decades. This is justified by the fact that large parts of
extratropical latitudes have shown positive trends in fire danger ratings, wildfires, and
burned areas [3,6,39]. Analysis of the differences between the 2000–2020 and 1980–2000
decades reveal regions experiencing increased warming and dryness, particularly in south-
west,53,54t NA and the temperate continental region of central Eurasia (30–70◦ E, 40–60◦ N)
(Figure 1d–f). However, due to the short length of the time series, the statistical significance
of these differences may be limited. Nonetheless, this does not invalidate the analysis or
the insights derived from them.

Decadal differences in CDD and DD indicates that western NA and most of Asia
southward of 55◦ N have been more frequently affected by intervals without precipitation,
which are highlighted across 20–60◦ E–40–50◦ N (Figure 1d,e). Extratropical and polar
latitude differences exhibit local characteristics. There is not a well-defined pattern except
for negative CDD in easternmost Asia (120-180◦ E). The positive anomalies are also depicted
by the DD distribution (Figure 1e). Indeed, four hotspots are identified over southern Asia,
east Europe/Kazakhstan/west Russia, and over US west coast and Alaska. These regions
have been marked by substantial fires and burned areas in the recent decades [4,6].

Focusing on the extratropical pattern of heat waves (Figure 1c,f), we observe that
HW largely aligns with the large-scale patterns of DD and CDD in North America, where
positive HW anomalies coincide with positive CDD and DD. However, regions in northern
Asia frequently affected by HW do not exhibit pronounced CDD and DD anomalies. This
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suggests that transitions between dry and wet conditions in recent decades may not be
solely driven by increased temperature and evaporation

Analysis across Eurasia point out different patterns with respect to NA because over
the middle latitudes, increases in HW and DD/CDD show good agreement, as demon-
strated by the yellowish and reddish regions in Figure 1d–f. It has to be noted that north
of 60◦ N, the correspondence is marked. This indicates that daily precipitation can occur
without significant changes in temperatures during the 1980–2020 period. Certainly, the
influence of far-reaching changes in atmospheric dynamics and global climatic teleconnec-
tions induced by the modes of climate variability, can substantially affect precipitation and
temperature in different ways across the study region [12,46].

A further step in evaluating temperature and precipitation extremes and their link
to fire activity is conducted based on heat map calculations (Figure 2). The heatmap
characterizes the temporal evolution in a two-dimensional distribution to demonstrate
the magnitude of individual monthly values across North America, Europe, and Asia.
This aims to verify the fire frequency and burned area during 2001–2020 and the potential
influence of diurnal temperature range (DTR, the difference between the daily maximum
and minimum temperatures) and the maximum amount of rain that falls in five consecutive
days (Rx5day). Both extremes play a relevant role in increasing fire danger as well as fire
incidence through inducing evaporative demand in the case of DTR [47] and increased
combustible material in the case of Rx5day.

Analysis of DTR is important because they represent daily available heat [48], which
may be converted into sensible or latent fluxes that further modify the greenhouse capacity
of the atmosphere by inducing evaporation. On the other hand, in a dry atmosphere DTR
might increase diurnal temperature, thus, potentially leading to changes in soil moisture
characteristics [49]. Rx5day represents the most extreme precipitation event that reduces
the environmental susceptibility to fire development. In this sense, an evaluation of its
temporal evolution is crucial because worldwide, Rx5day is projected to reduce in intensity
in areas that are wet and increase in intensity in dry areas [50].

During the initial years along the 2000–2020 interval, the DTR across North America
does not show significant changes from 2000 to 2010, but positive trends are evident during
summer for some years during the 2010–2020 interval. Turning to patterns in Europe
and Asia, similarities are found for DTR, in which there exists an increase in DTR during
the summer months from 2009 (Figure 2e,i). Differences are noted in Asia, where an
increase in Rx5day by up to 40% with respect to averaged conditions is found (Figure 2j).
It is quite interesting that all these changes in DTR and Rx5day do not show a clear
correspondence with fire frequency and burned area (Figure 2k,l). Although, during the first
(second) decade, reduced Rx5day and DTR in Europe (Asia) seem to reduce the extent of
burned areas. The spatial distribution of decadal trends of DTR and Rx5day (Figure 2m,n),
demonstrated that large departures from mean conditions are observed across western
North America, and mid-latitudes of Eurasia, particularly for DTR (Figure 2m).

