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Abstract: With the safety and reliability of the electrical equipment used in information
systems becoming more important, prefabricated fire-extinguishing devices using heptaflu-
oropropane as the extinguishing agent have broad application prospects. However, few
studies have focused on the vaporization performance of heptafluoropropane in the context
of fire suppression and the safe distance for electrical equipment. This study proposes
a numerical simulation model to analyze the vaporization and cooling performance of
sprayed heptafluoropropane. First, experimental measurements with no fire source are per-
formed to verify the numerical model. Through numerical and experimental methods, the
temperature, concentration, and velocity distribution of the sprayed heptafluoropropane
are analyzed to improve its vaporization performance and determine the safe distance.
Finally, heptafluoropropane spraying with a fire source is simulated, allowing for the
discussion of its cooling effect and fire-extinguishing performance. The results illustrate
that the mass ratio of liquid and gas phases in the sprayed heptafluoropropane are 20.2%
and 79.8%, respectively. Heptafluoropropane spraying reduced the average temperature
in the protective room, with the final value reaching 270 K. The mass fraction of the hep-
tafluoropropane maintained a value of 0.1 at a distance of 0.8 m in front of the nozzle
axis. The main findings of this research indicate the temperature variation and fluid flow
performance associated with heptafluoropropane spraying, as well as providing a reference
value for a safe distance from the nozzle.

Keywords: heptafluoropropane; vaporization performance; numerical simulation; sudden
cooling effect; safety distance

1. Introduction
With the continuous development of electrical equipment and information sys-

tems, their safety and reliability are becoming more and more important [1,2]. Gas
fire-extinguishing systems are essential parts of data storage centers and electrical dis-
tribution rooms, which comprise pipe network and prefabricated types [1,3,4]. Among
these two types, prefabricated gas fire-extinguishing devices are widely used, due to their
low cost and convenience of installation [5,6].

The performance of a prefabricated gas fire-extinguishing system is important for main-
taining the safety of electrical rooms and data centers. Commonly used fire-extinguishing
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agents in prefabricated systems include heptafluoropropane and carbon dioxide (CO2) [3].
Heptafluoropropane is an odorless fire-extinguishing agent with no electrical conduc-
tivity [7,8] which facilitates chemical and physical reactions to generate flame-retardant
substances. Additionally, the cooling and asphyxiation processes also inhibit the spread
of the fire. Meanwhile, CO2 is an agent for flammable liquid and solid material fires,
which reduces the volume rate of the oxygen [9,10]. The average temperature of the
fire-extinguishing region decreases through a heat absorption process. These two work-
ing fluids are both considered efficient for the prevention of fires in electrical rooms and
data centers.

Many scientists have already investigated the performance of heptafluoropropane and
CO2 through experimental measurements or numerical simulations. Regarding heptafluo-
ropropane, García et al. [11,12] set up an experimental platform for fire-extinguishing or
thermal runaway tests in lithium batteries. The flame temperature and the volume fraction
of heptafluoropropane were obtained for the guidance of fire suppression. Cao et al. [13,14]
investigated the inhabitation of heptafluoropropane on explosions in an enclosed room.
The optimal methane equivalence ratio, the particle sizes, and the operating pressure
were the main effects which led to better inhibition performance. Robin [15] studied
the characteristics of heptafluoropropane on fire suppression. The results illustrated that
heptafluoropropane was effective in suppressing the class a fire with certain value of
concentration. The CO2 is another efficient gas fire-extinguishing agent, which is used
in underground pipelines, cargo ships, and so on. Roy et al. [16] have tested the mole
fraction of several species of the fire extinguishing agent to improve the efficiency. CO2

spraying reduced the required time for the temperature to drop and led to oxygen isolation
effects. Wu et al. [17] carried out experimental measurements of CO2 agents to trace their
mitigating effects on a hydrogen jet. Some parameters were selected and calculated, in
order to determine the limits of the fire-extinguishing system for safe operations. Aydin [18]
analyzed the human reliability of safety for the CO2 fire-extinguishing system in a marine
ship. Some suggestions were provided for the prevention of errors, including training
and monitoring.

In order to study the mechanisms of fire-extinguishing agents, researchers have per-
formed numerical simulations to optimize the extinguishing time and field distribution
visualization. Tanaka et al. [19] studied the fire-extinguishing performance of water mist
under several conditions in a structure of 1.6 m wide, 1.6 m deep, and 3.15 m high. The re-
quired volumetric flow rates were predicted and compared through numerical method. The
fine water mist was also applied for the suppression of a hydrogen jet fire on a fuel cell ship.
The suitable choice of parameters for velocity and droplet size reduced the temperatures
of the fire field effectively [20,21]. Ma et al. [22] assessed the extinguishing performance
of varying ventilation approaches under various conditions in a 1:10 experiment. The
results demonstrated that longitudinal ventilation could diminish the temperature and the
backflow of the smoke. Nikam et al. [23] proposed a new composite extinguishing agent
with polyurethane as a flame retardant. Its efficiency was improved at a mass fraction
of 3%. Salehi et al. [24] optimized the structure layout of the smoke extraction system
for the effective detection of fire risks. The visibility of the fire scenario was increased
by 50%, which confirmed the efficacy of the proposed methodology. Bolshova et al. [25]
investigated the synergy of two chemical inhibitors through numerical simulation, and
found that increases in the initial temperature of the mixture components could improve
their synergistic efficiency.

