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Abstract: Wildland fires negatively impact forest biodiversity and human lives. They also spread
very rapidly. Early detection of smoke and fires plays a crucial role in improving the efficiency of
firefighting operations. Deep learning techniques are used to detect fires and smoke. However, the
different shapes, sizes, and colors of smoke and fires make their detection a challenging task. In this
paper, recent YOLO-based algorithms are adopted and implemented for detecting and localizing
smoke and wildfires within ground and aerial images. Notably, the YOLOv7x model achieved the
best performance with an mAP (mean Average Precision) score of 80.40% and fast detection speed,
outperforming the baseline models in detecting both smoke and wildfires. YOLOv8s obtained a high
mAP of 98.10% in identifying and localizing only wildfire smoke. These models demonstrated their
significant potential in handling challenging scenarios, including detecting small fire and smoke areas;
varying fire and smoke features such as shape, size, and colors; the complexity of background, which
can include diverse terrain, weather conditions, and vegetation; and addressing visual similarities
among smoke, fog, and clouds and the the visual resemblances among fire, lighting, and sun glare.
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1. Introduction

Wildfires are a complex phenomenon and present a great challenge for forest manage-
ment. They happen naturally and are important to keep the forest’s health and biodiversity.
However, they have great destructive potential, threatening communities and destroying
natural resources. For example, wildfires have burned 260,000 hectares in the European
Union since January 2023 [1]. In Canada, since 1990, fires have consumed an average of
2.5 million hectares per year [2]. The impact of wildfires on communities, such as evacua-
tions and loss of homes, is expected to increase in the next years as more people move to
residential developments in forested areas, coupled with the effects of climate change [3,4].
Therefore, it is of the utmost importance to control natural fires so that it is possible to take
advantage of their ecological benefits while limiting their damage and costs [2].

Forests are full of trees, wood, and leaves, which serve as fuel for fires. This allows
wildfires to spread very quickly, easily becoming uncontrollable. Therefore, it is necessary to
detect fires quickly, giving enough reaction time to manage them [5]. Numerous firefighting
solutions have been developed, including predictive and simulation techniques based on
machine learning to reduce forest fire damage. They offer accurate and early wildfire
information as they can detect the presence of forest smoke and fires at early stages.
They can also determine the severity of burnt forest areas, improving reforestation efforts
and providing reliable strategies for monitoring the ecosystem. There are a number of
techniques to detect fires. One traditional method involves using physical sensors in order
to detect smoke and fires. However, this method has some weaknesses. It has an inherent
delay until the smoke hits the sensor [6]. They also suffer from high false-alarm rates and it
is difficult to cover the forest area with sensors. Other traditional methods of fire detection,
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employed by authorities, are the usage of observers in patrols or watch towers and aerial
and satellite monitoring [5]. However, people working on patrols or monitoring are prone
to being distracted or may not see the fires on time, leading to delays in detecting wildfires.

Recently, computer vision methods have been employed by researchers to automat-
ically detect wildfires using aerial and ground images, addressing the aforementioned
limitations [7,8]. These methods can be divided into two categories: flame detection and
smoke detection, that is, to detect wildfires either by focusing on detecting their flames or
by identifying and localizing the presence of smoke.

Early studies used hand-crafted feature extraction techniques to obtain smoke and
flame features, such as colors, shapes, textures, edges, etc., from images and videos [9–13].
The downside of the traditional computer vision approaches with handcrafted feature
extraction is the requirement to select the relevant features. Also, along with the choice of
features, it is necessary to fine-tune the parameters used. This can become very cumbersome
and inefficient [14], not to mention that the chosen rules and features might not be the best
or generalized enough. This greatly limits the potential of these algorithms.

More recently, deep learning models, including Convolutional Neural Networks
(CNNs) and vision transformers, have been applied to detect and segment smoke and
wildfires using aerial, ground, and satellite images [15]. These models have shown their
ability to automatically extract relevant features from the raw pixels of images, overcoming
the aforementioned limitations.

These models are also used to perform three main tasks: fire classification, fire de-
tection, and fire segmentation. Fire classification is the task of identifying the presence of
fire and/or smoke in the input images. Fire detection, along with identifying fire and/or
smoke objects, determines their spatial location by drawing a bounding box around them.
Fire segmentation consists of identifying and delineating fire and/or smoke objects by
assigning each object the same color in the visual presentation. There is a focus on the study
of CNNs for the fire detection task. There are many object detection algorithms, and among
them, the YOLO (You Only Look Once) family stands out. It offers a good balance between
speed and accuracy, possessing the ability to make predictions in real time. Since 2016,
the YOLO family has expanded with many different versions [16]. Additionally, YOLO
models have been used for many applications, such as the detection of pedestrians [17],
autonomous vehicles [18,19], face detection [20], security applications like the detection of
weapons [21], and medical diagnostics [22–24].

One of the main challenges of fire detection methods is their difficulty in accurately
detecting small areas of fire and smoke [25]. In this paper, recent object detection techniques,
specifically YOLO models, are employed for detecting and localizing smoke and wildfires
as well as addressing this challenge and improving smoke and wildfire detection tasks.
Moreover, there is a particular focus on the detection of smoke, as it is usually visible before
the flames, allowing faster fire detection and response [9]. The detection of smoke is a very
challenging task as it takes many different shapes, sizes, and colors. The characteristics of
smoke vary considerably depending on the surrounding forest environment. Also, it is
difficult to distinguish smoke from smoke-like objects, such as clouds and fog. Another
factor is that early smoke is usually semitransparent, resulting in blurred boundaries and
making it hard to draw a precise bounding box around it. The variety and complexity of
backgrounds in the images with fires also contribute to making this task challenging [26,27].
This, combined with the difficulty of detecting small objects, complicates the detection
of early smoke. There are also many limitations associated with the task of the detection
of wildfires. Similar to the detection of smoke, the complexity of the background in the
images of fire is a factor. Early fires appear in small sizes, presenting a challenge for fire
detection models. Fires show many different sizes, shapes, and intensities. Also, there are
fire-like objects, such as glares, the reflection of the sun, and lighting.