Those regions have been identified as most vulnerable to fires [39]. Trends of Rx5day
are overall barely statistically significant (Figure 2n), but positive values are found over
Siberia, southern Asia, and the Canadian archipelago. These previous analysis reveal
that both temperature and precipitation extremes can significantly influence temporal fire
variability because no remarkable changes have been identified in climatological conditions.
To better understand these relationships, the next sections explore vegetation characteristics,
soil moisture, and evaporation patterns, which may serve to increase the understanding of
preconditions for fire development and spread.



Fire 2025, 8, 282 9 of 21

 

Figure 2. Heat map distribution as shown in percentage with respect to averaged conditions during
2001–2020, for diurnal temperature range (DTR) in (a) North America, (e) Europe, and (i) Asia.
Maximum amount of rainfall in five consecutive days (Rx5day) in (b) North America, (f) Europe, and
(j) Asia. Panels (c,d,g,h,k,l) show the monthly anomalies of satellite-detected fires and burned areas.
(m,n) show trends of DTR (◦C decade−1) and Rx5day (mm decade−1). Gray areas are not statisti-
cally significant at the 95% level. Green boxes highlight persistent DTR/Rx5day, fire, and burned
areas anomalies.

Climate extreme analysis (1980–2020) reveals consistent increases in drought (consecu-
tive dry days and dry-day intervals) and heat stress (heat waves) across North America,
Europe, and Asia. Western North America and parts of southern and northeastern Asia
are particularly affected by prolonged dry spells, experiencing over 30 additional dry days
annually. The persistence of these precipitation deficits directly contributes to vegetation
stress, soil moisture depletion, and heightened fire susceptibility, aligning with observed
increases in fire activity in regions like Kazakhstan, eastern Russia, and the U.S. west coast.

Concurrently, heatwave trends show strong regional variations, notably increasing
in Alaska, northern Asia, and central North America. The co-occurrence of heatwaves
with dryness in extratropical zones underscores the compound nature of climate extremes,
amplifying environmental stress. However, discrepancies in some northern Asian areas
(heatwaves without increased dryness) suggest the influence of non-hydroclimatic factors.
These findings emphasize that the intensity and timing of various extreme events are crucial
for modulating fire regimes, highlighting the need for a multidimensional assessment of
fire risk and ecological vulnerability in a changing climate.



Fire 2025, 8, 282 10 of 21

3.2. Land Surface Characteristics: Soil Moisture (SM), Evaporation (Ea), and Fire Danger (PFI)

Figure 3a shows the dominant pattern of SM variability based on GLEAM estimates
from March to October, during 2001–2020. The main characteristics of SM is the dominance
of much higher values across northern Asia and northern NA. The close association between
the SM and Ea fluctuations is sort of true in the extratropics but it also reveals that distinct
vegetation influences the overall pattern (Figure 3a,b). Indeed, the northeast part of NA
does show larger values of SM (Figure 3a), but the Ea varies considerably (Figure 3b).
These regions are covered by vegetation types, temperate and mixed forests across the
northeastern North America (taiga in the north), that are able to capture water from
subsurface soil layer due to much deeper roots [51]. This allows for sub-surface water
uptake throughout the year, favoring an increase in Ea during drier conditions.

Figure 3. ((a), m3/m3) shows March-October averaged soil moisture, ((b), mm) shows the mean
monthly accumulated evaporation, and (c) shows March-October averaged PFI. Correlations between
SM and Ea are shown in (d), correlations between PFI and Ea are shown in (e), and correlations
between SM and PFI are displayed in (f). Dotted regions are significant at 95% level.

