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Abstract: This article focuses on using machine learning to predict the distance at which a chemical
storage tank fire reaches a specified thermal radiation intensity. DNV’s Process Hazard Analysis
Software Tool (PHAST) is used to simulate different scenarios of tank leakage and to establish a
database of tank accidents. Backpropagation (BP) neural networks, random forest models, and the
optimized random forest model K-R are used for model training and consequence prediction. The
regression performance of the models is evaluated using the mean squared error (MSE) and R2. The
results indicate that the K-R regression prediction model outperforms the other two machine learning
algorithms, accurately predicting the distance at which the thermal radiation intensity is reached
after a tank fire. Compared with the simulation results, the model demonstrates higher accuracy
in predicting the distance of tank fire consequences, proving the effectiveness of machine learning
algorithms in predicting the range of consequences of tank storage area fire events.

Keywords: pool fire; machine learning; prediction; PHAST

1. Introduction

In the production process of chemical enterprises, due to their special nature, large
quantities of flammable and explosive liquids and gases are stored in the storage tank
area. If an oil tank leaks and is exposed to an ignition source, it may lead to a serious fire
accident. Once a disaster occurs, personnel exposed to the radiant heat of the fire may suffer
serious injuries. In the UK, a significant chemical plant tank leakage and fire incident took
place on 11 December 2005 at the Buncefield oil depot, which is situated less than 50 km
from London. The explosion and subsequent fire ravaged over 20 substantial oil storage
tanks, resulting in injuries to 43 individuals but no fatalities. The direct economic damage
amounted to GBP 250 million. This event triggered the most profound ecological crisis in
Europe during peacetime, substantially affecting the ecological landscape of London and
the entire nation of Great Britain [1].

By collecting and analyzing data on domestic and international chemical incidents
from 10 December 2003 to 10 January 2024, we obtained the following findings: domes-
tically, there were 1060 poisoning incidents, 797 fire incidents, 759 explosion incidents,
592 leakage incidents, and 1 other type of incident; internationally, there were 36 poisoning
incidents, 285 fire incidents, and 638 explosion incidents, with leakage incidents being the
most frequent at 933 occurrences. Based on these data, we conducted a comprehensive
analysis of the proportions of each type of incident and visually displayed the proportion
of each incident type in Figure 1. This paper conducts a study with a certain oil transfer
station as the background, focusing on petroleum products such as gasoline and diesel.
These chemicals, when leaked or burned, generate toxic gases or smoke, posing a threat
to the surrounding environment and human health, with toxic accidents likely being a
consequence of leakage and fire incidents. Among these, explosions are instantaneous
reactions that are difficult to intervene in, so this paper does not involve the study of
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explosions. By combining the frequencies of accident types in Figure 1, this paper mainly
focuses on tank leakage and fire accidents.

Fire 2024, 7, x FOR PEER REVIEW 2 of 20 
 

 

consequence of leakage and fire incidents. Among these, explosions are instantaneous re-
actions that are difficult to intervene in, so this paper does not involve the study of explo-
sions. By combining the frequencies of accident types in Figure 1, this paper mainly fo-
cuses on tank leakage and fire accidents. 

 
(a) 

 
(b) 

Figure 1. (a) Data chart of China’s domestic chemical park accidents. (b) Data chart of foreign chem-
ical park accidents. 

In existing research, the consequences of leakage and fire accidents in chemical en-
terprises can be calculated using empirical models, computational fluid dynamics (CFD), 
and integrated models such as the Process Hazard Analysis Software Tool (PHAST 8.7). 
Although empirical models provide quick calculations, their accuracy is limited due to 
factors affecting the overall evaporation rate, such as surface roughness. CFD models like 
the Fire Dynamics Simulator (FDS) and FLACS can capture these effects, but they come 
with higher computational costs and longer execution times. The integrated model used 
in PHAST strikes a balance between accuracy and computational cost while still capturing 
the effects of surface roughness on propagation, pool evaporation, and mass evapora-
tion—this has been validated by the fire scene experimental results obtained by Henk 
W.M [2]. Tan Wu et al. [3] used PHAST for a risk analysis and system safety integrity 
study of enclosed ground flame devices; their findings are useful for designing various 
types of material windbreaks and flame systems’ strength and for determining the safety 

Figure 1. (a) Data chart of China’s domestic chemical park accidents. (b) Data chart of foreign
chemical park accidents.



