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Abstract

Fire spotting (FS), the process by which firebrands are lofted, transported, and ignite new
fires ahead of the main flame front, plays a critical role in escalating extreme wildfire
events. This systematic literature review (SLR) analyzes peer-reviewed articles and book
chapters published in English from 2000 to 2023 to assess the evolution of FS models,
identify prevailing methodologies, and highlight existing gaps. Following a PRISMA-
guided approach, 102 studies were selected from Scopus, Web of Science, and Google
Scholar, with searches conducted up to December 2023. The results indicate a marked in-
crease in scientific interest after 2010. Thematic and bibliometric analyses reveal a domi-
nant research focus on integrating the FS model within existing and new fire spread mod-
els, as well as empirical research and individual FS phases, particularly firebrand
transport and ignition. However, generation and ignition FS phases, physics-based FS
models (encompassing all FS phases), and integrated operational models remain under-
explored. Modeling strategies have advanced from empirical and semi-empirical ap-
proaches to machine learning and physical-mechanistic simulations. Despite advance-
ments, most models still struggle to replicate the stochastic and nonlinear nature of spot-
ting. Geographically, research is concentrated in the United States, Australia, and parts of
Europe, with notable gaps in representation across the Global South. This review under-
scores the need for interdisciplinary, data-driven, and regionally inclusive approaches to
improve the predictive accuracy and operational applicability of FS models under future
climate scenarios.

Keywords: fire management; fire spotting; fire spotting model; firebrand; model
classification; wildfire propagation

1. Introduction

Climate change is already altering the structure and function of temperate forest eco-
systems, with significant implications for disturbance regimes such as wildfires. Extensive
research has demonstrated that rising temperatures and shifting precipitation patterns are
increasing the frequency, intensity, and severity of wildfires [1-6], underscoring the im-
portance of understanding and modeling these dynamics. In this context, a key concern
is the predicted shift in the frequency and intensity of extreme disturbance events, notably
global wildfire occurrences [7-9]. These events have a profound influence on vegetation
structure, species composition, and landscape dynamics. Empirical studies confirm in-
creasing wildfire activity in the United States [10,11], Canada [12], Australia [13-15],
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Portugal [2,16,17], and Spain [18]. This rise is evident in both fire frequency and total area
affected by these fires [19,20].

The dynamics of wildfire activity are influenced by a complex interplay of factors,
including fuel availability, vegetation topography, ignition sources, and prevailing
weather conditions such as temperature, wind speed, and atmospheric pressure [20].
These variables stand out as the principal determinants of short-term and long-term var-
iations in fire activity [21], influencing fuel moisture and flammability. At the same time,
broader climatic conditions influence biomass and fuel accumulation present in an area,
as well as fire potential, alongside human influences [21].

Historically, projections of future fire regimes have often relied on the analysis of
monthly and seasonal averages of weather variables, such as temperature, relative hu-
midity, wind speed, and precipitation, along with indices like the Fire Weather Index Sys-
tem, to model wildfire behavior under climate change. This approach has been widely
applied in fire-prone areas globally, including in the Mediterranean [22-24], where it has
helped assess changing fire potential under future climate scenarios. However, such av-
erages can obscure crucial variations in fire weather extremes, especially those conditions
conducive to large fire outbreaks [25]. Besides extreme weather dynamics that enhance
low humidity and dryness [26], wildfire behavior is further intensified by factors such as
topography, fuel variability, and fire spotting [27]. Wildfires cause extensive environmen-
tal and socioeconomic damage, generating large quantities of firebrands that burn vege-
tation materials, including twigs, bark, foliage, and grass. These firebrands can be trans-
ported by wind and, upon landing, may ignite a new location ahead of the main fire. If
the ignition occurs, the resulting fire is referred to as a spot fire, and the process is known
as fire spotting. The fire spotting process consists of four key phases: firebrand generation,
lofting in the convective plume, wind-driven transport, and spot fire ignition [28,29]. Each
phase contributes to the complex dynamics of wildfire spread, especially under extreme
weather conditions.

Depending on the spotting distance, spot fires ignited by smoldering or flaming fire-
brands influence wildfire spread by increasing its intensity and severity. Furthermore, ex-
treme weather conditions, vegetation type, and terrain characteristics contribute to ex-
treme fire behavior [27]. The fire spot can occur in short, medium, or long spotting dis-
tance ranges [30]. Short-distance spotting influences firefighting tactics and safety, while
medium-distance spotting affects combat positions and strategies. Long-distance can di-
vert fire suppression resources, complicating wildfire containment efforts [31].

Crown fires and certain forest tree species, such as eucalyptus, significantly contrib-
ute to the fire spotting phenomena [13,14]. Eucalyptus forest bases are commonly associ-
ated with extreme fire behavior due to high firebrand generation rate [32,33] and increased
likelihood of new ignitions [34,35], particularly in older eucalyptus trees [36]. Eucalyptus
trees are highly flammable and produce firebrands with aerodynamic properties that ac-
celerate the movement of the fire front. These firebrands can travel for kilometers [33,37],
crossing non-fuel locations such as rivers, roads, bridges, firebreaks, and the wildland-
urban interface (WUI), posing a high risk to human lives and structures. Firebrand spot-
ting is often a primary cause of structure ignitions [33]. Numerous studies have demon-
strated that firebrand accumulation around structures is a critical factor in ignition and
wildfire-related damage. Notable contributions include experimental evaluations by
Manzello and Suzuki [38], structural vulnerability research conducted at the Institute for
Business and Home Safety (IBHS) facility [39], and Nguyen and Kaye [40,41]. These stud-
ies have significantly advanced our understanding of urban ignition pathways and the
economic impacts of ember exposure. While this body of research is substantial, the pre-
sent review focuses specifically on modeling the phases of fire spotting, firebrand
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generation, transport, and ignition, and excludes studies centered on ember accumulation
near buildings or structural vulnerability.

The fire spotting process is inherently nonlinear [42], influenced by spatial and tem-
poral variations, meaning that small changes in wind, vegetation type, or terrain can result
in unpredictable spotting behavior. Additionally, fire spotting exhibits a probabilistic na-
ture due to the complex interplay of firebrand generation, wind transport, and ignition
conditions [28,29]. While advanced wildfire models can incorporate variable environmen-
tal inputs, many traditional deterministic models rely on fixed conditions. However, fire
spotting dynamics are inherently stochastic, influenced by turbulent wind patterns, het-
erogeneous fuels, firebrand characteristics, and fuel distribution [29,43]. These factors in-
troduce uncertainty, necessitating the use of probabilistic modeling approaches for more
accurate predictions [44].

Few fire studies have traditionally or systematically reviewed spotting or related
phenomena of fire spread. An early review by Pastor et al. [45] on wildland fire mathe-
matical modeling from 1967 to 2000 provided historical insights into fire spotting, crown
fire, and surface fire spread model approaches, including the classification of models and
highlighting their relevance in assessing wildfire behavior. Wadhwani et al. [33] provided
a valuable review of firebrand generation and transport studies, focusing on parametric
analysis and the development of Computational Fluid Dynamics (CFD) models. How-
ever, they excluded firebrand ignition studies while also emphasizing the need for better
quantification of firebrand generation and transport influences. However, they excluded
firebrand ignition studies while also emphasizing the need for better quantification of fire-
brand generation and transport influences.

In contrast, Manzello et al. [46] reviewed firebrand behavior in large outdoor fires,
including WUI and urban scenarios. Their study covered key mechanisms, generation,
lofting, combustion, transport, and ignition, and emphasized the role of firebrand showers
in the rapid spread of fire. They also highlighted Japan’s vulnerability to firebrand-in-
duced ignitions and the lack of related research in English. This work provides essential
insights into the ignition phase of spotting. Meanwhile, Or et al. [47] examine the ad-
vantages and limitations of current wildfire models, focusing on the effects of fire on soil,
hydrology, and ecology, highlighting their relevance to wildfire spread and behavior, but
not significantly on the spotting phenomenon.

There remains a need for continuous advancement in fire spotting models to improve
wildfire prevention and mitigation strategies. A comprehensive approach will enhance
predictive capabilities by minimizing uncertainties [48]. Selecting suitable fire spotting
models is critical for realistic comparisons with experimental fire observations and oper-
ational fire management applications. This systematic literature review (SLR) builds on
previous related reviews by expanding their scope to evaluate models and approaches
that aim to characterize or describe the fire spotting process in wildfires, focusing on stud-
ies published over the past 24 years (2000-2023). Study gaps were identified to provide
recommendations for future research. Following the PRISMA approach, research was
conducted across three databases: Scopus (SC), Google Scholar (GS), and Web of Science
(WOS), ensuring a structured assessment of advancements in fire spotting. The following
sections include Material and Methods, Results, Discussion, Prevailing Gaps, Conclu-
sions, and Future Directions, each presenting a detailed analysis that highlights progress
in fire spotting modeling approaches and identifies opportunities for future development
in the field.

2. Materials and Methods

The systematic literature review (SLR) was conducted in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020
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guidelines [49] to ensure methodological rigor, transparency, and reproducibility
throughout the identification, screening, eligibility assessment, and inclusion of relevant
studies. The review protocol was registered with the Open Science Framework (OSF):
https://doi.org/10.17605/OSF.IO/GWS95. The methodology includes a structured search
protocol and strategy, clearly defined inclusion and exclusion criteria, classification of fire
spotting model frameworks, and bibliometric analysis using VOSviewer (version 1.6.10)
to explore research trends and thematic networks.

2.1. Search Protocol and Strategy

A preliminary search was conducted in November 2023 using the keywords “spot-
ting,” “spot fires,” “firebrands,” and “wildfires” for a search across the databases Scopus
(SC), Web of Science (WOS), and Google Scholar (GS). This initial step aimed to provide
an overview of the accessible and catalogued scientific literature in the subject area from
2000 to 2023. It also helped refine the search terms for the full review and revealed the
absence of prior SLRs focused specifically on fire spread models driven by spotting. To
conduct a comprehensive search and identify potential knowledge gaps, a structured
strategy was employed using the three selected databases. Searches in SC and GS were
conducted via Harzing’s Publish or Perish software (Windows GUI Edition
8.12.4612.8838) [50], on 11 December 2023, while the WOS search was performed directly
on the website on 13 December 2023.

As a secondary study, this SLR defined specific inclusion and exclusion criteria to
identify, evaluate, and synthesize primary studies related to the main research question,
models for fire spread in wildfires caused by spotting. The objective was to assess the
prevalence and evolution of methods and modeling approaches used to fully characterize,
describe, and simulate the fire spotting process in wildfires from 2000 to 2023. The overall
SLR process followed a defined sequence of phases and steps, as shown in Figure 1. In
addition, the research questions (RQs) guiding the review are detailed in Table 1.

Phase 1- SLR Plan Phase 2 — Execution of SLR RS E=DD 5 S eI £
review

Definition of research question Study search across selected relevant Writing and reporting
databases
Definition of SLR process Report validation
Selection of main studies

Validation of SLR process

Result analysis and interpretation

Figure 1. The sequence of phases and steps followed in the SLR process.

Table 1. Research questions guiding the SLR.

No. Research Question (RQ) Rationale
What fire spotting concepts, models, and
approaches evolved between 2000 and

RQ1 2023, and what insights do they provide
from both quantitative and qualitative

To systematically identify, analyze,
and compare research developments
while applying predefined inclusion
and exclusion criteria.

perspectives?

What are the most commonly used meth-

ods and approaches employed in fire To classify and evaluate dominant re-
RQ2 spotting studies, and how do they com- search techniques, offering a struc-

pare across different research frame- tured overview of fire spotting models.

works?

To highlight influential contributors
and track evolving patterns in fire
spotting studies.

Which countries have contributed most to
fire spotting research, and what trends

RQ3
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have emerged regarding research fre-
quency and variability?

What significant findings have been re-
ported in fire spotting research, and
where do knowledge gaps or underex-
plored concepts remain?

Based on the findings from RQ1-RQ4,
what significant research gaps remain,
and how should future investigations aim
to address them?

To identify understudied topics and
RQ4 evaluate recommendations for future

research directions.

To synthesize knowledge, highlight
critical research gaps, and propose di-
rections for future advancements.

RQ5

Figure 1 outlines the three main phases of the SLR: planning, execution, and docu-
mentation and review. In Phase 1, the research questions were defined, along with the
overall SLR process and its validation. Phase 2 involved the database search, selection of
main studies, and analysis of the results. Finally, Phase 3 focused on writing, reporting,
and validating the findings to ensure the accuracy and transparency of the review. Table
1 provides a structured overview of the five RQs that guided the SLR. Each question is
accompanied by a clear rationale that outlines its purpose in examining the development
of fire spotting models, methodological trends, geographic research distribution, key find-
ings, knowledge gaps, and future research directions. Together, Figure 1 and Table 1 es-
tablish the analytical framework that guided the selection, classification, and evaluation
of the included studies.

Table 2 presents the research string strategy applied across the databases, developed
by the authors based on their conceptual understanding of fire spotting. The strategy fo-
cuses on key aspects such as firebrand generation, transport, spot fires (ignition), impacts,
and consequences, including fire suppression.

Table 2. Search string strategy for the SLR.

Databases Main Keyword Control Vocabulary Spotting Concept
wildfire, urban fires, forest Source: where and how
Scopus fire, wildland, WUI spotting originates

Generation: what elements
embers, firebrands, hot spot
are produced

Transport: how firebrands

fire propagation .
propag are carried

Web of o "
. . Deposition: where fire-
Science L fuel bed, spot fire, secondary
spotting fire brands land and accumu-
fires
late
fire behavior, fire suppres- Impact: what consequences
sion result from spotting
| : I }
Google fire risk, fire hazard, fire Hazard .spec1ﬁc 'rlsks asso
Scholar ciated with spotting

safety

. . . Mitigation: strategies for
fire simulation 8 &

prevention and suppression

The research for primary articles was conducted independently in each of the three
databases using a two-step approach. Step 1 involved the use of the main keyword alone
(e.g., “spotting fire”), while Step 2 combined the main keyword with a selected control
vocabulary (e.g., “spotting fire” AND “wildfire”). Search results were compiled in an Ex-
cel spreadsheet and underwent a two-phase duplicate removal process: Phase 1 elimi-
nated duplicates within each database, and Phase 2 removed duplicates across the
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combined dataset. A notable challenge arose in Google Scholar, where document types
were not always clearly identified. Only peer-reviewed journal articles and book chapters
were included for analysis. The following subsection outlines the inclusion and exclusion
criteria used to finalize the selection of studies for this SLR.

2.2. Inclusion and Exclusion Criteria

Following the PRISMA methodology, specific inclusion and exclusion criteria were
established to ensure the selection of studies directly relevant to the research scope. These
criteria were based on publication year, document type, language, and thematic align-
ment with fire spotting modeling. Table 3 summarizes the criteria applied.

Table 3. Inclusion and exclusion criteria for SLR.

No. Exclusion Criteria Inclusion Criteria
1 Studies published before the year Studies published between the years 2000
2000 and 2023
. . i1 h
2 Studies written in languages other Studies written and published in English

than English
Theses, dissertations, conference arti-

. Peer-reviewed journal articles and book
cles, posters, reviews, demo docu-

chapters
Studies within the defined scope of study
(related to spotting or its modeling)

3 ments, grey literature (e.g., reports,
software guidelines, laws, or regula-
tions)

Extended versions of previously pub-
lished articles

Studies outside the defined scope of
review (not related to spotting)

6 Duplicated records

Studies focused on ember accumula- Studies modeling fire spotting phases (gen-
tion near buildings, structural vulner- eration, transport, ignition) within

ability, and broad fire dynamics with- wildland or WUI contexts, including urban
out a focus on spotting, or vegetation settings where the focus remains on spot-
effects unrelated to fire spotting be-  ting dynamics rather than accumulation or
havior. structural impact.

After removing duplicates, titles and abstracts were screened based on defined crite-
ria. Additional filters were applied to limit the dataset to English-language studies pub-
lished between 2000 and 2023 and to include only book chapters and peer-reviewed jour-
nal articles. Studies meeting these conditions were then assessed for their relevance and
alignment with the SLR objectives. Full-text evaluations followed, with additional exclu-
sions applied to studies outside the scope of analysis. The final set of included studies was
determined based on whether they fell into one of two main categories: (i) studies inte-
grating fire spotting models into fire propagation frameworks to evaluate their influence
on wildfire behavior; or (ii) studies addressing fire spotting as standalone investigations,
focusing on specific phases or impacts of the spotting process. A third category, (iii) stud-
ies focused on ember accumulation near buildings, broad fire dynamics, vegetation effects
unrelated to spotting, or structural vulnerability, was excluded, as outlined in Table 3 (cri-
terion 7). This categorization ensured alignment with the core research questions and
maintained methodological consistency in evaluating fire spotting models.

The detailed flow of the study selection process is presented in the Results section
using the PRISMA 2000 flow diagram. In addition to the systematic screening and synthe-
sis, two complementary analyses were conducted to enhance understanding of the field.
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First, to better interpret the modeling approaches used in the selected studies, a classifica-
tion of fire spotting models was developed based on their integration into existing fire
spread modeling frameworks. Second, a bibliometric network analysis was conducted to
examine collaboration patterns, keyword co-occurrences, and thematic trends in fire spot-
ting modeling research. These components are described in the following subsections.

2.3. Fire Spotting Models Classification

To facilitate a structured analysis of the modeling strategies identified in the selected
studies, fire spotting models were categorized using adapted frameworks from estab-
lished classifications of fire spread models. This approach provides a clear basis for un-
derstanding the underlying assumptions, computational methods, and practical applica-
tions of each modeling approach. A well-defined classification system facilitates compar-
ison across models, aids in identifying approaches suitable for specific wildfire contexts,
and informs future model development by highlighting dominant methodological trends
and regional research contributions. Given the inherent complexity of wildfire behavior,
influenced by fuel characteristics, terrain variability, wind dynamics, and fire spotting
processes, this review refines and applies three widely recognized classification schemes
originally developed for fire spread models. The adapted framework provides a system-
atic characterization of fire spotting models, highlights critical gaps and underexplored
areas in the existing literature. The adapted classification is presented across three tables:
Table 4 outlines a traditional classification based on the nature of equations (Pastor et al.
[45]). In contrast, Table 5 focuses on applicability and computational approaches (Or et al.
[47]), while Table 6 categorizes cellular automata models with an emphasis on grid-based
simulations (Krougly et al. [51]).

Table 4. Traditional model classification based on the nature of equations, adapted from Pastor et al. [45].

Application and Valida-

Model type = Methodological Basis Nature of Equations tion

L Derived from ob-
.. Based on statistical .. R
Empirical , served Limited applicability
correlations . .
relationships

Combines theoretical ~Balance physics laws
Semi-empirical principles with empirical with experimental =~ Practical application

adjustments data
_ Rooted in fundamental Detailed mathemati- Broiad applicability 1?ut
Theoretical hvsical laws cal requires complex valida-
Py formulations tion

Table 5. Model classification by applicability and computational methods, adapted from Or et al. [47].

New Model Methodological Fire Approach
Type Basis Representation and Application
. Statistical correla- Does not model physical Limited applicability; ma-
Statistical- . . . . .
. tions; mechanisms; focus on ob- chine learning for predic-
empirical . . . . .
machine learning  served relationships tions
Combes physical

. . Simplifies physics using ~ Balance of theory and
. . principles with . . . ] .
semi-physical .. . approximations; dimen- practice; small-scale vali-

empirical adjust-

sional analysis dation
ments
. High-resolution simula- o
Physical- Fundamental 16 . Broad applicability; com-
Lo tions; solve conservation . .
mechanistic laws; plex validation

equations
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detailed simula-
tions

Analogies with Captures patterns without Useful for understanding
Other models * similar phenom- detailing the physics of the patterns; may lack com-
ena process plexity

* Analogies with similar phenomena (cellular automata, percolation, diffusion).

Table 6. Categories of Cellular Automata models synthesized from Krougly et al. [51].

CA Model Methodological
Categories Basis

Approach

Model Specifications and Application

Fire spreads from cell CA is combining with de- Fire propagation is
CA1—Determinis-to cell based on pre- terministic models (e.g., based on fixed de-
tic Models/Simula-defined rules without physics-based models, lays influenced by

tors ! incorporating ran-  such as Rothermel’s fuel type, slope, and
domness. model). wind orientation.

Fire spread involves
randomness, with
probabilities govern-

CA2—Stochastic
Models (Random
Chance of Fire
Spread) 2

Percolation models: Fire Competing proba-
spreads if a generated ran- bilities determine
dom number exceeds a  fire spread and

ing th. h
ing the state changes specified threshold. burnout behavior.

in cells.

Incorporates random- Markov chain models: FireProduces irregular
ness (e.g., fire spot-  spread is influenced by fire patterns due to
ting) into fire spread random delay probabili- stochastic delays;

CA3—Stochastic
Models (Continu-
ous-Time Markov

Chain Model) > to simulate uncer-  ties and local/neighbor-  transition rates fol-

tainty and variability. hood conditions. low Markov chains.

I —Deterministic Cellular Automata Model; 2—Stochastic Cellular or “lattice” model; 3—Continu-
ous-Time Markov chain (CTMC) Representation of the Entire Grid.

Table 4 presents three primary categories: empirical models, which use statistical cor-
relations and offer simplicity but limited generalizability; semi-empirical models, which
integrate physical principles with empirical adjustment to balance theory and application;
and theoretical models, which are grounded in first principles and describe fire dynamics
through mathematical, chemical processes, and physical formulations.

Table 5 presents a modern classification of fire behavior models based on methodo-
logical foundation, fire representation, and practical application. This classification re-
flects recent advancements in computational methods and a growing shift toward data-
driven approaches. Statistical-empirical models rely on observed data patterns, often us-
ing machine learning algorithms, but they lack representation of underlying physical
mechanisms. Semi-physical models combine simplified physical principles with empirical
adjustments and are typically validated at small scales. In contrast, physical-mechanistic
models are grounded in fundamental physical laws and involve high-resolution simula-
tions to solve conservation equations, requiring complex validation and high computa-
tional resources. The final category, “other models,” encompasses analogy-based ap-
proaches that utilize comparisons derived from similar phenomena to capture general be-
havioral patterns [47].

Table 6 categorizes cellular automata (CA) models for fire spread based on method-
ological foundation, model specifications, and simulation approaches. The first category
(CA1l), CA simulators, employs deterministic rules where fire spread is governed by en-
vironmental parameters such as fuel type, terrain slope, and wind direction, resulting in
consistent and predictable behavior. The second category (CA2) comprises stochastic
models based on percolation theory, where fire spread is determined by probability,
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offering a more realistic representation of uncertainty. The third category (CA3) encom-

passes stochastic models that utilize Continuous-Time Markov Chains (CTMC), repre-

senting fire spread as probabilistic transitions that occur over continuous time. These

models capture complex interactions and random delays influenced by neighboring cell

states and local conditions [51].

This classification supports comparison across modeling approaches and clarifies

how different methods address fire spotting dynamics. A summary of the identified mod-

els and their key characteristics is provided in Table 7.

Table 7. Summary of fire spotting model classification of the final 102 relevant studies.

Research Focus Area Model Type/ New Model/ Year Range Country/References
Approach Approach
Physics-based refinement
Literature Empirical, CFD * updates United States ([28,47,52])
Review review Land surface modeling improve-  2003-2023  Australia [33], Spain [45], Portugal

ments
Mathematical integration with GIS *

(53]

Firebrand Genera-

Semi-empirical,

Semi-physical,

United States ([54-56])

tion EE;:;:;L Statistical-empirical, ML * 2015-2022 :;;i;?a[?gg]
United States (43,60-65])
Theoretical, Semi-physical, Australia ([37,59-61])
Firebrand Transport semi-empirical, Statistical-Empirical, 20062022 Portugal ([62,63]),

Empirical, Stochastic

Physical-mechanistic

China [64], Japan [65], France [66],
Canada [67]

United States ([68-72]),

Theoretical, Semi-physical, China ([73-76])
Ignition semi-empirical, Statistical-empirical, 2009-2023 Chile ([77,78]), Portugal [79], France
Empirical Physical-mechanistic [80], Russia [81], United Kingdom
[82]
. . . Physical-mechanistic, Canada ([29,83])
P:‘y;'tlgi'bisfi efize Se{:fg;‘i“f;lc’al Semi-Physical, 2008-2021 United States [84]
P & p Statistical-mechanistic France [85]
United States ([20,86-90]), Spain
Integration of spot- Theoretical, Semi-physical, ([21,42,44,91-98])
ting in existing mod- Semi-empirical, Physical-mechanistic, 2000-2023 Greece ([99,100]), Canada ([51,101]),
els Hybrid, CA * Other Models, ML * France [102], Italy [103], Japan [104],
China [105]
Semi-empirical, .
Empirical, Semi-physical, Physical-mechanistic, Umted. States ([11,106-110])
Computational model- Statistical-empirical, Multi-scale data Australia ([13,14,36,111-118])
Empirical research o o ona mo empirical, Vit , 2004-2023 Canada ([119-121]), Spain [18], Por-
ing, Empirical analy-  collection and Modeling for fire- .
. . g . tugal [32], Chile [122], France [123],
sis, brand-driven wildfire dynamics
. . Japan [124]
Literature review
Integration of spot-
ting in the opera- Semi-empirical, Semi-physical, Other Models 2014-2023 Spain ([125,126]), United States [127],

tional fire spread
model

Hybrid

Australia [128]

* CFD—Computational Fluid Dynamics; GIS—Geographic

Learning; CA —Cellular Automata model.

Information Systems; ML —Machine
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2.4. Bibliometric Network Analysis of Fire Spotting Research Using VOSviewer

To complement the systematic review, a bibliometric network analysis was con-
ducted to explore the structural and thematic development of fire spotting modeling re-
search. This analysis aimed to uncover collaborative patterns, thematic clusters, and con-
ceptual linkages within selected literature. A total of 102 studies were analyzed using bib-
liographic data extracted in RIS format and processed with VOSviewer (version 1.6.10)
following the official VOSviewer manual [129]. The analysis included three key types of
networks:

1. Co-authorship network, highlighting collaboration patterns, key contributors, influ-
ential research groups, and geographic distribution of fire spotting modeling re-
search.

2. Keyword co-occurrence network, based on author-defined keywords, identifies the-
matic trends and reveals how research topics have evolved over time, indicating
dominant themes and interdisciplinary linkages.

3. Term co-occurrence network, derived from text mining of titles and abstracts, reveals
deeper conceptual patterns, highlighting underlying connections between topics,
identifying knowledge gaps, and indicating emerging methodologies.

Each network is composed of nodes (representing authors, keywords, or terms) and
links (representing co-occurrence or collaboration relationships). The size of each node re-
flects the frequency of occurrence, while the thickness of links indicates the strength of as-
sociation between items. Nodes with higher connectivity and frequency appear larger and
are typically positioned more centrally in the network, often acting as bridges across the-
matic clusters. Custers are generated using VOSviewer's modularity-based algorithms
[129], which group closely related nodes based on co-occurrence patterns. Clusters identifi-
cation follows a two-part system: (i) each cluster is assigned a unique numerical identifier,
and (ii) for visual clarity, distinct colors are applied only to the most prominent and central
clusters. Smaller or peripheral clusters are displayed in gray but retain their numerical
identifiers for reference and analysis. To optimize visualization, network layout was re-
fined using association strength normalization, with adjustments to clustering resolution
and layout parameters to enhance interpretability while maintaining data integrity.

To maintain the thematic resolution of the dataset, no terms or keywords were
merged during processing. Author-supplied keywords such as “firebrand” and “fire-
brands” or “ember” and “embers” were retained as separate items. Despite their lexical
similarity, co-occurrence and clustering analyses revealed that these terms are used in
distinct thematic contexts. For example, in the keyword co-occurrence network, “fire-
brand” and “ember” appear together in one cluster, typically associated with physics-
based modeling of ignition mechanisms and plume dynamics. In contrast, “firebrands”
and “embers” appear in a separate cluster, where they are more closely linked to post-fire
investigation, ember trajectories, and fire spread modeling using Lagrangian and LES
techniques (as further discussed in the Section 3). These distinctions reflect genuine vari-
ation in how authors frame research within specific methodological contexts. Merging
such terms would risk obscuring meaningful conceptual distinctions and reducing the
interpretive value of the analysis.

The Results section provides a detailed synthesis of the selected studies, structured
around the predefined research questions (RQs). The overall methodological workflow is
illustrated in Figure 2, which outlines the key phases of the systematic review process: (1)
final study selection, (2) classification of fire spotting models and research focus area, (3)
bibliometric network analysis, and (4) synthesis of findings mapped to research questions.
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Figure 2. SLR Design and Workflow for Fire Spotting Modeling Research.

3. Results
3.1. Fire Spotting Models: Trends, Classification, and Approaches

This section addresses RQ1 and RQ2 by systematically analyzing and classifying fire
spotting models and approaches. RQ1 examines the evolution of fire spotting models from
2000 to 2023, while RQ2 provides a structured classification of the dominant methods and
computational frameworks used in this field. The study selection process is detailed in
Figure 3, following the PRISMA 2020 flow diagram used to document the identification,
screening, and inclusion of studies in this review.