The main contributions of this paper are:

• The recent YOLO models are adopted and implemented in detecting and localiz-
ing smoke and wildfires using ground and aerial images, thereby reducing false
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detection and improving the performance of deep learning-based smoke and fire
detection methods;

• The reliability of YOLO models is shown using two public datasets, D-Fire and WSDY
(WildFire Smoke Dataset YOLO). Extensive analysis confirms their performance over
baseline fire detection methods;

• YOLO models showed a robust potential to address challenging limitations, including
background complexity; detecting small smoke and fire zones; varying smoke and
fire features regarding intensity, flow pattern, shape, and colors; visual similarity
between fire, lighting, and sun glare; and the visual resemblances among smoke, fog,
and clouds;

• YOLO models are introduced in this study, achieving fast detection times, which are
useful for real-time fire detection and early fire ignition. This shows the reliability of
YOLO models when used on wildland fire monitoring systems. They can also help en-
hancing wildfire intervention strategies and reducing fire spread and the area of burnt
forest, thus providing effective protection for ecosystem and human communities.

The rest of this paper is structured as follows: Section 2 reviews the previous research
on smoke and flame detection using deep learning techniques. Section 3 introduces the
recent YOLO models, wildland fire challenges, the dataset used, and the evaluation metrics.
In Section 4, the testing results are discussed. Finally, Section 5 summarizes the paper.

2. Related Works

Wildfires pose a significant threat to human life and human health as well as the
threat of economic losses. They also affect forest biodiversity and impact ecosystems.
Detecting fire ignition and wildfires early is a crucial aspect in reducing their damage. First,
early prediction and identification of wildland fires allows rapid firefighter interventions,
enabling the evacuation of habitats and reducing habitat loss. This prevents the destruction
of habitat and assures ecological balance. On the other hand, early intervention can also
reduce fire intensity and spread. Consequently, it reduces carbon emissions, as wildfires
are important sources of CO2 (carbon dioxide). This can positively influence efforts to limit
climate change. For these reasons numerous systems have been developed for reducing
the damage of wildland fires. Many deep learning models, including CNNs and vision
transformers, are used for detecting and localizing smoke and fires using ground and aerial
images, as presented in Table 1. The main architecture of these models is described in three
parts: the backbone, the neck, and the head. The backbone is used to extract both low-level
and high-level features from the input data at different scales. It is usually a CNN. The neck
enhances the semantic and spatial information at the different scales. It refines the features
extracted by the backbone. These features are used by the head to predict the location of
the bounding boxes and to classify the objects in them [16]. Many of the recent works aim
to improve these parts of the architecture of the fire detection algorithm. Among them,
Islam and Habib [28] made changes to the YOLOv5 architecture in order to improve the
detection of small fires. They modified the neck part by adding a focus module, which
enhances the feature propagation of small fires through the network. For tests, they used
a private dataset, with 2462 images collected from open sources in Roboflow and Github.
The modified YOLOv5n and YOLOv5x scaled models achieved mAP scores of 83.2% and
90.5%, respectively.

Wang et al. [29] used an object detector based on the vision transformer architecture to
detect smaller flame and smoke areas. They used a private dataset and a public dataset,
called the fire smoke dataset. The private data include 5900 images, mostly of indoor fires.
Its main challenge is the presence of objects like clouds, occlusions, and reflections. The
fire smoke dataset comprises 23,730 images under different lighting (indoor or outdoor)
and weather conditions. To prevent overfitting and to make the model generalized enough,
they applied data augmentation techniques, such as scaling, horizontal flipping, padding,
cropping, and normalization. The DFFT (Decoder-Free Fully Transformer) architecture,
which relies solely on the self-attention mechanism of transformers as an alternative to the
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use of CNNs, is employed as it is effective in detecting targets of different sizes. The neck is
comprised of encoder modules for the aggregation of the features extracted by the backbone
at different scales. The detection head also includes encoder modules to divide the features
into ones used for classification and ones employed for regression. Then, these generated
features are adopted to predict the bounding boxes. The DFFT model achieved mAP scores
of 87.40% and 81.12% using the private dataset and fire smoke dataset, respectively. It
showed its efficiency in identifying and localizing fire and smoke with different sizes and
outperformed state-of-the-art models.

Huang et al. [30] used the deformable DETR [26], which improves the slow conver-
gence and the limited spatial resolution limitations of the original DETR [31], for detecting
forest smoke. The deformable DETR employs the deformable attention module, which
focuses on a small set of sampling points around a chosen reference point instead of paying
attention to all the possible locations. The backbone of this model is improved by adding
two modules, MCCL (Multi-scale Context Contrasted Local Feature module) and DPPM
(Dense Pyramid Pooling module). The MCCL module improves the detection of early
smoke and the DPPM enhances the model’s ability to differentiate between smoke and
smoke-like objects. The authors also introduced a method to refine the predicted bounding
boxes and to enhance the precision. Using 10,250 forest smoke images, the deformable
DETR model achieved an mAP of 88.4%, surpassing the baseline deformable DETR by 2.6%.

Bahhar et al. [32] proposed a staged system, combining a CNN for classification and
YOLO models. First, the CNN classifies the input image as normal or abnormal. When an
abnormal image is identified, YOLOv5s and YOLOv5l models are employed for detecting
and localizing smoke and flame, respectively. A dataset composed of 937 annotated images
is utilized to train and evaluate these models, resulting in an mAP score of 76%. Chen
et al. [33] made improvements to the architecture of YOLOv7 for detecting smoke. First,
they integrated the RepVGG network into the backbone of the YOLOv7 model. The
RepVGG network adopts multi-branch structures during training and converts them to a
planar structure during the inference task with a lossless compression method. This allows
a better detection performance during training while improving the speed for inference.
They also added the ECA (Efficient Channel Attention) attention module to the backbone,
allowing the proposed network to focus on the relevant objects and reduce the interference
of the background. They used a dataset with 9005 images, of which 6605 of them contain
smoke and 2400 non-smoke images. The improved model obtained an mAP of 93.7%,
outperforming the original YOLOv7 by 1.5%.