Fire 2024, 7, 114 3 of 20

In existing research, the consequences of leakage and fire accidents in chemical en-
terprises can be calculated using empirical models, computational fluid dynamics (CFD),
and integrated models such as the Process Hazard Analysis Software Tool (PHAST 8.7).
Although empirical models provide quick calculations, their accuracy is limited due to
factors affecting the overall evaporation rate, such as surface roughness. CFD models like
the Fire Dynamics Simulator (FDS) and FLACS can capture these effects, but they come
with higher computational costs and longer execution times. The integrated model used in
PHAST strikes a balance between accuracy and computational cost while still capturing the
effects of surface roughness on propagation, pool evaporation, and mass evaporation—this
has been validated by the fire scene experimental results obtained by Henk W.M [2]. Tan
Wu et al. [3] used PHAST for a risk analysis and system safety integrity study of enclosed
ground flame devices; their findings are useful for designing various types of material
windbreaks and flame systems’ strength and for determining the safety distances of sur-
rounding personnel and facilities. Wang Kan et al. [4] studied the impact of leakages of
different forms of high-pressure hydrogen storage containers on the scope of consequences
after accidental hydrogen leaks or explosions, as well as the variations in environmental
temperature differentials and wind conditions. Song Xiaoyan [5] employed the Unified
Dispersion Model (UDM) in the PHAST program to conduct numerical simulations of
liquefied petroleum gas leakage explosions, analyzing the impact of changes in the wind
speed and leak orifice diameter on the consequence range after a leakage.

Although PHAST has significant advantages in process simulation and consequence
analysis, with the continuous development of deep learning technology, we can also explore
the combination of PHAST and machine learning to achieve more accurate predictions
of the consequences in chemical industrial parks. This integrated approach will provide
us with more comprehensive and detailed prediction results, helping to further optimize
safety management and emergency response strategies. Additionally, machine learning
is now widely used in the field of fire decision making. More and more experts and
scholars are applying it to the auxiliary decision-making domain. For example, Manuel
J. Barros-Daza et al. [6] proposed a data-driven method using artificial neural networks
(ANNs) for classification, providing real-time optimal decision making for firefighters in
underground coal mine fires. Bilal Umut Ayhan et al. [7] utilized a latent class clustering
analysis (LCCA) and artificial neural network (ANN) to develop a new model to predict
the outcome of construction accidents and determine the necessary preventive measures.
Peng Hu and colleagues [8] performed an analysis and machine learning modeling of
the highest roof temperature in the longitudinal ventilation tunnel fire, introducing a
new model called the genetic algorithms backpropagation neural network (GABPNN) to
predict the highest roof temperature in the ventilation tunnel. Aatif Ali Khan et al. [9]
established an intelligent model based on machine learning to predict smoke movement
in fires and enhance emergency response procedures through predicting key events for
dynamic risk assessment. Mohd Rihan and co-authors [10] conducted an assessment of
forest fire susceptibility areas in specific regions using geographic information technology,
machine learning algorithms, and uncertainty analysis based on deep learning technology,
achieving significant results. Sharma et al. [11] compared eight machine learning algorithms
and concluded that the enhanced decision tree model is the most suitable for fire prediction.
They also proposed an intelligent fire prediction system based on the site, considering
meteorological data and images, and predicted early fires.