Identification of ies via and registers
=
ﬁ Records identified from: ?ﬁg‘;ﬁf’é&mo"e" before
Scopus (n = 988) N ;
s Web of Science (n = 399) > 3'“5“2?}‘85{&”“5 removed
5 Google Scholar (n = 2296)
Records screened . | Records excluded
(n=1018) | Books chapters and Articles not
in English {n = 518)
Total documents: Book chapters .| Documents excluded: unrelated
2 and Articles (n = 499) "| title and abstract not in English.
Ti (n=2378)
i !
Book chapter and Articles
assessed for eligibility by full text | —— Reports excluded (n = 19)
(n=121) Broader fire dynamics (n = 6)
Vegetation effects (n=4)
Structural vulnerability (n = 5)
Empirical studies not aligned
with SLR objectives (n = 4)
J— Y
§ Studies included in review
3 (n=102)
o
=

Figure 3. PRISMA 2020 flow diagram of the database search and final study selection process.
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Figure 3 presents a clear visual summary of the systematic review process, detailing
each step from the initial database search to the final inclusion of studies. The search
yielded 3663 records: 968 from Scopus, 2296 from Google Scholar, and 399 from Web of
Science. After removing duplicates, 2645 unique records remained for screening. Titles
and abstracts were rigorously scrutinized, resulting in the exclusion of 519 studies due to
a lack of relevance. A full-text review was conducted on 499 reports, all of which met the
predefined criteria and were retained for further evaluation. Despite this, 378 records
were excluded at various stages, reflecting the application of stringent selection criteria.
The final selection was guided by targeted keyword searches and the overarching research
questions (RQ1-RQ5). After duplicate removal and preliminary exclusions, the dataset
was refined to 121 studies. Full-text review led to the exclusion of 19 studies that did not
meet the specific objectives of this SLR. These excluded studies addressed broader fire
dynamics (n = 6), vegetation effects (n = 4), structural vulnerability (n = 5), or consisted of
empirical work unrelated to fire spotting models (n = 4). The final set of 102 studies is
summarized in Table 7, with detailed findings provided in Appendix A (Tables A1-AS8).
A model-specific classification of fire spotting models and approaches is presented in Ap-
pendix B (Tables A9-A16). Additional visualizations of bibliometric analysis (Figure S1-
515) and the complete list of selected studies in RIS format (Lista S1) are available in the
Supplementary Materials. Table 7 provides a thematic classification of the 102 selected
studies, organized by research focus, modeling approaches, year ranges, and country of
origin (based on the corresponding author). This structured overview highlights the di-
versity of modeling techniques, ranging from empirical and semi-empirical to physics-
based and hybrid approaches, as well as emerging trends such as the integration of ma-
chine learning and operational fire spread modeling. The geographic distribution under-
scores strong contributions from the United States, Australia, and several European coun-
tries. These thematic patterns and methodological developments are further analyzed in
the following subsections and synthesized in the Discussion section, with reference to pre-
defined research questions (QRs).

3.2. Research Collaboration and Thematic Trends in Fire Spotting Studies

This section addresses RQ3 by examining collaborative patterns and thematic devel-
opment in fire spotting research through bibliometric network visualizations. Three types
of networks are analyzed: co-authorship (Figure 4), keyword co-occurrence (Figure 5),
and term co-occurrence (Figure 6). Each visualization is accompanied by a cluster sum-
mary table outlining the main thematic areas identified through the analysis. In all figures,
node colors represent distinct thematic clusters, each assigned a unique numerical identi-
fier, while gray nodes indicate smaller or peripheral clusters. The first network analyzed
is the co-authorship structure, visualized in Figure 4.

Figure 4 illustrates collaborative patterns within fire spotting research, revealing distinct
research groups formed through frequent co-authorship. The network was constructed using
full counting, with all co-authorships equally weighted and no parameter modifications, en-
suring a neutral and reproducible cluster structure. Each node represents an author, with node
size indicating the author’s publication output, and links representing co-authorship relation-
ships. A total of 46 clusters were identified, representing distinct research teams. Larger nodes
indicate prolific authors, while central nodes represent those who bridge groups, facilitating
knowledge exchange and advancing fire spotting modeling.
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Figure 4. Co-authorship network visualization based on bibliographic data.

Among the 46 clusters, several isolated groups represent niche or emerging topics
with limited direct collaboration. These clusters address diverse aspects of fire spotting
and fire spread, ranging from empirical studies to advanced computational modeling and
technological innovations. For instance, empirical contributions include the use of infra-
red imagery and photogrammetric monoplotting to analyze firebrand dynamics and past
wildfires. Modeling approaches involve stochastic methods and cellular automata to sim-
ulate fire spread and spotting, incorporating firebrand transport, ignition probability, and
landscape variability. Additional work explores machine learning frameworks for pre-
dicting firebrand production and fire spread patterns, integrated with digital twin tech-
nology to enable real-time, adaptive simulation in complex environments. Other notable
developments include operational virtual reality tools for fire spread training, custom par-
ticle tracking software, and the detection of firebrands in turbulent flows. Studies also
apply physics-based coupled fire-atmosphere models and computational fluid dynamics
(CFD) to simulate firebrand lofting and plume dynamics, as well as long-distance
transport.

For in-depth analysis, only clusters with at least five publications and strong inter-
author connectivity were selected, representing the field’s most influential contributors.
These include leading groups associated with Fernandez-Pello, Pagnini, Almeida, Sulli-
van, and Tohidi. Table 8§ summarizes the key research clusters by geographic origin (based
on the corresponding authors’ countries), core research areas, and provides a brief de-
scription of each thematic cluster. The clusters span a range of approaches, from empirical
and field-based studies in Australia and Portugal to physics-based modeling and simula-
tion innovations in Spain, France, the USA, and China. Clusters 8 and 18 highlight cutting-
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edge work that integrates spotting and turbulence into operational fire spread models,
utilizing probabilistic and computationally efficient methods. Clusters 2, 3, 5, and 12 focus
on ignition thresholds and firebrand behavior through laboratory experiments and theo-
retical modeling. This diversity reflects a maturing yet fragmented field, where interdis-
ciplinary collaboration between empirical research and advanced modeling remains a key
opportunity for future progress. The table also underscores regional strengths, with Spain
and the USA standing out in model development and integration, while Australia and
Chile focus on field-based and ignition-driven investigations. This integration of
knowledge fosters methodological collaboration and stimulates innovation across both
thematic and regional boundaries.

Table 8. Key fire spotting research clusters from the co-authorship network.

Cluster/Corresponding Research Brief Description

Author’s Country Area
Investigates the fundamental processes of wildfire
behavior with a focus on heat transfer, fire spread,
and spotting dynamics. Integrates empirical re-
Generation, P 'g y ‘g P
search, reviews, and modeling efforts to under-
Cluster1 @ Transport,

stand the role of environmental conditions, fire
characteristics, fuel characteristics, and firebrand
aerodynamics and combustion. Supports opera-
tional decision-making, especially in the Austral-
ian context.

Australia (7), USA (1) and Empiri-
cal Research

Covers firebrand transport, ignition thresholds,
and smoldering behavior through experimental,
numerical, and modeling studies. Research in-
cludes ignition delay, firebrand combustion, and
aerodynamic transport under varying environ-
mental conditions (e.g., wind, fuel moisture). In-
novations include cooperative spot ignition, the
combined effects of metal hot particles and ther-
mal radiation, and small-world network modeling
to assess the influence of spotting on fire spread.
Studies also address 2D and 3D firebrand trajecto-
ries, emphasizing the effects of plume and wind.
Physics-based fire spotting models contribute to
improved predictions of firebrand landing, resid-
ual mass, and ignition potential.

Cluster 2 @, China (4)
Cluster 3 B, USA (7),
UK (1)

Cluster 5 8, France (3)
Cluster 12 ©, Chile (3)

Transport,
Ignition, and
Fire Spotting
Integration

Focuses on firebrand dynamics, combustion, and
spot fire behavior. Studies include firebrand orien-
tation, airflow effects, and empirical trajectory
prediction. Also investigates the impact of spot
fires and terrain on the rate of fire spread, empha-
sizing long-distance spotting and fire channeling
in complex landscapes.

Cluster 7 @, Portugal Transport,
(4) Ignition, Em-

Cluster 17 ¥, Australia pirical Re-
4) search

Addresses the integration of random effects, such

Fi d
1re spread s fire spotting, turbulence, and ignition delay,

havi
Cluster 8 B, Spain (9), behavior,

Italy (1)
Cluster 18 *, Spain (2)

into wildfire spread models. Uses advanced tech-
niques like Level Set Method (LSM), Discrete
Event System Specification (DEVS), reaction-diffu-
sion equations, Ensemble Kalman Filters analo-
gies, and surrogate modeling. Probability density

Fire Spotting
Integration,
Operational
Tools
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functions (PDFs) are applied in post-processing to
represent uncertainty and variability in firebrand
landing and ignition potential. Operational tools
such as LSFire+ and WRF-SFIRE incorporate mod-
els like RandomFront and PhyFire, enabling GIS
integration, real-time wildfire simulation, and the
use of computationally efficient spotting indices.
The research also examines the impact of atmos-
pheric stability, slope, and flame geometry,
thereby enhancing the realism and predictive ac-
curacy of fire spread modeling.

Focuses on the empirical and modeling studies of
firebrand generation and transport from conifer-
ous trees. Involve wind tunnel experiments, aero-

Generation dynamic analysis, and stochastic modeling (e.g
Cluster 25 USA (5)  and Monte Carlo simulation). Supports fire spread
Transport

models by improving understanding of firebrand
lofting, flight behavior, and the potential integra-
tion of spotting dynamics.

The second network analyzed is the keyword co-occurring structure, visualized in
Figure 5. This network is based on author-assigned keywords extracted from biblio-
graphic data. A total of 326 keywords were analyzed using full counting in VOSviewer,
with clustering and visualization settings optimized through association strength normal-
ization, layout adjustments, and a cluster clustering resolution (0.6). This refinement re-
duced the number of clusters from 35 to 28, with the largest connected network compris-
ing 262 items. Keyword weights were based on their frequency across 102 studies. The
visualization reveals central themes, such as spotting, firebrand, wildfire, fire spread, sim-
ulation, and ignition, highlighting their prominence in the field. In contrast, peripheral
clusters, such as digital twin (cluster 23), birth-jump processes (cluster 16), and Spetses
Island (cluster 15), represent emerging methods, niche modeling techniques, or localized
case studies with limited integration. Strongly connected clusters indicate close thematic
relationships across subfields, while isolated nodes reflect more specialized or developing
areas. Tables 9 and 10 provide detailed summaries of the central and peripheral clusters
identified in this analysis.

Table 9 summarizes the central clusters that define the core of fire spotting modeling
research. These clusters encompass dominant themes such as firebrand dynamics, ignition
mechanisms, fire spread simulation, atmospheric interactions, and model validation. Top-
ics include urban-WUI fire behavior, stochastic and physics-based modeling, experi-
mental and simulation-based approaches, and fire-atmosphere coupling. Techniques
range from cellular automata and Lagrangian particle models to Monte Carlo simulations
and machine learning. Clusters 1-13, 18, 22, and 25 reflect a strong emphasis on empirical
and theoretical studies, advanced computational tools, and interdisciplinary integration.
Collectively, these clusters represent the mature and evolving foundation of fire spotting
research.
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Figure 5. Keyword co-occurrence network visualization based on author keywords.

Table 9. Thematic central clusters derived from Author keyword co-occurrence analysis.

Cluster Theme Brief Description

Investigates firebrand dynamics and their influence on wildfire behavior, urban
) fire spread, and WUI * ignition using advanced simulation and stochastic mod-
Urban Fire Spread . . . . . L .
custer1 () and eling. Emphasizes computational techniques, including image processing and
virtual reality, for risk assessment and suppression planning. Grounded in ex-
perimental studies, with a focus on firebrand aerodynamics, spotting behavior,
and urban ignition pathways.

Firebrand Dynamics

Explores fire spotting behavior and its integration with fuel distribution and
landscape patterns. It includes simulation of wildfires using coupled landscape
models and probabilistic cellular automata (CA) (e.g., EMBR) to assess patch
formation and spread patterns. Highlights case studies that employ the EMBR
model to simulate fire behavior in Yellowstone National Park (USA), estimating
fire perimeter development, burn area, and the influence of spotting on fire
propagation. Emphasizes WUI protection strategies, including defensible space
and community planning, supported by tools such as FireSmart and FireWise.
Investigates how surface and crown fires influence potting distance to inform
fire management strategies. Examines the interactions between atmospheric
conditions and fuel moisture, including heat transfer processes such as radia-
tion and convection, in the dynamics of firebrands and spotting behavior.

Fire Spotting Dynam-
B  ics and WUI Protec-
tion Strategies

o

IN)

Examines the extreme fire behavior and ignition in wildland fuels, emphasizing
Extreme Fire Behav- crown fire development, canopy structure, and heat transfer. Incorporates wild
clusters [ ior and speed, moisture content, and packing ratio, thermal radiation to model ignition
Ignition Dynamics timing and intensity by hot particles, with a focus on spotting and WUI fire risk
under high-heat flux conditions.

Investigates ember transport and fire spotting in wildfires and WUI using phys-

. Ifﬁrzilz%t:;e%ia;fe ics-based models (fire dynamics simulator (FDS) and dimensional analysis), fo-
o y Modeling cusing on plume dynamics, ember trajectories, flammability, ground-level em-

ber distribution, and thermal degradation. Analyzes boreal forest fire spread
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using spectrogram and acoustic methods to assess spotting and fire front pro-
gression.

Investigates ember trajectories using Lagrangian particle models and Large-
Ember Dynamics andEddy Simulation (LES). Employs mathematical modeling and post-fire analysis
O Fire Spread Modelingin urban and forest environments to examine firebrand behavior and assess fire-
break performance and fire spot fires behavior in diverse forest fuel types.

Focuses on wildfire spread modeling using stochastic processes, numerical sim-
ulations, and turbulence-resolving tools such as OpenFOAM and LES, sup-

Stochastic Fire ported by wind tunnel data for model calibration and validation. Applies Pois-

Spread and

Simulation Models

son processes and right-censoring methods within terrain-informed systems,
such as the Terrain Analysis System (TAS) and GIS. Utilizes irregular coarse
cellular automata to simulate urban mass fire-spread, predicting fire spotting
short- and long-range propagation. Incorporates small-world network and per-
colation theory to capture complex fire forest dynamics and spotting behavior.

Quantifies dynamic fire behaviors using empirical data, including direct, indi-
rect, and anecdotal sources. Investigates fire spread using the Rothermel model,
which incorporates fireline intensity, flame characteristics, and terrain slope to

Empirical and Simu- evaluate the influence of atmospheric stability and topographic factors on fire

lation-Based Wildfirebehavior. Explores stochastic wildland fire propagation by enhancing fire front

Modeling rate of spread estimation through the incorporation of random phenomena

such as fire spotting and turbulence, using modelling approaches including the
level set method, reaction-diffusion, discrete event system specification (DVES),
and ForeFire.

Addresses the spread and spotting dynamics across various landscapes, includ-
ing post-earthquake and urban conflagration scenarios, with applications in
management. Highlights advanced probabilistic methods, including Monte
Carlo simulation, large deviation theory, generalized polynomial chaos, and
Gaussian process, for sensitivity analysis and experimental validation. Empha-
size decision support systems and software tools for risk assessment in
wildland and WUI fire contexts.

Examines wildfire and fire spotting behavior under critical conditions using

o Stochastic Fire Risk
Modeling

coupled fire—atmosphere modeling, with emphasis on crown fire, surface, and
Fire Behavior in For- ground fire dynamics. Focuses on dry eucalypt forest fires and megafire scenar-

est and ios, integrating experimental data and fire meteorology to assess ignition
Atmospheric Condi- thresholds and spread mechanisms. Utilizes ACCESS * and the Vesta model to
tions simulate fire—atmosphere interactions, including pyrocumulonimbus develop-

ment. Highlights case studies, such as the Waroona fire in Australia, to validate
simulations and support risk assessment in eucalypt-dominated landscapes.

Investigates wildfire dynamics and fuel bed ignition across diverse forest fuel
types (eucalypt, ponderosa pine, sagebrush, and douglas-fir) using thermal

model, Monte Carlo simulation, and nonlinear regression to evaluate their ca-
pability to generate spot fires and assess fire spotting behavior in wildfire and
WUI environments. Examines bushfire risks and forward spread rate in euca-

Fuel Influence on Fire
Spread and Spotting

lyptus forest near the WUI zones, analyzing spotting and wildfire spread pat-
terns.

Explores wildfire behavior using remote sensing, monophotogrammetry, aerial
wildfire photography, and the WSL monoplotting tool to estimate the rate of
Spatial Fire Behavior fire spread and map fire perimeters and ignition patterns. Investigates torching
Modeling behavior to predict the maximum spot fire distance, improving understanding
of firebrand transport and fire behavior. Develops a spatial model, using lattice-
based Markov methods to simulate stochastic fire spread. This framework
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captures uncertainty and variability in fire propagation, enabling more accurate
predictions of emergent fire behavior across landscapes.

Examines firebrand behavior and ignition mechanisms in wildland and WUI
fires. Utilizes probabilistic approaches, including the Monte Carlo method and
Firebrand GenerationLarge Deviation Theory, to simulate rare events such as long-range spotting. In-
and Transport  vestigate firebrand transport and accumulation using firebrand generators to
assess spotting behavior and cooperative ignition, supporting analysis of spot
ignition dynamics in WUI environments.

Explores landscape-scale fire modeling and environmental interactions, empha-
sizing integration of fire behavior simulators such as FARSITE with dynamic
Fire Regime and variables including fire weather and sundowner winds. Investigates the influ-
Landscape Dynamicsence of fire weather on spotting behavior, as well as the effects of suppression
strategies, including fire regime, vegetation growth, and land use change, on
landscape-scale dynamics.

. . . Analyzes biomass combustion and ignition mechanisms, including smoldering
Fire Physics and Igni- R . e . .
ton Processes and spot fire ignition, using a coupled-physics fire model to simulate spotting
behavior in wildland and WUI fires.

Machine Learning forStudies the behavior of firebrands in the WUI environment, focusing on fire-
Firebrand Character- brand generation rate and spatial distribution. Applies machine learning, par-

1 22
Cluster istics and WUI Fire ticularly k-nearest neighbors, to estimate firebrand aerial number density and
Risk aerial mass density.
, Analyzes bushfire-specific firebrand behavior through aerodynamic coeffi-
Firebrand Aerody- . . . . . .
Cluster 25 cients, surface density, and terminal velocity. Supports modeling of firebrand

namics in Bushfire e . o
transport and deposition under bushfire conditions.

* WUI—Wildland-Urban Interface; GIS—Geographic Information System; ACCESS— Australian
Community Climate and Earth System Simulator; FARSITE—Fire Area Simulator.

Table 10 presents peripheral clusters that reflect both emerging research directions
and specialized modeling approaches in fire spotting studies. Clusters 14-17 represent
foundational yet less central themes, including spatial burn analysis, complex systems
modeling, mathematical formulations of fire spread, and atmospheric dynamics. These
areas contribute valuable insights into fire occurrence, nonlinear propagation, and
weather-driven fire behavior, often using advanced techniques such as cellular automata,
reaction-diffusion equations, and high-resolution numerical weather prediction (NWP).
Additional clusters (19, 21, 23, 24, 27, and 28) highlight recent developments and niche
applications, including extreme wildfire events, fuel hazards assessments, ignition thresh-
olds, and real-time simulation using digital twin and machine learning approaches. Top-
ics such as ecological impacts, stochastic propagation models, GIS-integrated simulations,
and firebrand tracking methods further illustrate the thematic diversity and technical in-
novation found at the periphery of fire spotting research. Collectively, these clusters rep-
resent evolving and interdisciplinary extensions of the core modeling landscape.

The third network analyzed is the term co-occurrence structure, visualized in Figure
6. This network was derived from text-mining titles and abstracts, rather than author-
supplied keywords. The term co-occurrence analysis, based on 342 terms, employed bi-
nary counting with a minimum of two occurrences, covering 60% of the most relevant
terms. Visualization was optimized using association strength normalization, with ad-
justed layout settings (Attraction = 2, Repulsion = 0), and a clustering resolution of 1.2,
resulting in 13 thematic clusters.
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Table 10. Thematic peripheric clusters derived from Author keyword co-occurrence analysis.

Cluster Theme Brief Description

. Analyzes fire occurrence, recurrence, and size distribution using
Fire Occurrence

ster 14 and Spatial Pat-
terns

fractal dimension and Lorenz curves. Integrates land cover data
and post-fire features, such as residual vegetation islands, to as-
sess spatial burn patterns.

Investigates spotting and forest wildfires using cellular automata

within the framework of complex systems, capturing emergent
Complex Systems plexsy p & g

ister 15 and Wildﬁre Dy-
namics

fire spread dynamics across heterogeneous and mountainous
landscapes. Integrates GIS to simulate real-world conditions, in-
cluding case studies like Spetses Island in Greece, to enhance un-
derstanding of wildfire propagation in diverse terrains.

Focuses on birth-jump models and nonlinear integro-differential
equations that couple growth and spatial spread. Derived via
Mathematical random walk and reaction-diffusion frameworks, these models
Models of Wildfire approximate reaction-diffusion equations under concentrated
Spread and Spot- kernels. Key results include thresholds for fire propagation (local
ting spread) and spotting (nonlocal spread), such as the critical do-
main size for sustained spread and the minimal wave speed for
advancing fire fronts.

Focuses on the atmospheric boundary layer and its roles in fire
dynamics, particularly during the Black Saturday bushfires in
Atmospheric and Australia. Investigates how shallow convection and stable layers
Weather Modeling affect wind-direction variability, influencing fire propagation
for Wildfires  and spotting behavior. These processes are modeled using
mesoscale and high-resolution numerical weather prediction
(NWP).

Extreme Wildfire Analyzes the rapid spread of fires during extreme events using
Cluster 19  Events and Fire geovisualization and thermal imagery to monitor wildland fire

Spread dynamics.
Fuel Hazard and Evaluates fuel htatzard ratings, .hlgh—mteflsn.y fire e.xperlments,
Cluster 20 ember propagation, and spot fire behavior in specific fuel types

High-I ity Fi
igh-intensity " like eucalyptus marginata.

Fire Ignition Limits Studies ignition thresholds under high irradiation and models

Cluster 21 and Simulation smoldering and spotting using numerical simulations.
Digital Twin and Covers innovative mgdehng aPproaChes, Corr.lbmmg dl.gltal twin
Cluster 23 . . technology and machine learning (ML) algorithms to simulate
Fire Propagation . Lo .
ember flow and fire propagation in real-time systems.
Cluster 24 Ecology and Phys- Explores ecological and soil impacts of wildfire with a focus on

ics of Wildfire hydrology and physical fire behavior.

Stochastic Wildfi
ochastic Fvridiire Uses randomized level set and reaction-diffusion methods to

Cluster 26 P tion Mod-
uster ropagation MO simulate wildfire spread across complex terrains.

els

Wildfire Spread Focuses on spatially explicit wildfire spread modeling using sim-
Cluster 27 Modeling and GIS plified physical principles and numerical methods integrated
Integration  with GIS environments to support a complex simulation model.

. Focuses on detection and tracking methods for firebrands in
Firebrand Detec- . . .
Cluster 28 wildland and structural fire environments to understand the

tion and Trackin,
& mechanisms of fire spotting.
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Figure 6. Term co-occurrence network visualization based on the Text Data.

Through modularity-based clustering, terms in Figure 6 were grouped into thematic
categories, revealing interconnections between research concepts. The network showcases
a diverse vocabulary, featuring representative terms such as propagation, urban interface,
moisture content, hot metal particle, wildfire, level set method, phenomena, validation,
and Australia, which reflect the broad scope of fire spotting research. These clusters high-
light the multifaceted nature of the field, encompassing physical phenomena, modeling
techniques, environmental factors, and application contexts. This text-based co-occur-
rence analysis complements the author’s keyword map by revealing deeper thematic re-
lationships that extend beyond explicitly provided keywords.

Table 11 presents the clusters, each associated with a thematic label and brief descrip-
tion, covering topics that range from ignition processes and transport modeling to urban
interface risk and simulation performance.

Table 11. Thematic classification of clusters from term co-occurrence analysis.

Cluster Theme Brief Description
Emphasizes modeling and validation of fire spread in
Urban Fire Spread, urban and WUI contexts. Focuses on real-world case
custer 1 [ WU, and Model studies in Japan, North America, and Spain, address-
Validation ~ ing secondary fire development, spatial fire patterning,
and firefighting effectiveness.
Focuses on ignition mechanisms, especially from an-
Ignition Process thropogenic sources (e.g., welding, power lines),
and Anthropo- within WUI contexts. Emphasizes metallic particles,
genic Firebrand smoldering/flaming studies, and experimental findings
Source to understand ignition thresholds and fire spread po-
tential.

Investigates thermal ignition thresholds by analyzing
interactions between single and idealized firebrands
with forest fuels under controlled heat flux and delay-
time conditions. Combines theoretical and empirical
models to characterize ignition propensity.

Theoretical and
0 Experimental
Modeling of Igni-
tion Thresholds
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Covers theoretical wildfire spread models that incor-
porate random effects such as turbulence and fire spot-
ting using a probability density function to capture
stochastic dynamics. Highlights probabilistic modeling
approaches, including the level set method, and reac-
tion-diffusion equations for simulating wildfire behav-

Mathematical
Modeling of Fire
Spread with Ran-

dom Effects

10rT.

Integrates firebrand production dynamics with land-
Firebrand Genera- scape-scale wildfire modeling, supported by a cellular
tion Process and automata model and empirical quantification. Empha-
Landscape-scale sizes fuel type, environmental conditions, and vegeta-
Wildfire Risk  tion influence firebrand generation and treats assess-
ment in WUI and heterogeneous landscapes.

Focuses on real-world wildfire case studies (e.g., Kil-
more East, Black Saturday) and atmosphere-fire cou-
Regional case stud-pled models in Australia. Investigates extreme fire be-
ies and Fire-At- havior, including pyrocumulonimbus clouds for-
mospheric Model- mation, long-range spotting, and the influence of cli-
ing matic and topographic conditions. Emphasize simula-
tion accuracy by integrating high-resolution atmos-
pheric data from the UK Met Office Unified Model.

Investigates the influence of fuel moisture and aerody-
Aerodynamics andnamics on ignition probability and combustion dy-
Experimental Igni-namics. Focuses on laboratory experiments examining
tion airflow, flaming phases, and spotting distances in Eu-
ropean forest fuels.

Studies the mechanisms of firebrand transport, includ-
ing the influence of the atmospheric boundary layer,
firebrand flight trajectories, landing distributions, and
stochastic modeling used to predict firebrand dispersal
patterns. Emphasizes the role of aerodynamic charac-
teristics and variation in initial conditions in determin-
ing the range and impact of spot fires.

Stochastic Fire-
brand Transport
Modeling and Dy-
namics

Evaluates the limitations and uncertainties in wildfire
spread modeling, especially regarding rate of spread
(ROS), environmental sensitivity, and database-driven
predictions. Highlights the need to address gaps in
model performance and reliability in the context of de-

Wildfire Modeling
Gaps and Chal-
lenges

structive wildfires.

Focus on modeling firebrand trajectories, landing pat-
Firebrand Trajec- terns, and recipient fuel interactions. Incorporates sto-
tory and Spotting chastic simulation and submodels to improve the accu-
Submodels  racy of spot fire prediction within broader wildfire
spread models

Physics-Based Fire Develops physics-based wildfire models emphasizing
Spread Modeling, terrain influence, flame behavior, and energy conser-
Model Develop- vation. Combines energy conservation principles with
ment, and Parame-model parameterization for accurate wildfire propaga-
terization tion.

Experimental and Combines experimental and theoretical investigations
Theoretical Igni- of ignition in natural fuels by hot particles. Includes la-
tion Studies  boratory studies of cellulose beds, particle
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size/temperature effects, and theoretical modeling of
ignition processes.

Centers on computational wildfire modeling and sim-
Numerical Simula-ulation. Focus on performance accuracy and efficiency
tion and Efficiency of tools such as PhyFires within academic research and
simulation results analysis.

Recent literature demonstrates a growing integration of fire ignition processes, fire-
brand dynamics, and spread modeling across multiple spatial and physical scales. These
clusters reveal a progression from micro-level ignition studies to landscape-scale simula-
tions, emphasizing the evolution of fire spotting research into a structured, multi-thematic
domain. Clusters 2 and 3 explore ignition processes: Cluster 2 focuses on anthropogenic
ignition sources and smoldering/flaming behavior in WUI contexts, while Cluster 3 ad-
dresses theoretical and experimental modeling of ignition thresholds for forest fuels.