Turning to analysis of the PFI, it is demonstrated that maximum amplitude values
are found in the middle latitudes, across 40–60◦ N, which are not entirely in line with
seasonal/interannual changes in soil moisture and evaporation. However, over North
America these quantities are in phase as shown by the correlation analysis (Figure 3d–f).
PFI values below 0.5 are related to low fire danger during spring and fall (Figure 4c). These
lower values contribute to a reduction in the annual average PFI, which is typically high
during the summer season (see Figure 2 in [4]).

Figure 3d shows that SM and Ea exhibit strong spatial correlations, particularly at
zero lag, indicating a close relationship between soil moisture and evaporation. When
examining correlations at different time lags, we find that monthly correlations decrease
for all analyzed quantities (Ea, SM, and PFI). It is interesting to note that positive correla-
tions between Ea and SM are found across middle latitudes of Eurasia and western NA,
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and negative values are found over the eastern NA and high latitudes, particularly in
Europe. This indicates that northward of 50◦ N, vegetation characteristics are not directly
related to surface soil moisture. The positive Ea-SM correlation in mid-latitude Eurasia
and western North America reflects soil moisture-limited regimes where SM controls
evaporation [52,53].

 

Figure 4. Deseasonalized standard deviation distribution for SM ((a), m3/m3), for Ea ((b), mm), and
for the PFI (c). (d–f) show the standardized modified Mann-Kendall trends for SM (d), for Ea (e), and
for PFI (f). (d–f) red and blue regions are significant at 95% level.

Negative correlations in eastern North America and high-latitude Europe occur in
energy-limited regions where atmospheric demand drives Ea, reducing SM [54,55]. High-
latitude decoupling (north of 50◦ N) stems from frozen ground processes, with subsurface
water sustaining evaporation [56]. These patterns are modulated by land–atmosphere
feedbacks, where moisture-limited regions show SM–Ea causality, while heat-limited
regions exhibit Ea–SM relationships [57,58]. Atmospheric conditions can undoubtedly
exacerbate this relationship. This is expected in well-watered regions such as high latitude
soils (Figure 3d) [59].

The PFI and Ea relationship shows that high fire danger is positively correlated with
Ea (Figure 3e). Positive correlations up to 0.8 are found across the northern part of Eurasia
and NA, which are statistically significant at the 99% level (Figure 3e), indicating that
northward of 60◦ N, Ea and PFI march at the same pace throughout the year. These features
depend on the magnitude of the seasonal cycle. It is found that in most regions, the Ea
is dominated by a well-defined seasonal contrast with maximum (minimum) values in
summer (winter). This is not the case for the PFI, in which the semi-annual cycle, with
two maxima, exerts a dominant role across most of the middle latitudes [14]. During
some months, the semi-annual component results in an out of phase pattern (negative
correlations) between the PFI and Ea. The correlation between the SM and PFI (Figure 3f)
demonstrates that high fire danger is accompanied by low surface soil moisture (Figure 3e)
in central NA and Europe. However, in general, fire risk and soil moisture do not show
correspondence at all.
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At lag-0, precipitation shows no correlation with SM due to rapid drainage basin
effects, suggesting that PFI’s connection to SM/EA may operate through more complex
mechanisms than direct precipitation coupling. This implies that while precipitation deficits
may create conditions favorable for fire through vegetation drying, the translation of these
deficits into SM and EA changes, and consequently PFI, depends on basin-specific hydro-
logical processes and temporal lags. The lack of immediate SM response to precipitation
highlights the importance of considering intermediate variables like vegetation stress and
atmospheric demand when evaluating fire potential.

The deseasonalized standard deviation (STD, Figure 4a–c) of the temporal variability
of SM, Ea, and PFI between 1980 and 2020 reveals that despite having distinct vegetation
types, that vary from grasslands, evergreen, and deciduous needleaf, and open shrubland,
northern Asia and most of NA do not experience large temporal fluctuation in SM and
Ea (Figure 4a,b). However, changes in SM and Ea over the 40–50◦ latitudinal belt show
high temporal changes with similar spatial patterns (Figure 4a,b). Changes in the fire
danger variability as shown by the PFI, do not match the SM and Ea patterns (Figure 4d–f)
because the PFI is primarily dominated by accumulated precipitation in different intervals
throughout the last 120 days.