Li et al. [34] proposed a modified YOLOv5s model for forest fire and smoke detection.
They employed a Coordinate Attention (CA) module, which allows the model to focus
on the relevant areas of the input image. They also added a Receptive Field Block (RFB)
module to the backbone to generate feature maps at different scales, and a Bidirectional
Feature Pyramid Network (Bi-FPN) module to the neck to reduce the computational cost.
The improved YOLOv5s model reached an mAP of 58.8% using 450 forest fire and smoke
images. It also outperformed the original YOLOv5s by 4.5%.

Sun et al. [35] introduced a deep learning model, namely ForestFireDetector, to identify
and localize smoke. ForestFireDetector is a modified version of YOLOv8 adding the Space-
to-Depth convolution (SPD-Conv) modules into the backbone to downsample feature
maps to smaller scales by reducing the spatial dimension while increasing the channel
dimension and avoiding the loss of fine-grained information. This allows for a better
detection performance for both the detection of small zones of smoke and images with
low resolution. The neck is modified with the employment of Ghost Shuffle Convolution
(GSConv) modules, which are faster and lighter than the standard convolution modules,
with a slight accuracy loss. Using a dataset composed of 3966 images of forest fire smoke,
the ForestFireDetector model achieved an mAP of 90.2%, outperforming the baseline
YOLOv8n by 3.3%.

Chen et al. [36] proposed a modified architecture for the YOLOv7 model, namely
LMDFS, for detecting forest smoke on UAV (Unmanned Aerial Vehicle) images. To make
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the LMDFS model lightweight, they employed the GSConv module in the neck, which is
faster and lighter than the standard convolution modules while slightly losing accuracy.
The Hardswish activation function is also applied instead of SiLU function thanks to its
faster computation. To improve the accuracy of the proposed model, they added the
CA module to the backbone and the CARAFE (Content-Aware Reassembly of Features)
module at the neck for improving the upsampling stage in information fusion. The used
dataset includes 5311 images of smoke from the point of view of UAVs. The LMDFS model
achieved an mAP of 80.2%, surpassing the baseline YOLOv7 by 5.9%.

Yang et al. [37] modified the YOLOv3 model for the detection of smoke and wildfires.
To improve the detection of small fires and smoke, an additional large-scale feature map is
used for the neck. They added residual blocks to the YOLOv3 backbone to enhance the
training of the model. They also employed K-means clustering to improve the setup of
the anchor boxes and to reduce the complexity of the predictions. The modified model
obtained an mAP of 95.0%, overcoming the baseline YOLOv3 by 14.1% using a large dataset
consisting of 30,411 images of smoke and fire.

Sun et al. [38] proposed a fire detection method, called AERNet, based on YOLOv4 as
its baseline. They employed Ghost modules in the backbone to generate feature maps using
cheap linear transformations. This makes the model lightweight. They added SE (Squeeze-
and-Excitation) attention modules between the Ghost modules to enhance the extraction
of features. For the neck, they employed the PANet (Path Aggregation Network) module,
which enhances the information fusion of the feature maps of different scales, combined
with a Convolutional Block Attention Module (CBAM), which allows the network to focus
on the relevant regions of the image. They introduced the SF-dataset, composed of 9246 fire
and smoke images. The FIRESENSE dataset, which consists of 49 videos of smoke and
fire, is also employed in the experiments. By training on the SF-Dataset and testing on
the FIRESENSE dataset, the model achieved an mAP of 69.42%, better than the baseline
YOLOv4 by 1.95%.

Sun and Feng [39] modified the YOLOv3 model for detecting fire and smoke. They
added a CBAM attention module to the neck to improve the accuracy of the model. They
modified the detection head to make it anchor-free, as it is more efficient for the detection
of fire and smoke thanks to its flexibility for variable shapes and sizes. They also developed
a lightweight version of the model. These methods are trained with a dataset composed of
10,029 images of wildfire and smoke. The modified YOLOv3 and its lightweight version
achieved an mAP of 73.3% and 70.1%, respectively. Both surpassed the basic YOLOv3
model by 4.4% and 1.2%, respectively.

Jin et al. [40] modified the YOLOv7 model to detect fire and smoke. To the neck, they
added a PANet module with radial connections to connect the weights of the module to
different layers of the backbone. This enhances the fusion of information from feature
maps at different scales and prevents the loss of relevant information. They also added a
permutation self-attention module to the neck in order to focus the model efficiently on the
important regions of the image. They used a dataset composed of 14,904 images of smoke,
fire, and challenges such as clouds and illumination. The modified YOLOv7 achieved an
mAP of 87.9%. While being surpassed by YOLOv7x with an mAP of 1.4%, the modified
model is lighter, processing 4.9 more frames per second and costing less with 45.3 GFLOPS
(Billions of Floating Point Operations per Second).

Kim and Muminov [41] modified the YOLOv7 model to detect smoke using aerial
images. They added a CBAM to allow the network to focus on the important areas of the
image. The spatial pyramid pooling fast (SPPF) module, on top of the original backbone, is
modified to include more connections and feature reuse, making better use of the global
information generated by the pooling of information at different scales. They integrated the
Bi-FPN component at the neck to reduce computational cost. They also added decoupled
detection heads, in which classification and bounding box tasks are performed as separate
tasks. This enhances the detection accuracy. They used a dataset of 6500 images collected
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from UAVs, of which 3500 contain smoke and 3000 do not. The improved YOLOv7 model
obtained an mAP of 86.4%, surpassing the baseline YOLOv7 model by 3.9%.