The cooling effect of heptafluoropropane and CO2 spraying from nozzles can lead
to successful fire-extinguishing, which is due to suppression of the flame and isolation
of the air [9,26]. The cooling effect is a result of the vaporization of the two working
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fluids, which requires large amount of heat. CO2 has a relatively higher saturated vapor
pressure under the same temperature conditions and, thus, needs more heat to vapor-
ize [27]. Simultaneously, the minimum average temperature of the spray region will drop
sharply below 223.15 K [28]; this phenomenon is called local sudden cooling, and can
cause failure in electrical devices [29]. Compared with CO2, heptafluoropropane has a
relatively higher sudden cooling temperature and requires less heat [30,31], which means
that the cooling effect is less significant. Considering the vaporization and the cooling
effect, heptafluoropropane is suitable for fire suppression in electrical rooms and data cen-
ters. Some researchers have studied the vaporization processes of nozzles through many
experimental measurements [32,33]. Temperatures, cooling rates, and spraying times are
typically obtained to assess the cooling performance [34]. However, the mechanism driving
the vaporization of heptafluoropropane in the context of fire suppression is still unclear.
Some experimental studies on battery fire suppression have been conducted to assess the
temperature variation of heptafluoropropane and associated thermal runaway character-
istics [11,35]. Explosions have also been shown to be suppressed by heptafluoropropane,
due to the cooling and inhibition effect [14,36]. These studies have focused on the results
of effective fire suppression processes, while the fluid flow and phase change processes
of heptafluoropropane were not quantitatively analyzed. Additionally, due to the cooling
effect, the safe distance between the prefabricated fire-extinguishing device and protected
equipment needs to be considered. Wang et al. [37] compared the fire-extinguishing perfor-
mances of different agents, and found that heptafluoropropane suppressed a wood fire best
within a 21 m3 test space. The results illustrated the efficiency of the extinguishing agent
but lacked consideration of potential damage to the protected equipment. The cooling
effect of heptafluoropropane has been studied in a test room at certain distances, in order to
obtain the temperature drop, cooling rate, and cooling time [38]; however, the safe distances
in an actual protective room require further study for improvement of its fire-extinguishing
performance. Therefore, theoretical models are needed to investigate the vaporization of
heptafluoropropane, leading to the cooling effect, in practical protective rooms. CFD simu-
lations are applied to obtain the safe distance, thus guiding the installation of prefabricated
gas fire-extinguishing devices.

The key contribution of this study is to fill the gap in theoretical analyses of the va-
porization performance of heptafluoropropane in the context of fire-extinguishing systems
through numerical simulation. In this work, a numerical simulation model of its vapor-
ization is first established. Then, the prefabricated fire-extinguishing process is simulated
to investigate the vaporization rate, concentration, temperature variations, and velocity
distribution. In this way, the safe distance between the fire-extinguishing device and pro-
tected equipment is obtained. Additionally, experimental measurements using an actual
model at a 1:1 scale are carried out, in order to verify the numerical method. Finally,
heptafluoropropane spraying of a fire source is simulated to analyze its cooling effect and
fire-extinguishing performance in a protective room.

2. Theoretical Analyses and Modeling of the Vaporization Processes of
Heptafluoropropane
2.1. The Geometry of the Prefabricated Fire-Extinguishing Device and Protective Room

Figure 1a shows the geometry of the prefabricated fire-extinguishing device and pro-
tective room. The protective room space is constructed as a cuboid enclosed area with
an operating door and a ventilation hole, thus modeling the circumstances of a data cen-
ter. The ventilation hole is installed on the top area of the side wall. The prefabricated
fire-extinguishing device is placed opposite the room’s door. The nozzle is installed on
the device, which controls the atomization and vaporization processes of the heptafluoro-



Fire 2025, 8, 124 4 of 27

propane. Figure 1b shows the detailed structure of the nozzle, with 12 holes. The interior
zone of the nozzle forms a contraction channel, with eight small holes on the trapezoidal
surface. In the front view, the angle between the centerline of two adjacent holes is 45◦.
Three holes are distributed on top of the nozzle, while there is one hole on the bottom. The
geometric parameters of the detailed structure are listed in Table 1. The dimensions of the
prefabricated fire-extinguishing device are 2.05 m × 0.47 m × 0.43 m.
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Figure 1. Geometry of the prefabricated fire-extinguishing device and the nozzle: (a) prefabricated
fire-extinguishing device and the protective room space and (b) structural details of the nozzle.

Table 1. The dimensions of the protective room and the nozzle.

Parameter Value

H (m) 4.5
l1 (m) 4.72
l2 (m) 4.72
ld (m) 1.9

Hd (m) 2.61
D1 (m) 0.050
D2 (m) 0.040
D3 (m) 0.025
d1 (m) 0.012
ln1 (m) 0.0384
ln2 (m) 0.0492
ln3 (m) 0.060
ln4 (m) 0.030

2.2. The Numerical Model of the Vaporization Processes

In the vaporization process, heptafluoropropane is released from the high-pressure
cabinet and sprayed from the nozzle, breaking it into small droplets. These small droplets
absorb heat in the protective room, promoting the vaporization process which results
in temperature reduction and oxygen isolation. As the heptafluoropropane continues to
vaporize and diffuse, it forms a multi-component mixture with air in the protective room.
Due to the effects of concentration and temperature gradients, the convection and diffusion
of each component follows the species transport model. The release process leads to the
multi-phase existence of heptafluoropropane, with strong interactions between the phases.
The Euler model is suitable for solving liquid–gas multi-phase flow issues, allowing one to
obtain accurate numerical results for the fluid flow field [39]. Additionally, as gas and liquid
phases are present during heptafluoropropane spraying, the discrete phase model (DPM)
can track the trajectories of droplets and visualize the vaporization process [40]. Therefore,
the species transport equation, Eulerian model, and DPM are applied for modeling of the
diffusion and vaporization processes in this study.
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For the fluid flow of the heptafluoropropane in the whole process, the governing
equations should satisfy the conservation laws of mass, energy, and momentum, which are
expressed as follows [41].

Mass conservation:
∂ρ

∂t
+∇ · (ρu) = 0 (1)

Momentum conservation:

ρ(
∂u
∂t

+∇ · (uu)) = µ∇2 · u + ρg −∇p + Su (2)

The conservation of energy:

∂(ρT)
∂t

+∇ · (ρuT) = ∇(
λ

cp
∇T) + ST (3)

where ρ, t, λ, and cp denote the density, flow time, thermal conductivity, and specific heat, re-
spectively, while u, T, ρg, Su, and ST represent the velocity vector, temperature, gravitational
force, source term caused by the fluid velocity field, and the heat source, respectively.