Machine learning has made significant progress in the field of fire safety, and we should
not overlook the potential advantages of combining PHAST with machine learning. Recent
studies have shown that Sun and his team [12] simulated chemical leakage scenarios using
PHAST and built causal models of three types of fires using ANN to predict radiation effects
on distance. Wang et al. [13] proposed a method for source estimation using ANN, particle
swarm optimization (PSO), and simulated annealing (SA). In addition, Yuan et al. [14]
established a database of organic compounds with low flammability limits using PHAST,
analyzing and predicting the lower flammability limits of organic chemicals. Makhambet
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Sarbayev et al. [15] proposed a method involving mapping a fault tree (FT) to an ANN
and verified the significant progress of combining a numerical simulation software and
machine learning to predict the consequences of fire accidents in the chemical industry
through the analysis of system failures in the Tassero-Anacortes refinery accident. Jiao
et al. [16] used PHAST to establish a toxic diffusion database and developed a model to
accurately predict the downwind toxic diffusion distance based on this database. This
study aims to accurately estimate the risk level of the oil tank area by utilizing simulated
data from the PHAST 8.7 software based on previous research. A comprehensive oil tank
leakage fire database was constructed, and machine learning technology was employed to
predict the potential impact ranges of accidents. The proposed method seeks to enhance the
effectiveness of chemical safety management and risk assessment. However, it is important
to note that the created database solely relies on PHAST simulation results and lacks the
integration of actual accident data or validation using empirical formulas, consequently
limiting its applicability and accuracy. Subsequently, the database is utilized for conducting
a predictive analysis of accident consequences through machine learning technology. It is
crucial to emphasize that all input data exclusively originated from the PHAST software
simulation results, signifying that the database employed for machine learning training is
constrained by the scope of PHAST simulation. Hence, this study elucidates the model’s
limitations and the restricted application scope of the database, offering valuable insights
for future research avenues and data integration.

This paper focuses on the oil storage tank area of a certain oil transfer station as the
research object. The station area includes a diesel tank area, gasoline tank area, mixed oil
tank area, and mixed oil processing tank area. The main materials involved are gasoline
and diesel hydrocarbons. Consequently, the database is constructed based on the PHAST
fire consequence simulation results of gasoline and diesel, and it is then used to train the
predictive model.

2. Methodology
2.1. Workflow of the Model Design

The main steps of machine learning prediction for the consequence range of storage
tank leakage are as follows:

(1) Identify the research subject and scenarios; simulate the consequences of tank leaks
and fires using PHAST.

(2) Construct a database of fire consequences based on the simulation results from PHAST.
(3) Develop a quantitative prediction model for the range of consequences based on

the database; these include a BP neural network, random forest regression, and K-R
regression prediction models.

(4) Tune the prediction models to determine the optimal model.
(5) Evaluate the model’s performance by calculating the mean squared error (MSE) and

the R2 coefficient of determination [17].
(6) Apply machine learning algorithms to predict the consequences of fire accidents

caused by leaks from storage tanks and draw conclusions by comparing and analyzing
actual cases with the predictive results.

The workflow diagram is shown in Figure 2:
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Figure 2. The workflow diagram.

2.2. PHAST Model

This study is based on the research of a certain oil depot’s storage tanks. The specific
distribution of storage tanks in the oil depot is shown in Figure 3 below. The tank area
consists of four sections, labeled according to Figure 3, where “1” represents the diesel tank
area, “2” represents the gasoline tank area, “3” represents the mixed oil tank area, and “4”
represents the mixed oil processing area. The specific specifications of the tank area are
shown in Table 1.

Table 1. Storage tank sizes in each tank area.