Interannual changes in PFI are distributed over large regions with higher standard
deviation (brown-red areas) across US, Europe, western Asia, and southern China (Fig-
ure 4c). This differs from Ea, which mostly changes in response to energy budget and vapor
pressure deficit that are affected by weather characteristics and not necessarily precipitation.
SM also responds to day-to-day variability which in some cases is in phase with changes
in Ea (Figure 4a,b). However, SM is also associated with regional soil properties (color,
texture, structure, porosity, density, consistency and temperature) that vary greatly among
sites, even under similar vegetation patterns [60,61].

Previous studies have indicated an increase in the frequency, severity, and risk of
wildfires, particularly in regions like Central Europe, East Asia, and Western North America,
driven by changes in temperature, atmospheric dryness, and reduced precipitation. Given
these trends, it is essential to investigate whether regions experiencing extreme climate
conditions are also affected by increased fire characteristics. Thus, calculating trends
which may be related to fire occurrence is crucial to understanding extreme weather and
fire relationships.

Trends are based on the modified Mann–Kendall approach for SM, Ea, and PFI
(Figure 4d–f). This evaluation is crucial because positive trends in Ea may lead to in-
crease flammability in response to degraded forests, and increased fuel loads, as discussed
by [62]. Moreover, the increase in actual evaporation contributes to drought severity by de-
creasing soil moisture. Negative trends in SM are evident in central Europe and the Balkan
states. Most of North America has experienced increased soil moisture, with the exception
of parts of the west coast (Figure 4e). Ea distribution shows that the majority of areas are
dominated by positive trends (Figure 4e). This may reflect an increase in temperature and
local changes in land-use, particularly in Europe and central and southern Asia. Several
locations, in particular, eastern-central Asia and northeastern NA have abandoned crop
and pastures, which favor land evaporation [63–65] and increased fire danger, as shown
in Figure 4f. Indeed, positive statistically significant trends of PFI are evident over the
west coast of NA, Europe, Scandinavia, and Siberia. It is interesting to notice that PFI and
SM trends can be the opposite (Figure 4d,f), particularly in central Eurasia, between 30
and 60◦ E. At large, trends in Ea, SM, and PFI may indicate conditions more conducive to
increased fire danger across those regions. Alaska’s increased fire danger can be related to
the conversion of forests to shrubs and grasslands [66].
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The analysis of SM, Ea, and PFI across the Northern Hemisphere reveals complex
interactions between soil–vegetation–atmosphere processes and their role in modulating
fire danger. The spatial decoupling of PFI from SM in many regions, despite shared
influences from temperature and precipitation, highlights that fire risk is not governed
solely by immediate moisture availability but by its interplay with vegetation traits, land
surface conditions, and long-term hydroclimatic memory.

Trends over the past decades suggest a growing threat from wildfires across temperate
and boreal latitudes. Statistically significant increases in Ea and PFI across Europe, East Asia,
and North America indicate that warming temperatures, land-use change, and shifting
precipitation regimes are intensifying fire potential, even in regions with increasing soil
moisture. For instance, central Eurasia and parts of Alaska are experiencing rising fire
danger linked to vegetation shifts and human-induced land abandonment. The observed
divergence between SM and PFI trends in several hotspots further emphasizes the need for
integrated assessments that consider both physical and ecological dimensions of fire risk.

Together, these findings highlight the growing relevance of land–atmosphere coupling
and highlight the importance of long-term monitoring to inform fire management under
climate change.

3.3. Fires and Lightning

As demonstrated previously, near-surface atmospheric conditions and soil moisture
are individually responsible for inducing regional characterization of fire danger, fire
frequency, and severity. Wildfires have also been linked to cloud-to-ground lightning,
particularly over regions with reduced human presence, such as the Pan-Arctic [8,32,67].
In this sense, it is quite useful to verify the lightning spatial distribution to disentangle its
contribution to the fire regime [17,68]. In the following, the lightning spatial distribution
and frequency, and the 95th CAPE percentile are discussed. Furthermore, the temporal
pattern in which lightning and fires are coincident in the grid boxes is explored, as well
as how they are distributed across extra-tropical ecoregions which are characterized by
distinct biomes.