Table 1. Deep learning models for smoke and fire detection.

Ref. Methodology Dataset Object Detected mAP (%)

[28] Modified YOLOv5n
Modified YOLOv5x Private dataset: 2462 images Fire

Smoke
83.20
90.50

[29] DFFT Private dataset: 5900 fire images
Fire smoke dataset: 23,730 images

Fire
Smoke

87.40
81.12

[32] YOLOv5s and YOLOv5l Private dataset: 937 images Fire
Smoke 76.00

[33] Modified YOLOv7 Private dataset: 9005 images (6605 smoke images and
2400 non-smoke images) Smoke 93.70

[30] Deformable DETR Private dataset:10,250 forest smoke images Smoke 88.40

[34] Improved YOLOv5s Private dataset: 450 forest fire smoke images Fire
Smoke 58.80

[35] ForestFireDetector Private dataset: 3966 images of forest fires Smoke 90.20

[36] LMDFS Private dataset: 5311 aerial smoke images Smoke 80.20

[37] Modified YOLOv3 Private dataset: 30,411 images Fire
Smoke 95.00

[38] AERNet SF-dataset: 9246 fire and smoke images; FIRESENSE
dataset: 49 videos of smoke and fire

Fire
Smoke 69.42

[39] Modified YOLOv3 Private dataset:10,029 images of smoke and fire Fire
Smoke 73.30

[40] Modified YOLOv7 Private dataset: 14,904 images Fire
Smoke 87.90

[41] Modified YOLOv7 Private dataset: 6500 aerial images Smoke 86.40

[42] Pruned YOLOv4 D-Fire: 21,527 images of smoke and fire Fire
Smoke 73.98

[43] YOLOv5 D-Fire: 21,527 images of smoke and fire Fire
Smoke 79.46

[44] Optimized YOLOv5 Public dataset: 6000 aerial images Smoke 73.60

Venâncio et al. [42] tested different pruning techniques to make the YOLOv4 model
lighter. Pruning consists of removing the convolutional filters of lesser importance to reduce
the computational cost while maintaining the original accuracy. The pruned YOLOv4 is
trained on the D-Fire dataset, which contains 21,527 images of fire, smoke, and fire-/smoke-
like objects. The pruned YOLOv4 model reached an mAP of 73.98%, the same as the
baseline YOLOv4, while reducing the computational cost by 83.60%. Venâncio et al. [43]
also used YOLOv4 and YOLOv5 models to detect and localize smoke and fires in order to
reduce false alarms. Two methods are employed: temporal persistence and area variation
analysis. The first method consists of triggering the alarm only after the detection of
smoke or fire objects in multiple consecutive frames. This is because elements that cause
false alarms typically last a few frames. The area variation analysis consists of verifying
the expansion of fire and smoke objects by calculating a persistence coefficient using the
centroids of the objects detected in consecutive frames and activating the alarm when
this coefficient exceeds a predefined threshold value. The principle of this method is that
objects which cause false detections are usually static or do not grow in a short time. The
Tiny YOLOv4, YOLOv4, YOLOv5s, and YOLOv5l models are trained and tested using
the D-Fire dataset, achieving mAPs of 63.34%, 76.56%, 78.30%, and 79.46%, respectively.



Fire 2024, 7, 140 7 of 19

Mukhiddinov et al. [44] developed an optimized YOLOv5 model for detecting forest smoke
using UAV images. They integrated a K-means++ method with anchor box clustering to
minimize the error of classification, a spatial pyramid pooling fast-plus layer into its
backbone to focus on small areas of forest smoke, a Bi-FPN method to generate faster multi-
scale fusion of features, and transfer learning and pruning techniques to refine performance
and accelerate the optimized YOLO model. They collected 6000 aerial images from open-
access fire datasets for training and testing the proposed method. They also applied
various data augmentation techniques (rotation and horizontal flip), achieving an AP of
73.60%, better than baseline object detection methods, such as SSD, RefineDet, EfficientDet,
DeepSmoke, YOLOv2, YOLOv3, YOLOv4, DeNet, Faster R-CNN, and Mask R-CNN.

As presented in Table 1, the detection of smoke and fires is more accurate as a result
of deep learning methods. Nonetheless, there are still numerous challenging limitations,
including the visual similarity between smoke, fog, and clouds, the varying features of
smoke and fires in terms of colors, flow pattern, size, and shape, the detection of small
smoke and fire zones, and the visual resemblance among fire, lighting, and sun glare. On
the other hand, these advanced systems can require high consumption of energy, notably
when running a large-scale wildfire detection system, which impact the environment as it
increases carbon emissions.

3. Materials and Methods

This section consists of a description of the recent YOLO models and the D-Fire and
WSDY datasets. First, the YOLO models used, namely YOLOv5, YOLOv5u, YOLOv7, and
YOLOv8, are introduced before presenting challenging limitations in detecting wildland
fires. Secondly, the D-Fire and WSDY datasets are described. Finally, the evaluation metrics
used to compare the performance of each model are presented.

3.1. Proposed Models

YOLO models consist of the backbone, neck, and head parts. The backbone, responsi-
ble for feature extraction is composed of a CNN. It is used to extract features at multiple
scales, generating feature maps with different sizes. The low-level feature maps generated
are bigger and have high spatial information while having low semantic information. The
high-level feature maps are smaller and have high semantic information with low spatial
information. The neck refines the features extracted by the backbone by fusing information.
It combines the information of the high-level and low-level feature maps. In the YOLO
series, the neck is usually composed of an FPN (Feature Pyramid Network) module or an
improved version of it, such as the PANet (Path Aggregation Network) and the Bi-FPN
(Bidirectional Feature Pyramid Network) modules. The FPN module downsamples the
low-level feature maps to fuse them with the high-level feature maps, improving their
spatial information. The improved modules, PANet and Bi-FPN, add a stage in which the
smaller feature maps are upsampled and fused with the bigger feature maps, enhancing
their semantic information. The head uses the refined features to predict the bounding
boxes and their classes. It consists of convolutional or fully connected layers. The head can
be coupled, in which it consists of a single structure to predict the bounding boxes and
perform the classification, or decoupled, in which the head is separated into a branch for
localization and a branch for classification. The decoupled head structure shows better
accuracy and training convergence [16].