Clusters 1 and 5 emphasize the generation of firebrands and the spread of fire in
complex environments. Cluster 5 examines firebrand production and wildfire risk at the
landscape scale, supported by empirical studies and cellular automata modeling. Cluster
1 highlights urban and WUI fire spread, including model validation and secondary fire
development. Clusters 7 and 12 investigate experimental ignition dynamics, focusing on
airflow, moisture content, and fuel characteristics under laboratory conditions. Clusters 4,
8, and 10 advance stochastic modeling of wildfire spread, incorporating turbulence, at-
mospheric boundary layer effects, firebrand transport, and probabilistic submodels to im-
prove spotting predictions. Cluster 6 integrates fire-atmosphere coupled modeling with
real-world case studies (e.g., Black Saturday), utilizing high-resolution simulations from
the UK Met Office Unified Model (with a horizontal grid spacing of less than 0.6 km to
resolve boundary-layer circulations that influence wind variability and firebrand lofting
[114]). Finally, clusters 9 and 13 address modeling gaps and computational challenges,
highlighting the need to improve the rate of spread estimation, environmental sensitivity,
and overall model efficiency in operational wildfire situations.

Despite these advances in research, several gaps persist. A notable limitation is the
lack of validation using real-time field data, which is essential for assessing the operational
robustness of many models. Integrated frameworks that combine ignition, transport, and
propagation remain underdeveloped, particularly in urban contexts where dynamic spot-
ting and suppression strategies are critical. Furthermore, modeling of mixed urban-natu-
ral fuel environments is still limited, and the development of scalable stochastic transport
models for real-time prediction is urgently needed to support decision-making in rapidly
evolving fire scenarios.

3.3. Evolution of Fire Spotting Research: Publication Trends and Key Studies Areas

This section addresses RQ3 by analyzing growth, geographic distribution, and re-
search focus on fire spotting studies. Statistical analyses and visualizations offer an over-
view of key modeling trends, illustrating how research output has evolved over time. The
geographic distribution of contributions highlights the global research landscape, while
the number of publications per country offers insight into regional research output. The-
matic analysis identifies the dominant topics within the field, and the evolution of publi-
cations illustrates the growth and development of spotting modeling studies.

Figure 7 presents a comprehensive visualization of scientific contributions, organized
by the corresponding author’s country, which combines geographic distribution and
ranking of published papers from 2000 to 2023. Countries are color-coded according to
the number of publications or co-authored papers, with darker shades indicating higher
output levels. The United States leads with 32 publications, underscoring its central role
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in research on empirical analysis, fire spotting dynamics, and wildfire propagation mod-
eling. Australia follows with 18 publications, reflecting its significant investment in re-
search on wildfire science and environmental resilience, likely driven by recurring cata-
strophic bushfires. Spain (15) highlights Europe’s growing engagement, while Canada (9),
China (6), Portugal (6), and France (5) demonstrate active participation from Western Eu-
rope and parts of East Asia. Japan, Chile, and Greece each contribute three or two publi-
cations, making them emerging regional centers of specialized research.

Russia
1 ltaly, Russia, UK

2 Greece

3 Japan, Chile
B S France

B 6 China, Portugal

W 9 Canada

W 15 Spain M
W 18 Autralia »

W 32 USA

Figure 7. Geographic distribution and number of contributions by country (2000-2023).

However, Figure 7 also reveals geographic disparities. Much of Africa, South and
Southeast Asia, and parts of Eastern Europe are either absent or minimally represented in
the dataset. This lack of representation may result from limited research funding, infra-
structural constraints, or lower visibility in indexed databases, presenting opportunities
for international collaboration and capacity building.

The quantitative distribution of publications further supports these observations. The
United States is the dominant global research hub, followed by Australia and Spain, which
demonstrate strong academic engagement. Mid-tier contributors, including Canada,
China, Portugal, and France, actively address related themes, often supported by climate
adaptation or forestry programs. Countries with fewer than five publications, including
Japan, Chile, Greece, the United Kingdom, Russia, and Italy, may be in the early stages of
research development in this field or contribute more indirectly through international co-
authorships not fully reflected in author affiliation data.

Figure 8 categorizes scientific publications in fire spotting research, highlighting di-
verse thematic focuses. The most significant areas are the integration of fire spotting in fire
spread models and empirical research, each accounting for 24.51%, emphasizing advance-
ments in predictive fire behavior. Firebrand transport accounts for 17.65%, reflecting its
significant role in fire spread dynamics, while ignition process studies, which examine
how firebrands initiate new fires, constitute 14.71%, highlighting a crucial aspect of fire
spread. Firebrand generation and fire spotting incorporation in operational fire spread
tools represent 4.90% and 3.92%, respectively, indicating specialized or emerging areas.
Physics-based fire spotting models (including multiple spotting phases) are less fre-
quently studied, accounting for 3.92%, suggesting their complexity or early-stage devel-
opment. This distribution highlights prevailing research priorities in fire spotting, empha-
sizing the consolidation of conceptual frameworks, the integration of fire spotting into
existing or new fire spread models, and the empirical validation of these approaches. It
also reveals gaps and opportunities for further development, particularly in firebrand
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generation, incorporating fire spotting into operational models, and developing physics-
based spotting models.

= Review

» Generation

= Transport

= Ignition

= Physics-based model fire spotting
process

" Integration of fire spotting

m Empiricalresearch

= Operationalfire spread tool

Figure 8. Distribution of research focus areas in fire spotting modeling (102 studies).

Figure 9 shows the annual number of publications from 2000 to 2023. Between 2000
and 2006, publication activity remained minimal, with no more than one paper published
per year. A gradual increase is observed beginning in 2007, followed by a notable upward
trend from 2010 onwards. Peaks in output occurred in 2011, 2014, 2017, 2019, and 2022,
with the latter reaching the highest volume, comprising 12 publications. Although fluctu-
ations are evident, the overall trend suggests a growing academic interest in the topic,
particularly over the last decade. The decline in publication output observed in 2013 (1
publication) and again in 2018 (3 publications) contrasts with higher productivity in the
surrounding years, possibly linked to shifts in research funding priorities or thematic fo-
cus within the field. Despite the variability, the sustained increase after 2010 reflects a
maturing and expanding research domain.
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Figure 9. Annual publication trends in fire spotting research (2000-2023).
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4. Discussion

This section addresses RQ4 by synthesizing key findings from the reviewed studies
and identifying recurring knowledge gaps or underexplored areas in fire spotting model-
ing. Building on the thematic focus areas outlined in Table 7, the discussion integrates
insights from the literature to highlight prevailing research trends, methodological limi-
tations, and opportunities for future investigation.

4.1. Key Findings and Research Gaps in Fire Spotting Modeling

Several review studies identified in this Systematic Literature Review (SLR) provide
a comprehensive assessment of the fire spotting process, focusing on firebrand generation,
transport, ignition mechanisms, and wildfire propagation. These studies emphasize the
critical role of firebrands in wildfire spread and predictive modeling. Pastor et al. [45]
established a fundamental classification of wildfire models, tracing their mathematical
evolution since the 1940s and demonstrating how predictive accuracy has improved the
integration of GIS and multi-model approaches. Meanwhile, Or et al. [47] provide a com-
prehensive review of wildfire dynamics, categorizing major modeling approaches while
focusing on physical processes, fire spotting influences, and environmental impacts, par-
ticularly those related to soil and hydrology. Fernandez-Pello [52] emphasized the need
for enhanced modeling tools to assist land managers in wildfire suppression, fuel treat-
ment, and evacuation planning. Similarly, Koo et al. [28] analyzed firebrand transport and
combustion models, emphasizing the need for empirical approaches and refining predic-
tive models for fire spotting distances. Their findings support the development of ad-
vanced firebrand transport simulations to enhance wildfire spread modeling. Rego et al.
[53] reviewed firebrand studies on generation and transport, identifying spotting as a mul-
tiple-stage process involving firebrand generation, lofting, transport, and ignition of un-
burned fuel. Key factors such as wind and fuel moisture play critical roles in spotting.
Small firebrands from pine and eucalyptus are more prone to ignite fuel beds, with size
and weight influencing their ignition potential. According to Rego et al. [53], firebrands’
density decreases exponentially with distance from the main fire, affecting the likelihood
of ignition in unburned areas. Despite significant progress in understanding the fire spot-
ting process, key gaps remain in accurately modeling the behavior of firebrands. Compu-
tational Fluid Dynamics (CFD) models used in wildfire applications are constrained by
limited physical input data, such as firebrand generation rates, lofting behavior, and com-
bustion characteristics, as well as the high computational cost required to simulate fire
dynamics at adequate spatial resolution across large domains. Wadhwani et al. [33] em-
phasized the need for target studies to enhance CFD modeling and parametric assess-
ments for firebrand transport. Integrating these findings into GIS-based wildfire predic-
tion tools could improve model prediction. However, CFD models remain underdevel-
oped, requiring further parametric studies to enhance the predictability of fire spread and
inform mitigation strategies. Additionally, more research is needed on specific aspects of
firebrand dynamics, including their generation rate, size distribution, and transport mech-
anisms, to refine fire spotting models and improve wildfire risk assessment.

4.2. Firebrand Generation

Understanding firebrand generation is essential for predicting wildfire spread and
spotting behavior. Several studies have investigated different aspects of this process using
semi-empirical ([54,56,58]), hybrid [57] and empirical [55] modeling approaches. Accord-
ing to Wickramasinghe et al. [58] study, the firebrand generation rate was 3.22 pcs/MW/s
(pcs-number of firebrand pieces) for single tree burning and 4.18 pcs/MW/s for forest fire
models, emphasizing the role of wind, vegetation type, and fuel moisture content. Tohidi
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et al. [56] demonstrated that laboratory-scale firebrand generation experiments are rea-
sonable analogs for wildfire conditions. They characterized the firebrand size and shape
distributions of firebrands from coniferous trees. The surface area scales with mass to the
2/3 power, with combustion mechanism and limb failure influencing firebrand size more
than tree height. Caton-Kerr et al. [54] investigated the mechanical behavior of thermally
degraded wooden dowels, confirming that breakage mechanisms are governed by recov-
erable elastic strain during loading. Their findings contribute to the formation of a com-
prehensive failure theory for wood subjected to thermal degradation under simultaneous
wind loading conditions. Using a hybrid model approach that combined stochastic, prob-
abilistic, and semi-empirical methods, Thomson et al. [57] estimated fire spot rates. Their
findings highlight the effectiveness of this methodology, which works with and without
barriers, assessing wildfire risk under various conditions, and proves practical for real-
world applications. Expanding the scope of empirical modeling, Jha & Zhou [55] intro-
duced machine learning (ML) techniques to predict firebrand production. Their results
validate the K-Nearest Neighbors (KNN) model, which achieved over 90% accuracy in
predicting firebrand real mass density (FAMD) and firebrand number density (FAND),
providing the value of ML-driven approaches for modeling and numerical simulation of
firebrand generation.

4.3. Firebrand Transport

The firebrand transport phase has been evaluated using empirical, semi-empirical,
and theoretical approaches. Among the 18 studies, five applied an empirical approach
([37,59,61,62,130]), eight employed semi-empirical approach ([60,64,65,131-135]), and four
used a theoretical approach ([63,66,67,136]]). Additionally, only study [43] utilized a sto-
chastic model. Various models, ranging from statistical-empirical to physical-mechanistic,
have been implemented using these approaches. The most frequently applied models are
physical-mechanistic models, statistical-empirical models, and semi-physical models, as
observed in the 18 studies investigating the firebrand transport phase.

Ellis [37] investigated the aerodynamic behavior of jarrah and karri bark flakes, iden-
tifying their low terminal velocities (2.5 to 8 m/s) and rapid spin as key factors in their
lofting within a convection plume generated by low to moderate-intensity fires (0.5 to 2.5
MW/m). Terminal velocity was influenced by bark flake shape, spin, and surface density,
with rapid spinning reducing descent speed by up to 18% compared to non-spinning
flakes. Spotting behavior was further driven by bark traits, ignition ease, number of de-
tachable flakes, combustion during flight, and free-fall dynamics. Almeida et al. [62] em-
phasized the influence of particle orientation, flow velocity, and combustion regime on
firebrand combustibility, demonstrating their effects on flaming and smoldering dura-
tions, as well as maximum spotting distance. Page et al. [130] analyzed spotting distance
during the 2017 fire season in the USA, showing that maximum spotting distances in-
creased with the combined effects of wind speed and fire growth, but decreased with fire
perimeter shape, canopy height, and terrain steepness. Most spotting distances were <
500 m; the medium-range spotting (1-3 km) was rare, with high wind and rapid fire
growth increasing the likelihood of exceeding 1 km. High wind estimates also improved
Albini’s model by reducing the underprediction of spotting distance. Storey et al. [59]
identified source fire areas as the primary driver of long-distance spotting (greater than
500 m), with weather, vegetation, and topography as secondary influences. Spotting dis-
tance and the number of long-distance spot fires increase significantly with larger source
fire areas combined with strong winds, dense forests, and steep slopes, highlighting the
need for improved bark spotting maps in wildfire modeling. Cruz et al. [61] developed an
empirical-based wildfire spread model, reporting 35-46% errors during development,
with improved accuracy for spread rates above 2 km/h. However, long-range spotting
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remains uncertain due to complex fire—atmosphere interactions, potentially leading to un-
derprediction.

Tohidi & Keye [131] emphasize the importance of full six degrees of freedom (6-DOF)
aerodynamics, encompassing three translational and three rotational motions, in accu-
rately simulating firebrand trajectories. Their experimental dataset enhances the predic-
tion of rod-like debris flight and addresses limitations in previous estimations of spotting
distance. Song et al. [64] observed a bimodal distribution of burning and extinction
modals in small firebrands, demonstrating that critical wind speed affects transport dis-
tance and mass loss, which aligns with experimental data. Oliveira et al. [135] found that
the initial aspect ratio and orientation of cylindrical firebrands significantly influence their
trajectories and travel distances, emphasizing the importance of incorporating oscillations
and rotational motions for accurately predicting fire spread by spotting. Thurston et al.
[60] demonstrated that turbulent plume dynamics (TPD) significantly influence long-
range spotting, doubling maximum spotting distances compared to nonturbulent plumes.
TPD also controls both lateral and longitudinal firebrand dispersal, reinforcing the need
to incorporate TPD parametrizations into fire spread models for greater accuracy and
physical fidelity. Koo et al. [132] demonstrated that firebrands travel farther when termi-
nal velocity assumptions are not applied. Burning dynamics shape their lifetimes, thin
disks burn on their faces, while cylinders burn around their circumference. Canopy fire-
brands exhibit longer travel distances than those from surface fires, with coupled fire—
atmosphere interactions significantly affecting their trajectories and landing patterns.
Mendez & Farazmand [133] applied Large Deviation Theory to efficiently quantify rare
landing events (I-probability events at the tail of the landing distribution) with low com-
putational cost, highlighting that a hybrid approach, incorporating Monte Carlo and Im-
portance Sampling methods, improves wildfire spotting predictions. Their work supports
enhanced modeling of landing distributions, especially in frameworks such as cellular
automata and non-local transport (birth-jump) models. Albini et al. [134] developed a
mathematical model to estimate maximum spotting distances from crown fires, integrat-
ing empirical data with simplified physical principles. Himoto & Tanaka [65] validated a
physics-based urban fire spread model, showing alignment with the Hamada model for
fire spread rates and confirming firebrand scattering patterns. These studies demonstrate
the versatility of semi-empirical models in capturing the complex behavior of firebrands,
thereby improving fire spread predictions and refining distance estimations.

Pereira et al. [63] found that maximum spotting distances align with the Albini model
but underpredict high-intensity fires by 40%. Smaller particles travel farther due to buoy-
ancy and lower char content, with deposition following an inverted exponential pattern.
Sardoy et al. [66] demonstrated that firebrand landing behavior depends on density and
thickness, while those lingering in the thermal plume travel distances independent of di-
ameter, correlating with wind speed and fire intensity. Anthenien et al. [136] analyzed the
effects of firebrand shape, showing that disks travel the farthest while burning, whereas
spheres travel the shortest. Charring lowers density, increasing travel distances for
spheres and cylinders, while ember distance scales linearly with wind speed. Bhutia et al.
[67] compared plume models and coupled fire-atmosphere Large Eddy Simulation (LES)
approaches, demonstrating that fire spotting within the Atmospheric Boundary Layer
(ABL) exhibits probabilistic behavior, with higher release heights increasing the down-
wind distances. LES results remain preliminary and require further validation. Tohidi &
Keye [43] developed a stochastic model that accurately predicts firebrand flight statistics,
highlighting the nonlinear and highly variable nature of spotting distributions due to ini-
tial and boundary wind conditions. They also concluded that lofting is inherently linked
to downwind distance and cannot be decoupled.
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4.4. Ignition Phase

Across 15 studies focus on the firebrand ignition phase, two followed theoretical ap-
proach ([76,81]), ten employed semi-empirical approach ([68-73,75,77,78,82]) and three
([74,79,80]) applied empirical approach. The most frequently applied models are semi-
physical and statistical-empirical. Ganteaume et al. [80] conducted an empirical study to
evaluate the flammability of fuel beds composed of grasses, litter, and bark samples, as
well as the ignition capability of firebrands. Their findings indicate that grasses are more
flammable than litter, with Pinus species being the most flammable among the litters. In-
creased bulk density and fuel moisture content delay ignition and reduce other flamma-
bility parameters. They observed that flaming firebrands exhibited higher ignition fre-
quencies in still air, whereas glowing firebrands require airflow to achieve ignition, high-
lighting how both the combustion phase and wind conditions influence ignition. Addi-
tionally, ignition probability of the fuel bed depends on the type or weight of the fire-
brand, with cone scales of Pinus pinaster, P. halepensis, and Eucalyptus globulus leaf and
bark exhibiting at least twice the ignition probability of Pine bark when falling in the flam-
ing phase. These results highlight the impact of firebrand composition, size, and combus-
tion state on ignition dynamics. Yang et al. [74] investigated spot fire ignition probability
(IP) of larch fuel beds exposed to different firebrands under varying wind speeds and
moisture content (MC) conditions. The study found that IP was zero without wind, and
that both MC and wind speed strongly influenced IP, whereas packing ratio had little to
no effect within the experimental ranges tested. Firebrand ignition occurred even at a high
MC of 50%, with IP increasing with wind speed and decreasing with MC. Among the
tested fuel bed properties, firebrands such as cones showed the highest IP, followed by
large and small twigs, which were affected by their shape and size. Two empirical models
linked IP to fuel bed properties and wind speed. These findings contribute to clarifying
the spot ignition mechanism, reducing associated losses. Urban et al. [71] evaluated the
ability of firebrands to produce smoldering ignition in a moist natural porous fuel bed
(coastal redwood sawdust). The authors determine the minimum conditions of ignition
(ignition boundaries) under which different fuel moisture contents (FMCs) can undergo
smoldering ignition when exposed to single glowing wood firebrands of varying sizes.
Their results show that the larger firebrands can ignite sawdust with higher FMC, with
40% being the maximum FMC at which ignition occurred. Firebrands smaller than 3.17
mm in diameter failed to initiate ignition even in dry sawdust. The ignition boundary
predictions from the energy model align qualitatively with the results of multivariate lo-
gistic regression. Meanwhile, Alvarez et al. [77] employed an electric heater as an ideal-
ized firebrand to determine the ignition delay time of Eucalyptus globulus leaves. Their
model effectively predicted ignition delay times across different volume fractions but ex-
hibited limited accuracy in temperature evolution due to large variability in eucalyptus
leaves. Viegas et al. [79] analyzed the ignition behavior of Mediterranean fuel beds ex-
posed to different firebrands, including pine and bark. Ignition occurred exclusively with
flaming firebrands under no-wind conditions, with the fuel bed’s moisture content deter-
mining both ignition probability and time delay. Fuel bed properties had more influence
on ignition behavior than firebrand characteristics. Time delay ranged from 1 to 12 s for
flat eucalyptus bark, less than 20 s for Pinus pinaster cones, and under 5 s for Pinus halepen-
sis cones, highlighting the critical role of fuel morphology and water retention. Another
study by Yin et al. [75] examined the relationship between ignition time and moisture
content (MC) for pine needles attacked by glowing firebrands. They found a linear rela-
tionship between the square root of ignition time (,/t;5) and MC, validated through six
groups of firebrand ignition experiments. The tests were conducted on pine needles with
MCs ranging from 12.9% to 65% were tested at a wind speed of 3 m/s (+0.2 m/s). This
supports earlier findings that fuel moisture suppresses ignition and can serve as a
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predictive variable for delay modeling. Valenzuela et al. [78] developed and validated an
analytical model to assess the ignition of wildland fuels exposed to a time-decreasing in-
cident heat flux. Their results demonstrated that ignition delay times increase with steeper
negative slopes of the heat flux. Each initial incident heat flux value corresponds to a crit-
ical slope (B.;) below which ignition is possible. If the slope exceeds this critical value,
ignition does not occur.

Fang et al. [73] evaluated how the combined effect of thermal radiation and hot metal
particles influences the ignition of a pine needle fuel bed. Their study found that ignition
probability significantly increases when both heat sources are present. Larger particle
sizes and higher temperatures reduce the critical radiation flux required for ignition. Ad-
ditionally, ignition delay time decreases as the radiation heat flux increases. The research-
ers identified a clear linear relationship between the critical radiation heat flux and the
parameters of the hot particle, offering a foundational step toward understanding fuel
ignition mechanisms driven by the coupled effects of firebrands and flame radiation. Fer-
nandez-Pello et al. [68] investigated the ignition of natural fuel beds using hot particles,
embers, and sparks. Their results revealed a hyperbolic relationship between particle size
and temperature, with larger particles requiring lower temperatures to ignite the fuel bed
than smaller ones. Both energy and temperature determine ignition capabilities, with
smoldering ignition being more easily achieved than flaming ignition. Flaming ignition
can occur if the ember is flaming and air velocities are moderate, whereas sparks require
an accumulation interaction for ignition. Hadden et al. [82] employed a semi-empirical
approach to investigate the ignition mechanisms in homogeneous cellulose fuel beds ig-
nited by hot spherical steel particles in wildland fires. Their results show that smaller par-
ticles require higher temperatures to achieve ignition, confirming that the ignition pro-
pensity depends on both particle size and temperature. There is no unique correlation
between particle energy and ignition propensity. The Hot spot ignition theory agrees
qualitatively, but not quantitatively, with experimental results. Scott et al. [69] also devel-
oped a semi-empirical model for the ignition of powdered cellulose and pine needles fuel
beds by hot spherical steel particles. The model predicts a qualitative relationship between
the particle size and the temperature required for flaming or smoldering ignition of the
studied fuel beds. It shows that smaller particles require higher temperatures for ignition,
aligning with the size-temperature relationship seen in earlier work in [82]. Urban et al.
[70] investigated smoldering spot ignition of powdered natural fuels by a single hot metal
particle (stainless steel and aluminum). Their results showed that the ignition boundary
for flaming and smoldering ignition exhibits a hyperbolic relationship between particle
size and temperature, with smaller particles requiring higher temperatures to ignite.
Smoldering ignition occurs at lower temperatures than flaming ignition for both metal
particles. The simplified numerical model qualitatively aligns with experimental results,
providing insight into the smoldering ignition process and the impact of particle melting.
Zhu & Urban [72] introduced a novel concept of cooperative ignition, evaluating how the
thermal interaction of two nearby heaters (representing idealized firebrands) influences
fuel bed ignition dynamics. Their findings suggest that smaller heaters require higher heat
fluxes to ignite the fuel. Placing a second heater in close proximity accelerates ignition by
reducing the threshold heat flux needed for ignition. Using numerical modeling, the study
highlighted the importance of thermal interactions in the flaming ignition process. It in-
vestigated a range of firebrand sizes (5-50 mm) and separation distances, capturing qual-
itative ignition behaviors and showing quantitative agreement in most cases.

Two theoretical studies [76,81] employ physics-based modeling to investigate igni-
tion processes in wildland fuels, offering detailed mechanistic insights into soldering and
flaming ignition scenarios, respectively. Lin et al. [76] developed a physics-based 2D com-
putational model to assess the smoldering ignition of typical solid fuels exposed to a
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localized irradiation spot. Their analysis revealed that the ignition time decreases as the
radiant heat flux increases, while the minimum flux required for ignition increases as the
irradiation spot diameter decreases. For spots under 20-50 mm, traditional assumptions
of constant ignition temperature and fuel-burning flux were invalid. Thermally thin or
thick fuel dimensions are not applicable for smoldering spot ignition due to significant
radial conductive heat loss. The minimum irradiation for smoldering ignition increases
with fuel thickness, whereas the moisture content has a minimal impact. Matvienko et al.
[81] introduced a 3D computational model to simulate flaming ignition in a fuel bed im-
pacted by glowing wildland firebrands. Their results revealed that pine bark samples
failed to ignite the fuel bed (FB) under all tested conditions. In contrast, pine twigs ignited
the FB at bulk densities ranging from 60 to 105 kg/m? and airflow velocities 22 m/s. The
mathematical model shows that a single pine bark firebrand, <5 cm long and heated to
<1073 K, does not produce flaming ignition. Only larger and hotter particles demonstrated
the capacity to ignite the adjacent FB layers in flaming mode, with the firebrand length
identified as a major factor in ignition initiation. The model accurately predicts ignition
times, aligning with the observed results.

4.5. Physics-Based Fire Spotting Models

Understanding fire spotting mechanisms is critical for analyzing wildfire propaga-
tion and assessing ignition risk in both forested and urban interface environments. Among
102 selected studies, only four fully address three or more phases of the fire spotting pro-
cess. Of these, two applied a theoretical approach ([83,85]), while the other two employed
a semi-empirical approach ([29,84]). According to the newly adopted model classification,
two studies employed physical-mechanistic modeling ([29,83]), one applied statistical-
mechanistic modeling [85], and one utilized a semi-physical model [84].

Hillen et al. [83] used the birth-jump model, represented by nonlinear integro-differ-
ential equations, which is particularly valuable for analyzing complex and dynamic phe-
nomena where growth and spatial spread are interdependent. They evaluated birth-jump
processes in the context of forest fire spotting, demonstrating that increased firebrand
spotting rates accelerate the spread of the wildfire front. The study found that higher spot-
ting rates reduce the minimum domain size required for fire propagation and increase the
minimum invasion speed (the lowest rate at which the fire can spread) under both con-
stant and no-wind conditions. A larger initial spotting spread (variance ds (0)) increases
these effects, indicating that fire spotting is a key driver in escalating fire spread velocity.
In a study by Martin & Hillen [29], which evaluated the spotting distribution of wildfires,
a physical-mechanistic model offers insights into fire spread, management, and breaching.
The model is based on detailed physical processes of fire spotting, including fire plumes,
firebrand launching, wind transport, falling and terminal velocity, combustion during
transport, and ignition upon landing.

In the numerical study of ground-level distribution of firebrands generated by line
fires, Sardoy et al. [85] applied a statistical-mechanistic model revealing that firebrands
follow a bimodal landing distribution, characterized by short-distance flaming and long-
distance charring firebrands. The normalized mass of flaming firebrands correlated with
flight time, posing greater fire danger due to frequent ground impact and remaining mass.
Short-distance distributions followed a lognormal distribution, allowing for incorporation
into fire propagation models and providing key parameters to describe the separation be-
tween the short- and long-distance landing regions, as well as to determine the combus-
tion state of firebrands, whether they burn in the air or land on the ground. Masoudvaziri
et al. [84] shifted the focus toward community-level application with the SWUIFT model,
which tracks fire spread across wildland-urban interface (WUI) areas via radiation and
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spotting mechanisms. The model is computationally efficient and accurately predicts the
fire spread rate and the number of affected structures in WUI communities.

4.6. Fire Spotting Integration of New or Existing Fire Spread Models (FSM)

A total of twenty-five studies have addressed the integration of fire spotting in new
or existing FSM frameworks. These studies span a range of modeling, categorized under
the new model classification as follows: eight studies ([44,90,93-97,104]) employed a hy-
brid model approach/semi-physical model, that combines physical principle with stochas-
tic or empirical components. Another seven studies took a semi-empirical approach/semi-
physical model ([20,21,42,91,92,98,103]). Nine applied cellular automata (CA) frame-
works/Other models ([51,86-89,99-101,105]), using CA-based models (CA2, CA3 and hy-
brid CA) or probabilistic transitions to simulate fire spread and spotting behavior. Only
one study [102] adopted the theoretical approach/ physical-mechanistic model.

