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Abstract: Fire chemical sensing for indoor detection of fire plays an essential role because it can
detect chemical volatiles before smoke particles, providing a faster and more reliable method for
early fire detection. A thermal imaging camera and seven distinct fire-detecting sensors were used
simultaneously to acquire the multimodal fire data that is the subject of this paper. The low-cost
sensors typically have lower sensitivity and reliability, making it impossible for them to detect fire
at greater distances. To go beyond the limitation of using solely sensors for identifying fire, the
multimodal dataset is collected using a thermal camera that can detect temperature changes. The
proposed pipeline uses image data from thermal cameras to train convolutional neural networks
(CNNs) and their many versions. The training of sensors data (from fire sensors) uses bidirectional
long-short memory (BiLSTM-Dense) and dense and long-short memory (LSTM-DenseDenseNet201),
and the merging of both datasets demonstrates the performance of multimodal data. Researchers
and system developers can use the dataset to create and hone cutting-edge artificial intelligence
models and systems. Initial evaluation of the image dataset has shown densenet201 as the best
approach with the highest validation parameters (0.99, 0.99, 0.99, and 0.08), i.e., Accuracy, Precision,
Recall, and Loss, respectively. However, the sensors dataset has also shown the highest parameters
with the BILSTM-Dense approach (0.95, 0.95, 0.95, 0.14). In a multimodal data approach, image and
sensors deployed with a multimodal algorithm (densenet201 for image data and Bi LSTM- Dense
for Sensors Data) has shown other parameters (1.0, 1.0, 1.0, 0.06). This work demonstrates that,
in comparison to the conventional deep learning approach, the federated learning (FL) approach
performs privacy-protected fire leakage classification without significantly sacrificing accuracy and
other validation parameters.

Keywords: fire detection; multimodal; sensors; thermal camera; image enhancement

1. Introduction

Indoor fire identification is of utmost importance as it enables early detection and
timely response to potential fire hazards within buildings. Early fire monitoring is es-
sential. In conventional fire detection techniques, sensors are utilized to identify several
fire parameters, such as smoke, fire scale, initial flame area, and air temperature. Due to
their affordability and convenience, these sensors have been applied extensively. However,
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there are a lot of problems and hazards with this conventional detection technique. For
instance, it takes time for smoke to rise to the ceiling, which causes the alert to sound later
than necessary and delays the fire alarm’s notification. Moreover, a lot of sensors are chal-
lenging to utilize in open areas and work best in small regions [1]. Machine vision-based
fire detection and monitoring systems have improved recently at a reduced cost, with
enhanced real-time performance and the capacity for a great degree of detecting precision.
By utilizing multimodal sensor data, it becomes possible to detect fires based on visual cues,
temperature changes, and the presence of smoke or hazardous fire. Multimodal sensors
refer to devices that can capture and collect data from multiple sources, such as visual,
thermal, and fire sensors [2].

By combining different types of sensors, the accuracy of fire identification can be
significantly improved. This approach allows for a more reliable detection system that
can distinguish between false alarms and actual fire incidents, ensuring timely response
and minimizing potential damage. Additionally, multimodal sensors enable real-time
monitoring and analysis of fire-related data, enhancing overall safety measures in indoor
environments such as homes, offices, and public buildings. With the ability to detect not
only smoke but also heat and fire emissions, multimodal sensors provide a more holistic
view of fire conditions. This enables faster decision-making and evacuation procedures,
ultimately saving lives and reducing property loss.

Image-distributed data refers to the collection and distribution of visual information
from various sources, such as surveillance cameras, thermal imaging devices, and drones,
to identify and analyze fire incidents in indoor environments. These images capture crucial
details like the location, intensity, and spread of the fire, providing valuable insights for
effective response strategies. However, handling distributed image data poses challenges
such as data synchronization, storage capacity, and real-time analysis. Potential solutions
include utilizing cloud-based platforms for seamless data integration and implementing
advanced image recognition. Federated learning is a decentralized approach to machine
learning that allows models to be trained across multiple devices or locations without the
need for data to be centralized. Furthermore, as the model is trained locally on each
device, only aggregated results are shared with the central server [3]. This not only
improves efficiency but also enhances scalability, allowing for the deployment of indoor fire
identification models in a wide range of environments without significant infrastructure
requirements. In this paper, the data security and privacy concerns in fire detection are
successfully addressed by the application of federated learning techniques. The latest
iteration of federated learning can efficiently mitigate these challenges.