Lightning strikes, which in the tropics are followed by rain, in most cases do not result
in fires [69]. In contrast, dry lightning events have resulted in large tundra fires in the
extratropical remote regions and can potentially induce higher fire danger and severity
under future climate conditions, with the predicted future expansion of boreal forests under
global warming scenarios [70]. Evaluation of fire weather conditions and the presence of
lightning density (LD) based on class distributions (histogram), is carried by extracting
values of precipitation, surface temperatures, DD, and PFI when lightning is identified in
a grid box. Results show that most lightning events are found under daily precipitation
lower than 10 mm, characterized by a left modal/negatively skewed distribution. For
temperatures, values are between 15 and 22 ◦C with exponentially increasing probability.
The distribution of DD shows prominent positive skewness, i.e., most values are clustered
around the left tail. However, the relationship between the fire danger (PFI) and LD is
primary dominated by a normal distribution. Higher incidence of LD is found in grid boxes
with PFI around 0.5, with moderate fire danger. This is reasonable because LD is highly
correlated with precipitation (low danger).

Figure 5a,b show the monthly accumulated LD during the 2010–2020 interval, based
on the ENGLN global network. Despite using two datasets, only the ENGLN spatial
and temporal characteristics are shown; consideration of the WWLLN is provided when
necessary. The total LD as delivered by the WWLLN platform in both North America and
Eurasia, is much lower as compared to the ENGLN counterpart [71,72]. However, the
WWLLN can capture the primary regions of lightning occurrence. The ENGLN LD displays
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three maxima over central North America, southern Europe/western Russia and east Asia
(Figure 5a,b). These regions are baroclinic zones in which extratropical air masses interact
with warmer subtropical conditions, favoring convection and storminess. An additional
contribution to convective systems and atmospheric instability is provided by vegetation,
which as a result of summer heating increases evaporation leading to moist convection
and cloudiness (Figure 3b). Vegetation significantly influences the exchange of heat and
moisture between the land surface and the atmosphere within the planetary boundary
layer, affecting the development of convective available potential energy and ultimately
influencing the frequency and intensity of precipitation [73].

Figure 5. Accumulated lightning density (lightning km−2) during the 2010–2020 interval (a,b).
(c,d) are the same as (a,b) but for satellite-detected fires. (e,f) show regions exceeding the 95th
percentile of CAPE (J Kg−1). Note that the upper limit of label bars does not reach the maximum
values. Plots aim to represent the dominant regions. (g,h) show the annual and monthly pixels
distribution across North America of fire and lightning and the number of pixels when they occur
concomitantly. (i,j) is the same as (g,h) but for Eurasia.

Regional LD maxima exhibit spatial coincidence with MODIS fire detections across
southern Europe, eastern Asia, and central North America (Figure 5a–d), yet mechanistic
relationships remain uncertain as studies indicate that more than 50% of Eurasian and
western North American fires originate from non-lightning sources [74,75] with only
15–25% of boreal fires being lightning-ignited [13]. This disparity reflects (1) detection
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limitations (MODIS misses ~80% of small fires <100 ha [76] while lightning networks
underdetect weak strikes), (2) predominance of human ignitions (>60% in western NA [74]
and 50–70% in Eurasia [75], and (3) environmental filters where only 4–12% of flashes ignite
fires due to fuel moisture and vegetation barriers.

Regions with maximum CAPE, as shown by the 95th percentile, also match the core
maxima of LD activity, and resemble regions with the largest frequency of fires (Figure 5e,f),
across mid-latitudes between 30 and 60◦ E in Eurasia. This region contains areas of
abandoned farmland in Ukraine, Belarus, and Kazakhstan, where the lack of people leads
to reduction in the human-induced fires [77]. However, no consistent trends in burned
areas have been identified [6,78].