Area (m3)
Specification

Model Quantity Capacity (m3)
Storage
Medium

1 Φ60 × 19.92 4 50,000 diesel fuel
2 Φ38 × 19.8 8 20,000 gasoline
3 Φ22 × 14.852 1 5000 diesel fuel
3 Φ22 × 14.852 1 5000 gasoline
4 Φ8.920 × 12.565 2 500 gasoline
4 Φ8.920 × 12.565 2 500 diesel fuel
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To systematically analyze the impact of the wind speed and direction on the outcomes
of fires resulting from tank leakages across varying orifice diameters, this study classifies
ten distinct orifice sizes. The sizes range from small (5 mm) to medium (25 mm) and large
(100 mm) orifices, extending to scenarios involving catastrophic ruptures. Additionally, this
study investigates the influence of environmental temperature on tank leakage outcomes,
considering a range of temperatures from −17.9 ◦C to 42.5 ◦C, including intermediate con-
ditions at 10 ◦C, 20 ◦C, and 25 ◦C. Moreover, this study evaluates the impact of atmospheric
stability on tank leakage outcomes by categorizing atmospheric conditions into ten stability
classes labeled A through G. The analysis also explores the effects of preset leak orifice
sizes on tank leakages containing diesel, gasoline, and mixed oil. The wind speeds vary
from 1 to 16 m/s in 1 m/s increments, resulting in 16 unique meteorological scenarios.
These methodological configurations are detailed in Table 2, outlining the foundational
settings for the PHAST (Process Hazard Analysis Software Tool) model utilized in this
investigation.

Table 2. PHAST model settings.

Range Interval Total Category

Leakage pore size/(mm) 5 mm-Catastroptic rupture 5/10/15 10

stability A-G - 10

Wind velocity/(m/s) 1-16 m/s 1 16

Material
N-OCTANE

N-OCTADECANE
N-HEXADECANE

- 3

Capacity/(m3) 500, 500, 5000, 20,000, 50,000 - 5

Taking the example of a 5 mm leak orifice in a diesel storage tank, the specific configu-
ration parameters are shown in Table 3.

Table 3. The 5 mm leakage setting parameters of the storage tank.

Leakage Pore
Size/mm Tank Materials Volume/m3 Filling Level Temperature/◦C Wind

Velocity/(m/s)

5 mm N-HEXADECANE 50,000 80% 25 1
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Based on previous research results, the impact of tank leakage on the surrounding
environment mainly depends on its thermal radiation intensity, which varies in its level
of harm to the human body. The losses caused by different levels of thermal radiation
intensity are shown in Table 4 [18]. According to the results of the literature review, the
thermal radiation intensity level for this study is determined to be 4 kW/m2.

Table 4. Losses caused by different incident intensities of thermal radiation.

Incident Intensity/(kW/m2) Damage to Equipment Injury to Individuals

37.5 Complete damage to the
operating equipment

1% death (10 s)
100% death (1 min)

25

The minimum energy
required for wood combustion

under flameless, prolonged
radiation

Severe burns (10 s)
100% death (1 min)

12.5

The minimum energy
required for wood combustion

and plastic melting in the
presence of flames

First-degree burn (10 s)
1% death (1 min)