During the convection and diffusion processes of heptafluoropropane, the species
transport model is used to calculate the concentration of each component in the mixture.
The model reflects the transport and diffusion of heptafluoropropane caused by turbulence,
temperature, and concentration gradients, which is expressed as [42]

∂(ρYi)

∂t
+∇ · (ρYiU) = ∇((ρDi.m +

µt

Sct
)∇Yi) +∇(DT,i

∇T
T

) (4)

where Yi is the local mass fraction of species i in the convection and diffusion process; Di,m

and DT,i are the mass diffusion and thermal diffusion coefficients of species i in the mixture,
respectively; µt denotes the turbulent viscosity; and Sct is the turbulent Schmidt number.

In the release process of the high-pressure fire cabinet, the Eulerian model is used
to capture the interfaces of gas and liquid phases for heptafluoropropane. The volume
fraction, momentum, and energy conservation of the fluid are considered, with the velocity,
pressure, and temperature distribution considered to be uniform in the mixtures. The
volume fraction of each phase is calculated as

1
ρr

[
∂

∂t
(αρl) +∇ · (αρl)u

]
= Sα +

( .
mgl −

.
mlg

)
(5)

where ρr, α, and Sα are the phase reference density, volume fraction of the liquid phase, and
the source term caused by the volume fraction, respectively; mgl represents the mass flow
rate from the gas to liquid phase; and mlg is the mass flow rate from liquid to gas phase.

The DPM describes the fluid flow and particle movement based on the Euler and
Lagrange methods. The movement characteristics and particle size of the vaporized
heptafluoropropane need to be tracked and analyzed according to the force balance between
the droplet particles and the vaporized fluid. The discrete phase particle equation is
expressed as [40]

mp
dup

dt
= mp

(
u − up

)
τr

+ mp
g
(
ρp − ρ

)
ρp

+ Fm (6)

where up and u represent the particle and fluid phase velocity vector, respectively; mp, ρ,
and ρp denote the particle mass, the density of the particle, and the fluid phase, respectively;
Fm is the resultant force vector of gravity and buoyancy; and τr is the relaxation time of
the particle.
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In the vaporization process, the discrete phase of the heptafluoropropane is assumed
as the ideal droplet, without considering the heat transfer between the wall and the hot
air. The heat transfer and evaporation of the droplet comprise three parts (i.e., convection,
radiation, and latent heat exchange), expressed as follows:

mpcp
dT
dt

= hAp
(
T∞ − Tp

)
−

dmp

dt
h f g + Apεpσ(θ4

R − T4
p) (7)

where cp and Tp represent the heat capacity and temperature of the droplet, respectively; h
is the convective heat transfer coefficient; T∞ is the temperature of the continuous phase;
hfg is the latent heat; dmp/dt represents the evaporation rate; and εp, σ, and θR denote the
particle emissivity, Stefan–Boltzmann constant, and radiative temperature, respectively.

As for heptafluoropropane, its thermodynamic properties vary with temperature and
pressure [43,44]. Based on the state equation proposed by Soave [45], the modified Redlich–
Kwong formulation and its equilibrium constants are derived for heptafluoropropane
as follows:

p =
RT

V − b
− α(T)a

V(V + b)
(8)

where a and b are the equilibrium constants at the critical points and α(T) is a dimensional
factor which depends on the temperature variation, the mathematical equation for which is
given as [45]

α(T) = [1 + n(1 − T/Tc)
0.5]

2
(9)

where n can be expressed as

n = 0.48 + 1.574ω − 0.176ω2 (10)

where the ω is the eccentric factor coefficient of heptafluoropropane. The equilibrium
constants a and b can be expressed as

a = 0.42747R2T2
c /pc, b = 0.08664RTc/pc (11)

where Tc and pc are the critical temperature and pressure of the heptafluoropropane, respectively.

3. The Numerical Simulation Method and Experimental Validation
3.1. The Physical Model and Numerical Parameter Settings

The whole process of heptafluoropropane as the working fluid in the prefabricated
fire-extinguishing device consists of two steps. The first step is the release of the liquid
(i.e., heptafluoropropane) inside the high-pressure device, which flows from the bottle to
the nozzle though a valve. The second step is the vaporization of heptafluoropropane
from the small holes of the nozzle to the protective room, which achieves the cooling and
fire-extinguishing effects. In the numerical model, the protective room of a data center for
fire suppression modeling is simplified as a cuboid space with a fire cabinet and a baffle,
based on the national standard GB25972-2010 [46], as shown in Figure 2a. The fire source is
placed on top of the base support and laid in middle of the room floor. The interior zone
is the mesh refinement sub-domain for the nozzle and the adjacent area. Figure 2b shows
the liquid heptafluoropropane flowing from the bottle to nozzle in the first step (labeled as
I). The arrow line abc represents the 2.0 m heptafluoropropane release channel, which is
simplified as a circular tube, as shown in Figure 2(b-2). The structured grid is applied in the
model with a mesh number of 923,840, where the boundary layer is refined. The working
pressure in the fire cabinet is 2.5–3.0 MPa and the red solid arrow represents the flow
direction of heptafluoropropane. Figure 2c,d show the fluid domain and mesh generation
of the nozzle and protective room (labeled as step II), respectively. The heptafluoropropane
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released in the first step is sprayed into the protective room through several small holes
in the nozzle. These small holes are divided into three parts, named as pks, pkx, and pkz,
representing the three holes at the top, eight holes in front, and one hole at the bottom of
the nozzle, respectively.
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(b) numerical model of heptafluoropropane releasing in the cabinet (step I); (c) numerical model of
the nozzle; and (d) mesh generation of the model (step II).