The conventional approach to training centralized deep learning models necessitates
the transfer of substantial volumes of video and image data to the cloud. This not only
consumes considerable network bandwidth but also presents challenges in guaranteeing
the confidentiality and privacy of image data. Federated learning fulfills the prerequisites
for collaborative machine model learning training while ensuring the confidentiality of
client data, as it operates on a distributed machine learning framework supported by secure
encryption technology. Federated learning ensures user privacy by accomplishing the
decentralization of data from the central server to the client. In the context of indoor fire
identification, federated learning can be used to train models using image and sensor data
collected from various locations, ensuring privacy and data security.

This collaborative approach enables the development of robust and accurate fire detec-
tion models that can be deployed across different buildings or environments. Additionally,
federated learning enables continuous learning and adaptation to new fire patterns as more
devices contribute to the training process, resulting in improved accuracy over time [4,5].
Multimodal sensor data and distributed image data can be integrated with federated learn-
ing to enhance the accuracy and efficiency of fire detection systems. By combining data
from various sensors such as temperature, smoke, and humidity, along with distributed
image data captured by surveillance cameras, a comprehensive understanding of the fire
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situation can be achieved. This integration allows for more robust and reliable fire detection
models, enabling quicker response times and better mitigation strategies.

The paper’s contributions span from traditional sensor-based fire detection to leverag-
ing thermal imaging, exploring multimodal approaches, and implementing privacy-centric
federated learning. These contributions collectively aim to advance the field of fire detec-
tion in urban areas, offering potential improvements in accuracy, efficiency, and privacy
protection. The primary contributions of this paper are as follows:

• Identification of Fire Using Sensors Dataset with Deep Learning Models: This con-
tribution involves utilizing a dataset collected from gas-detecting sensors for the
identification of fire. The use of fundamental deep learning models indicates that
the research employs established and widely used techniques in the field of artificial
intelligence. The significance lies in the exploration of how sensor data alone, which
are traditionally used for fire detection, can be effectively processed and classified
using deep learning models. This could contribute to improving the accuracy and
speed of fire detection systems in indoor environments.

• Identification of Fire Using Thermal Image Dataset with Deep Learning Models: This
contribution focuses on the use of thermal imaging data for fire identification, employ-
ing fundamental deep learning models. Thermal imaging can capture temperature
changes associated with fires before smoke particles become visible, offering an ad-
ditional dimension to fire detection. The research highlights the potential of thermal
imaging in combination with deep learning models, showcasing how visual informa-
tion can be a valuable source for fire detection, especially in scenarios where traditional
sensors might have limitations.

• Multimodal Fire Identification Using Both Sensors and Image Datasets: This contribu-
tion represents the integration of data from both sensors and thermal imaging cameras
for fire identification. By combining these modalities, the research aims to create a
more robust and comprehensive fire detection system. The multimodal approach ad-
dresses the limitations of individual data sources, potentially improving the accuracy
and reliability of fire detection by considering multiple aspects such as gas presence
and temperature changes.

• Fire Identification Mechanism Based on Federated Learning: The incorporation of
federated learning (FL) in fire identification is a significant contribution. FL allows
model training across multiple devices without centralized data, enhancing privacy
and security. The emphasis on safeguarding the privacy of consumers’ private infor-
mation is crucial in scenarios like fire detection where sensitive data might be involved.
FL provides a solution by training models collaboratively without exposing raw data
to a central server. Indoor fire detection is vital and requires new techniques to surpass
conventional detection methods. This research uses federated learning to integrate
multimodal sensor data with distributed information to improve urban fire detection
system accuracy, efficiency, and privacy. Conventional sensor datasets, thermal im-
agery, and a privacy-centric federated method of learning are used to progress the
field and meet the growing need for quicker and more precise interior fire detection.

2. Related Work

The integration of multimodal sensor data and image analysis using federated learn-
ing for fire detection in urban areas represents a cutting-edge approach with significant
potential for enhancing the efficiency and accuracy of fire detection systems. This approach
addresses the challenges posed by the complex and dynamic nature of urban environments,
where traditional fire detection methods may fall short. The integration of multimodal
sensor data and image analysis through federated learning holds great promise for ad-
vancing fire detection capabilities in urban areas. As technology continues to evolve,
addressing the challenges and refining the implementation of this approach will be crucial
for its successful deployment in real-world scenarios. The literature review evaluates
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research in two dimensions: sensor-based fire detection systems and image-based fire
detection systems.