Another important aspect of YOLO models is the employment of anchor boxes, which
are boxes with predetermined shapes used to make predictions for the bounding boxes [16].
YOLO models can be divided among those using anchor boxes and those not incorporat-
ing them.

3.1.1. YOLOv5

YOLOv5 [45] was developed by Ultralytics. It uses anchor boxes for predictions. It
adopts an algorithm, called AutoAnchor, which adjusts the anchor box prototypes for the
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dataset. The backbone begins with a STEM layer, which is a convolutional layer with a
large window size, to reduce computational cost. On top of the backbone, there is a spatial
pyramid pooling fast (SPPF) module, which pools features of different scales into a single
feature map, reflecting global information. The neck incorporates a PANet module for
information fusion. It has a coupled head, in which the predictions of the locations of
bounding boxes and the classification of their classes are computed in the same branch.
It has five scaled versions, whose convolutional layers vary in width and depth. The
YOLOv5x model reached an mAP of 50.7% on the MS COCO dataset [16].

3.1.2. YOLOv7

YOLOv7 [46] uses E-ELAN (Extended Efficient Layer Aggregation Network) blocks in
its backbone and its neck to enhance the model’s learning and convergence. It also employs
reparameterization and batch normalization. It has a coupled head, making predictions
for bounding boxes and classification in one single branch. YOLOv7 achieved an mAP of
52.8% using the MS COCO dataset [16].

3.1.3. YOLOv8

YOLOv8 [47] was developed by Ultralytics like YOLOv5. It has a backbone similar
to YOLOv5, with improvements in the convolutional modules for speed and accuracy.
It has a decoupled head, in which the classification and bounding box localization tasks
are performed in different branches and does not use anchor boxes for the predictions. It
uses the CIoU (complete Intersection over Union) loss and DFL (Distribution Focal Loss)
loss functions for the localization task and the BCE (Binary Cross-Entropy) loss for the
classification task. Similar to YOLOv5, YOLOv8 has five scaled versions. The extra-large
scaled version, YOLOv8x, obtained an mAP of 53.9% on the MS COCO dataset [16].

3.1.4. YOLOv5u

YOLOv5u [48] is a new version of YOLOv5, also developed by Ultralytics. It has the
same backbone and neck as YOLOv5 but features the same decoupled and anchor-free
detection head as YOLOv8. The extra-large scaled version, YOLOv5xu, reached an mAP of
53.2% on the MS COCO dataset [48].

3.2. Wildland Fire Challenges

YOLO models showed a high and robust result in object detection, demonstrating
a high trade-off between accuracy and speed and making them suitable for many real-
time applications, including wildland fire detection and monitoring. However, many
challenging limitations remain in detecting wildfires and smoke [7,49,50]. Firstly, the limited
available wildfire data and the small size of existing fire data are important challenges.
This can affect the performance of YOLO models in forest fire detection as YOLO models,
like deep learning models, require a large amount of labeled fire data to efficiently train
on different wildland fire scenarios. Furthermore, as wildfires can occur in many different
environments, under varying weather conditions, and at different times of day, the lack of
diverse data can prevent the generalizability of a reliable model when learning different
scenarios. Moreover, wildfires and smoke are more clearly visible and detectable in open
areas from a longer distance. However, varying canopy density, lighting conditions, and the
presence of numerous natural items in dense forests all contribute to background complexity.
They can mask early fire ignitions until they reach an advanced phase, complicating early
monitoring and detection. This reduces the reliability of fire detection models. Additionally,
extreme weather conditions, such as heavy fog and rain, considerably reduce wildfire
visibility, thus also impacting the efficiency in detecting wildland fires. Finally, wildfires
and smoke vary in terms of intensity, shape, and size, from small to medium to large.
Small fire zones are the first stages of a fire, often with low visibility. Detecting them as
soon as they appear is therefore a crucial limitation, enabling rapid intervention to prevent
fire spread.
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3.3. Dataset

To evaluate the performance of YOLO models, we used two available datasets,
D-Fire [42,51] and WSDY (WildFire Smoke Dataset YOLO) [52].

1. The D-Fire dataset was introduced by Venâncio et al. [42,51] for the detection of smoke
and fires. It includes aerial and ground images. It consists of a total of 21,527 images,
of which 1164 images contain only fires, 5867 are smoke images, and 4658 are smoke
and fire images, while the remaining 9838 images are non-fire and non-smoke images.
It presents smoke and fires with different shapes, textures, intensities, sizes, and colors.
The D-Fire dataset also includes images with challenging conditions, including scenarios
with insects obstructing the camera, raindrops scattered, lighting, fog, clouds, and sun
glare. These variations in the environmental factors provide diversity to the dataset and
enhance its representation of the real challenges faced when detecting smoke and fires.
Figure 1 presents some examples of the D-Fire dataset.

Figure 1. D-Fire dataset examples, from top to bottom: smoke images, fire images, fire/smoke images
with challenging scenarios such as the presence of clouds, fog, and sun glare.

2. The WSDY dataset [52] is a publicly available dataset developed by Hemateja for
detecting and localizing wildfire smoke. It contains 737 smoke images, divided into
training, validation, and test sets with their corresponding YOLO annotations. It
depicts numerous wildland fire smoke scenarios with challenging situations such as
the presence of clouds, as depicted in Figure 2.
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Figure 2. WSDY dataset examples.

3.4. Evaluation Metrics

One of the most common metrics for the evaluation of object detection models is the
Average Precision (AP). It is based on two metrics: recall (R) and precision (P). Precision is
the ratio of the true positives (TP) and the total number of predicted positives, which are
true positives and false positives (FP), as given in Equation (1).