In the numerical simulation, the ICEM is used for pre-processing of the simulation
model. The mesh of interior zone was refined to ensure the accuracy. All fluid domains
were meshed with an unstructured grid. The simulation of atomization and vaporization
ware performed with the ANSYS Fluent software (2020R2 version). The simulation process
was set as transient calculation. The grid independence validation was conducted using
five groups of meshes with different sizes. The number of elements for the groups were
502,261 (grid 1), 1,028,112 (grid 2), 1,347,044 (grid 3), 1,877,314 (grid 4), and 2,632,028 (grid 5).
The variation in temperature at the center point of the protective room at 3 s for different
cases is illustrated in Figure 3. As the grid number increased, the temperature increased
rapidly and the relative error decreased. The change rate between grid 3 and grid 4 was
less than 0.2%. Therefore, the total grid number in the numerical model was selected as
1,347,044 (grid 3), and the mesh size for the protective room, interior zone, inlet, and nozzle
are listed in Table 2.

Table 2. Mesh sizes in four regions.

Region Protective Room Interior Zone Inlet Nozzle

Mesh size (m) 0.064 0.001 0.001 0.001
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The turbulent flow model was set as the shear stress transport (SST) k-ω, which deals
with large deformation flow. This model performs well for simulation in near-wall regions.
The species transport and discrete phase model were set to track the proportion of the liquid
phase to gas phase for heptafluoropropane. The physical properties of heptafluoropropane
are listed in Table 3, which were set based on the international standard ISO 14520-9 [47].
The pks, pkx, and pkz were set as the inlet–velocity boundary, while the bottom of the
protective room was the pressure–outlet boundary. The boiling point of heptafluoropropane
was set as 256.75 K using the boiling model of the Lewis number formulation. The initial
temperature of the protective room filled with air was 287.25 K. The interior zone was set
as the interior boundary condition with viscous no-slip walls. During initialization, the
entire space of the protective room was filled with air at a temperature of 287.35 K. The
time step and convergence criteria were set as 0.0005 s and 10−5, respectively.

Table 3. Physical properties of liquid and gas phases of heptafluoropropane (HFC-227ea) [47].

HFC-227ea Liquid Phase Gas Phase

Molecular weight 170 170
ρ (kg·m−3) 1410 5.56

λ (W·m−1·K−1) 0.053 0.013
Cp (J·kg−1·K−1) 1.247 0.8136

Latent heat (J·mol−1) 132,600 —
Boiling point (K) 256.75 —

Critical temperature (K) — 375.95
Critical pressure (Pa) — 2,987,740

3.2. The Experimental Measurements and Numerical Method Validation

The temperature distribution of the protective room in the process of heptafluoro-
propane spraying (i.e., step II) from the nozzle was investigated with no fire source through
experimental measurements, in order to validate the numerical simulation. An experimen-
tal room was built to test the vaporization and cooling performance of heptafluoropropane.
Figure 4 shows the experimental gas fire-extinguishing device using heptafluoropropane
and the measurement instruments. The nozzle is installed on top of the fire-extinguishing
device. The dimensions of the protective room and the nozzle are listed in Table 1. The
thermocouples measure the temperature changes caused by the spraying process of hep-
tafluoropropane, which are arranged perpendicular to the normal line of the nozzle hole.
The K-type thermocouple was selected, with a range of −80 to 200 ◦C and an accuracy of
±1.5 ◦C. Figure 5 shows the measuring points of the thermocouples, labeled as points A,
B, AA, and BB. Points A and B are located above the nozzle perpendicularly, as shown in
Figure 5c, while points AA and BB are located on the lower right side of the nozzle along
the normal direction of the small hole with an angle of 45◦, as shown in Figure 5d. The
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distance between the small holes and points A and AA are 0.1 m. The distance between
points A and B, as well as that for points AA and BB, is 0.3 m.
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Figure 5. The installation position of the thermocouples and the measurement points: (a) image of
the measurement points; (b) distance between the measurement points; (c) position of point A; and
(d) position of point AA.

The temperature variations in the protective room during the release of heptafluoro-
propane were compared with the numerical simulations. Figure 6 shows the comparison
for points A, B, AA, and BB, where the expression of “Exp” and “Simu” represent the
experimental and numerical results, respectively. The results illustrate that, as the release
time increases, the temperatures at points A and AA present sudden drops. At point A, the
temperature falls to the lowest value of 218.15 K, while that for point AA is 226.85 K. Subse-
quently, the temperatures at points A and AA increase slowly. The temperature at point B
decreases from 286.15 K to 279.15 K, while that at point BB it increases from 238.15 K to
253.15 K. The variation in the numerical data presented similar trends as the experimental
measurements. The absolute error between the numerical and experimental measurements
was less than 15 K. Since the temperature of all measuring points was above 220 K, the
value of the absolute error was relatively small which verified the numerical method. There
are two main reasons for these errors. One is the assumptions in the numerical model,
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which lead to certain differences with respect to the actual release process. The other reason
is the disturbance of fluid flow during the release of heptafluoropropane, which might
affect the temperature measurements.
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4. Results of the Vaporization and Fluid Flow Performance of
Heptafluoropropane Spraying

The numerical simulation of heptafluoropropane spraying comprised two parts: its
release in the fire cabinet (step I) and spraying from the nozzle (step II). Analysis of the
first step was performed to obtain the mass ratio of the liquid phase, gas phase, and outlet
velocity, which were then used as the boundary conditions in the second step. The analysis
of the second step focused on the vaporization performance, temperature and velocity
variations, and sudden cooling effect associated with heptafluoropropane spraying.

4.1. Heptafluoropropane Release in the Fire Cabinet

In the first step, the liquid heptafluoropropane with ratio of 100% is released from
the fire cabinet in the numerical model, as depicted in Figure 2b. The mass flow rate
and pressure difference were set to 6.5 kg and 0.5 MPa, respectively. As the pressure of
the heptafluoropropane decreases, the liquid phase is converted into gas phase due to
thermodynamic properties [48]. Here, the multi-phase model and time step were selected
as the Eulerian method and 5 × 10−5 s, respectively. The variation in the mass ratio for the
two phases and outlet velocity are illustrated in Figure 7, where g and l represent the gas
and liquid phase, respectively. From the figure, it is obvious that the liquid phase decreased
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sharply and then increased to a certain value, while the gas phase presented an opposite
trend. Figure 8a,b show the symmetric slices of mass ratio and velocity distribution. The
contours illustrate that the velocity of working fluid increased from 6 to 30 m/s. The mass
ratios of gas and liquid phases from the inlet to outlet illustrate the variation in Figure 7a.
The mass ratios of the liquid phase, gas phase, and outlet velocity are listed in Table 4,
which were used as the known parameters in step II.
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Table 4. Numerical results used as boundary conditions for step II.