4 -
Pain lasting for more than 20 s,
not necessarily accompanied

by blisters

1.6 - Long-term radiation without
any discomfort

2.3. Machine Learning
2.3.1. BP Neural Network

The machine learning algorithm [19] learns and recognizes patterns from historical data
and uses these patterns for prediction and decision making. The main machine learning
methods include supervised learning, unsupervised learning, and reinforcement learning.
This article uses the supervised learning algorithm, employing the BP neural network, random
forest regression prediction, and the K-R model, as shown in the neural network architecture
diagram in Figure 4. By utilizing PHAST to construct models and perform simulation
calculations, this study conducts a comprehensive analysis of the data and organizes them
based on the obtained computational results, thereby constructing a dataset. Subsequently,
this dataset is used to train algorithmic models, and based on the predictive outcomes of the
training process, this study explores and identifies the optimal algorithm.
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Regarding the BP neural network model [20], its distinct feature is that signals are
propagated forward and errors are propagated backward. Through a certain number of
iterations and updates, the network’s predictive results reach the expected accuracy or
convergence, yielding the best predictive outcome. The hyperparameters in the neural net-
work also have a significant impact on its predictive outcome. The main hyperparameters
include the learning rate, batch size, number of iterations, network structure and layers,
activation function, optimizer, and so on. A larger learning rate leads to faster convergence,
but there is a risk of skipping the optimal solution. The literature indicates that the batch
size is set by considering the memory of the device running the code and the model’s
generalization ability [21]. In this model, the device configuration includes a processor
of 12th Gen Intel(R) Core(TM) i5-12400F 2.50 GHz and an NVIDIA GeForce RTX 3060
GPU. Considering the dataset size, the batch size is set to 32. The number of iterations and
the network structure and layers are mainly found through parameter tuning to seek the
optimal results. The number of neurons in each layer of the neural network is calculated
based on empirical Formulas (1)–(3) [22] and actual training parameter calculations. The
settings are as shown in Table 5.

h =
√

n + m + c (1)

h =
√

nm (2)

h = 1.5 × (n + m) (3)

where h is the number of neurons, n is the number of input neurons, m is the number of
output neurons, c is an integer, and c ∈ [2, 10).

Table 5. BP neural network parameter settings.

Number of
Hidden Layers

Number of Neurons in
Hidden Layer 1

Number of Neurons in
Hidden Layer 2

Number of
Iterations Learning Rate

1 1 14 - 100 0.001
2 1 14 - 150 0.001
3 1 14 - 150 0.01
4 1 24 - 150 0.01
5 1 24 - 150 0.001
6 2 14 5 150 0.001
7 2 24 5 100 0.01
8 2 24 5 150 0.01
9 2 24 10 150 0.01

During the training process of the BP neural network model, a common problem
encountered is the vanishing and exploding gradients. The vanishing gradient issue can
lead to a slowdown or almost negligible weight updates, while the exploding gradient
occurs when the gradient values between network layers exceed 1.0, resulting in an ex-
ponential growth of the gradients. This makes the gradients extremely large, causing
significant updates to the network weights and thereby making the network unstable.
Common activation functions include Sigmoid, Tanh, and ReLU [23], as shown in Figure 5.
To address the issues of gradient descent and exploding gradients in the training process
mentioned above, the ReLU function is set as the activation function to avoid the vanishing
gradient. The final hyperparameter related to the BP neural network is the optimizer [24],
with commonly used optimizers such as tochastic gradient descent (SGD), Momentum,
Adagrad, and Adam. To avoid becoming stuck in local minima, the optimizer chosen
is SGD.
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2.3.2. Random Forest

Random forest [25] is an ensemble model composed of multiple decision trees. It
creates multiple subsets by performing sampling with replacement on the training set
and builds a decision tree based on each subset. When training each tree, random forest
also introduces feature random selection, considering only a random subset of features
during the splitting process at each node. During prediction, random forest aggregates
the prediction results from multiple trees, commonly using methods such as taking the
average (for regression problems) or voting (for classification problems) to obtain the final
prediction result. In summary, decision trees split and predict data through a tree-like
structure, while random forest utilizes an ensemble strategy of multiple decision trees
to enhance predictive performance. Its performance is superior to that of decision tree
regression prediction models.

2.3.3. Cross-Validation

Cross-validation is a commonly used model evaluation technique that involves di-
viding the dataset into training and testing sets. This process is repeated multiple times,
allowing for the derivation of various performance metrics for the model. Common cross-
validation methods include K-fold cross-validation, leave-one-out cross-validation, and
stratified K-fold cross-validation [26], as well as time series cross-validation. The process of
K-fold cross-validation, as depicted in Figure 6, involves randomly dividing the dataset
into K mutually exclusive subsets, referred to as folds. Then, the model is trained K times,
with each training iteration reserving one fold as the testing data and using the remaining
K-1 folds as the training data, ensuring different folds are retained for each training iter-
ation. After K iterations of model training, the model with the minimal estimated error
on the testing set is selected, and its network architecture and parameters are retained
for random forest regression prediction. This article utilizes K-fold cross-validation for
model optimization and proposes a new model, the K-R model, by combining K-fold
cross-validation with tree models to optimize the tree model’s hyperparameters, thereby
improving prediction accuracy.
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2.4. Model Evaluation