It is essential to broaden the literature evaluation of the paper to include a wider
range of fire detection systems. This will help place the present study within the larger
framework of research in this field. Although the study utilizes sophisticated technologies
such as multimodal analysis and federated learning, a more thorough examination of
conventional and cutting-edge fire detection approaches would improve the reader’s
comprehension. This may involve analyzing traditional technologies, such as photoelectric
and ionization detectors, as well as modern techniques, like CNN-based models and
multisensor fusion methods. The incorporation of literature on fire detection methods
that protect privacy and applications for real-time video surveillance, in addition to recent
progress in federated learning, processing of images, and security concerns, will enhance
the comprehensive understanding of the development of fire detection technology. This
comprehensive literature review will offer significant insights into the setting of the current
study within the wider scope of fire detection research.

2.1. Fire Detection

The research findings on fire detection indicate that vision-based sensors outperform
traditional sensor types, such as light, heat, humidity, and fire sensors, exhibiting higher
accuracy and fewer false alarms. Conversely, fire detection utilizing chemical sensing may
provide faster alarm signals, particularly in scenarios where fire-indicating elements are
emitted before smoke particles. Recognizing that the majority of fire-related casualties
result from toxic emissions rather than burns, chemically based fire detection could offer an
additional layer of protection for individuals within a structure. The evaluation of research
in this field considers two distinct dimensions: sensor-based fire detection systems and
image-based fire detection systems.

The sensing principle is typically the determining factor for how sensitive the fire
alarm is, how quickly it reacts, and how reliable it is. Photoelectric and ionization fire alarms
were extensively contrasted against one another under controlled conditions [6] to create
formal benchmarks between the sensing principles that they employ. Particle detectors that
are sensitive to a certain distribution of particle sizes are what smoke detectors are, and
they can be thought of in this context. In most cases, the fire alarm goes off when the signal
from the sensor hits a certain predetermined threshold. Because of this, these systems have
difficulty distinguishing between particles that are the product of fires and particles that are
not the result of fires when the particles are of comparable size or have similar refractive
indices. For instance, smoke detectors exhibit sensitivity not just to smoke but also to dust
and water vapor [7].

In addition, they are unable to differentiate between combustion products created
under controlled conditions, such as cigarette smoke or certain cooking operations, and
combustion products produced under situations when there is a risk of a fire. There is
the potential for additional sensors to be added to smoke detectors to increase the level
of specificity of the fire alarm. For instance, frequent annoyance scenarios like cooking
aerosols, water vapor (from cooking or showers), and dust sources all contribute to an
increase in light obscuration, but they do not result in an increase in CO concentration. As
a result, CO detection can be utilized to enhance the tolerance to false alarms and to reject
false warnings brought on by circumstances that do not generate CO. Systems that rely on
a single measurement from a single fire sensor are not suited for fire detection because they
produce an unacceptably high number of false alerts. This contrasts with smoke-based fire
alarms, which produce fewer false alarms. For instance, a fire detection system that relied
solely on CO measurements would fail to detect flame fires and would be overly sensitive
to the exhaust fire produced by fire or oil furnaces. Because of this, fire-based systems call
for the use of many sensors or multicriteria approaches, both of which necessitate more
complicated data processing techniques.
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In the field of research dealing with image-based fire detection systems, it has been
found that the effectiveness of fire detection systems can frequently be improved by focus-
ing on algorithms that analyze data. Traditional methods of fire detection based on vision
rely on three basic classification steps: (1) characterization of the fire zone, (2) detection of
edges, and (3) classification. Table 1 comprises various methods used for fire detection in
different scenarios.

Table 1. Research related to fire detection methods.

Ref. Contributions Methods Used Results

[8]
Multiple fire detection methods

utilizing scalar and vision sensors have
been discussed.

Scalar sensor-based approaches
analyze data from flame, smoke,

temperature, and particle sensors to
detect fires.