Parameter Mass Ratio of Liquid
Phase (%)

Mass Ratio of Gas
Phase (%) Outlet Velocity (m/s)

Value 20.2 79.8 29.0

4.2. The Vaporization of Heptafluoropropane from the Nozzle to Protective Room

Based on the numerical results for liquid heptafluoropropane released in the first step
(Section 4.1), the mass ratio of the liquid phase to gas phase at the nozzle outlet was
set as 20.2%. The total mass of the liquid and gas phases was 65 kg and the release
time was 10 s. For the liquid phase, the DPM was applied in for the vaporization of
heptafluoropropane, with the mass flow rate and initial temperature set as 1.31 kg/s and
256.65 K, respectively. The mass flow rate through the small holes pks, pkz, and pkx were
set as 0.36 kg/s, 0.88 kg/s, and 0.07 kg/s, respectively. The diameter of the DPM particles
was set as 0.0005 m. For the gas phase, the holes in the nozzle were set as the inlet velocity
boundary condition with a value of 29.0 m/s. These are the known parameters for the
second step of the vaporization process in the simulation. Temperature, concentration,
and velocity variations were analyzed to improve the vaporization performance of the
heptafluoropropane spraying system.

4.2.1. The Temperature Variation of the Protective Room

The temperature variations at different positions in the normal direction of the small
holes on the nozzle are illustrated in Figure 9. The points A, B, AA, and BB were positioned
as shown in Figure 5. As the spraying time varied from 0 s to 10 s, the temperature at
the distance of 0.1 m from the nearest small hole presented a sharp decrease to 220 K
(i.e., −53 ◦C). The temperature at points A and AA were nearly the same after 10 s. The
temperature variations at points B and BB presented different trends with heptafluoro-
propane spraying. When t varied from 0 to 5 s, the temperatures at points B and BB
remained almost unchanged (287 K and 250 K, respectively). Then, the temperature at
point B decreased to 270 K, while that at point BB increased to 265 K. This phenomenon
shows that the temperature drop on top of the nozzle has a delay due to the fluid flow of
heptafluoropropane spraying.
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Figure 9. Temperature variations at different positions in the normal direction of small holes on the
nozzle: (a) points A and B and (b) points AA and BB.

The positions of sections for analysis of the 2D temperature and streamline fields are
shown in Figure 10. The sections consist of the vertical symmetric plane and horizontal
plane, characterized by X = 0 m and Y = 1.925 m, respectively. The display range of the
vertical and horizontal planes are 4.72 m × 4.5 m and 4.72 m × 4.72 m, respectively.
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Figure 10. Positions of the sections for analysis of the temperature and streamline.

Figure 11 displays the temperature variation in the vertical symmetric plane of the
protective room. The red region represents the initial temperature of ambient air, which is
287.25 K. The heptafluoropropane sprays from the small holes and absorbs a large amount
of heat, which causes a cooling effect in the surrounding area. The green and yellow regions
represent the sudden cooling effect, where the lowest temperature reached 230 K. At the
beginning of spraying, the low-temperature region appears in the forward direction of the
eight holes in the nozzle, which indicates the release direction of the heptafluoropropane.
As the spraying time t increases to 4 s, the average temperature in the middle region in
the protective room is decreased. The upward spray of heptafluoropropane starts to settle
due to the gravity, following which the heptafluoropropane diffuses to the ground or other
areas. When the spraying time reached 8 s, the temperature of the majority of the area in
the vertical plane had decreased, varying from 272 K to 284 K. With increasing spraying
time, the temperatures at points B and BB are slightly affected by the heptafluoropropane
spraying, due to the effects of gravity and the fluid flow. These phenomena verify the
results shown in Figure 9 and indicate that heptafluoropropane spraying from the nozzle
of the fire cabinet can quickly reduce the average temperature distribution in the protective
room, thus achieving fire suppression.

Figure 12 shows the temperature contour in the horizontal plane based on the cen-
tral axis of the nozzle. The results illustrate that heptafluoropropane spraying from the
symmetrical small holes has a similar cooling effect on the protective room. When the
heptafluoropropane starts to spray, the temperature of the area facing the fire cabinet in
the direction of the axis of the nozzle decreases first. As the release time reaches 4 s, the
diffused gaseous heptafluoropropane accumulates in the middle of the protective room,
which corresponds to the results shown for the vertical symmetric plane. The opposite
wall from the fire cabinet is cooled due to the fluid flow of heptafluoropropane at 7 s.
Therefore, the high-pressure spraying of heptafluoropropane from the prefabricated fire-
extinguishing device can reduce the surrounding temperature from the middle to the edge
of the protective room.



Fire 2025, 8, 124 14 of 27

Fire 2025, 8, 124 14 of 30 
 

 

Figure 10. Positions of the sections for analysis of the temperature and streamline. 

   

 

(a) (b) (c) 

 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 11. The temperature distribution in the vertical symmetrical plane: (a) t = 0.5 s; (b) t = 1.0 s; 

(c) t = 2.0 s; (d) t = 3.0 s; (e) t = 4.0 s; (f) t = 5.0 s; (g) t = 6.0 s; (h) t = 7.0 s; and (i) t = 8.0 s. 

Figure 12 shows the temperature contour in the horizontal plane based on the central 

axis of the nozzle. The results illustrate that heptafluoropropane spraying from the sym-

metrical small holes has a similar cooling effect on the protective room. When the hep-

tafluoropropane starts to spray, the temperature of the area facing the fire cabinet in the 

direction of the axis of the nozzle decreases first. As the release time reaches 4 s, the dif-

fused gaseous heptafluoropropane accumulates in the middle of the protective room, 

which corresponds to the results shown for the vertical symmetric plane. The opposite 

wall from the fire cabinet is cooled due to the fluid flow of heptafluoropropane at 7 s. 