Regarding the performance measurement of the model, the main metrics include
accuracy, precision/recall, P-R curve, ROC curve/AUC, R2, MSE, etc. This article utilizes
R2 and MSE to evaluate the model’s performance, with the formulas for R2 and MSE shown
as Equations (4) and (5).

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − ŷ)2

(4)

MSE =
∑n

i=1(ŷi − yi)
2

n
(5)

where ŷi is the predicted output value from the neural network model, yi is the target value
obtained from PHAST, and y is the average of the target values, with n representing the
number of scenarios or the quantity of data.

3. Data Preprocessing and Discussion
3.1. Data Preprocessing

In the section regarding data preprocessing and discussion, the initial step involved
assessing and cleaning the data for quality. Subsequently, an in-depth exploration of the
data’s correlations was undertaken, employing the Pearson correlation coefficient analysis
to investigate the linear relationships between variables. Additionally, attention was drawn
to the presence of multicollinearity, and corresponding exploration and treatment were
carried out. The following will provide a detailed introduction of the specific data analysis
methods and results, along with a discussion and explanations of the findings.

3.1.1. Correlation Analysis

The correlation of data within a database is crucial to model training prediction ef-
fects; through the Person correlation coefficient [27] analysis for variables—as shown in
Formula (6)—we obtain a correlation matrix to eliminate highly correlated variables. As
shown in Figure 7, on the right side is a color bar for heat maps; r represents various corre-
lation coefficients. Generally, |r| ≥ 0.8 indicates high correlation between two variables;
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0.5 ≤ |r| < 0.8 indicates medium correlation; 0.3 ≤ |r| <0.5 suggests low correlation; and
|r| < 0.3 implies little to no correlation between two variables.

ρX,Y = cov(X, Y)/σXσY (6)
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3.1.2. Multicollinearity

Selecting the right variables is essential to the model’s predictive effectiveness. We
determine the input variables for the model based on expert opinions, a search of the
literature, and software modeling parameters. Variance Inflation Factor (VIF) and Tolerance
(Tol) [28] are widely used indicators for assessing multicollinearity between independent
variables in a regression model. VIF represents the variance inflation factor, while Tol
represents tolerance.

The VIF value is a measure of the correlation between independent variables. In
general, a stronger correlation between independent variables indicates more severe multi-
collinearity. A VIF value below 10 is generally considered reasonable. Values exceeding
10 indicate strong correlation, necessitating variable screening or transformation. In Table 6,
all VIF values are below 10, which is acceptable. Tol represents tolerance and is defined as
1/VIF. Smaller Tol values indicate more severe multicollinearity. Severe multicollinearity
is typically indicated when Tol values are below 0.1. Specifically, for this dataset, the
minimum Tol value is 0.4827, indicating no multicollinearity.
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Table 6. VIF and Tol of variables.

NO Variable VIF Tol

1 Leakage_pore_size 1.00 0.97
2 Capacity 1.227 0.814
3 Wind_Velocity 1.00 0.97
4 Temperature 1.00 0.972
5 Material 1.227 0.814
6 Stability 2.0716 0.4827

3.2. Discussion

The PHAST simulation was used to construct a fire database containing over thirty
thousand records. This database includes 12,799 sets of jet fire data, 35,998 sets of early
pool fire data, and 39,991 sets of late pool fire data. In order to train and validate the model,
the training and validation sets were divided in a 7:3 ratio, and predictive analysis was
performed. The BP neural network was used for training, and the hyperparameters that
minimized prediction errors were selected. The structure of the BP neural network was
determined to have two hidden layers, with the first hidden layer comprising 24 neurons
and the second hidden layer containing 10 neurons. The learning rate was set to 0.01, the
number of iterations was set to 150, and the batch size was 32.