Trucchia et al. [42] and Pagnini & Mentrelli [91] contribute to the refinement of fire
simulation models by incorporating stochastic elements and surrogate modeling tech-
niques. Trucchia et al. [42] evaluated the merits of sparse surrogates for global sensitivity
analysis of multi-scale and nonlinear problems, particularly in applications involving tur-
bulence and fire-spotting models within wildland fire simulators. Their findings highlight
wind as a dominant factor in the generation of secondary fires (spot fires), with wind mag-
nitude and the long-distance parameter (which controls the tail of the density function
related to firebrand landing distance) identified as key variables in fire propagation and
spotting. These results confirm that fire spotting is a wind-driven, ballistic phenomenon.
Moreover, the Least-Angle Regression (LAR)-based Generalized Polynomial Chaos (gPC)
surrogate enables the filtering of parameters with large length scales, supporting the con-
clusion that sparse surrogates are a promising strategy for analyzing new models and
their sensitivity to input parameters in wildfire applications. Pagnini & Mentrelli [91] pro-
pose a hybrid framework that combines a randomized level set method with reaction-
diffusion equations to improve the simulation of fire dynamics, including the modeling
of firebreak crossings. The incorporation of randomization effectively captures the sto-
chastic nature of fire propagation, accounting for turbulent heat convection and fire spot-
ting, although the results remain at the proof-of-concept stage. Their earlier work [92]
simulates turbulent convection effects and accounts for accelerated fire spread due to hot-
air preheating and the landing of an ember. It also improves the prediction of fire front
dynamics, including flanking and backing fires, areas where traditional models often fall
short. Additionally, the model corrects the rate of spread (ROS) formula based on fire-
brand jump lengths, offering a more realistic representation of downwind fire spread.
Like their last study, this work is also a proof-of-concept and requires future validation.
Mentrelli & Pagnini [103] further validate the effectiveness of randomized level set meth-
ods in enhancing fire front localization and spread prediction, particularly in the presence
of fire breaks. Their numerical simulations highlight the crucial role of fire spotting and
turbulence in improving front propagation predictions. Asensio et al. [98] focus on oper-
ational enhancement through the development of the PhyFire model, integrated into an
online GIS-based wildfire simulation tool. By automating complex data input and incor-
porating a fire spotting module, the model improves both accessibility and simulation ac-
curacy. This integration streamlines the simulation process and enhances the model’s abil-
ity to accurately represent real-world wildfire propagation. Zigner et al. [20] evaluate the
performance of the FARSITE model in simulating wildfires under extreme, downslope
wind conditions in Santa Barbara, California. While FARSITE effectively reconstructs fire
spread when spotting is minimal, its predictive accuracy declines during rapid downslope
spread scenarios due to the presence of spotting. Limitations in modeling slope orienta-
tion and estimating firebrand trajectory affect its performance, highlighting the need for
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improved representation of ember launch and landing dynamics during extreme wind
events. Loepfe et al. [21] present a comprehensive model that uniquely integrates explicit
human influence, making it a valuable tool for assessing climate change impacts and guid-
ing local fire regime management. Additionally, their integrative model of human-influ-
enced fire regimes and landscape dynamics accurately reproduces fire regimes, land cover
changes, and tree biomass in northeastern Spain.

Pagnini [93] laid foundational work by showing how fire spotting and turbulence
variability introduce randomness in fire front advancement. The results demonstrate that
fire spotting is a significant factor in downwind fire propagation, and that variability in
ember jump-length and mean wind direction influences fire advancement. Nishino [104]
extended this understanding to urban environments by applying a physics-based urban
fire spread model, demonstrating that stochastic spot fire modeling can accurately simu-
late real-world events such as the Itoigawa fire in Japan. These findings offer valuable
insights for firefighting strategies in dense wooded urban areas with strong winds. In
Spain, two studies by Egorova et al. examined the role of atmospheric stability [90] and
the impact of flame geometry and slope [92] on fire spotting behavior and wildfire prop-
agation, employing a hybrid modeling approach. The findings in [94] reveal that unstable
atmospheric conditions increase the number of fire spotting and enhance turbulence, lead-
ing to rapid merging and the formation of unburned islands. In contrast, stable conditions
limit turbulence, resulting in more independent fires but a lower burned area. With stable
conditions, fewer fire fronts need to be managed in the short term; however, more inde-
pendent fires exist compared to unstable conditions, which pose a higher risk due to the
potential for merging fires. The numerical results from [96] demonstrated that the flame
length is a significant factor in the fire spotting model, with longer flames leading to in-
creased landing distances for firebrands and a higher likelihood of igniting independent
fires. The presence of a slope accelerates the fire rate of spread by promoting the rapid
merging of these independent fires. Fire spotting cannot be neglected in simplified fire-
spread models used in operational software. Meanwhile, Egorova et al. [95] proposed a
physical parameterization of fire spotting, determining the rate of fire propagation spread
by considering flame geometry, horizontal mean wind, and terrain slope. Their findings
affirmed a 2/3 power-law relationship between flame height and fireline intensity, rein-
forcing the importance of geometric parameters in modeling spot fire generation. Simi-
larly, in a physical parametrization study of fire spotting by Trucchia et al. [44], Random-
Front2.3 was introduced as a computationally efficient model that integrates fire intensity,
wind conditions, and firebrand characteristics in relation to fire spotting behavior and an-
alyzes the interactions between secondary fires and primary fires. Its implementation in
WRF-SFIRE and LSFire+ demonstrates promise for operational scalability and real-time
predictions of fire spread. Simulation showed varying contributions of firebrands to fire
perimeter growth under different conditions, aligning with the physical processes ob-
served in wildfires. The model’s simplicity, due to its physical parameterization, makes it
computationally less expensive and versatile for integration into large-scale operational
fire spread models.

Kaur et al. [97] assessed the effects of turbulence and fire spotting in wildland fire
simulators using a hybrid model approach. They compare the performance of Lagrangian
(Discrete Event System Specification, DEVS) and Eulerian (Level Set Method, LSM) mov-
ing interface methods for wildland fire propagation. Both models performed comparably,
with differences primarily attributed to the geometry of propagation direction. To model
the fire-front motion, the study distinguished between two components: the drifting part,
which captures the deterministic, directional advance of the fire front (modeled by DEVS
and LSM), and the fluctuating part, which accounts for random phenomena such as tur-
bulence and fire spotting that introduce stochastic variability into fire behavior. The
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validated DEVS-based wildfire model demonstrated improved performance by accu-
rately reproducing fire behaviors, including flank and backfires, increased fire spread due
to pre-heating, fire propagation across non-fuel zones, and secondary fire generation. The
proposed formulation is versatile and independent of the method used to determine the
drifting component, supporting its integration into simulators like WRF-SFIRE and Fore-
Fire. The firebrand landing patterns have a significant impact on wildfire propagation dy-
namics and potential secondary ignitions. Zohdi [90] proposed a machine-learning frame-
work for rapid adaptive digital-twin-based fire-propagation simulation in complex envi-
ronments. This innovative approach was designed for mobile and laptop platforms. The
system enables real-time responsiveness, making it particularly suitable for first re-
sponder applications. The framework integrates multistage submodels for ember trajec-
tory, topography, and machine learning algorithms to simulate both ground and airborne
fire spread. It accounts for hot-ember-driven propagation, debris distribution, and air-
quality impacts, offering a comprehensive tool for dynamic fire behavior modeling.

Cellular automata (CA) models simulate local fire spread and the fire spotting effect
by representing the landscape as grids of cells in different states, including burning, un-
burned, or burned. These states update at each time step based on predefined transition
rules that incorporate neighboring cell interactions, using deterministic, probabilistic, or
stochastic approaches to replicate fire dynamics. One of the earliest applications of the
probabilistic CA approach to explicitly integrating fire spotting in wildfire research was
introduced by Hargrove et al. [89] in 2000. Their model, EMBYR, employed a probabilistic
model that combined adjacent cell spread, fuel characteristics, wind dynamics, and fire-
brand distribution, effectively capturing spotting behavior in heterogeneous landscapes.
The study examined fire spread patterns using a CA2 model with percolation-like thresh-
olds. It revealed how fire behavior shifts drastically near critical values of fire spread prob-
ability (I). At low I values, fires exhibited slow, dendritic patterns, while higher values
produced rapid, solid spread. A critical threshold (/) was identified between 0.250 and
0.251, indicating a 50% chance of fire spreading by the adjacent spread alone. When I =
0.30, the inclusion of firebrands significantly accelerates spread, underscoring the need
for better empirical data on fire spotting. Additionally, they demonstrated how fuel het-
erogeneity at the landscape scale influences fire patterns and risk, using the cumulative
distribution of burned areas to quantify these effects. These findings highlight the varia-
bility and uncertainties in natural fire systems, as well as the challenges of predicting fire
behavior near critical thresholds. Alexandridis et al. [99] developed a CA2 model to sim-
ulate the 1990 Spetses Island wildfire in Greece, introducing a new spotting integration
technique. The model successfully reproduced observed fire dynamics, demonstrating its
potential for predictive accuracy in spatially complex environments. However, the study
emphasizes the need for validation on large-scale incidents to confirm its generalizability.
Alexandridis et al. [100] extended this approach to mountainous and heterogeneous ter-
rains, incorporating fire suppression tactics alongside spotting behavior. The models ef-
fectively captured fire spread dynamics under varied topographic and tactical conditions,
supporting their use in the design of fire risk management policies. The integration of
suppression strategies marks a step toward operational relevance, bridging simulation
with real-world decision-making.

Boychuk et al. [101] introduced a stochastic forest fire growth model that integrates
fire spotting into existing deterministic spread models. The model introduces variability
in fire growth predictions, enabling the generation of probability contour plots and em-
pirical distributions of burned areas and time to specific events. Krougly et al. [51] devel-
oped a stochastic model for generating disturbance patterns across heterogeneous for-
ested landscapes. Using a space-time Markov process, the model predicts fire behavior
based on user-defined inputs, with numerical results showing the total impact of
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disturbances under different initial conditions and scenarios. Masoudvaziri et al. [88] ap-
plied a stochastic model with probabilistic rules for risk assessment of Wildland—-Urban
Interface (WUI) communities. The study compared two case studies, Trails and Fountain
Grove, highlighting how fire spotting and radiation influenced ignition patterns. The
Trails community experienced a median of 74 structures ignited after 180 min, while
Fountain Grove saw 185 structures ignited after 120 min, resulting in near-total destruc-
tion. Fire spotting was the primary spread mechanism in Trails, whereas both radiation
and spotting contributed significantly to the spread in Fountain Grove. These findings
highlight the significant role of community layout and initial ignition patterns in shaping
wildfire dynamics and their subsequent impacts. The novel stochastic community model
captures uncertainties in fire spread within the Wildland-Urban Interface (WUI) and as-
sesses wildfire hazards and community vulnerabilities for risk evaluation.

Perryman et al. [86] developed a hybrid CA3 model that integrates physics-based fire
spread with stochastic firebrand lift-off and dispersal mechanisms. Their simulations re-
vealed that canopy base height and surface fuel loading had more impact on spread than
wind speed or fuel moisture. Spot fires increased the spread rate by 6 to 931%, highlight-
ing their critical role in fire management technologies. Danold & Malik [87] introduced a
spatially extended radiant heat fire model using a hybrid CA3 framework. The model
accurately matched observational data from low-intensity wildfires, capturing prolonged
burn times and the persistence of lingering embers. Zhao [105] developed a hybrid CA
model adapted for densely built urban environments, using irregular cells to present
buildings. The model incorporates scattering as a measure of ignition probability, allow-
ing for a realistic simulation of long-range spotting and urban fire spread. It also includes
economic and life loss assessment modules.

Porterie et al. [102] proposed a theoretical, physics-based model using small world
network to effectively simulate both forest fire spread through local interactions and fire
spotting via long-range interactions. The model incorporates impact parameters to delin-
eate the influence zones of burning sites, capturing both short-range radiative and con-
vective effects of flames, as well as long-range spotting effects from firebrands. By consid-
ering the interactions between active (flammable) and inactive (non-flammable) sites, the
model identifies critical geometric and dynamic thresholds, which help in understanding
the conditions under which fire spreads or remains contained. In homogeneous systems,
the presence of firebrands increased the spread rate and spotting distance. In heterogene-
ous systems, however, disorder diminished the effectiveness of firebrands and reduced
the overall spread rate. The model also demonstrated that critical propagation channels
could halt fire spread if disrupted.

4.7. Examining Empirical Research (Data-Driven Modeling) for Fire Spotting

Empirical studies have played a crucial role in characterizing firebrand behavior, ig-
nition potential, and spotting dynamics. Across twenty-five studies, several provide quan-
titative datasets, laboratory and field experimental observations, and retrospective anal-
yses (historical fire data) that directly support the calibration, validation, or formulation
of fire spotting and wildfire propagation models.

Adusumilli et al. [106] quantified hot firebrand production across species and heights
of the trees, revealing that sagebrush produces more specific hot firebrands for trees with
comparable moisture content than ponderosa pine and Douglas-fir. The total number of
hot firebrands increases with the height of the tree or shrub burned. The specific hot fire-
brand production is exponentially dependent on the moisture content of the tree but
shows an inconclusive correlation with tree height. Almeida et al. [32] analyzed the phys-
ical mechanisms behind firebrand production, particularly from eucalyptus barks under
torching conditions, demonstrating their high spotting potential based on size and
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burning conditions. They emphasized that future tests should include more scenarios,
fuels, and additional cameras for accurate 3D analysis. Hudson & Blunck [107] empha-
sized the role of morphology, showing that sample diameter had the greatest effect on the
time to ember generation, followed by the type of fuel. Small-diameter samples were rel-
atively insensitive to changes in other parameters. Natural samples produced embers
more slowly than dowels, underscoring the complexity of real-world fuels.

Ganteaume et al. [123] described and characterized firebrand properties based on fire
spotting efficiency, showing a 100% ignition frequency for all tested firebrands, but varied
in ignition time and flaming duration. Weight loss was exponentially related to time, with
a decrease in the ratio of weight at temperature T to the initial weight as temperatures
increased. Fuel moisture content has a significant impact on ignition time, flaming dura-
tion, combustion, and thermal decomposition. Three firebrand groups based on spotting
efficiency were identified: heavy firebrands capable of sustaining flames (pine cones) for
long-distance spotting; light firebrands with high surface-to-volume ratio (leaves and thin
barks) for short-distance spotting; and light firebrands with low surface-to-volume ratio
(other types) for short and occasionally long-distance spotting. Suzuki & Manzello [124]
analyzed the characteristics of firebrands and quantified their production from actual ur-
ban fires in Japan, finding that over 60% of firebrands weighed less than 0.1 g and had an
area smaller than 2 cm?, with size and mass independent of their location. These results
matched previous studies and laboratory-generated firebrands.

Filkov & Prohanov [111] developed a thermal imaging-based software to detect and
track firebrand density distribution near the fire front, focusing on short-distance landing
patterns and the merging of distinct fires in turbulent environments. The software
achieved a maximum relative error of 12% for firebrand counts under 30. Their analysis
showed that fireline intensity below 12,590 kW m™ has a minimal effect on 2D firebrand
flux, although occasional crowning events increase it. Firebrand size (=20 x10-°> m), tem-
perature, and velocity were identified as key parameters for understanding the ignition
process and fire propagation in communities. Future work aims to enhance small fire-
brand detection and tracking by utilizing stereo infrared (IR) imaging for 3D distribution
mapping. Thompson et al. [119] applied an innovative proof-of-concept technique using
acoustic analysis of in-fire cameras to detect and quantify firebrand production and travel
distance during an experimental boreal crown fire. This semi-empirical approach identi-
fied key areas of spotting alignment with peak fire intensity and demonstrated the effec-
tiveness of low-cost instrumentation. The method quantified the number of firebrands
landing per square meter, showing clear temporal trends as the fire approached.

Donovan et al. [108] conducted a comparative analysis of spot fire distances in grass-
lands transitioning to Juniperus woodlands, with maximum spot-fire distance reaching
up to 450% in Juniperus woodlands than in grasslands, exposing an additional 14,000 ha
to spot-fire occurrences within the Loess Canyons Experimental Landscape. Their find-
ings showed that woody encroachment increases the risk of wildfires. Prescribed fires
used to control woody encroachment have lower maximum spot-fire distances and less
land at risk than wildfires. Spot-fire distances are significantly higher in extreme wildfire
scenarios, especially in encroached grasslands and Juniperus woodlands. Storey et al.
[112] used aerial line scan imagery to analyze patterns across 251 wildfires in southeast
Australia. Spotting follows a multimodal distribution, with clusters of short-range and
isolated long-range spot fires, suggesting that current models, which assume exponential
distributions, may underestimate long-distance spotting. A relatively high correlation was
found between spotting distance and numbers, showing that wildfires can produce long-
distance spots even with a small number of spots. Regional variations were linked to rain-
fall, topographic ruggedness, and fuel descriptors, with East Victoria identified as the
most prone to spot fires. The findings enhance empirical understanding of spotting
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behavior and wildfire dynamics, extending the value of operational modeling. Future re-
search should incorporate plume and firebrand dynamics to improve insights into spot-
ting processes. Tohidi & Kaye [109] provide controlled laboratory data on lofting and
downwind transport of rod-like firebrands. Their experiments demonstrated a strong cor-
relation between maximum rise height and landing location, confirming that lofting and
transport are interconnected processes. The sensitivity of firebrand trajectories to velocity
field variability, particularly for high-aspect-ratio firebrands, provides valuable validation
for transport models used in extreme fire scenarios. Toivanen et al. [116] simulated the
Black Saturday Kilmore East fire using the Unified Model with coupled atmosphere-fire
dynamics. Their results showed that spotting was essential to match 80% of the observed
burnt area, and that a grid spacing of 1.5 km was sufficient for capturing broad fire spread
features. However, finer-scale details were lost, indicating the need for higher-resolution
modeling to characterize spotting dynamics accurately. Thurston et al. [117] explored the
role of boundary-layer rolls in enhancing ember lofting and wind variability. Their simu-
lations revealed that a horizontal grid spacing of less than 0.6 km is necessary to accurately
model these effects, which can increase fire intensity and pose risks to firefighting crews.
This study emphasizes the importance of atmospheric turbulence in long-range spotting
and fire spread.

Hernandez et al. [122] investigated the spontaneous ignition of wildland fuel by ide-
alized firebrands. Their findings showed that the inverse of ignition time is linearly de-
pendent on incident radiative heat flux, a behavior typical of thermally thin solid fuels.
Additionally, the mass loss rate follows a quasi-linear relationship with incident radiative
heat flux. Future work aims to develop thermal models for homogeneous fuels.

Beverly et al. [120] focused on assessing the exposure of the built environment to
potential ignition sources generated from vegetation fuel. Using Albini’s spotting models,
they standardized mapping across Canadian communities. Their analysis showed that the
amount, size, and arrangement of ignition-producing vegetation, as well as community
morphology and occluding interface zones, influence the spatial patterns of elevated igni-
tion exposure. Ignition exposure levels varied among communities, indicating the need
for community-specific mitigation strategies. Storey et al. [118] examined the influence of
spot fire and topography interaction on fire rate of spread (ROS). Their experiments
demonstrate that spot fires can significantly increase the ROS in hilly terrain, particularly
when merging with the main fire. They can overcome low spread potential on
downslopes, and models may underestimate ROS and fire arrival times if these effects are
excluded.

Filkov et al. [14] present quantitative data on dynamic fire behavior (DFBs) in Aus-
tralian forest environments. Their analysis reveals that eighty of the 113 fires had one to
seven DFBs, with 73% of these fires having multiple DFBs. Spotting, crown fires, and pyro-
convective events were most frequent. Future research should focus on common DFBs to
enhance predictive models. Diaz-Delgado et al. [18] analyzed spatial patterns of fire oc-
currence in Catalonia, Spain, using a GIS-based method. Their study finds that active fire
suppression reduces the total number of fires but increases the impact of large fires.
Burned areas are correlated with vegetation types, particularly shrublands and pine for-
ests. The integration of GIS and fire history improves forest management strategies. Mean-
while, McCaw et al. [36] examine how fire behavior changes in dry eucalypt forest as fuel
ages. Their findings show that fire spread, flame height, firebrand density, and spotting
distance increase as fuels accumulate with age since the last fire. Due to understory shrub
characteristics, the near-surface fuel layer dominated the headfire spread rate and pro-
vided a common descriptor for visually different fuel types. Visual hazard scores, reflect-
ing surface and near-surface fuel, correlated more strongly with fire behavior than fuel
load variables. Visual ratings of fuel structure should be suitable for inclusion in
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algorithms to predict fire behavior and fire threat. Sharples et al. [113] investigate wind-
terrain interactions and their role in fire channeling and its implications for bushfire risk
management. Their analysis identifies lee-facing slopes (>25 °C) as key drivers of rapid
bidirectional fire spread and lateral growth of spot fires, as well as extensive flaming.
Findings aid bushfire risk management and planning.

Cruz et al. [13] conducted a retrospective study of the catastrophic Kilmore East fire
during Black Saturday in Victoria, Australia. Burning 100,000 ha in under 12 h due to dry
fuel and strong winds, with spot fires reaching up to 33 km ahead of the main front. Wind
shifts caused mass fire behavior and the formation of pyrocumulonimbus clouds. The
study provides benchmark data for evaluating wildfire models and highlights the role of
atmospheric instability and fuel conditions in driving extreme fire behavior. Peace et al.
[115] used the ACCESS-Fire coupled atmosphere—fire model to simulate the Waroona fire.
Their simulations accurately reconstructed fire spread and predicted deep, moist convec-
tion, indicating the development of pyrocumonimbus. The study demonstrates that fire—
atmosphere interactions created conditions conducive to the transport of short-distance
embers and the occurrence of ember showers. The ACCESS-Fire model demonstrated the
capability to explore complex interactions and predict extreme fire behavior. Sullivan
[114] presents a literature review focusing on the fundamental heat transfer processes in
wildland fire behavior. The analysis identifies advection (incorporating buoyancy and
convection), radiation, direct flame contact, and firebrand transport as key mechanisms of
heat transfer. These processes are critical for the sustained spread of the fire, as they trans-
fer heat to adjacent fuel and ignite it. The interactions of these heat transfer processes with
the surrounding atmosphere, topography, and fuel moisture have a significant impact on
fire behavior and its spread. Thermal degradation impacts volatilization and charring
around the fire perimeter.

Shennan et al. [11] integrated geovisualization applications with ATIR imagery, fire
features, growth form maps, and enhanced topographic rasters to visualize local topogra-
phy changes. The tools were moderately effective in analyzing fire spread over multidi-
rectional slopes and variations in spread magnitudes over time; however, no conclusive
relationships were identified between spotting, fuel, and topography. Further research
should explore the utility of these tools for enhancing fire modeling accuracy and valida-
tion, as well as 3D visualization and operational fire management. Lareau et al. [110]
demonstrate the use of weather radar to track wildfires, showing a good alignment with
conventional fire-tracking methods. Their radar-based approach reveals that long-range
spotting significantly increases the rate of spread (ROS), often exceeding the estimates of
standard models. This method enhances situational awareness during high impact fires
and provides a valuable real-time tool for monitoring fire progression, particularly in sce-
narios where satellite or infrared data are limited. Moreover, Hart et al.’s study [121] ex-
plores the potential of georeferencing oblique aerial wildfire photographs as a source of
fire behavior data. Using monophotogrammetry, they accurately estimate fire position,
spread distance, and ROS. The method also enables characterization of flame dimensions,
smoke plumes, and spotting events. This approach supports model validation and the
development of new empirical relationships using wildfire photo databases.

4.8. Examining the Integration of Spotting in Operational Fire Spread Models

The four focused studies illustrate the progressive development of fire behavior mod-
eling systems, with an increasing emphasis on hybrid approaches that aim to strike a bal-
ance between operational reliability and scientific rigor. Andrews [127] presented the his-
tory and current status of the BhavePlus fire modeling system, a widely used tool for pre-
dicting and planning wildfires. The study highlights that continuous updates have en-
hanced features; however, a future redesign is necessary to consolidate and incorporate
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new research findings. Asensio et al. [125] provided a historical review of the simplified
physical fire spread model PhyFire. The model’s evolution includes a GIS-integrated sys-
tem to simulate complex processes such as forest fires. This effort involves a multidisci-
plinary development approach that addresses significant mathematical, numerical, and
computational challenges while maintaining the overriding goal of developing an effi-
cient, effective, and useful simulation tool. Plucinski et al. [128] offered a comprehensive
overview of Amicus, a decision support system designed to improve the reliability and
utility of operational bushfire behavior predictions in Australian vegetation. Amicus al-
lows multiple scenario analyses and refining uncertainties. It integrates deterministic and
anecdotal/local knowledge with formal models to address limitations in fire science.
Moreno et al. [126] developed interactive fire spread simulations for virtual reality train-
ing tools for firefighters. These tools realistically simulate fire spread and provide support
for extinguishment. The hybrid model combines CA3, physics-based algorithms, agent-
based modeling, and empirical data. The unified forest and urban models support efficient
computation and realistic fire training scenarios, enhancing training effectiveness and re-
ducing accident risks.

5. Prevailing Gaps

This section addresses RQ5 by building upon the findings from RQ1 through RQ4 to
identify unresolved challenges and limitations in fire spotting modeling research. It high-
lights recurring gaps across thematic areas, methodological constraints, and underex-
plored dimensions that warrant further investigation.

Current limitations in fire spotting research reveal critical challenges that constrain
model accuracy and generalizability. Detection and tracking technologies remain insuffi-
cient for capturing 3D firebrand dynamics, especially under complex canopy structures
and variable wind conditions. Correlations between firebrand production and vegetation
parameters, such as tree height, are often inconclusive, hindering the development of scal-
able models. Landscape heterogeneity and vegetation transitions significantly influence
spotting behavior, yet existing frameworks have shown limitations in integrating multi-
modal distributions. Plume dynamics and boundary-layer effects, which are essential for
understanding ember lofting, are often simplified or omitted in transport simulations. Alt-
hough turbulence and buoyancy effects are increasingly being incorporated, current
transport models still struggle to accurately predict extreme spotting distances and re-
quire further experimental validation. Additionally, operational models face resolution
constraints that limit their effectiveness in predicting long-range spotting.

Regarding real-world applicability, current wildfire models often underrepresent en-
vironmental variability. Most studies rely on controlled laboratory conditions that fail to
capture the dynamic interplay of wind, terrain, and vegetation inherent to actual wildfire
events. Scaling challenges further complicate the translation of small-scale experimental
findings into large-scale predictive models, introducing uncertainty and reducing opera-
tional accuracy. Material degradation models frequently lack the nuance to capture the
interplay of thermal stress, mechanical strain, and wind forces across diverse fuel types.
These nonlinear interactions, influenced by variables such as particle size, moisture con-
tent, and heat flux, remain underexplored, particularly in phenomena like cooperative
ignition and clustered firebrand landings. Hybrid and Al-based models show promise,
but limited integration with real-time environmental data constrains their predictive ca-
pabilities. Stochastic and cellular automata models offer flexibility, especially in urban and
WUI contexts, but require broader validation and data stream integration. Physics-based
and integrated fire spotting models provide mechanistic depth and statistical rigor. How-
ever, they are often constrained by validation complexities, limited observational data,
and high computational demands, especially when applied to large-scale or real-time
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scenarios. These gaps emphasize the need for fire spotting and wildfire models that are
both scientifically robust and operationally viable, supporting real-time decision-making
amid increasingly complex fire behavior. Furthermore, there is a need for region-specific
wildfire modeling, improved integration of moisture and fuel morphology, and broader
validation of emerging technologies such as thermal imaging and acoustic analysis to en-
hance firebrand characterization and transport modeling.

Complementary bibliometric analysis using VOSviewer reinforces both methodolog-
ical and conceptual limitations in fire spotting research. Co-authorship mapping reveals
fragmented collaboration networks, comprising 46 distinct clusters and minimal cross-
group interaction, which indicates limited interdisciplinary integration and knowledge
exchange. Keyword and term co-occurrence mapping highlights dominant themes in em-
pirical and computational modeling, but also reveals the underrepresentation of real-time
environmental variability, firebrand transport under turbulent conditions, and hybrid
model integration. Conceptual fragmentation persists, with weak linkages between em-
pirical field studies and operational modeling, limiting the translation of field data into
predictive systems. Modeling frameworks often lack modularity and scalability, con-
straining adaptability across varying conditions and fire regimes. Multiscale dynamics are
frequently oversimplified, neglecting critical cross-scale interactions essential for accurate
fire behavior prediction. This fragmentation also impedes the integration of remote sens-
ing, machine learning, and social dimensions into fire modeling. These patterns validate
the need for more cohesive research efforts and broader methodological convergence to
address the outlined limitations.

Additionally, the VOSviewer analysis reveals the absence of standardized validation
protocols and centralized repositories, hindering reproducibility and meaningful model
comparison. Many academic models remain underutilized in operational settings due to
poor interface design and a lack of alignment with user needs. Finally, terminological in-
consistencies and fragmented conceptual frameworks reflect a critical need for shared on-
tologies and improved semantic coherence across the wildfire science domain.

Drawing from publication trends and thematic distributions, key gaps emerge in
both geographic representation and the in-depth exploration across modeling domains.
Despite a growing body of literature, fire spotting research remains unevenly distributed.
Thematic analysis reveals a strong emphasis on empirical studies, particularly those ad-
dressing fire dynamics behavior and spread model integration. However, areas such as
firebrand generation, operational model incorporation, and physics-based spotting re-
main underexplored. Limited contributions from regions, including Africa, South and
Southeast Asia, and Eastern Europe, highlight geographic disparities that likely stem from
infrastructural limitations and visibility constraints, as reflected in the affiliations of cor-
responding authors across the 102 studies examined.