Therefore, the high-pressure spraying of heptafluoropropane from the prefabricated fire-

extinguishing device can reduce the surrounding temperature from the middle to the edge 

of the protective room. 

Figure 11. The temperature distribution in the vertical symmetrical plane: (a) t = 0.5 s; (b) t = 1.0 s;
(c) t = 2.0 s; (d) t = 3.0 s; (e) t = 4.0 s; (f) t = 5.0 s; (g) t = 6.0 s; (h) t = 7.0 s; and (i) t = 8.0 s.
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4.2.2. The Concentration Variation of Heptafluoropropane in the Protective Room

In order to analyze the concentration distribution of heptafluoropropane, the iso-
surfaces of mass fraction of 0.1 in the spraying process were obtained, as shown in Figure 13.
The velocity contours are also illustrated on the iso-surfaces in order to assess the fluid
flow performance. After the heptafluoropropane starts to spray from the nozzle, the
vaporized fluid accumulates in the middle of the protective room, as shown in Figure 13a,b,
with the velocity varying between 1.2 and 2.8 m/s. As the spraying time t increases, the
heptafluoropropane diffuses to the wall opposite to the fire cabinet and the average velocity
starts to decrease. After the spraying time t reaches 6 s, the heptafluoropropane gradually
fills the entire protective room and part of the gas phase settles to the bottom.
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Figure 13. Velocity variation for the mass fraction of heptafluoropropane with iso-surface value of
0.1: (a) t = 0.5 s; (b) t = 1.0 s; (c) t = 2.0 s; (d) t = 3.0 s; (e) t = 4.0 s; (f) t = 5.0 s; (g) t = 6.0 s; (h) t = 6.5 s;
and (i) t = 7.0 s.
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Figure 14 shows the mass fraction variation of the heptafluoropropane in the vertical
symmetrical plane. The results illustrate that the vaporized heptafluoropropane quickly
moves in front of the nozzle within 2 s. Then, the heptafluoropropane flows to the opposite
side and settles down from 3 s to 6 s, which corresponds to the phenomenon shown in
Figure 13d–f. After the spraying time t reaches 8 s, the top and bottom of the protective
room are partially covered by heptafluoropropane. The concentration variation is also
shown in the video in the Supplementary Materials (Video S1).
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4.2.3. The Velocity Distribution of the Heptafluoropropane in the Protective Room

In order to analyze the spraying process in the protective room, the velocity distribu-
tion and streamlines of heptafluoropropane are displayed in Figures 15 and 16. Figure 15
shows the velocity variations on the iso-surface distribution of T = 273.15 K, which also
reflects the trend of iso-surface expansion. At 1 s, the gas phase of heptafluoropropane
releases from small holes in the nozzle, with the velocity varying from 1.6 to 2.8 m/s. Then,
the heptafluoropropane diffuses along the normal direction of the small holes to the top
and bottom of the protective room during the spraying time of 2.0–4.0 s. The flowing gas
phase gathers into clusters in front of the fire cabinet at 4.0 s. In the spraying time from
5.0 to 8.0 s, the area with temperature of 273.15 K continues to develop near the walls.
Compared with the velocity variation shown in Figure 13, the iso-surfaces in Figure 15
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illustrate the trend of the temperature reaching 273.15 K due to the diffusion of heptafluoro-
propane. The heptafluoropropane accumulates in the protective room and the temperature
in the high-concentration area drops to 273.15 K or lower. These phenomena confirm
the sudden cooling effect caused by heptafluoropropane spraying from the prefabricated
fire-extinguishing device.
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Figure 15. The velocity variation on the iso-surface of T = 273.15 K: (a) t = 0.5 s; (b) t = 1.0 s; (c) t = 2.0 s;
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Figure 16 presents the streamlines and contours of the velocity field in the spraying
process of heptafluoropropane from t = 0.5 s to 7 s, illustrating the relationships among the
vortices, streamlines, and velocity distribution. As t varies from 0.5 s to 2 s, a large eddy
forms along the tangential direction of heptafluoropropane spraying, where the velocity
of gas phase reaches about 2.8 m/s. The eddy continues to develop and vanishes at the
time of 3.0 s, at which point the vortex compresses into a flattened structure. When t varies
from 4.0 s to 7.0 s, the large eddy regenerates at the top of the protective room due to the
velocity gradient. Back flow of the heptafluoropropane will occur in front of the fire cabinet,
near the bottom. The velocity in the region in front of the nozzle is relatively lower than
that in the normal direction of the small holes. The high-velocity regions occur on the flow
path of the heptafluoropropane sprays. Through analyses of the streamlines and velocity
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distribution, the results reflect that the gas-phase heptafluoropropane is sprayed out along
the normal direction of the small holes on the nozzle under certain initial conditions in
terms of pressure and velocity, allowing the working fluid to cover most regions in the
protective room.
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Figure 16. The velocity and streamlines in the vertical symmetrical plane during the heptafluoro-
propane release process: (a) t = 0.5 s; (b) t = 1.0 s; (c) t = 2.0 s; (d) t = 3.0 s; (e) t = 4.0 s; (f) t = 5.0 s;
(g) t = 6.0 s; and (h) t = 7.0 s.

4.2.4. The Cooling Effect and Safe Distance of the Heptafluoropropane Spraying

In order to obtain the recommended safe distance settings under various conditions of
heptafluoropropane spraying, the cooling effect and temperature variations under different
mass ratios of the liquid and gas phases were analyzed. Figure 17 shows the temperature
variation at three positions along the nozzle axis, where AAA, BBB, and CCC represent
positions at distances of 0.1 m, 0.4 m, and 0.8 m along the axis, respectively. The mass
ratio conditions of the gas and liquid phases consist of 8:2, 9:1, and 7:3. The purple dotted
lines denote the areas where the temperature is 273.15 K. From Figure 17b–d, it is evident
that the temperatures at the three positions are over 280 K (i.e., above 0 ◦C) under the
condition of a mass ratio of 9:1. When the mass ratio of the gas and liquid phases is
8:2, the temperatures at points AAA and BBB first decrease to 250 K and increase slowly
after 4 s, while that at CCC fluctuates around a value of 260 K. The temperatures at AAA
and BBB are relatively lower than those under other conditions with a mass ratio of 7:3.
These phenomena illustrate the temperature change in front of the fire cabinet during
heptafluoropropane spraying and provide guidance for the installation and operational
design of fire-extinguishing equipment.