The number of pixels in which fires and LD occur on the same day and grid has been
computed between 2010 and 2020. Two limitations arise from this analysis because by
extracting points in the fire grid, it does not necessarily correspond to the exact lightning
locations. Secondly, both lightning and fire may occur at different times during the day.
Across NA the number of days when fires and lightning events have been found at the
same grid boxes during 2010–2020 interval is about 20 days/year, and very little differences
arise on the choice of the data base, whether using ENGLN or WWLLN datasets. The
interannual variability when fires coincide with lightning is more evident from 2014 in
Eurasia because the lightning data has been collected by an increased number of stations
(Figure 5i). In Eurasia, the number of days in which lightning and fires are concomitant is
larger than in NA, and in some years, such as 2014, reaching up to 100 days. The occurrence
of these events reveals that fires and lightning are distributed during warmer months. Their
activity from onset to demise lasts for almost 7 months, from March to August (Figure 5g–j).

North America experienced the highest (lowest) spatial concurrence between LD and
fires in 2010 (2014). Between 2012 and 2016 there is a reduction in the spatial distribution of
fire (Figure 5g). This temporal behavior is not related to LD distribution. According to the
NASA Earth Observatory (https://earthobservatory.nasa.gov/images/79921/us-fires-20
12, accessed on 12 March 2022), the total number of fires (55,505) in 2012 was the lowest
recorded by the US National Inter-agency Fire Center (NIFC), but this year attained the
second largest acres burned between 2010 and 2016. Figure 5g demonstrates that changes
in fire occurrence are not entirely explained by changes in lightning frequency. In Eurasia,
the monthly distribution reveals that July is the month with the highest spatial overlap
between fire and lightning events. Fires and lightning events are distributed primarily
from March to October, whereas from November to April lightning density and fire are
very low (Figure 5j).

Despite some regional and seasonal overlaps between fire and lightning events, partic-
ularly during warmer months (March–August), the overall spatial concurrence remains
modest, with a limited number of fire and lightning coincidences per year across North
America and Eurasia. This disconnection may stem from detection limitations in both fire
and lightning datasets, temporal mismatches, and environmental constraints that restrict
lightning-induced fire ignition. Eurasia shows a higher number of coincident fire–lightning
events especially after 2014 due to improved LD monitoring. However, interannual vari-
ability in fire occurrence is not consistently linked to lightning frequency, suggesting that
other factors, such as fuel conditions, land abandonment, and broader climatic influences,
play a more dominant role in determining fire regimes. These findings highlight the com-
plex interplay between atmospheric instability, ignition sources, and surface conditions in
driving fire risk across extratropical biomes.

https://earthobservatory.nasa.gov/images/79921/us-fires-2012
https://earthobservatory.nasa.gov/images/79921/us-fires-2012
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3.4. Fire, Lightning, and Vegetation Cover

According to Figure 6, across NA, most fires occur in temperate grasslands, savannas,
and shrublands (TGSS, 47%), temperate conifer forests (TCF, 31%) and boreal forest/taiga
(BFT, 20%) (Figure 6b). In Eurasia, 37% of fires are concentrated over temperate broadleaf
and mixed forests (TBMF). In addition, about 55% of fires are distributed across boreal
forest/taiga and temperate grasslands, savannas, and shrublands (Figure 6c).

 

Figure 6. (a) Vegetation distribution between 40 and 80◦ N according to ecoregions https://ecoregions.
appspot.com/ (accessed on 9 July 2025): BFT-boreal Forests/Taiga, TCF-temperate conifer forests,
FGS-flooded grasslands & savannas, TBMF-temperate broadleaf & mixed forests, TGSS-temperate
grasslands, savannas & shrublands, MFWS-mediterranean forests, woodlands scrub, DXS-deserts
xeric shrublands, Tun-tundra. (b–e) shows the percentage of fires/lightning within the biome.

Analysis herein demonstrates that eastern Europe and southeastern Asia are largely
affected by fires in association with lightning (Figure 5). Massive cropland activities take
place in eastern Europe and Asia, which is mostly covered by grassland, mixed, and

https://ecoregions.appspot.com/
https://ecoregions.appspot.com/
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deciduous forests [79]. These biomes are more related to high local fire danger being more
fire-prone. It is interesting to note the good match between the incidence of LD and fires
over TGSS; on the other hand, across western North America, the lower number of LD
resides with the large incidence of fires over temperate conifer forests (Figure 6a,b,d).