P =
TP

TP + FP
(1)

Recall is the ratio of the true positives and the ground-truth positives, including the
false negatives (FN), as shown in Equation (2). It measures how many positives the model
can retrieve.

R =
TP

TP + FN
(2)

By varying the confidence threshold, different recall and precision values are obtained.
By increasing it, the precision increases, but the recall decreases; in contrast, by decreasing the
threshold, the precision decreases and the recall increases. The Average Precision (AP) metric
is obtained by computing the area under the precision–recall curve obtained by plotting the
recall and precision values at different confidence threshold points. Mean Average Precision
(mAP) consists of computing the AP for each class in the dataset. For object detection, true
positives are defined by Intersection over Union (IoU), which is the ratio between the area
of intersection of the predicted bounding box and the ground-truth box and the area of their
union. The confidence, in this case, is the threshold of IoU values. In this paper, the mAP with
the threshold of 0.50 is used as the main metric to compare the different models’ performances.
The AP for the individual smoke and fire classes is also measured.

A metric commonly used to measure the computational cost of the models is FLOPS,
which is the number of floating-point operations per second performed by the model. Mod-
els with lower FLOPS have lower computational costs, while models with higher FLOPS
have higher costs. As deep learning models perform billions of floating-point operations, it
is common to measure performance using the GFLOPS metric, which represents billions
of floating-point operations per second. The inference time presents the time taken by the
proposed YOLO models to detect and localize smoke and fires. Models must make their
inferences fast enough to reduce delays in the management of wildfires.

4. Results and Discussion

In this section, there is a description of the implementation of the experiment results
as well as an analysis of these results.
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4.1. Implementation Details

The experiments are performed on a machine with 32 GB of RAM and an NVIDIA
Tesla V100 SXM2 16 GB GPU.

The D-Fire dataset used in the experiment is split into training, testing, and validation
sets. First, the testing data contained 20% of the images in the dataset (4306 images). The
remaining images are split into a training set, consisting of 15,498 images, and a validation
set, comprising 1723 images. Moreover, we tested the performance of the YOLO models
using the WSDY dataset, which are split into three sets: a training set (517 images), a
validation set (110 images), and a test set (110 images).

The YOLOv8 and YOLOv5u models are developed using Python with the Ultralytics
package. The different scaled models trained are the nano, small, medium, large, and
extra-large models, denoted by the suffixes “n”, “s”, “m”, “l”, and “x”, respectively. In
addition, the YOLOv5 (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) and
YOLOv7 (YOLOv7 and YOLOv7x) models are also implemented using Python with the
PyTorch package [53].

During training, the following hyperparameters are employed: 100 epochs, a batch
size of 16, an input image size of 640 × 640 pixels, a momentum of 0.937, a weight decay
of 0.0005, and a learning rate of 0.01. We also used YOLO models pretrained on the
COCO dataset. Additionally, numerous data augmentation techniques are applied, such as
rotation, translation, scale, shear, mixup, and flip, to diversify training data.

4.2. Result Analysis

The evaluation of the YOLO models included several crucial aspects. Firstly, their
performance is evaluated in terms of AP, mAP, and GFLOPS compared to state-of-the-art
methods using the D-Fire and WSDY testing sets, as shown in Tables 2 and 3. Secondly,
their predicted visual detection using input images is presented in detail. We also calculate
the training time and the power consumption [54], which represents the multiplication of
the power consumption of the GPU used (GPUPower), 300 Watt for NVIDIA Tesla V100, its
training time (TT), and PUE (Power Usage Effectiveness) of 1.1, as shown in Equation (3),
for each YOLO model.

PowerConsumption = GPUPower ∗ TT ∗ PUE (3)

The obtained results of the proposed YOLO models and the state-of-the-art models
(YOLOv4, YOLOv5s, YOLOv5l, Tiny YOLOv4, and Faster R-CNN) [43,55] using the testing
set are presented in Table 2. Based on the mAP metric, it is noticeable that all of the models
performed well in the experiment. The minimum mAP observed is 75.90%, obtained by
the YOLOv5n model. The YOLOv7x model showed a greater performance than the others,
achieving an mAP of 80.40%. It outperformed YOLOv5l, YOLOv8x, and YOLOv5lu by
0.9%, 0.7%, and 0.7%, respectively. It also provided an improvement of 0.94%, 2.10%, 3.84%,
17.06%, and 44.45% compared to the published models YOLOv5l, YOLOv5s, YOLOv4, Tiny
YOLOv4, and Faster R-CNN, respectively [43].

The detection of smoke objects is a challenging task due to their varying shape, size,
and intensity as well as the detection of objects similar to smoke, such as clouds and fog.
All of the YOLO models showed a good performance in detecting and localizing smoke
based on the AP metric. For instance, YOLOv5l, YOLOv7x, YOLOv8x, YOLOv5lu, and
YOLOv5xu achieved an AP of 85.70%, 85.50%, 85.60%, 86.00%, and 86.00%, respectively.
YOLOv5n reached the lowest AP value of 80.70%. It still performed slightly worse than the
baseline model, YOLOv5l [43]. However, It achieved a faster speed with a GFLOPS of 4.10
compared to the proposed YOLO models as well as the state-of-the-art methods.



Fire 2024, 7, 140 12 of 19

Table 2. Comparative analysis of YOLO models on D-Fire dataset.