6. Conclusions

This systematic literature review has synthesized two decades of research (2000-
2023) on fire spotting and fire spread modeling, revealing a growing academic and oper-
ational focus driven by the increasing frequency and severity of wildfires under changing
climate conditions. Despite this momentum, the research landscape remains uneven, both
thematically and geographically, with significant underrepresentation across Africa, Asia,
and South America. Thematic analysis of 102 studies reveals a strong focus on integrating
fire spotting into fire spread models and empirical research, while foundational aspects,
such as firebrand generation, ignition dynamics, and operational implementation, remain
underexplored. This imbalance highlights the need for conceptual consolidation and re-
veals significant research gaps in foundational processes and the broader integration of
models.
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While modeling approaches have evolved from semi-empirical to hybrid computa-
tional frameworks, current models still struggle to replicate the nonlinear, multi-phase
dynamics of fire spotting. Addressing this limitation will require integrated architectures
that couple physical processes with probabilistic and hybrid approaches, supported by
GIS platforms, CFD-based fire-atmosphere modeling, and Al-driven tools for adaptive
simulation. Sensitivity and uncertainty analysis should also be applied to enhance model
robustness while maintaining computational efficiency.

Advancing the field will require high-fidelity datasets from controlled burns and re-
mote sensing to support model calibration and validation, alongside the development of
standardized validation protocols and open-access repositories. Interdisciplinary collab-
oration is essential, and expanding research capacity in underrepresented regions will en-
sure globally relevant, context-sensitive wildfire modeling, particularly in wildland—ur-
ban interface zones. By bridging semi-empirical with computational modeling within
modular, scalable frameworks, fire spotting research can significantly enhance early
warning systems, suppression planning, and long-term fire management. Operational rel-
evance, global collaboration, and model adaptability will be central to building robust
tools capable of responding to the evolving challenges of wildfire dynamics.

7. Future Directions

Addressing RQ5, this section builds on the insights from RQ1 through RQ4 to iden-
tify key priorities for future research in fire spotting modeling. It highlights strategic areas
where further investigation is essential to improve modeling accuracy, incorporate emerg-
ing technologies, and tackle persistent gaps in data, methodologies, and interdisciplinary
collaboration. The findings of this systematic literature review (SLR) suggest that future
studies in spotting and fire spread modeling should prioritize advancements in data col-
lection, interdisciplinary modeling frameworks, and operational integration. This in-
cludes incorporating environmental variability, fuel heterogeneity, and dynamic wind
conditions into simulations of firebrand generation, transport, and ignition.

Large-scale experimental validations are crucial for refining scaling laws and enhanc-
ing the reliability of laboratory-to-field extrapolations. Comparative studies across vege-
tation types and fire regimes, supported by multi-sensor platforms, will enhance empiri-
cal understanding through high-resolution data captured during active wildfire events.
Model enhancement remains a critical priority. Material degradation models must evolve
to incorporate elastic-plastic deformation, thermal degradation under fire loading, and
aerodynamic forces to better represent firebrand generation across diverse fuel structures.
Transport and ignition modeling should address plume dynamics and boundary-layer
effects, which are central to firebrand lofting and spotting behavior. Coupling the lofting
and horizontal transport phases is essential, as initial firebrand conditions, mass, shape,
combustion state, and elevation within the plume strongly influence firebrand behavior
during flight and spatial distribution upon landing. Accurate modeling also requires full
aerodynamic characterization, including three translational forces and three rotational
moments, to ensure realistic firebrand transport behavior. Adaptive models that reflect
multimodal spotting distributions and environmental heterogeneity are needed. Stochas-
tic transport models should incorporate probabilistic formulations that account for atmos-
pheric variability and terrain complexity, especially under high-intensity fire conditions.
Enhancing grid resolution in coupled fire-atmosphere simulations will be crucial for ac-
curately capturing long-range spotting.

Innovative hybrid approaches that combine physics-based fire spotting modeling
within frameworks such as agent-based models (ABM), stochastic cellular automata (CA),
and the randomized level set method can improve predictions of random fire front spread,
burned area, and perimeter evolution. Nonetheless, fire spotting remains a complex
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challenge due to its stochastic, non-local, and multi-phase nature. Traditional models of-
ten struggle to capture the probabilistic ignition and long-range transport mechanisms
involved. To overcome these limitations, researchers are incorporating conceptual frame-
works from other scientific domains, drawing on analogs from biological dispersal, fluid
dynamics, and network theory. Cross-disciplinary analogs, such as birth-jump models,
percolation theory, and small-world networks, further enrich fire modeling paradigms by
offering a more robust framework for simulating spotting behavior across probabilistic
scales and identifying critical thresholds in fire spread. Future models should integrate
cooperative ignition dynamics, fuel-specific thermal thresholds, and ignition delay behav-
ior under clustered firebrand conditions.

Additionally, research should prioritize the development of unified, modular, and
multiscale frameworks that integrate local fire spread with sequential processes such as
firebrand generation, transport, and ignition. Such architecture enables scalable integra-
tion of environmental, vegetation, terrain, and human factors, while accommodating di-
verse algorithms, such as the spotting process within comprehensive fire spread models.
Multiscale techniques are essential for capturing interactions ranging from fuel-level
moisture at the microscale to landscape structure at the mesoscale and climate variability
at the macroscale. Current modeling approaches face operational and computational chal-
lenges that must be addressed to improve accuracy and operational relevance. Field-based
studies, while invaluable for empirical validation, are constrained by safety risks, high
cost, and limited repeatability. Physics-based models, although capable of simulating
complex fire spotting behavior, often struggle with scalability and convergence. Recog-
nizing these limitations underscores the potential of hybrid modeling approaches that
combine complementary methods, such as empirical data, physical-mechanistic models,
computational fluid dynamics (CFD), GIS-based systems, digital twin frameworks, ma-
chine learning, and Al models. When properly integrated, these approaches can enhance
wildfire prediction capabilities, particularly when combined with real-time environmen-
tal data.

Future work should also explore model sensitivity and uncertainty analysis using
methods such as surrogate-based approaches to enhance robustness while preserving
computational efficiency. Operational integration should guide future efforts. Bridging
theoretical models with GIS platforms, fire management tools will support real-time de-
cision-making. Remote sensing technologies, such as infrared detection and acoustic anal-
ysis, should be further explored for firebrand monitoring and model calibration.

While spotting is recognized as a key contributor to structure ignition, this review
did not include studies focused on firebrand accumulation near buildings. This may limit
the generalizability of findings, particularly economic impacts in urban areas. The deci-
sion to exclude such studies was made to maintain methodological consistency and focus
on fire spotting models. Future reviews may expand this scope to include urban ignition
pathways and structural vulnerability modeling. We also acknowledge that the literature
search was limited to three major databases, which may have excluded relevant studies
indexed elsewhere. Expanding database coverage in future reviews could improve com-
prehensiveness and reduce the likelihood of omitting some relevant domain-specific pub-
lications.

Validation across diverse geographic regions and fire regimes, including post-earth-
quake urban fires and WUI zones, is essential for global applicability. Incorporating both
human and landscape factors will enhance risk assessments and support the development
of more effective mitigation strategies tailored to complex, real-world scenarios. Expand-
ing geographic representation through international collaboration will enhance contex-
tual relevance. Standardized terminology and classification frameworks will improve
conceptual clarity and bibliometric traceability. Continued empirical validation and
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integration of spotting into predictive tools will increase operational utility. Standardiza-
tion, including protocols and open access repositories, will support benchmarking and
reproducibility. Future models should provide decision-support tools tailored to the
needs of fire managers, with an emphasis on usability and real-time application. Finally,
semantic and ontological harmonization is needed to reduce fragmentation and improve
the interoperability of wildfire-related literature and modeling domains.
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Table A1. Summary of studies published between 2000 and 2023 that review the fire spotting process.
Authors & Title Year  Country Model type/ New Model/ Main findings
References Approach Approach
Fernandez- Wildland fire spot ignition by sparks and . Literature Supp'orts physics-based wildfire Enhanced models help land manager§ prescribe prevent'lve measures
. 2017 United States . spotting model. and fuel treatments, allocate suppression resources, and issue evacua-
Pello [1] firebrands review .
tion orders.
Examine firebrand's role in fire Experiments informed empirical firebrand models, using Tarifa's termi-
Koo et al. Firebrands and spotting ignition in large- . Literature propagation and spot fire develop-  nal velocity approach as a foundation. The maximum fire distance was
X 2010 United States . . o .. R ..
[2] scale fires review ment. identified at the burnout limit, with transport models predicting the cor-
responding distances. Future research recommendations are provided.
. g . . . Classifies and revises fire models, A comprehensive review of wildfire dynamics covers mechanisms, his-
Oretal. Review of wildfire modeling considering . Literature . . . . e . .
2023 United States . with a focus on physical processes torical context, modeling approaches for wildfire spread, fire spotting,
[3] effects on land surfaces review .
and land surface effects. and representation.
Mathematical models and calculation sys- . Reviews key developments in Wildfire modeling has evolved since the 1940s, integrating GIS and
Pastor et . : . Literature . D e .. -
al. [4] tems for the study of wildland fire behav- 2003 Spain review wildland mathematical fire model- ~ combining models to enhance prediction accuracy. Commonly used for-
) iour ing (1940-2000). estry tools are highlighted.
Wadhwani A review of firebrand studies on genera- ' Literature Reviews firebrand studies' on ger'fera- Significant ?esearch gaps were identified, emphas.izing t'he neec'i for tar-
. 2022  Australia . tion and transport, analyzing their rolegeted studies to enhance CFD models and investigate firebrand
etal. [5] tion and transport review e . . .
in wildfire propagation. transport through parametric analysis.
Reviews fire spotting dynamics to im- Firebrand spotting involves the generation, transport, and ignition of
. prove management strategies, cover- firebrands, with wind, fuel moisture, and fuel type influencing the igni-
Rego et al. . Literature . . . . R . L . ..
Spotting 2021  Portugal . ing all phases and assessing wind and tion potential. Firebrand density decreases with distance, impacting ig-
[6] review . e L - .
fuel moisture effects on wildfire prop- nition likelihood in unburned areas.
agation.
Table A2. Summary of studies on firebrand generation published between 2000 and 2023.
Auth 1T 1
uthors & Title Year Country Model Type/ New Model/ Main findings
References Approach Approach
Determining Firebrand Generation Rate Firebrand generation rates were 3.22 pcs/MW/s * for single tree burning and 4.18
Wickramasinghe Using Physics-Based Modelling from Ex- 2022 Australia Semi- Semi- pes/MW/s for forest fire models, emphasizing the role of wind, vegetation type, and
etal. [7] perimental Studies through Inverse Analy- empirical physical fuel moisture in firebrand generation rates.
sis
Statistical description of firebrand size and Laboratory-scale firebrand experiments mimic wildfire conditions. Firebrand surface
shape distribution from coniferous trees area scales with mass to the 2/3 power. Firebrand size depends more on combustion
Tohidi et al. for use in Metropolis Monte Carlo simula- 2015 United Semi- Statistical- and limb failure than on tree height. The study characterized the size and shape dis-
[8] tions of firebrand flight distance States empirical empirical tributions for nonlinear regression models, enabling the generation of virtual fire-

brands and Monte Carlo simulations of firebrand transport through the velocity field
induced by the fire plume and the interaction with the atmospheric boundary layer.
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Firebrand Generation from Thermally-De-

Dowel strength is influenced by recoverable elastic strain under two loading regimes.

Caton—I[(gL]rr etal. graded Cylindrical Wooden Dowels 2019 [é?ltted Seml-erlnplrl- Semi-physical Findings aid in understanding breakage mechanisms and developing failure theory
ates “ for thermally degrading wood under wind loading.
On the time to first spotting in wildland Combines stochastic, proba- The proposed methodology is computationally efficient and applicable with and
Thomsonetal. fires 2022 Canada  Hybrid model bilistic, and seTni—empiric.aI vyithout .barrie.rs, estimating spot fire rat.es ar.ld assessing .risks un.der.various c.ond.i—
[10] methods to estimate the fire  tions. It is designed to support the practical implementation of wildfire scenarios in
spot rates. real-world settings.
Applying Machine Learning for Firebrand The K-Nearest Neighbors (KNN) model achieved over 90% accuracy in predicting
Jha & Zhou Production Prediction United .. . .. firebrand areal mass density (FAMD) and firebrand number density (FAND), effec-
2022 Empirical Statistical-empirical . . o e o
[11] States tively identifying high-risk ignition spots. Findings support the development of a
numerical firebrand production simulator.
* pes-number of firebrand pieces.
Table A3. Summary of studies on firebrand transport published between 2000 and 2023.
Authors & Title Year  Country Model Type/ New Model/ Main findings
References Approach Approach
Jarrah and karri bark flakes have terminal velocities of 2.5-8 m/s, which decrease by up
. The effect of the aerodynamic behav- o to 18% due .to raPid 'spin ComPared to non-spinning flakes. Their' low tr?rmi‘nal velocity
Ellis . . . . . Statistical- enables lofting within convection plumes from low to moderate-intensity fires (0.5-2.5
iour of flakes of jarrah and karri bark 2010  Australia Empirical . : o . . .
[12] . . . empirical MW/m), making them effective firebrands primarily due to vertical lift rather than their
on their potential as firebrands . . . . e
ability to glide. Spotting behavior depends on bark traits, ignition ease, number of de-
tachable flakes, combustion during flight, and free-fall characteristics.
Accurate firebrand flight predictions require full 6-DOF * aerodynamics (three transla-
Aerodynamic characterization of rod- . . tional and three rotational movements). Model results align closely with free-fall experi-
L . L . . United . .. Semi- . S . N . .
Tohidi & Kaye [13] like debris with application to fire- 2017a States Semi-empirical hvsical mental data, helping to overcome the limitations in previous estimations of spotting dis-
brand transport Py tance. The study presents the most comprehensive experimental dataset on the
transport of rod-like debris.
Effect of particle orientation and of Combustibility (?f ﬁreb.rands:. from Pinus pl.naster an-d Eu.calyptus glol.)ulus d.epends
. o strongly on particle orientation, flow velocity and direction, combustion regime, and
. flow velocity on the combustibility of .. - .. . . . . .
Almeida et al. [14] . . 2011  Portugal Empirical Statistical-empirical particle properties. Models assess flaming and smoldering durations, as well as mass
Pinus pinaster and Eucalyptus globu- . . e . .
. . loss decay, under both wind and no-wind conditions, illustrating key factors for pre-
lus firebrand material - ) - .
dicting the maximum spotting distance.
A bimodal distribution (burning and extinction modals) was observed in small fire-
brands under specific wind conditions (12 mm diameter and 5 mm thickness at 7 m/s).
Song et al. The Wind Effect on the Transport and . . .. Semi- The extinction modal showed shorter transport distance and mass loss than the burning
. R 2017 China Semi-empirical . .. . . . L.

[15] Burning of Firebrands physical modal. The critical wind speed required to quench firebrands and produce this bimodal
distribution increased with particle size and heating duration, aligning with experi-
mental data.

- Numerical prediction of size, mass, . The initial aspect ratio and orientation have a strong influence on the trajectories and
Oliveira et al. . o . .. Semi- . e e . . . .
[16] temperature and trajectory of cylindri- 2014  Portugal Semi-empirical physical travel distances of cylindrical firebrands. Accounting for their oscillatory and rotational

cal wind-driven firebrands

motions is essential for accurately predicting fire spread through spotting.
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The maximum spot fire distance increases with the interaction of fire growth and wind
An analysis of spotting distances dur- . speed, but decreases with changes in fire perimeter shape, canopy height, and terrain
Page et al. . . . United .. . .. . . - L -
(17] ing the 2017 fire season in the North- 2019 States Empirical Statistical-empirical steepness. High wind speed estimates help prevent underprediction in Albini's model.
ern Rockies, USA Most spotting distances were <500 m; medium-range spotting (1-3km) was rare, with high
wind and rapid fire growth increasing the likelihood of exceeding 1 km.
The source fire area is the primary driver of the maximum spotting distance and long-
Drivers of long-distance spotting dur- distance (>500 'm) spot fires, with weather, vegetation, .and topogra[,?hy a.s seconda.ry 1n-
Storey et al. . ap . . - .. . fluences. Spotting distance and the number of long-distance spot fires increase signifi-
ing wildfires in south-eastern Aus- 2020  Australia Empirical Statistical-empirical . ) . .

[18] tralia cantly with larger source fire areas, particularly under strong winds, dense forests, and
steep slopes. Improved mapping systems for bark spotting are needed to support predic-
tive wildfire models.

Turbulent plumes can double the maximum spotting distance compared to non-turbulent
Thurston et al. [19] The cor}tribution of turbulent'plume 2017  Australia Semi-empirical Physical-mechanistic Plumes. Turt?ulent plume dynamics (TPD) govern Fhe ?ateral and longitudinal spljead of
dynamics to long-range spotting firebrands. Fire spread models need TPD parametrizations for accuracy and physical re-
alism.
Firebrands modeled without terminal velocity assumptions travel farther. Discs outper-
L L . form cylinders aerodynamically. Burning dynamics influence firebrand lifetimes, thin
Koo et al. Modelling firebrand transport in wild- United . . . e . . . . o
. . 2012 Semi-empirical Physical-mechanistic discs burning on their faces and tall cylinders burning around their circumference burn

[20] fires Using HIGRAD/FIRETEC States . . .
out faster. Canopy firebrands travel farther than those from surface fires. Coupled fire-
atmosphere interactions significantly shape firebrand trajectories and landing patterns.
Large Deviation Theory efficiently quantifies rare landing events with low computational
cost, whereas Monte Carlo and Importance Sampling methods are well-suited for high-

Mendez & Faraz- o . . . - ) O L ) .
Quantifying rare events in spotting: United . .. Statistical-mechanis- probability distances near the mode. The most probable landing distance increases line-
mand o 2022 Semi-empirical . . . . . . .

21] How far do wildfires spread? States tic arly with the mean wind velocity. A hybrid approach, combining these methods, im-
proves wildfire spotting predictions and enhances modeling frameworks such as cellular
automata and non-local transport (birth-jump) models.

The model accurately predicts firebrand flight statistics compared to experimental data.
Tohidi & Kaye [22] Stochastic moc.iehng of firebrand 2017¢ United Stochastic model Serr}l- Lf)f’cm.g is m}.\e:*rently. h.n.ked to downwind dllstance a-n.d cannot l.)e decoupled. l.slrebrand
shower scenarios States physical flight is sensitive to initial and boundary wind conditions, making transport highly sto-
chastic and nonlinear, which affects the spotting distribution.
Albini et al A mathematical model for predicting United Initial comparisons with existing crown fire spotting data are promising, though further

23] ’ the maximum potential spotting dis- 2012 States Semi-empirical Physical-mechanisticevaluation is needed. The model combines empirical data with simplified physical prin-

tance from a crown fire ciples to estimate the spotting range based on the final diameter of the burning particle.
The model showed errors of 35-46% during development and 81-84% against independ-
Cruz et al An empirical-based model for predict- Statistical ent datasets but dropped below 30% for spreads exceeding 2 km/h. Its modular design
[24] ’ ing the forward spread rate of wild- 2022  Australia Empirical empirical enables improvements without compromising functionality. Long-range spotting re-
fires in eucalypt forests P mains uncertain due to variable conditions and complex fire-atmosphere interactions,

which may lead to underprediction.

The model accurately predicts urban fire spread, aligning with the Hamada model for
Himoto & Tanaka Development and validation of a phys- 2008 Japan Semi-empirical Physical-mechanistic spread rates. Past data validation confirms reliability, despite some discrepancies in the

[25]

ics-based urban fire spread model

burnt area. Firebrand scattering follows log-normal and normal distributions for wind
direction and orthogonal movement.
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Pereira et al.

Calculation of spotting particles maxi-

The maximum spotting distance aligns with the Albini model but underpredicts high-
intensity fires by approximately 40%. Smaller particles travel farther due to buoyancy and

[26] mum distance in idealised forest fire 2015  Portugal Theoretical Physical-mechanisticlower char content. Particles deposited in an inverted exponential pattern, landing mostly
scenarios near the fire, while those up to 10 mm traveled several hundred meters, showing greater
char variability.
The landing state depends on the product of initial firebrand density and thickness. Those
Sardoy et al. Modeling transport and combustion of . ' N remaini'ng lor?ger if1 the thermal pl.unTe trav'el distar'lces that iare independen.t of diame’.cer,
. . 2007 France Theoretical Physical-mechanistic correlating with wind speed and fire intensity. Their normalized mass fraction at landing
[27] firebrands from burning trees . . . . L . .
consistently correlates with flight time and initial characteristics, even with random can-
opy release.
Discs travel farthest while burning, spheres the shortest. Cylinders have the smallest im-
. On the trajectories of embers initially . pact mass fraction, and discs have the highest. Charring lowers density, increasing the
Anthenien et al. United . . . . . .
elevated or lofted by small scale 2006 Theoretical Physical-mechanistic travel of spheres and cylinders. Higher surface burning temperatures shorten propaga-
[28] . . . States . . .. . s - .
ground fire plumes in high winds tion. Disc travel is diameter-independent within the tested range. The Ember distance is
nearly linear with wind speed.
' Comparison of firebrand propagation pre- Fi}re spptting in the At.mospheric.Bognc'iary Layer (ABL) .is a Probabilistic .phen'omen(?n,
Bhutia et al. . . . . . with higher release heights resulting in increased downwind distances, which differs sig-
diction by a plume model and a coupled— 2010 Canada Theoretical Physical-mechanistic . . ) . .
[29] . . nificantly from the 2D plume model. Couple fire/atmosphere Large Eddy Simulation
fire/atmosphere large—eddy simulator . o S .
(LES) results remain exploratory and require direct validation through testing.
* DOF-Degrees-Of-Freedom.
Table A4. Summary of studies on firebrand ignition published between 2000 and 2023.
Authors & Title Year Country Model type/ New Model/ Main findings
References Approach Approach
The coupled effects of hot metal particles and thermal radiation increase the ignition proba-
Ignition of pine needle fuel bed by the . bility compared to the individual factors. Larger particle sizes and higher temperatures
Fang et al. . . . . Semi- o\ . L . L
[30] coupled effects of a hot metal particle and 2021 China Semi-empirical hysical lower the critical radiation heat flux. The ignition delay time decreases as the radiation heat
thermal radiation Py flux increases. A linear relationship between radiation flux and hot particle parameters
helps understand ignition mechanisms.
A hyperbolic relationship exists between particle size and temperature, with larger parti-
Fernandez-Pello et Spot fire ignition of natural fuel beds by . . B Semi- cles needing lower t?mPerétgres to 1gr.11.te? the f}lel bed thar.1 sn'?all?r. ones. ].30th energy e.md
. 2015  United States Semi-empirical . temperature determine ignition capabilities, with smoldering ignition easier than flaming
al. [31] hot metal particles, embers, and sparks physical . " o . . . . L.
ignition. Flaming ignition can occur if the ember is flaming and air velocities are moderate,
while sparks require accumulation for ignition.
Ignition of Combustible Fuel Beds by Hot . Smaller part1c1e§ require higher temperatures for. 1gn1t10rT, with 1gmt1(.)n propensity de-.
Hadden et al. . . . . . . .. Semi- pendent on particle size and temperature. There is no unique correlation between particle
Particles: An Experimental and Theoreti- 2011 United Kingdom  Semi-empirical . R . L s
[32] cal Stud physical  energy and ignition propensity. Hot spot ignition theory agrees qualitatively but not quan-
Y titatively with experimental results.
Ignition probability (IP) is zero without wind. It is significantly influenced by moisture con-
Yang et al. Spotting ignition of larch (Larix gmelinii) 2022 China Embpirical Statistical-em- tent (MC) and wind speed, while the packing ratio has almost no effect. Firebrand ignition
[33] fuel bed by different firebrands p pirical was observed at a maximum MC of 50%, with IP increasing with wind speed and decreas-

ing with MC. Cones have the highest IP, followed by large and small twigs, which are
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affected by shape and size. Two empirical models link IP to fuel bed properties and wind
speed. These findings contribute to clarifying the mechanism of spot ignition and reducing
corresponding losses.

The model predicts a qualitative relationship between particle size and the temperature re-
Scott et al. IgniFion of cellulose fuel beds by hot metal 2011 United State Semi-empirical Sen?i— quired for the flaming c?r smouldering .ignition of powdered .cell.ulose and pine ne.edlé fu‘el
[34] particles physical  beds. Smaller steel particles demand higher temperatures to ignite the fuel bed, with igni-
tion propensity depending on both particle size and temperature.
Grasses are more flammable than litter, with Pinus species being the most flammable
among litters. Increased bulk density and fuel moisture delay ignition and reduce other
Spot fires: fuel bed flammability and capa- - Statistical-em- ﬂamma'bilit.y paramete‘ré. Flaming f"ifebrands ignite more often wit.hout wind .than glowing
Ganteaume et al. [35] .. . .. 2009 France Empirical .. ones with air flow. Ignition probability depends on the type or weight of the firebrand.
bility of firebrands to ignite fuel beds pirical . . . .
Cone scales of Pinus pinaster and P. halepensis, along with Eucalyptus globulus leaf and
bark, have at least twice the ignition probability of pine bark when falling in flaming com-
bustion.
The ignition boundary shows a hyperbolic relationship between particle size and tempera-
Urban et al. Smoldering spot ignition of natural fuels ' ' N Semi- tgr?, with smaller particles needing higher terflpel.ratl?r.es to ignite the fuel. Sn}oulderir.lg ig-
. 2017  United States Semi-empirical . nition occurs at lower temperatures than flaming ignition for both metal particles (stainless
[36] by a hot metal particle physical . o . . .
steel and aluminium). The simplified numerical model explains the influence of smoulder-
ing ignition and melting, aligning qualitatively with experimental results.
Larger firebrands can ignite sawdust with a fuel moisture content of up to 40%. Firebrands
Urban et al. Ignition of a spot smolder in a moist fuel . . .. Semi- smaller than 3.17 mm in diameter cannot initiate smoldering in dry sawdust. The ignition
i 2019  United States Semi-empirical . . . o . .
[37] bed by a firebrand physical ~ boundary predictions from the energy model align qualitatively with the results of multi-
variate logistic regression.
‘ Use of an electric heater as an idealized . The model accurately predicts ignition delay times for different volume fraction values but
Alvarez et al. . N . . . y Semi- . . D e
[38] firebrand to determine ignition delay time 2023 Chile Semi-empirical hvsical shows less accuracy in temperature evolution due to significant variability in eucalyptus
of Eucalyptus globulus leaves Py leaves.
Ignition occurred only with flaming firebrands under no wind. Fuel bed moisture content
Viegas et al. Ignition of Mediterranean Fuel Beds by 2014 Portugal Embpirical Statistical-em- determines ignition probability and time delay. Fuel bed properties influenced ignition
[39] Several Types of Firebrands & P pirical  more than firebrand characteristics, with 1-12 seconds for flat eucalyptus bark, under 20
seconds for Pinus pinaster cones, and under 5 seconds for Pinus halepensis cones.
A linear relationship was observed between the square root of ignition time (,/t;;) and
. New correlation between ignition time . . pw M . q . & . ( Y )
Yin et al. . - . . .. Semi- moisture content (MC), based on data from six groups of firebrand ignition experiments
and moisture content for pine needles at- 2014 China Semi-empirical . i R K R
[40] . physical  conducted on pine needles with moisture ranging from 12.9% to 65% under 3 m/s (0.2 m/s)
tacked by firebrands -
wind speeds.
Ignition time decreases as radiant heat flux increases. The minimum heat flux increases as
Lin et al. Modeling smoldering ignition by an irra- . . Physical- the irradiation spot. diameter decrezjlses-, in agreement with experlment.al and theor.etlcal-
L 2022 China Theoretical . .. analyses. Assumptions of constant ignition temperature and fuel-burning flux are invalid
[41] diation spot mechanistic . . . L .
for spots smaller than 20-50 mm. Fuel thickness is crucial for smoldering ignition, while
moisture content has a minimal impact.
Pine bark firebrands failed to ignite fuel beds under all tested conditions, whereas pine
. . - - . . I " . 3 . G o
Matvienko et al. [42] Simulation of fuel bed ignition by 2018 Russia Theoretical Physical-  twigs achieved ignition at densities ranging from 60 to 105 kg/m® and airflow velocities >

wildland firebrands

mechanistic 2m/s. The mathematical model indicates that a single pine bark firebrand, <5 cm long, at
<1073 K, does not ignite the fuel bed in flaming mode. The model demonstrates that only
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sufficiently larger and hotter firebrands can induce flaming ignition, highlighting firebrand
length as a critical factor in ignition initiation. Model predictions align with experimental
ignition times.