Figure 18 shows the temperature variation at four points under the mass ratio con-
ditions of 9:1 and 8:2, where the positions of points A, B, AA, and BB are as shown in
Figure 5. The point CC is on the extensive line of AA and BB and is at a distance of 0.8 m
from the nozzle hole. Figure 18a illustrates that the temperatures at points A and B under a
mass ratio of 9:1 were higher than those with a mass ratio of 8:2 at 10 s. The variation also
indicated that heptafluoropropane spraying has little cooling effect on the area at the top of
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the nozzle past 0.4 m. Figure 18b demonstrates the temperatures of points AA, BB, and CC
versus spraying time. It is clearly seen that the temperatures at point CC are higher than
those at points AA and BB as the time progresses. The temperatures at point CC under
mass ratios of 9:1 and 8:2 remained at values of 280 K and 270 K, respectively. As the overall
spraying time was 10 s, the cooling performance is considered to have little effect on the
protective equipment. Therefore, a distance of 0.8 m in front of the nozzle under different
mass ratios can be considered as a reference value for the safe distance due to the relatively
small cooling effect, which can help to protect the electrical equipment in rooms equipped
with the considered prefabricated gas fire-extinguishing system.
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5. Discussions on the Cooling Effect of Prefabricated Fire-Extinguishing
Device in the Fire Suppression Process
5.1. The Heat Transfer Rate of the Fire Source and Experimental Validation

To analyze the cooling effect of the considered device in the context of fire suppression,
the fire source was investigated through numerical simulation and experimental measure-
ments. The fire source was wood stack burning, which is considered to be a Class A fire.
The flame height of the wood stack fire is relatively high and the heat release rate has been
obtained through analyses of experimental and numerical results [37]. In this work, the
heat release rate of the fire source was determined based on the temperature measurements
in the upper region, as shown in Figure 19, which shows the locations and dimensions of
the temperature measurement points and fire source. The support for seven measurement
points is located along the diagonal of the protective room. The symmetric centerline
coincides with that of the fire source. Seven thermocouples are distributed at different
heights on the support. Figure 19b shows a view of the support plane. The dimensions
between the measurement points and the fire source, as well as the adjacent points, are
marked on the figure.
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Table 6. Numerical results of heat release rate for the wood stack fire. 

Parameter Heat Release Rate (W/m2) Fire Source Area (m2) Heat Flux (W) 

Value 30,000 0.125 3750 

5.2. The Temperature Variation in the Fire Suppression 

After the protective room had been heated by the fire source for 10 s, the heptafluoro-

propane (from the I step) started to spray from the nozzle and cool down the surrounding 

area. Figure 21 shows the temperature variations at eight points in different directions 

during the heptafluoropropane spraying process. Figure 21a,b illustrate that the temper-

atures at points A and AA were lower than the others, while those at points B and BB 

reached about 250 K. When the heptafluoropropane spraying was complete at the time of 

10 s, the temperatures at the measurement points rose quickly to the certain value of 270 

Figure 19. The temperature measurement points in the protective room and associated dimensions:
(a) locations of the measurement points and (b) dimensions between adjacent measurement points.

In the experiments, the temperatures at the six points were measured with K-type ther-
mocouples for 10 s after the fire source had been placed. Figure 20 shows the temperatures
at the measuring points and absolute errors obtained from three tests. The results illustrate
that the temperatures at the six points were similar to those in tests 2 and 3. The absolute
errors at each point were less than 8 K. In the numerical simulation, the protective room
shown in Figure 2a was heated by a fire source to obtain the corresponding temperatures at
the measurement points. With the heat release rate of the fire source was set to 30 KW/m2,
the comparison results for the six points are listed in Table 5.

Table 5. Temperature comparisons for the six measurement points.

No. 1 2 3 4 5 6 7

Experiment (K) 295.18 295.15 297.97 299.55 422.08 300.40 385.53
Simulation (K) 296.24 296.3 296.73 296.28 415.36 298.15 381.71

Absolute Error (K) 1.04 1.15 1.24 3.27 6.72 2.25 3.82
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Figure 20. Experimental measurements and errors: (a) temperatures at the measurement points in
three tests and (b) the absolute errors in the experimental data.

The results illustrate that the temperatures at measurement points of 5 and 7 were
over 370 K, while those at other points were below 300 K. The maximum absolute error
was less than 7 K, thus verifying the settings for the fire source. Table 6 lists the numerical
results for the wood stack fire. As the area of the fire source on top of the support base
is 0.125 m2, the heat flux is 3750 W. These results were used as the initial conditions for
further analyses of heptafluoropropane spraying for the purpose of fire suppression.

Table 6. Numerical results of heat release rate for the wood stack fire.