The analysis was conducted on the random forest regression prediction model. Based
on the training and debugging results of the model, it was found that the initial parameters
of the random forest model with the max depth set to 2 had a large error.

Therefore, in combination with five-fold cross-validation, parameter optimization
was carried out, and the K-R model was proposed. The evaluation results of the three
models, including MSE and R2 values, are shown in Table 7. It can be observed that the BP
neural network model had a large prediction error for the fire dataset, but with a moderate
level of accuracy. The random forest model performed well in predicting jet fires and
early pool fires but had poor predictions for late pool fires. An analysis indicated that
the addition of data related to catastrophic ruptured fire consequence in the late pool fire
dataset led to the poor performance of the model. The optimized K-R model outperformed
the first two models in predicting jet fires and early pool fires, achieving a high accuracy of
0.99 and optimal predictive performance. The predictive performance of the K-R model for
late pool fires improved by approximately 12% compared to the first two algorithms, with
an accuracy of 0.99, proving its improved accuracy. This demonstrates that the optimized
K-R model has good predictive effects.

Table 7. MSE values and R2 of three algorithms.

Jet Fire Early Pool Fire Late Pool Fire

Evaluation MSE R2_score MSE R2_score MSE R2_score

BP 0.008 0.945 0.004 0.986 0.017 0.968
RandomForest 0.010 0.945 0.010 0.954 0.084 0.888

K-R 0.0005 0.997 0.0004 0.997 0.0007 0.998

The bar chart shows the MSE and R2 values of the predictions of the three algorithms
for the three types of fires. From Figure 8a, it can be seen that the BP neural network, after
model training, parameter tuning, and selecting the optimal network structure, outperforms
the random forest regression prediction model. However, compared to the K-R model,
the prediction results of the BP neural network are slightly inferior. In Figure 8b, the K-R
model’s prediction accuracy is at least 0.01 higher than that of the BP neural network,
demonstrating a more superior predictive performance.



Fire 2024, 7, 114 13 of 20

Fire 2024, 7, x FOR PEER REVIEW 13 of 20 
 

 

Figure 8b, the K-R model’s prediction accuracy is at least 0.01 higher than that of the BP 
neural network, demonstrating a more superior predictive performance. 

We analyzed the predicted values and actual values of three models and plotted the 
scatter and residual graphs. It is clear from Figure 9 that the data distribution of the K-R 
model is more concentrated, with a smaller range of fluctuations along the Y = X line, 
approximately between −0.05 and 0.05, demonstrating a better clustering effect; at the 
same time, the residuals of this model are relatively small. 

 
(a) 

 
(b) 

Figure 8. (a) Bar chart of 2R  values for fire prediction outcomes. (b) Bar chart of MSE values for 
fire prediction outcomes. 

0.945

0.986

0.968

0.9448

0.9549

0.888

0.998 0.999 0.999

Jet fire Earlypoolfire Latepoolfire
0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

R2_score values for fire consequences

R2
_s

co
re

 v
al

ue

 BP
 RandomForest
 K-R

Figure 8. (a) Bar chart of R2 values for fire prediction outcomes. (b) Bar chart of MSE values for fire
prediction outcomes.