Smaller heaters need higher heat flux for ignition. A second nearby heater, within a critical
Cooperative spot ignition by idealized . distance, speeds up ignition (reduces ignition time) or enables it at a lower flux. Numerical
Zhu & Urban . . . . . . Semi- . . . - S .
(43] 1.’1rebrands: Impact of thermal interaction 2023  United States Semi-empirical physical mod'ehng h1gh¥1ghts the role of thermal 1n.terac't10ns in the fuel for flaming 1gn1t1c?n, 'exar'mn—
in the fuel ing firebrand sizes (5-50 mm) and separation distances. The model captures qualitative ig-
nition behaviours and shows quantitative agreement in most cases.
The analytical model was validated using experimental data, which showed that ignition
Valenzuela et al. [44] Ignition of Wi.ldland .Fuels Exposed to a 2023 Chile Semi-empirical SenTi- delay times increase with. s'teeper negative heat flux ‘sloI')es: F'Zach initial incident heat flux
Time-Decreasing Incident Heat Flux physical  value corresponds to a critical slope (f.;) below which ignition occurs. For slopes steeper

than this critical value, ignition does not occur.

Table A5. Summary of studies on physics-based fire spotting models published between 2000 and 2023.

Authors &

Model Type/

New Model/

References Title Year Country Approach Approach Main Findings
Birth-jump models demonstrate that spotting significantly increases the invasion speed
of a forest fire front. Under both no-wind and constant-wind conditions, higher spotting
Hillen et al. Birth-jump processes and application to . Physical- rates (o) reduce the critical domain size (minimum area required for fire spread) and
. . 2015 Canada Theoretical . . L. . . . .

[45] forest fire spotting mechanistic raise the minimum invasion speed (the lowest rate at which the fire can spread). A larger
initial spotting spread (variance ds (0)) increases both metrics, thereby intensifying wild-
fire propagation.

Grounded in firebrand physics, the spotting distribution model improves predictions of
Physical- spot fire likelihood by integrating fire key physical processes, such as plume behavior,
Martin & Hillen [46] The spotting distribution of wildfires 2016 Canada Semi-empirical mechanistic firebrand launching, wind transport, falling and terminal velocity, combustion during
transport, and ignition upon landing. This multi-phase integration supports fire spread
analysis, breach evaluation, and informed management strategies.
Masoudvaziri et al. Streamlined wildland-urban interface Semi- SWUIFT (Streamlined Wildland-Urban Interface Fire Tracing) is computationally effi-
47] fire tracing (SWUIFT): Modeling wild- 2021 United States Semi-empirical physical cient, accurately predicting wildfire spread rates and the number of affected structures
fire spread in communities in WUI communities, considering radiation and fire spotting pathways.
Firebrands exhibit bimodal landing distribution: short-distance flaming and long-dis-
tance charring. The normalized mass of flaming firebrands correlates with flight time,
Numerical study of ground-level distri- . increasing fire danger due to frequent ground impact and retained mass. Short-distance
Sardoy et al. . . . . Statistical- . e . . . .
(48] b.utlon of firebrands generated by line 2008 France Theoretical mechanistic Ilandmgs follow a I.Og—normal distribution, which can be.lncorporated 11'.1to fire propaga-
fires tion models, providing relevant parameters that describe the separation between the
short- and long-distance landing regions and predict the combustion state (determining
whether firebrands will burn in the air or land on the ground).
WUI—Wildland-Urban Interface.
Table A6. Summary of studies published between 2000 and 2023 examining the integration of spotting in existing or new fire spread models.
Authors & Title Year  Country  Model Type/ New Model/ Main Findings
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References Approach Approach
Wind is a leading factor governing the generation of secondary fires (fire spotting).
Key variables include wind magnitude and log-normal parameter o (which control
. the tail of the density function related to firebrand landing distance), confirming that
On the merits of sparse surrogates for global . L. . . L . .
Trucchia et al itivit lvsis of multi-scal i Semi fire spotting is a wind-driven, ballistic phenomenon. Sparse surrogates, including
racciiactal.  SensItvity analysis of muti-sca € noninear 2019 Spain Semi-empirical emt Least-Angle Regression (LAR)-based Generalized Polynomial Chaos (gPC) and
[49] problems: Application to turbulence and fire- physical . . . e .
. L . Gaussian Process regression, enhance model parameter analysis by filtering out infor-
spotting model in wildland fire simulators . . . .
mation from parameters with large length scales. Applying sparse surrogates is a
promising strategy for analysing new models and their dependency on input param-
eters in wildfire applications.
.. . The randomized level set method and an associ- . Combining the level set method and reaction-diffusion equation enhances fire dynam-
Pagnini & Mentrelli . e . . . .. Semi- . oo . . . . . o
[50] ated reaction-diffusion equation to model 2016 Spain Semi-empirical hvsical ics modeling, including the simulation of firebreak crossing. Randomization accounts
wildland fire propagation physica for turbulence and spotting. The proof-of-concept results require future validation.
2014 Spain Semi-empirical Semi- The model simulates turbulent convection effects and accounts for faster fire spread
physical due to hot-air pre-heating and ember landing. It enhances the prediction of fire front
Pagnini & Mentrelli Modelling wildland fire propagation by dynamics ffmd addresses .the fire's ablh.ty to‘overcon}e firebreak zonv'as. The modfal' suc-
. cessfully simulates flanking and backing fires, which are challenging for traditional
[51] tracking random fronts . . . .
models, including the correction for the ROS formula based on the mean jump length
of firebrands in the downwind direction. This study is a proof of concept and requires
future validation.
2016 Italy Semi-empirical Semi- The randomized level-set methods (LSM) integrate random effects, improving wild-
physical fire prediction, especially with fire breaks, and providing accurate fire front localiza-
Mentrelli & Pagnini Modelling and simulation of wildland fire in tion and spread simulations. The study shows that this model approach and reaction-
[129] the framework of the level set method diffusion equations yield similar models when incorporating random effects. Numer-
ical simulations highlight the critical role of fire spotting and turbulence in enhancing
predictions of fire front propagation.
2014 Spain Hybrid model Semi- Turbulence and fire spotting introduce randomness in the fire front position.
- . . L . physical
Pagnini Fire spotting effects in wildland fire propa- Fire spotting is a significant factor in the downwind propagation of fires.
52 ti
521 gaton Variability in ember jump-length and mean wind direction influences fire advance-
ment.
o Physics-based urban fire spread simulation . The model accurately explained spot fires in the Itoigawa fire and conservatively sim-
Nishino . . . Semi- . e .
(53] coupled with stochastic occurrence of spot 2019 Japan Hybrid model hvsical ulated urban fire spread. Useful for firefighting in dense wooded urban areas with
fires Py strong winds.
Alexandridis et al A cellular automata model for forest fire CA2 - random New spotting integration technique improves wildfire prediction. Accurately models
[54] " spread prediction: The case of the wildfire 20008  Greece chance of fire Other Models  the 1990 Spetses wildfire, with potential applications in fire risk management for het-
that swept through Spetses Island spread model erogeneous landscapes. Requires validation on large-scale incidents.
Wildland fire spread modelling using cellu- Models of fire spread in large-scale, mountainous, and heterogeneous landscapes in-
Alexandridis et al.  lar automata: Evolution in large-scale spa CA2 - random corporate fire spotting and suppression tactics. Predicts fire spread dynamics accu
’ ) & P 2011 Greece chance of fire Other Models P POIINg PP ) P ¥

[55]

tially heterogeneous environments under
fire suppression tactics

spread model

rately and supports the design of fire risk management policies.
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Hybrid CA: phys-
ics-based + spot-

Canopy base height and surface fuel loading have more impact on spread than wind
speed and fuel moisture. Spot fires increased the spread rate by 6 to 931%, highlighting

Perryman et al. A cellular automata model to link surface 2013 United ting parametriza- Other Models their importance in fire management technologies.
[56] fires to firebrand lift-off and dispersal States  tion + CA3 (with
stochastic and
probabilistic rules)
. Hybrid CAS3: fire The model matches observational data, simulating low-intensity wildfire behavior
McDanold & . . ) Unite . . . . . .
Malik [57] Spatially extended radiant heat fire model 2023 States physics + random Other Models  with prolonged burn times and lingering embers. Future improvements focus on ac-
spread curacy and advanced analysis.
Simulation of Mass Fire-Spread in Urban Hybrid CA: deter- The Tno.del. utilizes irregular'coarse cells to represent b.uildings, thereby ov.ercoming
Zhao . . . the limitations of regular grids. It matches observed fire spread patterns, integrates
Densely Built Areas Based on Irregular 2011 China ministic + stochas- Other Models ., . Lo e .
[58] . . firebrand scattering and ignition probability for long-range spread modeling, and for-
Coarse Cellular Automata tic + spotting rules . . )
mulates economic and life loss assessment models for urban fire spread.
Bovchuk et al CA3 - stochastic The stochastic model enhances deterministic spread models by incorporating fire spot-
Y [131] " A stochastic forest fire growth model 2009 Canada CA with Markov Other Models  ting, generating variability in fire growth predictions, and creating probability contour
chains plots for burned areas and time to specific events.
. . . CA3 - stochastic The model predicts disturbance patterns in landscapes based on user input. It simu-
K 1 1. Astoch 1 f -
roug’y eta stochastic mo'd e or generating disturb 2009 Canada CA with Markov Other Models lates fire behavior in heterogeneous forested landscapes, and the numerical results
[130] ance patterns within landscapes . . . . e . .
chains show the total impact of disturbances under different initial conditions and scenarios.
- Toward Probabilistic Risk Assessment of ' CA3 - stochastic E'xamlnes wildfire u'npac't in WUI co'mmumt%es. The .Tralls conynumty had fev?zer ig-
Masoudvazirietal. _, . . Unite nited structures, primarily due to fire spotting, while Fountain Grove experienced
Wildland—Urban Interface Communities for 2023 model and proba- Other Models e . . . )
[132] I States e rapid ignition from radiation and spotting. A stochastic community model captures
Wildfires bilistic rules e T
uncertainties in fire spread and assesses wildfire hazards.
Egorovaetal.  Fire-spotting generated fires. Part I: The role . ' Semi- Atm(')sphenc stability affect§ wildfire propagation. .Unstat?le conditions 1n.c‘rease'ﬁr'e
: . 2020 Spain Hybrid model . spotting and turbulence, which can lead to the merging of fires. Stable conditions limit
[133] of atmospheric stability physical . . . ;
turbulence, creating more independent fires and reducing burned areas.
. L . . . Proposes a formula for fire spread rate based on flame geometry, wind, and terrain
Egorovaetal.  Physical parametrisation of fire-spotting for . . Semi- . . . o .
. e 2021 Spain Hybrid model . slope. Confirms a 2/3 power-law relation between flame height and fireline intensity,
[134] operational wildfire simulators physical .. . . .
emphasizing flame length as a key factor in secondary fire generation.
Flame length influences firebrand landing distances and the likelihood of igniting in-
Egorovaetal.  Fire-spotting generated fires. Part II: The role . . Semi- dependent fires. Slope accelerates the rate of fire spread by promoting the rapid merg-
2022 Spain Hybrid model . . . - . T,
[136] of flame geometry and slope physical ing of these fires. Fire spotting cannot be neglected in simplified fire-spread models
used in operational software.
The DEVS-based wildfire model accurately reproduces key fire dynamics, including
flank and backfires, increased fire spread due to pre-heating, fire propagation across
Kaur ot al. Turbulence and fire-spotting effects into . ' Semi- no-fuel.zon.es, and' secc.ondary fire g'enerf.:ltlon.. DEVS and LSM models. perform su.m-
[59] wild-land fire simulators 2016 Spain Hybrid model hvsical larly, differing mainly in propagation direction geometry. The versatile formulation
Py supports integration into simulators like WRF-SFIRE and ForeFire. Firebrand landing
patterns have a significant influence on wildfire spread and potential secondary igni-
tions.
Asensio et al Phyfire: an online gis-integrated wildfire Semi Integrating the PhyFire model into an online GIS interface enhances accessibility and
[60] " spread simulation tool based on a semiphys- 2021 Spain Semi-empirical physical automates the complex data input procedure, facilitating the simulation process.

ical model
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Additionally, incorporating the new module to simulate fire spotting enhances the
model's efficiency and effectiveness in replicating real-world wildfire propagation.

RandomFront 2.3: A physical parameterisa-

Models interactions between primary and secondary fires, improving perimeter
growth predictions while maintaining computational efficiency using physical param-

Trucchiaetal.  tion of fire spott.mg for operelltlor?al fire 2019 Spain Hybrid model Seml- eterization. It incorporates fire intensity, wind, and firebrand characteristics to evalu-
[61] spread models-implementation in WRE- physical . o . . . . .
L . ate their contributions to fire spread. Its simple, versatile design suits large-scale oper-
SFIRE and response analysis with LSFire+ . '
ational fire spread models.
A tel duced fi i land h dt i in NE
Loepfe et al. An integrative model of human-influenced . . .. Semi- cc'ura ey .rgpro uee . re regimes, 'an cover. ¢ anf?’es’ and free b1on‘%ass o N
. A . 2011 Spain Semi-empirical . Spain. Explicit human influence modeling makes it a unique tool for assessing the im-
[62] fire regimes and landscape dynamics physical . . . .
pacts of climate change and guiding local fire regime management.
Low fire spread probability (I) values produce slow, dendritic patterns, while high
CA2 - Random fire values lead to fast, solid fire patterns. The critical value for (Ic = 0.250—0.251) marks a
Hargrove et al. [135] Simulating fire patterns in heterogeneous 2000 Unite spread mt.)del With Other Models 90% chance of adjacent fire spread. At I = 0.30, fire spread increases with the presence
landscapes States  percolation-like of firebrands, underscoring the need for more accurate data. The findings highlight
the variability, uncertainties, and challenges associated with predicting fire behavior
near critical thresholds.
Firebrands increase the spread rate and burn area in homogeneous systems, thereby
ducing the fire i t length and i ing th tting dist . Head fi d-
Porterie etal. =~ Modeling forest fire spread and spotting Physical-mech- reductng . e e lm,p ac eng and increasing the spo mfg istance. Head fires a
. 2007 France L vance by jumps, while spot fires may slow down propagation. In heterogeneous sys-
[63] process with small world networks anistic . . . L
tems, increased disorder reduces firebrand effects and spread rate. Critical propaga-
tion channels can halt fire spread if cut off.
FARSITE tel tructed fi d wh tti inimal. H
. Evaluating the ability of FARSITE to simulate . . SITE accurately reconstructed fire spread when spotting was minimal. However,
Zigner et al. e United . .. Semi- FARSITE and FlamMap struggled with rapid downslope spread due to spotting.
wildfires influenced by extreme, downslope 2020 Semi-empirical . L . . . .
[64] . . . . States physical Model limitations related to slope orientation and ember launch/landing locations af-
winds in Santa Barbara, California L K .
fected predictions during extreme wind events.
. . . Machine learn- Machine learning improves fire spread simulations for rapid, real-time modeling. The
. A machine-learning framework for rapid . . s . . . . .
Zohdi . . ; . . United . ing with digi- approach runs efficiently on laptops and handheld devices, supporting digital twin
adaptive digital-twin based fire-propagation 2020 Hybrid model . . . )
[65] . Lo . States tal twin mod-  technology for first responders. It accurately computes ground and airborne fire prop-
simulation in complex environments . . . . . . . .
eling. agation while assessing the impacts on debris and air quality.
CA —Cellular Automata model; WUI—Wildland-Urban Interface; DVES—Discrete Event System Specification; LSM —Level Set Method.
Table A7. Summary of studies published between 2000 and 2023 examining the empirical research for fire spotting.
Authors & Title Year  Country New Model/ Main Findings
References Approach
Detection software, aligning with experiments, showed a 12% error for firebrand
o . o '
' Particle Tracking and Detection Software Firebrand characterization counts under 39. Fireline m'tens.lty below'12,5'90 kWm .rmmmally affec_tss 2D firebrand
Filkov & Prohanov . P . . . .. flux, but occasional crowning increases it. Firebrand size (= 20 x 107> m), tempera-
for Firebrands Characterization in Wildland 2019 Australia for theoretical and empiri- . . . e .
[66] ture, and velocity enhance understanding of the ignition process and aid in investigat-

Fires

cal models.

ing fire propagation in communities. Future work aims to improve small firebrand
detection and tracking with a stereo infrared (IR) for 3D distribution.
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The total number of hot firebrands increases with the height of the tree or shrub

Firebrand generation stud- burned. The specific hot firebrand production (firebrands produced per kilogram of

Firebrand G tion Rates at the S United Empirical
Adusumilli et al. [67] frevrand Leneration Rates at the Kouree 2021 e MPICA es for physics-based wild- dry mass burned) is exponentially dependent on the moisture content, but there are
for Trees and a Shrub States analysis . . . . . . .
fire propagation models. inconclusive height correlations. Sagebrush produces more firebrands than ponderosa
pine and Douglas-fir.
Controlled laboratory ~ Eucalyptus bark enhances firebrand production. Firebrand size varies depending on
Almeidaetal.  Analysis of firebrand release on the spot fire 2014 Portugal Empirical experiments on fire- burning conditions, which affects spot fire potential. Future studies will assess more
[68] mechanism & analysis brands released from  scenarios and improve 3D analysis.
torching trees.
Empirical data to cre- ~ Sample diameter has a significant influence on ember generation time, followed by
t dels and pa- fuel ies. Th 11 diamet 1 latively i itive to ch in oth
Hudson & Blunck Effects of fuel characteristics on ember gen- United Empirical ate mode’s and pa 11€7 Species. T e smatl clameter saipres were refalively INSESIive 1o CLanges im otaer
. L 2019 . rameters to estimate parameters. Natural samples take longer to produce embers than dowels, highlighting
[69] eration characteristics at branch-scales States analysis
the rate of ember gen-  the role of fuel morphology.
eration.
Firebrands exhibited 100% ignition frequency but varied in ignition time, flaming du-
L ration, combustion, and thermal decomposition. Weight loss was exponentially re-
L . .. Characterize firebrand . . . . . L
Laboratory characterization of firebrands Empirical . . lated to time, with a decrease in the ratio of weight at temperature T to the initial
Ganteaume et al. [70], ; ) 2011 France . properties for spot fire . . . . .
involved in spot fires analysis rediction weight as temperatures increased. Fuel moisture content has a significant impact on
P ' ignition time, flaming duration, combustion, and thermal decomposition. Three fire-
brand groups based on spotting efficiency were identified.
Firebrand collection Over 60% firebrands weighed < 0.10 g with areas < 2 cm?. Size and mass were in-
Suzuki & Manzello Characteristics of Firebrands Collected from 2018 Japan Empirical and comparison with  dependent of their location. The findings matched those of previous studies and labor-
[71] Actual Urban Fires P analysis laboratory-generated  atory-generated firebrands.
firebrands.
The proof of concept demonstrated the technique's ability to measure the distance
Quantifying Firebrand Production and Semi traveled by firebrands and quantify its production rate (the number of firebrands per
Thompson et al. [72] Transport Using the Acoustic Analysis of 2022 Canada empirical Semi-physical second). Key areas of medium-distance firebrand spotting align with peak fire inten-
In-Fire Cameras P sity and low-cost instrumentation, which quantifies the number of firebrands landing
per square meter, showing clear trends as the fire approaches.
- Eighty of the 113 fires had one to seven DFBs, with 73% of these fires having multiple
. . L . . .. Quantitative data on Lo R X . R
Filkov et al. Frequency of dynamic fire behaviours in . Empirical . . dynamic fire behavior (DFBs). Spotting, crown fires, and pyro-convective events were
. . 2020 Australia . fire dynamics for pre- .
[73] Australian forest environments analysis L . most frequent. Future research should focus on common DFBs to enhance predictive
dictive modeling.
models.
Woody encroachment increases wildfire risk. Prescribed fires reduce the distance of
. . . . spot fires compared to wildfires. Prescribed fires used to control woody encroachment
Spot-fire distance increases disproportion- - . . . S .
o1 . . .. Vegetation impact have lower maximum spot-fire distances and less land at risk than wildfires. Spot-fire
Donovanetal.  ately for wildfires compared to prescribed United Empirical - . L . . a e . . -
. . . 2023 . studies on the spread  distances are significantly higher in extreme wildfire scenarios, especially in en-
[74] fires as grasslands transition to Juniperus States analysis . . . . . .
woodlands of fire spots. croached grasslands and Juniperus woodlands. The maximum spot fire distance in
Juniperus woodlands was 450% greater than in grasslands, exposing an additional
14,000 ha to increased wildfire risk.
Storev et al Analysis of variation in distance, number, Empirical Aerial imaging for Spotting follows a multi-modal distribution; current models may underestimate long-
[7}]5] ’ and distribution of spotting in Southeast 2020 Australia angl sis spotting pattern analy-  distance spotting. Regional variations in spotting are linked to rainfall, topographic
Australian wildfires 4 sis.
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ruggedness, and fuel description. Expanding research to include plume and firebrand
dynamics is crucial for further improving insights into spotting processes.

Comprehensive wind tunnel experiments of

Laboratory data col-

There is a strong correlation between the maximum rise height of firebrands and their

Tohidi & Kaye lofting and downwind transport of non- United Empirical . landing locations. Lofting and transport processes are interconnected. The large aspect
. R : 2017b . lection for transport R .. . . g eren . o
[76] combusting rod-like model firebrands dur- States analysis modelin ratio has more sensitive landing locations to variability in the velocity field. Data val-
ing firebrand shower scenarios & idates firebrand transport models for extreme events.
. C The inverse of ignition time is linearly dependent on incident radiative heat flux,
Spontaneous ignition of wildland fuel b Empirical Firebrand ignition which is typical for thermally thin solid fuels. The mass loss rate follows a quasi-linear
Hernandez et al. [77] . P . . & y 2018 Chile P . studies for thermal . t}'zp . .. y .. : . d
idealized firebrands analysis modelin relationship with the incident radiative heat flux. Future work aims to develop thermal
ocetng. models for homogeneous fuels.
Cruz ot al Anatomy of a catastrophic wildfire: The Empirical Retrospective stud Burned 100,000 ha in under 12 hours due to dry fuel and strong winds. Spot fires
' Black Saturday Kilmore East fire in Victoria, =~ 2012 Australia L . pee y reached up to 33 km ahead. Wind shifts caused mass fire behavior and the formation
[78] . analysis using existing models. . . g .
Australia of pyrocumulonimbus clouds. Benchmark data aids wildfire model evaluation.
Standardized ignition =~ The assessment method prioritizes mitigation activities, compares conditions over
exposure mapping us-  time within and between communities, and identifies priority areas for detailed site
Beverlv et al Assessing the exposure of the built environ- Empirical ing Albini's existing assessments in the wildland-urban interface. Ignition exposure levels varied among
[7}9]] ' ment to potential ignition sources generated 2010 Canada angl sis models. communities, indicating the need for community-specific mitigation strategies. The
from vegetative fuel y amount, size, and arrangement of ignition-producing vegetation, community mor-
phology, and occluding interface zones influenced the spatial patterns of elevated ig-
nition exposure.
McCaw et al. Changes in behaviour of fire in dry eucalypt . Empirical Fire behavior anal?fsis Fire spread, flame height, ﬁrebr'and densit)'f, and spottir.lg distance ir.lcrea.se with ﬁ'lel
. . 2012 Australia . related to vegetation age. Near-surface layers of dominant headfire spread. Visual fuel ratings improve fire
[80] forest as fuel increases with age analysis . .
changes. behavior predictions.
Fire channelling, caused by bushfires and lee-slope eddies, requires slopes with tem-
Sharples et al. W'ind.-terr.ain effects on t%le pl"opagation c')f 2012 Australia Ser'n'i- Semi-physical Peratures exceeding 25°C and spec.iﬁc topographi.c aspech. Ca'use.s rap%d bidir('ec-
[81] wildfires in rugged terrain: Fire channelling empirical tional spread, lateral growth of spot fires, and extensive flaming. Findings aid bushfire
risk management and planning.
Sullivan Inside the inferno: Fundamental processes Literature Heat transfer analvsis Wildland fire heat transfer involves advection, radiation, direct flame contact, and em-
of wildland fire behaviour: Part 2: Heat 2017 Australia . R Y ber transport. Fire behavior is significantly influenced by the interactions of these heat
[82] . . review in wildfire spread. . . .
transfer and interactions transfer processes with the surrounding atmosphere, topography, and fuel moisture.
Simulations accurately reconstructed the fire spread and predicted deep, moist con-
Peace et al Simulations of the Waroona fire using the Computa- Fire spread simulation vection, indicating the formation of pyrocumulonimbus. Fire-atmosphere interactions
’ coupled atmosphere-fire model ACCESS- 2022 Australia tional model- ©5p influenced the transport of short-distance embers and the formation of ember showers.
[83] . . using coupled models. . . . . .
Fire ing The ACCESS-Fire model explores complex interactions and predicts extreme fire be-
havior.

' Coupled Atmosphere-Fire Simulations of . Coupled. atrTlosphere-ﬁre sim'ulations matched 80% (?f the burnt ar.ea. Spotting inﬂu-
Toivanen et al. . e . Semi- . L enced wildfire spread. Coupling and long-range spotting are essential for accurate fire
the Black Saturday Kilmore East Wildfires 2019 Australia .. Physical-mechanistic . . . .. e

[84] . o empirical predictions. The grid spacing of 1.5 km may be sufficient for main fire spread features,
With the Unified Model . .
although finer details are lost.
Thurston etal.  Simulating boundary-layer rolls with a nu- . Semi- . - Boundz?ry layer rolls éffect w11dﬁrfe spread k?y causing w1nd-d1rect1.on variability and
. - 2016 Australia .. Physical-mechanistic ~ enhancing ember lofting. The horizontal grid spacing of <0.6 km is needed to accu-
[85] merical weather prediction model empirical

rately model these effects, which increase fire intensity and threaten firefighting crews.
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Radar-based wildfire tracking aligns well with conventional methods, emphasizing

Lare[e;l;]e tal Tracking Wildfires With Weather Radars 2022 [éz:j Empirical Statistical-empirical the role of long-range spotting in increasing the rate of spread (ROS) beyond standard
estimates. Enhances situational awareness during high-impact fires.
Active fi i d the total f fi ti the i t of
Diaz-Delgado et al. Spatial patterns of fire occurrence in Catalo- . Empirical GIS-based wildfire ¢ 1ve. re suppression reduces the tofa .number 0, res bu mcr.eases © tmpact 0
. . 2004 Spain . . large fires. Burned areas are correlated with vegetation types, particularly shrublands
[87] nia, NE, Spain analysis patterns analysis. . . . .
and pine forests. GIS and fire history improve forest management strategies.
Geovisualization and Analysis of Land- . Thermal infrared imagery helps visualize local topography changes influencing fire
Shennan et al. e . . United .. - .. . . s .
scape-Level Wildfire Behavior Using Repeat 2023 Empirical Statistical-empirical spread. Moderate effectiveness in analyzing fire movement; further research is needed
[88] . States s . . . o
Pass Airborne Thermal Infrared Imagery for model validation and improvements in 3D visualization.
t fi ignificantly i the rate of d (R in hilly terrai ticularl
Experiments on the influence of spot fire - . Spot fires significan .y mcrease. e.ra e of spread (ROS) in hilly terrain, par ICP arly
Storey et al. . . . . Empirical Spot fire effects on when they merge with the main fire. They can overcome low spread potential on
and topography interaction on fire rate of 2021  Australia * . e . ) . . .
[89] read analysis wildfire spread. downslopes, and models may underestimate ROS and fire arrival times if these effects
sprea are excluded.
Georeferencing Oblique Aerial Wildfire 2021 Canada Empiric'al Wildfire photo data.— The met'hod accuratel}.l esfimates fire position, spread distance, a#c.i rate of'spre;?d,
Hart et all. . analysis bases for model vali- supporting model validation or the development of a new empirical relationship.
Photographs: An Untapped Source of Fire . . . .
[90] ; dation. Monophotogrammetry characterizes the dimensions of flames, smoke plumes, and
Behaviour Data :
spotting events.
* Portugal (experiment location); GIS—Geographic Information System.
Table A8. Summary of studies published between 2000 and 2023 examining the integration of spotting in operational fire spread models.
Authors & Title Year  Country Model Type/ New Model/ Main Findings
References Approach Approach
The historical development of the BehavePlus model is widely used for wildfire
Andrews Current status and future needs of the Be- United . . . . prediction and planning. Continuous updates have introduced enhanced fea-
. . 2014 Semi-empirical Semi-physical L . .
[91] havePlus Fire Modeling System States tures, but a future redesign is needed to consolidate and incorporate new re-
search findings.
Asensio et al An historical review of the simplified physical The PhyFire model evolution integrates GIS to improve wildfire simulation. The
’ fire spread model PhyFire: Model and numerical 2023 Spain Semi-empirical Semi-physical  multidisciplinary approach addresses mathematical, numerical, and computa-
[92] P Y P 1% phy P Y app P
methods tional challenges while ensuring efficiency.
Hvbrid Model The developed virtual reality (VR) training tools for firefighters realistically sim-
Interactive fire spread simulations with extin- Y . ulate fire spread and provide support for extinguishment. VR training enhances
Moreno et al. . . . . . (CA3+Physics-based al- . ) Lo . . . . .
guishment support for Virtual Reality training 2014 Spain . .. Other Models  the realism of fire scenarios, improving training effectiveness and reducing acci-
[93] grithms+ABM-+empiri- . ” . . .
tools cal data) dent risks. The unified forest/urban model supports efficient computation and
realistic fire training scenarios.
Comprehensive overview of Amicus, a decision support system, assessing its re-
Plucinski et al Improving the reliability and utility of opera- liability and utility. Amicus enhances fire behavior predictions in Australian
" tional bushfire behaviour predictions in Austral- 2017  Australia Semi-empirical Semi-physical ~ vegetation by allowing multiple scenario analyses and refining uncertainties. In-

[94]

ian vegetation

tegrates deterministic and anecdotal/local knowledge with formal models to ad-
dress fire science limitations.