Parameter Heat Release Rate (W/m2) Fire Source Area (m2) Heat Flux (W)

Value 30,000 0.125 3750

5.2. The Temperature Variation in the Fire Suppression

After the protective room had been heated by the fire source for 10 s, the heptafluoro-
propane (from the I step) started to spray from the nozzle and cool down the surrounding
area. Figure 21 shows the temperature variations at eight points in different directions dur-
ing the heptafluoropropane spraying process. Figure 21a,b illustrate that the temperatures
at points A and AA were lower than the others, while those at points B and BB reached
about 250 K. When the heptafluoropropane spraying was complete at the time of 10 s, the
temperatures at the measurement points rose quickly to the certain value of 270 K. For
points AAA, BBB, and CCC, the trend of temperature variation remained almost the same.
The temperatures at points BBB and CCC first increased to 295 K, then decreased to 270 K
by 12 s. Furthermore, the temperature at point AAA presented a rapid decrease to 260 K at
10 s. Therefore, the temperatures of regions in the direction of the nozzle holes decreased
rapidly as the fire-extinguishing process continued, thus causing the cooling effect. The
temperatures were ultimately maintained at 270 K at distances of 0.4 m and 0.8 m along
the nozzle axis. Figure 22 shows the temperature contours in the vertical symmetric plane
with spraying time t from 0 to 7 s. The fire source is extinguished within 4 s and deviates
towards the nozzle position. From 2 s to 7 s, the lower-temperature region develops on the
bottom as the heptafluoropropane settles and accumulates in the protective room. After
the fire is extinguished, the temperature distribution throughout the entire room gradually
becomes uniform.
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Figure 22. Temperature variation in the vertical symmetric plane during fire suppression: (a) ts = 0 s;
(b) ts = 1.0 s; (c) ts = 1.5 s; (d) ts = 2.0 s; (e) ts = 3.0 s; (f) ts = 4.0 s; (g) ts = 5.0 s; (h) ts = 6.0 s; and
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5.3. The Velocity and Concentration Distribution in the Fire Suppression Process

Figure 23 shows the velocity distribution and streamlines in the vertical symmetric
plane throughout the whole process of heptafluoropropane spraying. At the starting time,
the protective room is heated by the fire source, which forms a circulation flow from the
center to both sides. When the heptafluoropropane starts to spray at the time of 1 s to 2 s, a
high-velocity region forms in the normal direction of the nozzle holes and several vortices
occur in the tangential direction of the upper and lower zones near the fire cabinet. Due to
the influence of the heated air flow, the position and high-velocity regions significantly differ
from those when spraying with no fire (as shown in Figure 16). Then, the vortex continues
to develop on top of the nozzle and the velocity of the fluid flowing along the nozzle axis
gradually increases from 4 s to 10 s. After heptafluoropropane spraying is completed, the
fluid velocity decreases rapidly in the protective room. Therefore, heptafluoropropane is
sprayed at high speed in the protective room to form a large vortex or reflux, absorbing a
significant amount of heat to achieve a local sudden drop in temperature for the purposes
of extinguishing the fire.
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The mass fractions of heptafluoropropane for the eight points in different positions
with increasing spraying time are shown in Figure 24. The points A and AA have higher
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mass fractions at 10 s, compared with the others, with a maximum value of 0.5. The
maximum mass fraction at points B and BB reached 0.3. For the three points along the
nozzle axis, the mass fraction of heptafluoropropane increased rapidly to 0.12 between
5 s and 10 s. The maximum value of the mass fraction (i.e., 0.22) occurred at point AAA.
Then, the mass fraction of heptafluoropropane gradually increased slowly. Therefore, the
heptafluoropropane sprayed out in the protective room with a maximum mass fraction
of 0.5. When the spraying process was complete, the concentration of the mass fraction
still remained at a value of 0.1 at a distance of 0.8 m from the nozzle axis, indicating
the uniform distribution of heptafluoropropane in the protective room, thus promoting
its fire-extinguishing performance while protecting electrical equipment. The dynamic
process of concentration variation with fire source is also shown in a video provided in the
Supplementary Materials (Video S2).
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6. Conclusions
In this work, we proposed a numerical simulation model to analyze the vaporization

and cooling performance of heptafluoropropane, used in a prefabricated fire-extinguishing
device. The vaporization process of heptafluoropropane involves the release of liquid
heptafluoropropane from the fire cabinet to the nozzle (step I) and spraying of the mix-
ture phase from the nozzle (step II). Experimental measurements of heptafluoropropane
vaporization with no fire source were carried out to verify the numerical simulation. It
was shown that heptafluoropropane spraying can quickly reduce the average temperature
distribution throughout the protective room, leading to a sudden cooling effect. The cooling
effect and the temperature variations under different mass ratios of the liquid and gas
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phases were analyzed to obtain the safe distance between the nozzle and the protected
equipment. The findings provide significant insights into the vaporization mechanism of
heptafluoropropane with and without a fire source. The main conclusions are as follows:

(1) A numerical simulation model was established based on the phase change and fluid
flow process. The release of heptafluoropropane from the cabinet and its spraying
from the nozzle were analyzed based on Eulerian and DPM models, respectively. The
results indicated that the vaporization of heptafluoropropane in the cabinet presents
certain differences with that relating to its spraying from the nozzle. The numerical
method was validated through experimental temperature comparisons and can help
to improve the vaporization performance of heptafluoropropane.

(2) For heptafluoropropane spraying without a fire source, analysis of its release in the
fire cabinet (step I) illustrated that the velocity, liquid, and gas phases of heptafluo-
ropropane are 29.0 m/s, 20.2%, and 79.8%, respectively. These results reflect the fact
that the heptafluoropropane is a mixture of gas and liquid phases during the spraying
process, although its boiling point is 256.75 K. The sudden cooling effect will occur
with the lowest temperature of 220 K, which can contribute to its concentration and
velocity distribution in the protective room. Analysis of the vaporization process
indicated that a distance of 0.8 m in front of the prefabricated fire cabinet can serve as a
reference value for the safe distance. The heptafluoropropane was shown to gradually
fill the entire room, with part of the gas phase settling at the bottom.

(3) For heptafluoropropane spraying with a fire source, an actual fire-extinguishing sce-
nario with a wood stack fire was assessed through experiments and simulations. A
large vortex was formed, helping to achieve a sudden temperature drop, due to the
high speed of heptafluoropropane spraying. The concentration at a distance of 0.8 m
from the nozzle remained at a mass fraction of 0.1. Furthermore, the uniform distribu-
tion of heptafluoropropane is beneficial in terms of fire-extinguishing performance
as well as the protection of electrical equipment. The results obtained offer guidance
for the design of prefabricated fire-extinguishing systems using various mass ratios
regarding heptafluoropropane vaporization.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/fire8040124/s1, Video S1: mass fraction-1-no fire source; Video S2: mass
fraction-2-with fire source.
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