Scalar sensor-based approaches are
cost-effective and simple to implement

but are only suitable for indoor
scenarios and require human

interaction for alarm confirmation

[9]
Proposed an efficient VGG-based

model (E-FireNet) for fire detection.
Conducted comprehensive experiments

and compared performance with
state-of-the-art models.

Preprocessing of collected fire images
to increase the number of samples.

E-FireNet achieves 0.98 accuracy,
1 precision, 0.99 recall, and

0.99 F1-score.
- Utilization of an efficient CNN

model for fire detection and
classification.

- The proposed model shows
convincing performance in terms of

accuracy, model size, and
execution time.

[10]
The provided paper proposes a

modified YOLOv5s model for efficient
fire detection in smart cities, achieving

promising results with lower
complexity and smaller model size.

Modified YOLOv5s model with
integrated Stem module, smaller

kernels, and P6 module

The proposed modified YOLOv5s
model achieves promising results with

lower complexity and smaller
model size.

- Re-implementation of 12 different
state-of-the-art object detection

models for comparison.

- The proposed model had better
detection performance compared to

other state-of-the-art object
detection models.

[11]

The optimized fire attention network
(OFAN) is proposed as a lightweight

and efficient convolutional neural
network (CNN) for real-time fire

detection. - It uses dilated variants of
convolution layers and additional

dense layers to capture global context
and optimize weight.

The OFAN is calibrated for real-time
processing using a lightweight

feature extractor backbone model.

The OFAN outperforms state-of-the-art
fire detection models, achieving high
accuracies on three widely used fire

detection datasets. It achieves
accuracies of 96.23, 96.54, and 94.63 on
BoWFire, FD, and the newly proposed

DiverseFire dataset, respectively.

[12]

The paper introduces the optimized
dual fire attention network (DFAN) for
efficient fire detection and provides a

medium-scale fire classification
benchmark dataset.

Dual fire attention network (DFAN)
for effective and efficient

fire detection.
- Modified spatial attention

mechanism to enhance discrimination
potential of fire and non-fire objects.

The DFAN provides the best
results compared to

21 state-of-the-art methods.
The proposed dataset advances

traditional fire detection datasets by
considering multiple classes.

[13]

The authors propose a novel efficient
lightweight network called FlameNet

for fire detection in smart
city environments.

FlameNet works in two steps: first, it
detects the fire using the FlameNet
network, and then an alert is sent to

the fire, medical, and
rescue departments.

The newly developed Ignited-Flames
dataset is used for analysis, and the
proposed FlameNet achieves 99.40%

accuracy for fire detection.
The empirical findings and analysis of

factors such as model accuracy, size,
and processing time support the

suitability of the FlameNet model for
fire detection.
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Table 1. Cont.

Ref. Contributions Methods Used Results

[14]
Proposed an improved federated

learning algorithm (FedVIS) for fire
detection and localization.

Improved federated learning
algorithm incorporating computer

vision: FedVIS
- Federated dropout and gradient

selection algorithm to reduce
communication overhead.

The proposed FedVIS outperforms
other federated learning methods in

terms of detection effect and
communication costs.

The model’s robustness and
generalization to heterogeneous data

are improved.

[15]

The paper is about the construction of a
large-scale Flame and Smoke Detection
Dataset (FASDD) for deep learning in

fire detection.

Construction of a 100,000-level Flame
and Smoke Detection

Dataset (FASDD).
Formulation of a unified workflow
for preprocessing, annotation, and

quality control of fire samples.

Most object detection models trained
on FASDD achieve satisfactory fire

detection results.
YOLOv5x achieves nearly 80%

mAP@0.5 accuracy on
heterogenous images.

[16]

The paper focuses on using an
Improved convolutional neural

network (ICNN) and LGBM Classifier
for real-time fire recognition.

Improved convolutional neural
network (ICNN).

- LGBM Classifier.

The suggested technique effectively
recognized and alerted the public to the

occurrence of devastating fires.
The suggested technology proved to be
effective in protecting smart cities and

detecting fires in the
urban environment.

[17]

The paper is about the development of
a deep learning model called

SmokeyNet for detecting smoke from
wildland fires using multiple

data sources.

SmokeyNet: Baseline model for
smoke detection using

image sequences.
- SmokeyNet Ensemble: Combines

baseline model with GOES-based fire
predictions and weather data.

The paper presents the results of
experiments on the SmokeyNet model.

The results show that incorporating
weather data improves performance in
terms of accuracy and time-to-detect.