CA3—Cellular Automata; ABM — Agent-Based Model.
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Appendix B. Classification of Spotting Models and Approaches
Tables A9-A16 Classification of spotting models and Approaches.
Table A9. Summary of key studies (2000-2023) reviewing the fire spotting process and modeling strategies.
Authors & Model Type/ New Model/
Year Country Method Methodology
References Approach Approach
Reviewed current wildfire spotting processes to provide a Summarize the state of the art of the
comprehensive understanding of the wildfire spotting problem by wildfire spotting problem (describing
Review theoretical modelling,
Fernandez- characterizing the distinct individual processes involved. it in distinct individual processes),
2017  United States  experimental works, and data on Literature review
Pello [1] Emphasized the integration of these models with existing flame providing the required information to
wildfire spotting processes.
spread models and incorporating topographical and wind data to develop predictive, physics-based
enhance predictive capabilities. wildfire spotting models.
The review covers three sequential mechanisms for fire spotting:
generation, transport, and ignition of recipient fuel. Examines
Observational  research  (historical
empirical data from experiments, including measuring drag on
analysis of large-scale fires)
Koo et al. [2] 2010 United States firebrands, analyzing flame and plume flow fields, collecting Literature review Review and analysis of historical data.
Empirical and experimental studies and
firebrands from various sources, and observing firebrand burning
analysis of existing firebrand models.
characteristics in wind tunnels under terminal velocity conditions,
as well as the ignition characteristics of fuel beds.
Improve understanding of the capabilities and limitations of
Classifies and revises forest fire
Theoretical review and analysis of modern wildfire models. Emphasize the persistent omissions of
models, with a focus on physical
Or et al. [3] 2023  United States  existing wildfire and fire spotting wildfire effects on soil processes and propose strategies through Literature review
processes and their effects on land
modelling approaches. which the soil and hydrology communities can harness wildfire
surfaces.
models to quantify thermal alterations of soils.
Provides a comprehensive review of
Proposes a generic classification for wildland fire models,
Pastor et al. Historical review and analysis of the most important work in wildland
2003 Spain including surface fire spread models, crown fire initiation and Literature review

[4]

mathematical fire spread models.

spread models, spotting models, and ground fire models.

fire mathematical modelling (1940-
2000).
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Analyzes the evolution and complexity of these calculation

systems in parallel with advancements in technology.

Wadhwani et

Empirical models

Review of empirical and numerical models to develop accurate

predictive models for firebrand transport (parametric studies)

Review of firebrand studies on

generation and transport, analyzing

2022 Australia Numerical Model (Computational Literature review
al. [5] using CFD, incorporating environmental factors such as wind and the role of firebrands in wildfire
Fluid Dynamics (CFD))
turbulence. propagation.
Case-based analysis using documented Reviews fire spotting dynamics to
examples of large fires. Development of Defines extreme fires by their uncontrollable behavior and improve management strategies,
Rego et al. interactive spreadsheets to visualize significant impacts. Applies fire science principles to explore Literature covering all phases and assessing
2021 Portugal .
[6] factors influencing crown fire spread driving mechanisms through conceptual analysis, illustration of review wind and fuel moisture effects on
and spotting distances, supporting key conditions, and the use of interactive modeling tools. wildfire propagation.
understanding and prediction.
Table A10. Summary of studies on firebrand generation modeling (2000-2023).
Model Type/ New Model/
Authors & References Year Country Method Methodology
Approach Approach
e  Physics-based model Conducted a physics-based model to simulate firebrand transport and
e  Experimental observation (data) generation using inverse analysis to match experimental data, applying
Wickramasinghe et al. [7] 2022  Australia Semi-empirical Semi-physical
e Inverse analysis interpolation techniques to calibrate the effects of wind velocity, relative
Fire Dynamics Simulator (FDS) humidity, and vegetation species.
e  Monte Carlo simulations A mechanical failure model was developed to simulate the firebrand
United e  Experimental test break-off process. Virtual firebrands were generated based on their
Tohidi et al. [8] 2015 Semi-empirical Statistical-empirical
States e  Statistical analysis (nonlinear surface area and aspect ratio using Monte Carlo simulations. Statistical
regression model) analysis validated simulation results with experimental data.
Cylindrical wooden dowels were subjected to various heating
United e  Experimental study
Caton-Kerr et al. [9] 2019 conditions to simulate breakage mechanisms. Three-point bending tests ~ Semi-empirical ~ Semi-physical

States . Observational research

were used to evaluate their mechanical response and ultimate strength,
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Analytical method (mathematical
modelling, dimensional analysis

and mechanical analysis)

while dimensional analysis clarified the relationships between the

observed parameters.

Observational research (utilizes
right-censored or current status
observations)

Stochastic fire spread growth model

(generates data from a simulation

Develop a simulator to model the generation and lofting of burning
embers from wildfires, estimating spot fire development rates and
significant covariates. Use a Poisson process for firebrand generation

and a logistic function for spot fire probability, incorporating an

Combination of stochastic

methods  (to  handle
randomness),
probabilistic method

Thomson et al. [10] 2022 Canada indicator for burning states. The simulator employs a stochastic wildfire =~ Hybrid model = (new ignition), and semi-
study mimicking real wildfire
growth model based on the Canadian Forest Fire Behavior Prediction empirical techniques (to
conditions)
(FBP) System, incorporating a barrier, to generate simulated data. This incorporate observed data
Statistical model
data is then used to estimate parameters via maximum likelihood, (empirical data) and
Spot fire production model.
utilizing right-censored or current status observations. physical principles)
Firebrand rate model
Observational research (historical
fire data analysis) Firebrand data was collected from full-scale laboratory experiments
United Machine learning (ML) models: with various fuel types and wind speeds. This data was used to train
Jha & Zhou [11] 2022 Empirical Statistical-empirical
States K-Nearest Neighbors (KNN) model, and assess two non-parametric ML models to predict the number and
anon-linear Support Vector Machine  landing mass distribution of the firebrands.
(SVM)
Table A11. Summary of studies on firebrand transport modeling (2000-2023).
Authors & Model Type/ New Model/
Year Country Method Methodology
References Approach Approach
Investigated jarrah's aerodynamic characteristics and firebrand yield (E.
Observational research (drop test)
marginata) and karri (E. diversicolor) eucalypt barks dropped from a
Statistical ~ analysis (correlation, ANOVA, Statistical-
Ellis [12] 2010 Australia 22.7 m mobile tower to record fall times for calculating terminal Empirical
standard t-test and linear regression) empirical

Models for terminal velocity

velocity. Additionally, parameters such as gliding and spin behavior of

bark flakes were examined. The bark samples (22 karri and 27 jarrah)
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were collected based on specific criteria to ensure representation (to
capture variation). Linear regression and correlation analyses were
conducted to evaluate the relationships between terminal velocity,

surface density (mass/projected area) and spin behavior of the samples.

Tohidi & Kaye [13]

United
2017a
States

Physics-based model

Observational research (free-fall test using
image processing techniques)

Statistical analysis (Metropolis Monte-Carlo

simulations)

Developing and validating a comprehensive 3D deterministic 6-
Degrees-of-Freedom (DOF) transport model for rod-like debris,
including lift and rotational forces. Additionally, a statistical approach
was employed to validate the results of the free-fall experiments (with

non-combusting model firebrands) against numerical simulations.

Semi-empirical

Semi-physical

Almeida et al. [14]

2011 Portugal

Experimental research (controlled laboratory
experiments (vertical combustion tunnel))
Software: LAB Fit and Statistica (for data
analysis)

Empirical model

Conducted laboratory experiments with firebrand materials from Pinus
pinaster and Eucalyptus globulus (two representative species in
Portugal), varying particle orientation (+90°C) and airflow velocity (0 to
6.5 m/s) on combustion (flaming or glowing regime) under both wind
and no-wind conditions. Measure mass loss, residual mass, flaming
duration, and burnout times. Develop empirical models to predict

trends and illustrate their importance.

Empirical

Statistical-

empirical

Song et al. [15]

2017 China

Experimental model (wind tunnel experiment)
Simplified theoretical analysis (heat transfer

analysis)

Experiments were conducted in a wind tunnel using disc-shaped wood
particles of varying sizes (about 1 g), which were heated to create
smoldering and then blown by horizontal winds of 5 or 7 m/s. The

transport distance and mass loss of the firebrands were measured.

Semi-empirical

Semi-physical

Oliveira et al. [16]

2014 Portugal

Physics-based model (mathematical model)
Observational research (firebrand drop test and

combustion)

Develop a mathematical model to predict cylindrical wind-driven
firebrands' trajectory, mass, temperature, and size evolution. Validate
with tests comparing experimental measurements of non-burning

particles in still air and burning particles in airflow with existing data.

Semi-empirical

Semi-physical

Page et al. [17]

United
2019
States

Observational research (National Infrared

Operations Program (NIROPS) data collection)

Statistical analysis

Utilized broad-scale infrared data from the 2017 Northern Rockies, USA,
fire season to assess environmental and fire-related factors. Correlations
were examined between the maximum observed spot fire distance and

geo-referenced data on wind speed, vegetation, terrain, and fire

Empirical

Statistical-

empirical
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Evaluation of Albini's model (1979) -

(theoretical model)

characteristics. A comparison was conducted between the observed
maximum spotting distance for each unique fire day and the predicted

theoretical maximum spot fire distance from Albini's (1979) model.

Observation research (optical line scans of

wildfires)
Statistical analysis and models (Gamma Analyzed 338 aircraft-acquired observations from south-east Australian
Statistical-
Storey et al. [18] 2020 Australia generalized linear model and Negative Binomial ~ wildfires (2002-2018). Used statistical analysis to identify key predictors Empirical
empirical
Regression) of maximum spotting distance and number of long-distance spot fires.
Maximum-distance model
Spot-number model
UK Met Office Unified Model (UM)
Couple LES of bushfire plumes with an offline Lagrangian particle
Large-Eddy Model (LEM) (turbulent plume Physical-
Thurston et al. [19] 2017  Australia transport model to calculate the firebrand trajectories and evaluate the =~ Semi-empirical
dynamics) mechanistic
impact of turbulent plume dynamics.
Lagrangian particle transport model
Physics-based model (firebrand transport and Simulate disc and cylindrical firebrand combustion and transport using
United firebrand combustion model) a coupled-physics model, assessing trajectories with/without terminal Physical-
Koo et al. [20] 2012 Semi-empirical
States HIGRAD/FIRETEC model (coupled-physics fire  velocity assumptions. Conduct eight surface fire simulations and four mechanistic
model for wind field generation) with combined surface and canopy fuels.
Examine methods for quantifying the landing distribution of firebrands
and propose a method for predicting low-probability spot fire events,
Physics-based firebrand transport model such as spot fires that occur far from the original burn unit. The
Mendez & United Crude Monte Carlo Simulations (CMCS) estimated landing distribution (providing probability density function Statistical-
2022 Semi-empirical
Farazmand [21] States Importance Sampling (IS) (PDF)) quantifies the proportion of the firebrands landing at a distance mechanistic
Large Deviation Theory (LDT) 1, regardless of size or mass. Numerical findings were demonstrated
using two analytically prescribed wind fields (logarithmic and
hyperbolic tangent wind profiles).
United Physics-based stochastic model A stochastic model for firebrand transport was developed and evaluated Stochastic
Tohidi & Kaye [22] 2017¢ Semi-physical
States Experimental test (wind tunnel) using wind tunnel data. Coupled the LES-resolved velocity field with a model
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3D deterministic firebrand flight model using Monte Carlo simulations.
Conducted sensitivity analysis to assess the impact of initial conditions

on trajectories.

Albini et al. [23]

United
2012
States

Mathematical Model
Physics-based model (analytical trajectory
calculations)

Physics-based model for active crown fire
(source)
Observational research (empirical data

integration)

A mathematical model was developed to incorporate wind-blown flame
front height and tilt, a two-dimensional wind-blown buoyant plume
model, logarithmic wind speed variation, and an empirical model for
firebrand burning rate. The firebrand's trajectory was analytically
expressed from the plume's lower boundary to the canopy top. The
combined horizontal flight distance and the point where the plume flow
can no longer carry the firebrand determine the spotting range based on

its final diameter.

Cruz et al. [24]

2022 Australia

Observational research
Statistical analysis (logistic and non-linear
regression analysis)

Functional forms

Developed fire spread models for three fire behavior phases using
logistic and non-linear regression with datasets from experimental fires
and wildfires. Modelled effects of wind speed, fine dead fuel moisture,
understory fuel structure, long-term landscape dryness, and slope
steepness. The fire spotting effect was incorporated in the high-intensity
phase (Phase III). Evaluated model performance using statistical

analysis for reliability.

Himoto & Tanaka

[25]

2008 Japan

Physics-based urban fire spread model
Observational research (historical fire data
analysis)
Firebrand  spotting model (probabilistic
approach)

Hamada model

Fire spread was simulated by predicting the behavior of individual
building fires under the thermal influence of neighboring fires. A one-
layer zone model was used, considering thermal radiation, wind-blown
fire plumes, and firebrand spotting. The model was validated using a
hypothetical urban area with 2,500 buildings and a past urban fire in the

city of Sakata in 1976.

Pereira et al. [26]

2015 Portugal

Large Eddy Simulation (LES) with equivalent
volumetric heat source.
Mathematical and Numerical models

Coupled fire-atmosphere model

Conducted LES of wind above vegetation using a volumetric heat
source. Predicted distances for spherical firebrands as Lagrangian

points. Solved particle momentum, heat, and mass transfer equations in

Physical-
Semi-empirical
mechanistic
Statistical-
Empirical
empirical
Physical-
Semi-empirical
mechanistic
Physical-
Theoretical
mechanistic
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Physics-based model (firebrand transport and
combustion model)

Albini model

an unsteady 3D wind field. Compare distances for grass fires and

burning trees to the Albini model.

Sardoy et al. [27]

2007

France

Physics-based model (three-dimensional - 3D)
Firebrand thermal and combustion model

Numerical model

The 3D physics-based model includes precomputing gas flow and
thermal fields induced by a crown fire (allowing the localization of
firebrands in the plume). It investigates the thermal degradation and
combustion of fuel particles and calculates the trajectories and burning
rates of disc-shaped firebrands (of varying sizes and densities) under

various conditions.

Theoretical

Physical-

mechanistic

Anthenien et al. [28]

2006

United

States

Observational research (experimental test)
Numerical Model (Runge-Kutta method)
Mathematical model (firebrand combustion and

transport model)

This study employs a numerical model to investigate firebrand
behavior, with a focus on the dynamics of burning and transport.
Coupled ordinary differential equations are solved with a Runge-Kutta
method to simulate trajectories of spherical, cylindrical, and disc
geometries launched from specific heights or lofted by a buoyant plume
(from a small-scale ground fire plume). The impact of initial mass,
surface burning temperatures, and wind conditions on propagation

distances is systematically assessed.

Theoretical

Physical-

mechanistic

Bhutia et al. [29]

2010

Canada

Large Eddy Simulation (LES)

Classical plume model

Coupled fire-atmosphere model
Physics-based model (firebrand transport and

combustion model)

Classical plume modelling examined firebrand lofting under restrictive
conditions. The coupled fire/atmosphere LES approach connected
firebrand lofting, propagation, and deposition processes. It analyzed the
behavior of firebrands from a moving grass fire in a 3D, time-varying
coupled atmosphere-wildfire circulation. The study conducted a
sensitivity analysis of the propagation to the release height and
compared the results from the coupled LES with those from the

empirically derived 2D plume model approach.

Theoretical

Physical-

mechanistic

Table A12. Summary of studies on firebrand ignition modeling (2000-2023).
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Authors & Model Type/ New Model/
Year Country Method Methodology
References Approach Approach
The heated spherical stainless-steel particle was prepared at a temperature in a
Physics-based model (Theoretical ceramic tube furnace. The particle was then released onto a pine needle fuel bed to
Fang et al. [30] 2021 China study) study ignition behavior. The effects of particle temperature and radiation heat flux =~ Semi-empirical Semi-physical
Experimental test on ignition probability and ignition delay time were assessed. Multiple trials were
conducted to ensure the reliability and consistency of the data.
The study combines experimental and theoretical modelling to understand the
Experimental model ignition mechanisms of natural combustible material (fuel beds) by hot metal
Fernandez-Pello et al. United Physics-based model (Semi-empirical ~ particles and embers.
2015 Semi-empirical Semi-physical
[31] States analytical and numerical model Heated metal particles and embers were dropped onto a cellulose-based fuel bed.
approaches) Additionally, a 2D computational model was developed to simulate the ignition
process using coupled algebraic equations, which were solved numerically.
The study employs experimental and theoretical analysis to investigate the ignition
Physics-based model (hot spot
United process in homogeneous fuel beds using hot (500-1300°C) spherical steel particles
Hadden et al. [32] 2011 ignition) Semi-empirical Semi-physical
Kingdom (0.8-19.1 mm), with a focus on the relationships between particle size and
Experimental tests
temperature.
Experimental tests
Conduct ignition experiments with larch fuel beds at varying moisture levels and
Statistical analysis
packing ratios, using wind speeds and firebrands (such as cones and twigs). Statistical-
Yang et al. [33] 2022 China Logistic regression model (a Empirical
Established two empirical models linking ignition probability with fuel properties empirical
mathematical model to predict
and wind speed.
ignition probabilities)
Conducted experimental (laboratory and real-life fire fuel bed) and theoretical
Physics-based model (based on Hot
United analysis of ignition of fuel beds with hot spherical steel particles. The experiment
Scott et al. [34] 2011 Spot Ignition Theory) Semi-empirical Semi-physical
State involved particle diameters ranging from 0.8 to 19.1 mm and temperatures between
Experimental test
500 °C and 1300°C, focusing on the ignition behavior of different fuel beds.
Various tests were conducted under laboratory conditions to assess the ability of Statistical-
Ganteaume et al. [35] 2009 France Observation research Empirical
several fuel beds to be ignited by firebrands and to sustain a fire (fuel bed tests). In empirical
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Experimental tests (laboratory
conditions)

Statistical analysis (including Linear
Regression, Logistic Regression,
ANOVA (Analysis of Variance), Chi-
square tests, and Hierarchical Cluster

Analysis)

addition, the ability of different firebrands to ignite fuel beds was analyzed
(firebrand tests). Common fuel beds and firebrands from southern Europe were
selected. Logistic regression models were developed to predict the probability of

fuel bed ignition.

Urban et al. [36]

2017

United

States

Experimental tests
Observational research
Physics-based model (analytical

study)

Conduct an experimental and analytical study using hot metal particles (aluminum
and stainless steel) with diameters ranging from 1.6 to 8 mm. These particles were
heated to temperatures between 500 and 1100°C and then dropped onto a powder

grass blend fuel bed (natural fuel beds).

Semi-empirical

Semi-physical

Urban et al. [37]

2019

United

States

Experimental test

Observational research (recorded the
smoldering ignition or no ignition)
Statistical models (logistic regression
model)

Physics-based model (energy model -

ignition dynamics)

Conducted small-scale wind tunnel experiments by dropping glowing firebrands
onto a porous fuel bed made of coastal redwood sawdust at varying moisture levels
to observe ignition outcomes. The results were analyzed using logistic regression

to establish ignition boundaries based on firebrand size and fuel moisture content.

Semi-empirical

Semi-physical

Alvarez et al. [38]

2023

Chile

Physics-based model (ignition delay
times)

Experimental test (Idealized-
Firebrand Ignition Test (I-FIT))

Linear regression model

An electric heater was used to simulate firebrands and expose Eucalyptus globulus
leaves to a controlled heat flux. Ignition delay times were evaluated for fuel beds
with volume fractions ranging from 0.03 to 0.07 and moisture contents found in

real Chilean forests.

Semi-empirical

Semi-physical

Viegas et al. [39]

2014

Portugal

Experimental test (laboratory
conditions)

Observational research

Measured ignition time delay and tested ignition probability for 11 pairs of burning
firebrands (eucalyptus bark and pine cones) dropped from 50 cm on fuel beds of

species common in Mediterranean forests with varying moisture contents.

Empirical

Statistical-

empirical
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Physics-based model (theoretical
consideration of the heat transfer

process)

Ignition experiments involved placing glowing firebrands on a pine needle fuel bed

with varying moisture contents. A heat transfer analysis theory for firebrand

Yin et al. [40] 2014 China Experimental test Semi-empirical Semi-physical
ignition was conducted and validated by correlating the theoretical results with
Observational research (Observed
experimental data.
and recorded the ignition behavior)
Linear regression models
Created a 2-D computational model integrating heat and mass transfer with
Physics-based 2-D computational
heterogeneous chemical reactions to simulate smoldering ignition behavior under Physical-
Lin et al. [41] 2022 China model Theoretical
various conditions, focusing on irradiation spot size and radiant heat flux of typical mechanistic
Experimental observations
solid fuels.
3-D Mathematical model (Physics-
Develop a 3-D mathematical model to simulate the ignition of fuel bed (FB) by
based model) Physical-
Matvienko et al. [42] 2018 Russia firebrands. Conducted experiments to verify and test the model and to determine Theoretical
Experimental model mechanistic
the FB ignition time by a single pine bark and twig firebrand (Pinus sylvestris).
Observation research
Experimental test
Observational research Electric cartridge heaters (7.5 mm and 15 mm) were used as idealized firebrands to
United Numerical model (2D model) simulate conditions up to 60 kW/m?. A second heater was added to study thermal
Zhu & Urban [43] 2023 Semi-empirical Semi-physical
States Logistic regression function (ignition  interactions under critical conditions. Numerical modelling was used to analyze
results) various firebrand sizes and separation distances.
Sensitivity analysis
Utilized a customized Idealized-Firebrand Ignition Test (I-FIT) instrument with
radiant heaters to simulate the effect of decreasing incident heat flux on the ignition
Experimental tests (combustion tests)
delay times of dry pine needles, measuring ignition delay times, mass loss, radial
Valenzuela et al. [44] 2023 Chile Analytical model (based on thermal Semi-empirical Semi-physical

ignition theory)

temperatures, and radiative heat flux. Developed an analytical model based on
thermal ignition theory using an integral approach, comparing predicted ignition

temperatures with actual measurements to evaluate delay times.

Table A13. Summary of studies on physics-based fire spotting models (2000-2023).
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Authors & Model Type/ New Model/
Year Country Method Methodology
References Approach Approach
Birth-jump models were formulated as nonlinear integro-differential
equations using random walk and reaction-diffusion approaches to describe
Birth-jump models (using random walk coupled growth and spatial spread, particularly in scenarios where these
Physical-
Hillen et al. [45] 2015 Canada and two-compartmental reaction- processes cannot be decoupled. The model introduced key parameters, Theoretical
mechanistic
diffusion approaches) including spotting intensity (rate o) and spotting spread (variance ds), to
analyze the impact of fire spotting on fire spread in homogeneous terrain
under both no-wind and constant wind conditions.
Develop a physics-based model for firebrand transport and combustion,
Modelling approach (Physics-based and incorporating detailed spotting processes and statistical modelling
statistical) techniques like regression analysis and non-linear regression to analyze
Martin & Hillen Physical-
2016 Canada Observational research (experimental firebrand mass distribution. Utilize experimental data from laboratory and Semi-empirical
[46] mechanistic
data) field experiments to measure ignition probabilities and validate the model.
Numerical simulation Employ numerical simulations to demonstrate the impact of various model
components on the spotting distribution.
A new quasi-empirical model was proposed to replicate the characteristics
Observational research of modern wildland-urban interface (WUI) fires, focusing on key
Masoudvaziri et al. United
2021 Hamada model SWUIFT model (based mechanisms such as thermal radiation and fire spotting. This model was Semi-empirical Semi-physical
[47] States
on the Cellular Automata model) validated using spread rates from nine major North American wildfires,
specifically the 2007 Witch and Guejito fires and the 2017 Tubbs fire.
The transport of 10,000 disc-shaped firebrands was analyzed with different
Physics-Based model aspect ratios under moderate- to high-intensity surface wildfire scenarios,
Numerical simulation including partial to full-crown involvement. Firebrand properties and initial Statistical-
Sardoy et al. [48] 2008 France Theoretical
Dimensional analysis locations were randomly generated. The study calculates the normalized mechanistic

Statistical model

mass of firebrands in both flaming and charring states and examines their

spatial distribution on the ground.

Table A14. Summary of studies on the integration of spotting into fire spread models (2000-2023).
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Authors & Model Type/ New Model/
Year Country Method Methodology
References Approach Approach
The study utilizes a stochastic representation of the fireline and surrogate
Statistical models
models (gPC and GP) to identify key parameters affecting the topology and
Global sensitivity analysis
size of the burnt area. It calculates Sobol's sensitivity indices and tests
Sparse surrogate models:
various truncation and projection strategies for gPC surrogates. It performs
Trucchia et al. [49] 2019 Spain generalized Polynomial Chaos Semi-empirical Semi-physical
best with a sparse least-angle regression (LAR) strategy and a low-
(gPC) and Gaussian Process (GP)
discrepancy Halton's sequence. The training data set was from Monte Carlo
LSFire+ model
random Sampling, quasi-random Halton's sequence, and the quadrature
Numerical simulations
rule.
The study employs randomized level set contours and a reaction-diffusion
evolution equation to simulate front propagation, incorporating random
Randomized Level Set method * effects such as turbulent heat convection and fire spotting. It includes criteria
Pagnini & Mentrelli
2016 Spain Probability Density Function (PDF) for marking burned areas, accounts for fuel ignition delays, and calculates Semi-empirical Semi-physical
[50]
Numerical simulation heat accumulation over time. Numerical simulations analyze the forefront's
evolution with and without firebreak zones using the LSM and current
modelling approach.
2014 The modelling and simulation of wildfire propagation using level-set and
Level Set Method (LSM *)
reaction-diffusion equations as complementary and reconciled methods to
Reaction-Diffusion equation
create a smooth representation of the fire front contour. This approach
Randomized (generalized) Level Set
Pagnini & Mentrelli considers deterministic positions driven by the rate of spread (ROS) and
Spain Method Semi-empirical Semi-physical
[51] incorporates random effects, such as turbulent hot air and fire spotting,
Physical Random Fluctuations (PDF
using the probability density function (PDF). Numerical simulations of a
of spotting and turbulence effects)
simple case study examined the model's behavior, taking into account fire-
Numerical simulation
break effects, pre-heating, and ignition delays.
2016 Randomized (generalized) Level Set ~ The modified level set method incorporates random effects due to turbulent
Mentrelli & Pagnini
Italy Method hot-air transport and fire spotting using a probability density function (PDF) Semi-empirical Semi-physical
[129]

Numerical simulation

approach. This enhances the deterministic rate of spread (ROS) through the
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convolution of the PDF, improving the classic level set approach for

practical test cases.

2014 Tracked the fire front using the deterministic rate of spread (ROS) equation
Generalized Level Set Method with random effects from turbulence and fire spotting (using the probability
Probability Density Function (PDF) density function (PDF)) and marked burned points with a 0-1 threshold and
Pagnini [52] Spain Numerical simulation: Total ignition delay due to hot air and landing firebrands. Used the generalized Hybrid model Semi-physical
Variation Diminishing (TVD) LSM to analyze differences between windward (turbulence only) and
Runge-Kutta scheme leeward (turbulence and fire spotting) sectors, focusing on ember jump-
length and wind direction variability.
The development and validation of a physics-based urban fire spread
Physics-based fire plume model
simulation incorporating the stochastic occurrence of spot fires, specifically
Stochastic modelling
for Japan's densely built wooden residential areas. Validated using Monte
Nishino [53] 2019 Japan Observation research (historical fire Hybrid model Semi-physical
Carlo simulations based on the Itoigawa fire data, comparing results with
damage data)
the 2016 incident fire damage without considering fire suppression and
Monte Carlo simulations
ignition delays of adjacent buildings.
Developed a Cellular Automata (CA) model to simulate the dynamics of
CA model forest fire spread on a mountainous landscape, considering vegetation type,
Observational research density, wind speed, direction, and the spotting phenomenon CA2 - Random
Alexandridis et al.
20008 Greece GIS (characterized by the transport of firebrands like pinecones). The model chance of fire Other Models
[54]
Non-linear optimization technique simulated the 1990 Spetses wildfire, fine-tuning parameters with black-box spread model
(Black-box) optimization techniques and GIS data. Validation was performed using
actual fire data.
The formulated CA-GIS model presents a lattice-based dynamic system
CA model
incorporating various factors, including landscape statistics, vegetation
GIS CA2 - Random
Alexandridis et al. attributes, wind field data, fuel humidity, and spotting transfer mechanisms.
2011 Greece Lattice-based dynamic model chance of fire Other Models

[55]

Wildfire-spread model

Sensitivity analysis

The model also incorporates fire suppression tactics based on the
operational capabilities of air tankers. The developed model is evaluated by

simulating the dynamics of a large-scale fire in the Greek National Park of

spread model
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Parnitha Mountain (June 2007) and comparing the results with actual fire-

spread characteristics.