Model mAP (%) AP-Smoke (%) AP-Fire (%) GFLOPS Training Time (hour) Power Consumption (Wh)

YOLOv5n 75.90 80.70 71.00 4.10 2.100 693.00
YOLOv5s 78.30 82.90 73.60 15.80 2.573 849.09
YOLOv5m 78.70 84.90 72.40 47.90 4.088 1349.04
YOLOv5l 79.50 85.70 73.40 107.70 6.610 2181.3
YOLOv5x 78.90 85.30 72.50 203.80 9.872 3257.76

YOLOv7 80.20 85.10 75.30 103.20 9.031 2980.23
YOLOv7x 80.40 85.50 75.40 188.00 11.655 3846.15

YOLOv8n 77.80 84.00 71.50 8.10 2.002 660.66
YOLOv8s 78.70 84.90 72.50 28.40 2.767 913.11
YOLOv8m 79.00 84.90 73.10 78.70 4.726 1559.58
YOLOv8l 79.10 85.00 73.20 164.80 6.806 2245.98
YOLOv8x 79.70 85.60 73.90 257.40 10.795 3562.35

YOLOv5nu 76.70 83.60 69.90 7.10 2.210 729.30
YOLOv5su 78.50 84.20 72.90 23.80 2.825 932.25
YOLOv5mu 79.40 85.90 73.00 64.00 4.535 1496.55
YOLOv5lu 79.70 86.00 73.40 134.70 6.415 2116.95
YOLOv5xu 79.50 86.00 72.90 246.00 11.032 3640.56

Faster R-CNN 35.95 31.90 40.00 406.00 2.420 798.60
Tiny YOLOv4 [43] 63.34 62.20 64.48 16.07 — —
YOLOv4 [43] 76.56 83.48 69.94 59.57 — –
YOLOv5s [43] 78.30 84.29 72.78 15.80 — —
YOLOv5l [43] 79.46 86.38 72.84 107.80 — —

The YOLO models faced challenges in detecting fire objects due to the smaller size of
the fire areas in the images of the training dataset D-Fire compared to smoke objects. In
addition, numerous challenges related to the detection of fire, including the variability and
complexity in the backgrounds and the different sizes, shapes, and intensities of flames,
affect the detection of fire objects. Notably, the YOLOv7x model showed a slightly superior
performance in detecting and localizing fire objects compared to YOLOv5, YOLOv8, and
YOLOv5u, achieving an AP of 75.40%. It also outperformed the baseline models YOLOv5l,
YOLOv5s, YOLOv4, and Tiny YOLOv4 by 2.56%, 2.62%, 5.46%, and 10.92%, respectively.

Lightweight models are crucial thanks to their ease of use and deployment on mobile
devices with limited computational power and constrained resources, such as UAVs or
surveillance stations in forests. They also offer a faster inference speed, compensating for their
lower accuracy compared to larger models. For instance, the lightweight models YOLOv5n,
YOLOv5s, YOLOv8n, YOLOv8s, YOLOv5nu, and YOLOv5su showed a rapid processing
speed (GFLOPS) of 4.10, 15.80, 8.10, 28.40, 7.10, and 23.80, respectively, surpassing state-
of-the-art methods such as Tiny YOLOv4, YOLOv4, YOLOv5s, and Faster R-CNN. This
allows for real-time detection of smoke and fires. These models also achieved interesting
mAP values of 75.90%, 78.30%, 77.80%, 78.70%, 76.70%, and 78.50%, respectively, using
testing data. However, their performance is slightly inferior compared to medium, large,
and extra-large YOLO models. On the other hand, the large and extra-large YOLO models
showed a higher cost compared to the lightweight YOLO models. For example, YOLOv7x
demonstrated superior detection performance with an mAP of 80.40% but with GFLOPS
exceeding YOLOv5n by 45 times, YOLOv8n by 23 times, and YOLOv5nu by 26 times.

On the other hand, the training time increases as the complexity of the YOLO model
increases. For instance, the lightweight YOLO models YOLOv5n, YOLOv5s, YOLOv8n, and
YOLOv8s achieved a rapid training time between 2.1 and 2.825 h. YOLOv7x, as a large and
complex model, had the longest training time of 11.655 h. YOLOv5xu also showed a high
training time of 11.032 h, 5 times longer than YOLOv8n and YLOv5n. Similar to training
time, power consumption also depends on the complexity of the YOLO models, as more
complex models require high computational power and consume more energy. Among
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them, the large YOLO models YOLOv5x, YOLOv7x, YOLOv8x, and YOLOv5xu require a
high power consumption of 3257.76, 3846.15, 3562.35, and 3640.56 Wh, respectively. Nano
YOLO models (YOLOv5n, YOLOv5nu, and YOLOv8n), as lightweight models, consume
less power, between 660.66 and 729.30 Wh, approximately 5 times less than YOLOv5xu.

As shown in Figure 3, the YOLO models performed well in detecting and localizing
smoke and fire areas using both ground and aerial images. They successfully addressed
challenging situations related to smoke and fire detection, including background complex-
ity, the detection of small smoke and fire zones, and varying smoke and fire characteristics.
These models identified smoke and fire objects with high confidence scores in input im-
ages. For instance, the YOLOv7x, YOLOv5l, YOLOv8x, and YOLOv5lu models accurately
identified and localized smoke in input images with complex backgrounds, achieving high
confidence scores of 0.79, 0.76, 0.75, and 0.68, respectively (see Figure 3a). Additionally,
these models demonstrated their potential in detecting small fire areas in input images with
complex backgrounds and varying environmental conditions, as illustrated in Figure 3b.
They also showed their ability to address challenging limitations, such as the visual sim-
ilarity between smoke and clouds (see Figure 3c). YOLOv7x also identified small areas
of smoke, notably non-annotated areas, better than the manual annotation and the other
YOLO models, as shown in Figure 3b. However, Yolov5l falsely detected and localized the
background as smoke, as depicted in Figure 3b.