We analyzed the predicted values and actual values of three models and plotted the
scatter and residual graphs. It is clear from Figure 9 that the data distribution of the K-R
model is more concentrated, with a smaller range of fluctuations along the Y = X line,
approximately between −0.05 and 0.05, demonstrating a better clustering effect; at the
same time, the residuals of this model are relatively small.
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Figure 9. (a) Scatter plot of predicted outcomes for jet fires. (b) Residual plot of predicted outcomes
for jet fires. (c) Scatter plot of predicted outcomes for early pool fires. (d) Residual plot of predicted
outcomes for early pool fires. (e) Scatter plot of predicted outcomes for late pool fires. (f) Residual
plot of predicted outcomes for late pool fires.
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The predicted results of fire consequences were analyzed, and scatter plots and residual
plots of the fire consequences were drawn. According to Figure 9a, the predicted values of
the three models are evenly distributed along the Y = X line, but it is clear that some points
of the BP and random forest models deviate from the Y = X line, indicating a significant
error between the predicted and actual values. Based on the residual plot in Figure 9b, the
regression effect of the K-R model is relatively better. A comparison of the scatter plots for
early pool fires, shown in Figure 9c, and late pool fires, shown in Figure 9d, reveals that,
compared to the scatter plot for jet fires, the three models for early pool fires, especially the
BP neural network, exhibit a significant error, with many data points distributed outside
the Y = X fitting line. In comparison to the three models, the K-R model demonstrates
relatively good performance, although there is still room for improvement. From the
scatter plots, the residual points of the BP neural network and random forest models
are approximately between −0.05 and 0.05, while the absolute error of the K-R model is
approximately between −0.02 and 0.02. The data points in the residual plot for late pool
fires are more chaotic, with the residual points of the BP neural network and random forest
models distributed between −0.03 and 0.03, and the residual points of the K-R model
distributed between −0.01 and 0.01. This is attributed to the performances of the first
two models.

4. Conclusions
4.1. Case Study

Based on the model database developed through the above analysis and research, a
mid-hole leakage incident in a 100,000 m3 internal floating roof gasoline storage tank in a
large oil depot was analyzed. The outdoor temperature was 20 ◦C, the wind speed was
6.5 m/s, and the atmospheric stability was D. Through a PHAST simulation, we derived the
thermal radiation intensity of an early pool fire, late pool fire, and jet fire from this oil tank,
as well as the corresponding graph (Figure 10) of thermal radiation intensity and downwind
distance. From Figure 10a, it can be seen that the downwind distance to 4 kW/m2 for
an early pool fire is 35.9504 m; the downwind distance to 12.5 kW/m2 is 28.2839 m; and
the downwind distance to 37.5 kW/m2 is 17.8842 m. From Figure 10b, it can be observed
that the thermal radiation effect almost disappears at a downwind distance of about 46 m.
For a late pool fire, the downwind distance to reach a radiation intensity of 4 kW/m2 is
found to be 71.9381 m, and the required downwind distance to reach an intensity level of
12.5 kW/m2 is approximately 48.9713 m, while achieving an intensity level of 37.5 kW/m2

demands a downwind distance of around 40.7759 m, and thermal radiation intensity from
late pool fires ceases around at about 100 m downwind. The thermal radiation intensity
from jet fires gradually increases with increasing downwind distances—it starts declining
when the downwind distance reaches around 2 m, and the rate of decline slows at about the
5 m mark, whereas such thermal radiation effects disappear once the downwind distance
reaches approximately 9.2 m.
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Figure 10. Related charts for pool and jet fire cases. (a) Early pool fire thermal radiation intensity;
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The consequences of the tank leakage fire were predicted using the K-R model. The
logarithmic value of the consequences was obtained and converted to ascertain the down-
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wind distance of an early pool fire to a specified thermal radiation intensity, which equates
to 36.15 m; for a late pool fire, this distance extends to 69.98 m. The early pool fire prediction
error is 0.1996 m, and the late pool fire prediction error is 1.9581 m.

4.2. Conclusions

Incorporating case studies into the analysis offered practical insights into the model’s
applicability and effectiveness in real-world scenarios, reinforcing the conclusion that
machine learning algorithms, notably the K-R model, are essential tools for predicting fire
consequences in chemical storage tank areas. This progress signifies a new era in hazard
prediction, wherein technology-based solutions have the potential to enhance emergency
response planning through more informed decision making, thus potentially saving lives
and preventing property damage.
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