CA model
Submodels (statistical model and

mathematical models (for fire

Hybrid CA:

Physics-based +

spread and firebrand behavior) A CA model was developed that combines fire spread and firebrand landing spotting
United Spotting mechanism (stochasticand ~ patterns. Simulated wildfire in a Pinus ponderosa ecosystem with varying parametrization
Perryman et al. [56] 2013 Other Models
States probabilistic integration approaches  conditions. Conducted 2500 stochastic simulations to study spot fire ignition + CAS3 (with
for firebrand lift-off and dispersion) = beyond fuel breaks and their impact on fire spread. stochastic model
Sensitivity analysis and probabilistic
Observational research (Simulations rules)
using real fire events)
SEREF (Spatially extended radiant
A fine-scale fire behavior model was developed using infrared temperature ~ Hybrid CA3: Basic
heat fire) model
data from the New Jersey Pine Barrens (2017-2020), defining five stages = Physical Principles
Observational research (prescribed
based on parameters like radiant temperature. The model incorporated a (radiant heat
fires performed outside of a
McDanold & Malik Unite coupled map lattice (CML) model into a CA framework for accurate metrics. transfer and fire
2023 laboratory) Other Models
[57] States One hundred simulations were conducted with fuel moisture and spotting spread), similar to
CA model
ignitions (incorporated as an initial condition not represented in the dataset, ~ percolation models
Coupled map lattice (CML) model
with multiple ignition points placed randomly), validating the results (random
Modified Newton's law of cooling
against observational data from prescribed fires. thresholds)
Kernel distribution
Observational research (historical Hybrid CA:
Development of a fire-spread model (GIS-CA-fire tool) based on irregular
fire data) Physics-based
coarse CA integrated with GIS to simulate fire behavior and assess its
Irregular coarse CA model (deterministic and
damage in densely built urban areas. Two sub-processes were analyzed: (I)
Zhao [58] 2011 China GIS stochastic Other Models

Fire spread analysis: Radiative,
convective, and long fire spread

(non-local interaction) using

fire development in a single building and (II) fire spread among buildings
(short fire spread due to direct flame contact, radiative and convective

spread and long fire spread due to firebrand spotting). The model is verified

approaches) +
spotting

parametrization +
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simplified physics-based
parametrization for firebrand
transport, stochastic firebrand
generation, and probabilistic
ignition upon landing)

Loss Assessment Model

through 100 random simulations for a real site fire spread in Kobe City

(1995, Japan), comparing simulation results with local observations.

CA3 (with
stochastic model
and probabilistic

rules)

Boychuk et al. [131]

2009

Canada

Stochastic fire growth model

Observational research

Developed a stochastic model using a continuous-time Markov chain to
predict fire behavior, including average growth and variability.
Implemented for probability contour plots, burn size distributions, and

event time distributions, with an incorporated spotting mechanism.

CA3 - stochastic
model with
continuous-time
Markov Chain
Model

Other Models

Krougly et al. [130]

2009

Canada

Stochastic fire growth model
GIS

Observational research

Developed a stochastic model with a space-time Markov process on a lattice,
implemented in C++ as "TDsimulator”. Generates disturbance patterns
based on user inputs, predicts changes in landscape cover with GIS routines

and simulates forest fire behavior.

CA3 - stochastic
model with
continuous-time
Markov Chain
Model

Other Models

Masoudvaziri et al.

[132]

2023

Unite

States

SWUIFT (Streamlined Wildland—

Urban Interface Fire Tracing) model

(CA framework)
Monte Carlo simulation

Sensitivity Analysis

Integrates stochastic modelling to track firebrand dispersion and conduct
sensitivity analyses on critical variables. It employs Monte Carlo
simulations with Latin hypercube sampling to capture uncertainties in fire
spotting, wind speed and ignition criteria, optimizing computational
efficiency. The framework combines historical wildfire hazard data with
cumulative distribution functions to assess the number of ignited buildings
over time. It was tested on two real wildfire events in California (Trails and
Fountain Grove communities) to demonstrate variations in community fire

spread.

CA3 - stochastic
model and

probabilistic rules

Other Models

Egorova et al. [133]

2020

Spain

WRE-SFIRE model (Level-Set
Method (LSM))

The study splits the motion of the fire front into a drifting part (based on the
level-set method) and a fluctuating part (parametrized for the turbulence of

hot-air transport and firebrand landing distance (jump-length distribution

Hybrid model

Semi-physical
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Statistical model (physical
parametrization of firebrand
landing distribution)
Numerical simulation
Simplified Firebrand model

(RandomFront parametrization)

of firebrand)). The model highlights the net effects of turbulence and

firebrand flying without fire-atmosphere coupling.

Egorova et al. [134]

2021

Spain

Physics-based fire plume model
Rothermel's ROS model
Fire spotting model

Numerical simulations

The study develops a formula that links flame geometry and fireline
intensity, based on the energy conservation principle and the energy flow
rate in the convection column above the fireline in wildfires, for both steady
and unsteady cases. This formula is incorporated into Rothermel's Rate of
Spread (ROS) model to account for the effects of wind and slope on flame
geometry. Flame geometry is then integrated into firebrand landing
distribution, and numerical simulations are used to demonstrate the

significant contribution of flame geometry to generating secondary fires.

Hybrid model

Semi-physical

Egorova et al. [136]

2022

Spain

Level-Set Method (LSM)

Albini Model (theoretical model)
Extension of RandomFront
parametrization

Numerical simulation

The study develops an alternative Albini formulation based on the energy
conservation principle and extends the RandomFront parametrization to
include flame geometry and slope. The analysis examines the flame
geometry on flat terrain and compares it with the effects of slope. Numerical
simulations and post-processing evaluate the impact of these parameters on

fire behavior.

Hybrid model

Semi-physical

Kaur et al. [59]

2016

Spain

Level Set Method (LSM) (for
Eulerian moving interface method)
Discrete Event System Specification
(DEVS) (using Lagrangian front
tracking technique)

Probability Density Function (PDF)
(embodied random effects)

Numerical simulation

The fire-front propagation is modelled as a combination of drifting and
fluctuating components, with random effects (turbulence and fire spotting)
represented by a PDF, including fuel ignition delay. The performance of
these effects is evaluated using both Eulerian (LSM) and Lagrangian (DEVS)
methods through numerical simulations with identical setups, accounting
for wind effects and fire-break zones. In addition, a sensitivity analysis is
conducted to assess the impact of changes in the lognormal distribution

shape on firebrand landing distances.

Hybrid model

Semi-physical
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Sensitivity analysis

PhyFire model and HDWind model

(integrated in online GIS)

The PhyFire model is a simplified physical wildfire spread model developed

by the research group on Numerical Simulation and Scientific Computation

Asensio et al. [60] 2021 Spain at the University of Salamanca. It has been integrated into an online GIS Semi-empirical Semi-physical
Spotting model
interface, incorporating the effects of fire spotting as a random heat
Numerical method
contribution to enhance usability and accuracy.
The RandomFront 2.3 model was updated by integrating it into the WRE-
RandomFront 2.3 (physical SFIRE coupled fire-atmosphere model to simulate fire behavior. The model
parameterization of fire spotting) in ~ also considered the turbulent effect of the heat fluxes and included the
a coupled fire-atmosphere model ignition delay of fuel, which accounted for the combined impacts of
Trucchia et al. [61] 2019 Spain Hybrid model Semi-physical
(WREF-SFIRE) firebrand landing and hot air exposure. Numerical simulations performed
Numerical simulation using LSFire+  using the LSFire+ model evaluated fire behavior under various conditions,
model (based on level set method) with a focus on the probabilistic modeling of firebrand transport and
ignition.
FIRE LADY (FIre REgime and Developed FIRE LADY, using weather, topography, vegetation growth, fire
LAndscape DYnamics) model behavior, suppression, and land use changes. Modeled fire behavior with
Loepfe et al. [62] 2011 Spain Canadian Forest Fire Weather Index =~ Rothermel equations, including crown fire and spotting (with a stochastic Semi-empirical Semi-physical
System (FWI) percolation approach). Calibrated for three NE Spain regions to reproduce
Statistical analysis fire regimes, land cover changes, and tree biomass.
EMBYR model (Probabilistic model)
The EMBYR model simulates fire ignition and spread in a gridded CA2 - Random
Cellular Automata (CA) model
heterogeneous landscape. It evaluates fire spread probability (I) to eight chance of fire
Bond percolation process
neighboring cells based on local conditions (fuel type, moisture, wind) and spread model
Unite (connectivity of burning cells)
Hargrove et al. [135] 2000 incorporates fire spotting by distributing firebrands to downwind sites. similar to Other Models
States Fire spread simulation

SPOT subroutine of the Rothermel-
derived BEHAVE fire prediction

model

Simulations assessed various weather and fuel conditions on the subalpine
plateau of Yellowstone National Park to analyze fire behavior and

landscape-scale fuel heterogeneity.

percolation models
(random

thresholds)
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Fire spread model using the small
world network (SWN) model to
simulate fire propagation

Percolation transition criterion (to

The forest is modelled as a network comprising of flammable sites (nodes)
and potential fire paths (edges), incorporating a weighting procedure based

on the characteristic times of thermal degradation and combustion. This

Porterie et al. [63] 2007 France establish thresholds for fire spread model accounts for both short-range (radiative, convective) and long-range Theoretical Physical-mechanistic
in heterogeneous media) spotting effects of firebrands. Validation is conducted through laboratory
Observational research (laboratory experiments, focusing on fire front propagation thresholds and analyzing
experiments) the fractal dimensions of burned areas to assess model accuracy.
Statistical analysis
Fire Area Simulator (FARSITE)
Used FARSITE within FlamMap to simulate two wildfires under
model
Sundowner winds in Santa Barbara, focusing on fire spread rates and
United High-resolution fuel maps and
Zigner et al. [64] 2020 perimeters. Conducted sensitivity tests on ignition timing, location, and Semi-empirical Semi-physical
States hourly wind data
spotting impact. Aimed to evaluate model performance under extreme wind
FlamMap simulations
conditions for wildfire management.
Sensitivity analysis
Machine learning
Machine-Learning Algorithms A framework was developed with submodels for ember trajectory,
(data-driven) with
United (MLA’s) topography, and machine learning, enabling real-time simulations for first
Zohd [65] 2020 Hybrid model digital twin
States Observational research responders. It simulates hot ember-driven fire propagation and debris
technology (system-
Physics-based model distribution.
based modelling).
* CA—Cellular Automata; LSM —Level Set Method; Randomized Level Set method - reaction-diffusion equation is associated with the LSM; GIS— Geographical
Information Systems.
Table A15. Summary of empirical research on fire spotting (2000-2023).
Authors & Model Type/ New Model/
Year  Country Method Methodology
References Approach Approach
Observational research They developed custom software to analyze short-distance spotting dynamics Observed data to analyze
Filkov & Prohanov Empirical  analysis
2019  Australia (empirical data from by detecting and tracking flying firebrands in thermal images. The software and characterize
[66] based on

thermal imaging)

consists of two main modules: a detector and a tracker. The detector determines

firebrands, contributing
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e  Mathematical model (image  the location, and the tracker compares the firebrand in different frames and  observational to  both  theoretical
processing and tracking determines the identification number of each firebrand. This process enables the  research models (firebrand
algorithms) determination of firebrand temperature, size, and velocity. The results were transport in wildland
compared with the data obtained by independent experts and experimental and structural fires) and
data. improving empirical
models.
Observing, collecting
data, and measuring
e  Experimental observation
Estimate the total number of hot firebrands from 71 burning trees/shrubs firebrand generation
e  Computer algorithm (used
(Douglas fir, ponderosa pine, and sagebrush) with heights ranging from 1.4 to Empirical analysis rates during experiments
to process the images and
United 6.2 meters. A network of 65 fire-resistant fabric stations strategically placed at based on with trees or shrubs
Adusumilli et al. [67] 2021 extract firebrand
States different radii and angles in the wind direction measured the released observational torching helps
characteristics)
firebrands. With this data, a first-order extrapolation method was developed to  research implement detailed
e  First-order extrapolation
estimate the source terms (total number of hot firebrands released). physics-based  wildfire
method
propagation models
more accurately.
e  Observational and
The firebrands released from burning eucalyptus trees were analyzed through
Experimental Research
four burning tests (T1 to T4) involving eucalyptus barks and shrubs. The design Descriptive, controlled,
(controlled laboratory
of the tests incorporated variations in the location (suspended and on a fuelbed) =~ Empirical analysis quantitative analysis of
experiments)
and orientation (vertical and horizontal) of the eucalyptus barks. An additional ~ based on firebrands released from
Almeida et al. [68] 2014  Portugal e  Particle image velocimetry
test was performed with a shrub fuel bed. Measurements of convective upflow  observational torching trees
system (PIV)
velocity and temperature (2 meters above the tree), weight loss, and firebrand  research. (laboratory
e  Dynamic Studio software of
release via Particle Image Velocimetry (PIV) were conducted. The number and experiments).
Dantec (identify and
size distribution of firebrands released were analyzed under different scenarios.
characterize particles)
Samples of 125 mm length, 2 and 6 mm diameters, and moisture content of 0.5%  Empirical ~ analysis Collect empirical data to
Hudson & Blunck United e  Experimental model
2019 and 15% from different species (douglas fir, western juniper, ponderosa pine, based on observation create  models and
[69] States (Vertical tunnel experiment)

and white oak) were burned in a heated wind tunnel to simulate controlled

research.

parameters to estimate
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Observational research
(DSLR camera)

Statistical analysis (Factorial
analysis of variance -

ANOVA)

conditions. Ember formation time was measured with a DSLR camera. A
factorial analysis of variance was conducted to assess the sensitivity of ember
formation time to various factors, including species (dowel vs. natural sample),
diameter, moisture content, fuel condition, crossflow temperature, and

crossflow velocity.

the rate of ember

generation under

different conditions.

Observational research
Experimental tests

(laboratory conditions)

Experimental tests were conducted under laboratory conditions to analyze the
effect of fuel moisture content on ignition and combustion for eight types of

firebrands commonly generated by wildfires in Southern Europe. The

Empirical  analysis

Describe and
characterize  firebrand
properties for use as

inputs in models that

Ganteaume et al. [70] 2011 France based on observation = predict their behavior
Flammability measurement  firebrands studied included various parts of trees and different shapes, such as
research. within a  convective
method pine twigs, pine bark plates, eucalyptus bark, leaves, pine cone scales, pine
plume and their
Statistical analysis cones, acorns, and bark cubes.
potential to cause spot
fires.
Collecting and
characterizing firebrand
Firebrands were collected from an urban fire in Itoigawa-city, Niigata, on
properties from a recent
December 22, 2016. They were analyzed for size and mass, characterized using  Empirical  analysis
Suzuki & Manzello Experimental and urban fire, comparing
2018 Japan image analysis software to determine projected areas, and compared with based on observation
[71] observational research them with literature
available literature data and (National Institute of Standards and Technology) research.
findings and  those
NIST firebrand generators.
generated  using a
firebrand generator.
Audio data from cameras housed within fire-proof steel boxes were used to
Observational research detect and quantify firebrand impacts. Distinct acoustic signatures of firebrands
(experimental canopy fire) hitting the steel boxes were correlated with fire location and intensity to
Thompson et al. [72] 2022 Canada Semi-empirical Semi-physical

Acoustic analysis (monitoR

package)

measure firebrand travel distance and quantify the number of firebrands per
second (rate of impacts). An experimental crown fire served as a proof of

concept to validate the technique's viability.
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Analytical firebrand travel

distance model  (Albini

model)

Observation research

Surveyed Australian fire management experts on dynamic fire behaviors in

Empirical  analysis

Quantitative data on the
frequency of dynamic
fire behaviors (DFBs) is
collected through expert
and

surveys

observational studies,

Filkov et al. [73] 2020  Australia Expert elicitation approach more than 1000 ha fires from 2006 to 2016. Analyzed DFB frequency and based on observation
with direct observations
through Structured Surveys  quantity observed in each fire. research
regarded as the most
representative. This data
serves as a foundation for
developing  predictive
models.
e  Observational research
(prescribed fires and
wildfire data) Utilizing  observational
Calculated spot-fire distances within the Loess Canyons Experimental
e Fuel model Empirical analysis data and simulations to
Landscape, Nebraska, U.S.A., using BehavePlus (using SPOT module to
United BehavePlus fire modelling based on quantify and analyze the
Donovan et al. [74] 2023 calculate the maximum distance), comparing scenarios of grasslands,
States software v. 5.0.5 (SPOT observational impact of vegetation on
encroached grasslands, and Juniperus woodlands under prescribed fire and
module based on models research. the spread of fire spots
wildfire conditions to assess wildfire risk.
developed by Albini for both (secondary fires).
surface fire and torching
trees).
e  Observational research (real- Analyzed spotting patterns from 251 wildfires using over 8000 aerial line scan Empirical analysis Analysed aerial line scan
Storey et al. [75] 2020  Australia world observational data) images from southeast Australia (2002-2018) to quantify spot fire numbers, based on observation images of wildfires to

Statistical tests

describe spotting distance ranges (short, medium, and long) and compare

research.

examine spotting
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patterns across regions. These patterns were associated with broad rainfall

measures, elevation and fuel type.

patterns, measure
spotting distances, and

assess the distributions

of spot fires.
Experimental tests Observations from
(controlled wind tunnel controlled laboratory
experiments) Conducted wind tunnel experiments, coupled with lofting and downwind experiments,  analysis,

Observational research

transport of non-combusting rod-like firebrands during firebrand shower

and data collection for

Empirical  analysis
United Trajectory analysis (Image scenarios. Using image processing algorithms to solve firebrand trajectories. modelling firebrand
Tohidi & Kaye [76] 2017b based on observation
States processing algorithms) Analyzed the correlation between maximum rise height (z,,4,) and landing transport in wildfires
research
Statistical analysis  location (x;) and examined PDFs of x;/z,,, across different firebrand aspect contribute to predictions
(correlation and probability  ratios (firebrand model). of spot fire risk and a
density  function  (PDF) better understanding of
analysis) fire spotting phenomena.
The relationship between time to ignition and incident radiative heat flux on
Collection of empirical
forest fuel layers was analyzed by experimental studies of spontaneous ignition
data to understand the
using idealized firebrands under controlled conditions. A bench-scale Empirical analysis
Experimental test ignition of forest fuels by
Hernandez et al. [77] 2018 Chile apparatus was utilized to measure ignition time, mass loss, radial temperatures, based on observation
Statistical error analysis idealized firebrands for
and radiative heat flux on Radiata Pine needle samples. The firebrand was research.
use in existing or new
simulated using a cylindrical electric heater that produced a heat flux of up to
thermal models.
26.7 kW/m?.
Use existing models for
The study analyzed the weather conditions, fuels, and propagation of the
Observational research (real- detailed description
Kilmore East fire, including tracking fire spotting to understand high-intensity = Empirical  analysis
world fire data), (physical processes) and
fire behavior in eucalypt forests. Data sources, including infrared line scans, based on
Cruz et al. [78] 2012 Australia "retrospective analysis and reconstruction of real-
digital photographs, video footage, witness statements, and interviews with fire  observational
reconstruction of an event” world events
suppression personnel, were used to reconstruct the fire's propagation and research.

using existing models.

behavior (physical processes).

(retrospective empirical

analysis).
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Fire ignition and spread
Predictive models: FireWise

and FireSmart programs.

The study analyzed ignition processes from burning vegetation, including

The evaluation method is

standardized to map and

Empirical  analysis
Empirical data: Historical radiant heat, short-range spotting, and long-range spotting. Using GIS, it classify  exposure to
Beverly et al. [79] 2010 Canada based on observation
fire and vegetation type. mapped wildland-urban interface boundaries and identified potential wildfire ignition  based on
research
Albini's (1979) entry points, suggesting specific mitigation strategies for each community. observational data using
Predictive model: Spotting existing Albini's models.
distances and fire spread.
High-intensity experimental fires were conducted in dry eucalypt forests under Collection of empirical
high fire danger summer conditions. Fires were ignited simultaneously at two data  describing and
Prescribed fire (field
locations with differing understory and fuel structures developed over 2-22  Empirical analysis understanding fire
experiments)
McCaw et al.[80] 2012 Australia years post-prescribed burning. Fuels were sampled, and per cent cover and based on observation behavior and its
Observation research
hazard scores were assessed for five fuel layers. Fuel and wind data were research. relationship with
Statistical analysis
correlated with fire spread, flame height, firebrand density, and spotting vegetation
distance. characteristics.
Observational research (line-  The interaction between wind, terrain, and multispectral fire data collected
scan images) during the January 2003 alpine fires over south-eastern Australia was analyzed.
Sharples et al. [81] 2012 Australia Wind-terrain interaction A terrain-filter model was used to identify terrain features that contributed to  Semi-empirical Semi-physical
theory fire channelling, characterized by intense lateral and downwind spotting and
Simple terrain filter model extensive flaming zones.
Reviewing and
Reviewed research on wildland fire behavior, focusing on heat transfer analyzing existing
Review of Heat Transfer processes like advection, radiation, flame contact, and burning material research on heat transfer
Sullivan [82] 2017  Australia Literature review

and Interaction Mechanisms

transport  (spotting). Explored thermal degradation reactions and

environmental interactions. Identified knowledge gaps for further study.

processes and
interactions in wildland

fires.
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ACCESS-Fire model

Utilized the ACCESS-Fire model (existing model), integrating the Dry Eucalypt

Forest Fire (Vesta) fire spread component with the Australian Community

Numerical simulation to

Dry Eucalypt Forest Fire Computational
Peace et al. [83] 2022  Australia Climate and Earth System Simulator (ACCESS) to simulate the behavior of the replicate and analyze the
(Vesta) fire spread model modelling study
surface fire spread and fire-atmosphere interaction, focusing on the behavior of past fires.
Observational research
development of pyrocumulonimbus (pyroCb) clouds and ember transport.
U.K. Met Office Unified Developed a wildfire model using the UM with four nests with horizontal grid
Model (UM) spacings of 4 km, 1.5 km, 444 m, and 144 m. Simulated the Kilmore East fire
Toivanen et al. [84] 2019  Australia Semi-empirical Physical-mechanistic
Fire model with and without fire-atmosphere coupling, adding ignitions for long-range
Observational research spotting. Compared results to observed fire behavior.
Observational research Evaluated the numerical weather prediction (NWP) systems, such as the UK
UK Met Office Unified Met Office Unified Model (UM) within ACCESS, through high-resolution
Model (UM) (Numerical (explicitly resolve shallow convective circulations) numerical simulations at
simulation) Australian horizontal grid spacings of 400 m and 1.2 km, with multiple vertical levels to
Thurston et al. [85] 2016  Australia Semi-empirical Physical-mechanistic
Community Climate and capture boundary-layer rolls. Model outputs were validated against observed
Earth-System Simulator temperature and wind profiles during Black Saturday bushfires. The analysis
(ACCESS) assessed the impact of boundary-layer rolls on fire danger through wind
Sensitivity tests variability and ember lofting.
Observational research Developed and validated a radar-based fire-perimeter tracking tool to track
(satellite and airborne wildfire progression at high spatial and temporal resolution, especially for
United
Lareau et al. [86] 2022 infrared observations) those affecting communities in the wildland-urban interface. Conducted Empirical Statistical-empirical
States
Fire-perimeter tracking detailed analyses of radar-derived perimeters for the Bear Fire and Camp Fire
method to evaluate rapid growth patterns and spotting behavior.
Observational research Employed fire scar maps generated from remote sensing imagery (30-60 m Empirical observational
(Remote sensing imagery) resolution) using several visual or analytical approaches to identify and Empirical analysis analysis wusing mixed
Diaz-Delgado et al. Visual and analytical document burned areas across the study region accurately. Overlaid based on methods (visual and
2004 Spain
[87] approaches geographical layers with burned area maps enable the extraction of crucial observational analytical approaches) to
Geographic Information spatial fire parameters, such as fire size, frequency distribution, and patterns of  research quantify and describe

Systems (GIS)

fire occurrence. Recorded and analyzed data on fire spots and residual

spatial and temporal fire
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Digital Elevation Model
Fractal Dimension

Statistical model

vegetation islands to examine their relationships with fire characteristics and

environmental factors.

patterns, their
relationships with
environmental and

human factors, and the
effects influencing fire
spread and spotting

behavior.

Observational research

(airborne thermal infrared

Developed geovisualization tools integrating ATIR (Airborne Thermal Infrared

) (ATIR) imagery imagery) and topographic data to analyze wildfire behavior, including the rate
Shennan et al. [88] 2023 United United States National of spread and spotting. These tools were tested and evaluated through user = Empirical Statistical-empirical
States Agriculture Imagery feedback and applied to the Thomas and Detwiler wildfire events in California
Program (NAIP) in 2017.
Geovisualization tools
Experimental test (using
combustion wind tunnel in
laboratory conditions from
Forest Fire Research Conducted 30 laboratory fire experiments on a 3 m X 4m fuel bed made of Investigating the
] Laboratory of ADAIin dead mature Pinus pinaster needles, incorporating 0, 1, or 2 manually ignited ~Empirical analysis interaction between spot
Storey et al. [89] 2021 Australia Lousa, Portugal) spot fires, with variations including the presence or absence of a model hill. The  based on observation fires and topography
Observational research combined rate of spread (ROS) of the main fire and any merged spot fires was  research through laboratory
(FLIR ThermaCam SC640 analyzed using appropriate statistical methods. experiments.
infrared camera and color
video cameras)
Statistical analysis
Observational research Empirical data collection
Georeferenced oblique aerial wildfire photographs from airtanker response in ~ Empirical  analysis
Hart et all. [90] 2021 Canada Photogrammetric based on actual wildfire
the early stages of fire growth were used to locate fire front positions in photo  based on

monoplotting technique

observations to validate
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e  software program WSL pairs from five fires, taking 31 to 118 minutes apart. Head fire spread distance  observational fire spread models or
Monoplotting Tool (MPT) and head fire rate of spread (HROS) were then calculated to assess fire behavior.  research develop a new empirical
e  Canadian Fire Behavior relationship.
Prediction System
Table A16. Summary of studies on integration of spotting into operational fire spread models (2000-2023).
Authors & Model Type/ New Model/
Year Country Method Methodology
References Approach Approach
BehavePlus is based on mathematical models for fire behavior, fire effects,
and fire environment. It is designed to encourage examination of the impact
United Review and description of the system's ~ of a range of conditions through tables and graphs. In BehavePlus, the
Andrews [91] 2014 Semi-empirical Semi-physical
States development and updates. CROWN module models the generation of firebrands, the SPOT module
handles firebrand lofting and wind-driven transportation, and the IGNITE
module evaluates firebrand ignition upon landing.
e  PhyFire model (2D physical
forest fire spread model)
e  Continuous Partial Differential
Equations (PDE) formulations The historical analysis of the PhyFire model provides details of the
e Numerical methods mathematical and numerical methods applied in its development for forest
Asensio et al. [92] 2023 Spain e  Computational model fire spread. These methods include finite differences, mixed, classical, and Semi-empirical Semi-physical
¢  Random heat contribution of fire  adaptive finite elements, data assimilation, sensitivity analysis, parameter
spotting using spotting adjustment, and parallel computation.
parametrization (based on the
ideas of the RandomFront 2.3)
¢« GIS
e  Virtual Reality operational tool Provides real-time fire spread algorithms for both forest and urban Hybrid Model
Moreno et al. [93] 2014 Spain e  Fire spread model (Algorithms environments at interactive rates using a cellular automata model. (CA3+Physics-based Other Models

based on a Physics-based model

Algorithms handle user-initiated actions (agents), natural and artificial

algorithms + Agent-
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(for urban fire) and Achtemeir's
Rabbit model (simple rules and
autonomous agents to simulate
fire evolution (dynamic variables
and complex interactions))

GIS

CA model (managing spatial

aspects and local interactions)

firebreaks, variable wind conditions, and non-contiguous fire propagation
(including embers and fire spotting). An object-oriented approach is
employed for architecture in efficient computation for mixed forest-urban
environments, with validation conducted against established models (such
as FARSITE) and expert feedback to ensure accuracy and realism in the

training scenarios.

Based Model (ABM)

+empirical data)

Plucinski et al. [94]

2017

Australia

Bushfire behavior models -
Amicus (operational model and
decision support system)
Observational research
(empirical data, expert

judgement, and local knowledge)

The development of Amicus, a decision support system for the Australian
bushfire context, integrates bushfire behavior models with expert judgment
and local knowledge. It uses statistical relationships from field and
laboratory experiments to predict fire behavior (rate of spread, flame height,
fireline intensity, spotting distance). It analyzes temporal trends and

uncertainties to provide reliable predictions.

Semi-empirical

Semi-physical
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