To confirm the reliability of the YOLO models, we performed a comprehensive bench-
mark of these models using the WSDY dataset, which includes only smoke images, as
highlighted in Table 3. Testing results showed a significant improvement in the performance
of these models in detecting smoke compared with the previous evaluations presented
in Table 2. This improvement can be attributed to two main factors. First, the number
of WSDY test images (110 images) employed in our tests is less than that used in the
previous benchmarks (4306 images). Second, our analysis focused exclusively on the reli-
ability of YOLO models for detecting only smoke, not both smoke and fire, as presented
in Table 2. This allowed us to refine the abilities of the YOLO models, resulting in high
performance with an mAP of 98.10% for the YOLOv8s model in identifying and localizing
smoke plumes, which is crucial for accurate early fire ignition. YOLOv8n, YOLOv5n,
YOLOv7x, YOLOv5nu, and YOLOv5mu achieved an mAP superior to 95% compared to
other YOLO models and to Faster R-CNN, which had the worst performance with an mAP
of 50.34%. Additionally, all YOLO models require a fast training time less than 1 hour
using the WSDY dataset as a small learning database (517 images). Large YOLO models
(including the suffixes x and l) require more training time, as well as power consumption,
compared to lightweight YOLO models (including the suffixes n and s). As an example,
YOLOv5xu had a training time 0.965 h and a power consumption of 318.45 Wh, 11 times, 9
times, 5 times, 4 times, and 3 times more than YOLOv5n, YOLOv5s, YOLOv8n, YOLOv8s,
and both YOLOv5nu and YOLOv5su, respectively.

As depicted in Figure 4, the YOLO models demonstrated their potential in detecting
smoke and addressing related challenging scenarios. YOLOv5nu, YOLOv7x, YOLOv8s,
and YOLOv5n performed well in differentiating between smoke and complex backgrounds
(see Figure 4c). They also correctly identified and localized small smoke areas, as shown in
Figure 4b, and overcame the visual resemblance between smoke and clouds, as illustrated
in Figure 4a.

In conclusion, the YOLO models performed well in detecting and localizing fire and
smoke in both ground and aerial images. They demonstrated their ability to overcome
challenges, including the detection of small smoke and fire areas, the prediction and
localization of smoke and fire in images with complex backgrounds, and varying shapes,
intensities, and sizes of fire and smoke objects. They also proved effective in differentiating
fire and smoke from other elements with similar shapes, colors, and textures, such as
differentiating clouds from smoke. Additionally, the YOLO models achieved fast inference
speed, enabling real-time detection of smoke and fires. This demonstrates the effectiveness
of these models when integrated with surveillance systems for wildland fires, allowing
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rapid firefighting and response. This limits environmental damage and improves wildfire
management strategies, reducing the spread of wildfires and the area of burnt forest and
minimizing economic and human losses.

(a) Smoke example (b) Smoke and fire example (c) Smoke with cloud example

Figure 3. YOLO model results using D-Fire dataset, from top to bottom: original images, ground-truth
images, and predicted images by YOLOv5l, YOLOv7x, YOLOv8x, and YOLOv5lu, respectively.
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Table 3. Comparative analysis of YOLO models on WSDY dataset.

Model mAP (%) GFLOPS Training Time (Hour) Power Consumption (Wh)

YOLOv5n 95.90 4.10 0.085 28.05
YOLOv5s 94.60 15.80 0.106 34.98
YOLOv5m 93.10 47.90 0.165 54.45
YOLOv5l 92.90 107.70 0.240 79.20
YOLOv5x 90.80 203.80 0.401 132.33

YOLOv7 92.60 103.20 0.355 117.15
YOLOv7x 96.00 188.00 0.353 116.49

YOLOv8n 97.30 8.10 0.179 59.07
YOLOv8s 98.10 28.40 0.241 79.53
YOLOv8m 93.50 78.70 0.401 132.33
YOLOv8l 92.40 164.80 0.573 189.09
YOLOv8x 94.10 257.40 0.886 292.38

YOLOv5nu 95.70 7.10 0.192 80.84
YOLOv5su 94.20 23.80 0.248 81.51
YOLOv5mu 95.10 64.00 0.275 90.75
YOLOv5lu 94.30 134.70 0.525 173.25
YOLOv5xu 93.80 246.00 0.965 318.45

Faster R-CNN 50.34 406.00 2.097 692.01

(a) Smoke with cloud example (b) Small area of smoke (c) Smoke example

Figure 4. Cont.
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(d) Smoke with cloud example (e) Small area of smoke (f) Smoke example

Figure 4. YOLO model results using WSDY dataset, from top to bottom: original images, ground-
truth images, and predicted images by YOLOv5nu, YOLOv7x, YOLOv8s, and YOLOv5n, respectively.

5. Conclusions

In this paper, recent YOLO models (YOLOv5, YOLOv7, YOLOv8, and YOLOv5u)
are adopted in detecting and localizing smoke and wildfires in both ground and aerial
images. Testing results are performed using the D-Fire and WSDY datasets. The D-Fire
dataset includes smoke, fire, non-fire, non-smoke, and fire-/smoke-like object images. The
WSDY dataset contains smoke images and smoke-like object images. Notably, YOLOv7x
showed the best detection performance, achieving an mAP of 80.40% and outperforming
the baseline models using the D-Fire dataset. YOLOv8s achieved a high performance
with an mAP of 98.10% using the WSDY dataset. Additionally, the lightweight models
YOLOv5n, YOLOv5s, YOLOv8n, YOLOv8s, YOLOv5nu, and YOLOv5su outperformed the
baseline models in processing speed with 4.10, 15.80, 8.10, 28.40, 7.10, and 23.80 GFLOPS,
respectively. They also required less training time and power consumption compared
to larger models, YOLOv7x, YOLOv5x, YOLOv5l, YOLOv8l, YOLOv8x, YOLOv5lu, and
YOLOvxu. The YOLO models also showed their potential in addressing challenging
situations, including the detection of small fire and smoke areas; the detection of fire and
smoke considering their varying shapes, sizes, colors, textures, and intensities; handling
background complexity, such as diverse terrains, varying vegetation, and different weather
conditions; and distinguishing smoke from similar objects, such as fog and clouds, and fire
from similar objects, such as lighting and the glare of the sun.

As future work, we plan to optimize the YOLO models and deploy them on edge
devices in order to improve wildland fire detection performance.
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