[18]

Proposed a method to reduce false
positive fire alarms and designed an

electronic circuit with 6 sensors to
detect 7 physical sensory inputs.

Implementation of fusing and
classifying sensor data using machine

learning models.
- Comparison of multilayer

perceptron, support vector machine,
and radial basis function network.

Multilayer perceptron is the best model
with 96.875% classification accuracy.

[19]

A vision-based fire detection
framework for private spaces

is proposed.
- The framework preserves the privacy

of occupants using a near
infra-red camera.

Vision-based monitoring with
convolutional neural network and
other machine learning algorithms
- Near infra-red camera for image
capture while preserving privacy.

Developed a novel system
incorporating spatial and temporal

properties of fire.
Validated the lightweight nature of the

system through a
real-world implementation.

[20]

The paper proposes an indoor fire
video recognition method based on a

multichannel convolutional
neural network.

Designing a convolutional neural
network (CNN) model.

Recognition training on image
features of each channel.

Fire identification using flame color
feature, circularity feature, and area

change feature.

Solves the problem of low recognition
accuracy in existing fire video

recognition technology.
Can be applied to indoor fire

video recognition.

[21]

Proposed a multisensor fusion indoor
fire perception algorithm named

TCN-AAP-SVM.
Considered time dimension

information through trend extraction
and sliding window.

Addressed shortcomings of existing fire
classification algorithms.

Improved temporal convolutional
network (TCN).

Adaptive average pooling
(AAP)—support vector machine

(SVM) classifier.

Proposed algorithm improves fire
classification accuracy by more

than 2.5%.
Proposed algorithm improves fire
detection speed by more than 15%.

Outperforms TCN, BP neural network,
and LSTM in accuracy and speed.
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Table 1. Cont.

Ref. Contributions Methods Used Results

[22]

Proposed system achieves high
precision, recall, and F1 scores for

fire detection.
System reduces false alarms and

improves early fire detection.

Multimodal sensors are integrated to
acquire data of carbon monoxide,

smoke, temperature, and humidity.
Support Vector Machine (SVM) is

used for data analysis
and classification.

Precision: 99.8%—Recall: 99.6%—F1
score: 99.7%.

[23]

Effective fire detection using deep
learning techniques in smart cities.
Use of unmanned aerial vehicles
(UAVs) for wide area coverage.

Highlighting the most important fire
regions using multiheaded

self-attention.

Deep multiscale features from a
backbone model are employed.

Attention mechanism is applied for
accurate fire detection.

Features fusion is used to represent
the image effectively.

Multiheaded self-attention enhances
the fused features.

Preliminary experimental results
demonstrate effective performance of

the proposed model.
The proposed model outperforms rivals

in fire detection accuracy.

[24]

Upgraded the classic model by adding
LGBM in the final layer.

Developed a real-time fire catastrophe
monitoring system.

Altered the network structure for
effective fire recognition under
different weather conditions.

Improved convolutional neural
network (ICNN)—LGBM

Classifier—Data
augmentation methods.

Automated color
enhancement—Parameter reductions.

The technique effectively detects fire
areas and provides early warnings.

The suggested technology is effective in
protecting smart cities and detecting

fires in urban environments.
Tested the system against previously

published fire detection methods.

[25]

Proposed a novel optimized Gaussian
probability-based threshold

convolutional neural network
(GTCNN) model for fire detection.

Sensor-based methods for
fire detection.

Computer vision-based approaches
using surveillance camera-based

video (SV).

The proposed optimized GTCNN
achieves a detection accuracy of 98.23%.

The optimized GTCNN outperforms
other deep learning networks in terms

of accuracy.

From the research related to fire detection, it is observed that none of the approaches is
geared towards protecting the confidentiality of fire detection in any way. Research related
to federated learning is given in the next section.

2.2. Federated Learning

When it comes to image processing, federated learning ensures the confidentiality of
the data that is necessary to train the model [26]. Real-time prediction, protection of data
privacy and security, the ability to do offline prediction, and the provision of an intelligent
framework are the key advantages brought about by the utilization of federated learning
in image processing applications [27]. In the case of federated learning, each prediction is
executed on the edge device; hence, there is no need to be concerned about delays in the
data transfer process. In addition, because federated learning organizes and runs its own
training, the only thing that must be transferred is the model.