Figure 6d shows over North America that 76% of lightning frequency is found across
regions dominated by TGSS vegetation and 17% over TBMF. The region covered by BFT
(red regions in Figure 6a) exhibits a lower concentration of lightning events, but a large
number of fires despite lower population density. This may reveal a greater anthropogenic
influence upon fire ignition (Figure 6). Turning to Eurasia, the dominant regions of fires are
also characterized by the largest number of lightning events, which are more frequent in
the TBMF, in particular East Europe/Balkans. Central Asia and Scandinavia across the BFT
show that the contribution of lightning seems to be weaker, as compared to its relevance
with fire in the TBMF and TGSS, as mentioned above. This biome (BFT) only concentrates
7.3% of lightning in Eurasia, although it occupies the largest area (Figure 6c,e). It should be
noted that on many occasions, small fires with short duration are not detected due to the
time difference between the hotspot occurrence and the satellite passage, which can lead to
a mismatch between fires and lightning events. Furthermore, the lightning station network
is unevenly and sparsely distributed, which hampers a better correspondence between
those disturbances.

4. Concluding Remarks
Recent decades have witnessed a pronounced increase in fire danger across key regions

such as western North America, Alaska, and southern Asia, driven by escalating climate
extremes. Notably, heatwaves (HW), consecutive dry days (CDD), and drought days (DD)
have become more frequent and intense, correlating strongly with heightened fire risk from
1980 to 2020. These patterns are compounded by broader warming and drying trends,
particularly in mid-latitudes. Moreover, diurnal temperature range (DTR) and reduced
extreme precipitation (Rx5day) play critical roles by intensifying evaporative demand and
soil desiccation, respectively, further elevating fire potential.

Soil moisture (SM) and surface evaporation (Ea) interactions reveal distinct latitudinal
dynamics. In mid-latitudes, SM and Ea are positively correlated, indicating strong coupling
between available water and evaporative fluxes. However, in high-latitude regions such as
Siberia and northern Canada, this relationship inverts, as evaporation becomes increasingly
driven by vegetation activity and subsurface water stores rather than topsoil moisture. This
decoupling suggests that fire danger in these zones may be more sensitive to ecological
factors like vegetation greening than to soil dryness alone. Lightning activity and its
relationship with wildfires exhibit strong regional variability. While lightning density
(LD) peaks align with fire occurrences in particular locations in southern Europe, central
North America, and eastern Asia, a large proportion of fires in Eurasia and western North
America stem from anthropogenic ignitions. CAPE (Convective Available Potential Energy)
correlates with LD and fire hotspots, yet actual lightning–fire coincidence remains rare,
particularly in North America where it occurs fewer than 20 days per year, underscoring
the importance of non-lightning ignition sources in shaping fire regimes.

Vegetation type further modulates fire risk and ignition patterns. Temperate grass-
lands and savannas (TGSS) in North America account for nearly half of recorded fires,
while lightning-induced ignitions remain sparse in boreal forest regions (BFT). In con-
trast, Eurasian fire activity is concentrated in temperate broadleaf and mixed forests
(TBMF) where human ignition dominates and lightning plays a minor role. These biome-
specific dynamics highlight the need for fire models to integrate land cover and ignition
source information.
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Despite the growing understanding, data limitations challenge comprehensive fire-
risk assessments. The MODIS satellites may fail to detect small or low-intensity fires, and
lightning networks (e.g., ENGLN, WWLLN) underreport weaker strikes. Additionally,
ERA5 precipitation underestimates extremes, necessitating the inclusion of alternative
datasets such as GPCP. Looking forward, climate change is expected to increase lightning
frequency and vegetation productivity at high latitudes, potentially amplifying fire risk
in boreal ecosystems. Consequently, the interplay of climate extremes, soil–vegetation
coupling, and ignition sources must be carefully integrated into projections of future
fire regimes.
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