By decentralizing data collection from a centralized server to individual clients, fed-
erated learning provides a way to protect the privacy of individual users. This paradigm
was developed because of the combination of two important elements [28]: The inability to
keep sufficient data centrally on the server side due to limits placed on direct access to such
data and, if network asynchronous communication is involved, securing sensitive data by
utilizing local data from clients rather than forwarding it to the server to protect it.

The process of prediction continues even if the gadget is not connected to the internet.
Therefore, there is no reason to worry about the gadget, whether one is connected to the
internet or not. If the model has access to the various input devices, it will be able to
successfully perform the assignment. Because federated learning does not rely on any
certain kind of complicated hardware to function, the requirements for the infrastructure
needed to support it are extremely simple. The federated learning algorithms that are most
used are as follows.



Fire 2024, 7, 104 8 of 29

After completing the local training with the data that is available there, the FedSGD
algorithm [29] transfers the results of the training to the server side from the client side.
It waits before contributing to the average joint aggregate, which it does. This process of
waiting could result in a lengthy wait for a variety of reasons; each batch selects a subset of
the nodes to participate in an epoch training and then uploads all the nodes to the server.
To obtain a new weight, the server will first add and then sum up all the weights, and
then it will distribute the new weight to each node. To train the new epoch, each node will
replace the distributed node it was assigned with the weight that was calculated by the
previous epoch. It continues with the previous three procedures until the server notifies
the user that the weights have converged.

On the client side, the original data is split up into numerous portions using the
FedAVG algorithm [30], which is derived from the FedSGD algorithm. It is the method that
is used the most frequently in federated learning for the purpose of model optimization [10].
Before updating and dispersing information locally, this method calculates an average
of the data that was locally uploaded for the stochastic descent gradient. It has been
demonstrated to be effective at learning across multiple tasks at once. On the other hand,
the FedAvg algorithm itself has a few flaws, including global model instability and a slow
convergence rate when applied to diverse datasets.

Furthermore, when applied to the scene of a fire monitoring system, the current feder-
ated learning methods (including the traditional federated learning algorithms FedSGD
and FedAVG, among others) struggle with low computational efficiency as a result of
their lengthy training period and poor cooperative training effect. Both of these elements
diminish the overall effectiveness of the training process, which presents a challenge. The
communication bandwidth is significantly burdened by the substantial quantity of redun-
dant and irrelevant information present in the local model updates uploaded by the client.
Consequently, to comply with the algorithm, the client is obligated to filter the local model
updates using the previous round of global model correlation and refrain from uploading
local model updates that do not satisfy the threshold.

Communication mitigated federated learning (CMFL) is an algorithm that Wang
et al. [31] proposed for the utilization of local model updates uploaded by the client. To train
machine learning models with private data from numerous dispersed devices, federated
learning is implemented. This is achieved using federated learning. A variety of factors
can contribute to data heterogeneity in the context of fire detection, such as the utilization
of multiple cameras, monitored environments, and differing levels of illumination. This
decentralized strategy guarantees that the initial data remains only on individual devices,
thereby resolving privacy concerns linked to centralizing sensitive information.

FL ensures robust user privacy by employing collaborative learning without sharing
raw data. Regarding the classification of fire leaks, this methodology prioritizes privacy by
adhering to ethical data management standards. Additionally, it encourages wider partici-
pation by enabling varied datasets to contribute while safeguarding individual privacy.

3. Proposed Work

The proposed work involves compiling the dataset by creating a controlled environ-
ment as mentioned in Figure 1. Despite this, emphasizing the importance of fire prevention
is crucial, as deliberately starting a fire is considered risky and, in many regions globally,
potentially illegal. The ideal approach for training in fire safety involves safe and controlled
conditions, access to educational materials, and guidance from trained professionals. The
system setup configurations used for the proposed work are shown in Table 2.
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Table 2. System setup configurations.

S.No. Component Configurations

1 1 Server Computer Core i7, 32 GB RAM, NVIDIA 3070 8 GB Graphics Memory

2 5 Client Computer’s Core i5, 16 GB RAM, NVIDIA 1650 4 GB Graphics Memory

3 Python Programming Version 3.7

4 Keras Version 3.0

5 TensorFlow Version 2.14

6 TensorFlow Federated Version 1.0

7 Camera 5 MP HD

The block-level connections within this dataset collection setup enable real-time data
acquisition, preprocessing, and logging. By integrating information from fire detectors
and thermal imagery, this setup ensures a holistic dataset that captures diverse aspects of
fire-related phenomena. The well-established connections contribute to the dataset’s relia-
bility and richness, providing a robust foundation for training and testing multimodal fire
detection models. The dataset collection setup involves a sophisticated integration of multi-
ple fire detectors and a thermal camera, strategically positioned to ensure comprehensive
coverage of fire-related data.

At the block level, the connections within this setup can be described in the following
key components: Eleven metal-oxide fire detectors (Sensor1 to Sensor12) are deployed,
each with specific sensitivities to diverse fire-indicating elements. Block-level connections
involve wiring and communication interfaces to gather data from these sensors. These
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connections ensure the transfer of real-time information on the presence of various fire
parameters. A thermal camera, a crucial component of the multimodal setup, captures
thermal signatures associated with fires. Block-level connections include power supply and
data communication channels to transfer thermal images to the central processing unit.

3.1. Dataset

Experimentation often involves recreating scenarios with ignited combustible materi-
als in controlled settings, such as those found in specialized fire training facilities. These
facilities are equipped with safety measures, fire suppression systems, and trained person-
nel to ensure the well-being and safety of participants. In various industries, including the
IoT, home automation, and scientific research, among others, it is a common practice to
collect data using sensors and Arduino. Thermal cameras capture images of fires, hotspots,
and smoke, facilitating early fire detection and monitoring. The datasets obtained from
thermal photography can be valuable for training models focused on fire prevention and
control. The dataset utilized in this research was created during the NASA Space Apps
Challenge in 2018.

The primary goal was to facilitate the development of a model capable of distinguish-
ing images containing fire (fire_images) from regular images without fire (non-fire_images).
The dataset is structured for binary classification and is divided into two folders, with
5000 outdoor-fire augmented images in the fire_images folder and 5000 augmented images
in the non-fire_images folder. Notably, the dataset exhibits class imbalance, necessitating
careful consideration during model training and validation [32]. The sensors dataset is
available in [33,34] having 5000 sensor data entries for the fire category and 5000 sensor
data entries for the non-fire category as shown in Table 3.

Table 3. Dataset entries of images and sensors.

Category Number of Image Entries Number of Sensor Data Entries

Fire 5000 5000

Non-Fire 5000 5000

3.2. Multimodal Fire Detection Dataset

The focal point of the present study is the dataset compiled using multiple fire detec-
tors and a thermal camera. This dataset forms the basis for a multimodal fire detection
investigation, where the fire sensors and a thermal camera work collaboratively to gather
comprehensive information about the presence of a fire. At the heart of this research is the
development and application of a multimodal fire detection dataset, a critical element in
advancing the capabilities of fire detection systems. The dataset is meticulously curated,
drawing on diverse sources and specifically incorporating data from numerous fire detec-
tors and a thermal camera. This multimodal strategy plays a pivotal role in augmenting
the accuracy and reliability of fire detection models by providing a holistic perspective on
fire-related phenomena.

3.2.1. Fire Sensors Integration

The dataset’s enrichment is a result of deploying a sophisticated array of eleven metal-
oxide sensors and a thermal camera, strategically positioned in the experimental environ-
ment. This combination of sensors is meticulously designed to capture crucial information
related to various fire parameters, providing a holistic view of fire-related phenomena.
The incorporation of these sensors addresses the limitations associated with individual
sensor types, ensuring a comprehensive coverage of fire-related data for the multimodal
dataset. The deployed sensors, including Sensor1/MQ-2, Sensor2/MQ-3, Sensor2/MQ-4,
Sensor5/MQ-5, Sensor6/MQ-6, Sensor7/MQ-7, Sensor8/MQ-8, Sensor9/MQ-9,
Sensor10/MQ-135, Sensor11/MQ-138, and Sensor12/MQ-139, exhibit sensitivity to a wide
range of fire-indicating elements, as outlined in Table 4. This diverse set of sensors allows
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the dataset to capture variations in chemical volatiles and other early indicators that precede
the formation of smoke particles during a fire event.

Table 4. Sensors and corresponding sensitive fire.

Used Sensor Fire Sensitive to Sensor

Sensor1/MQ-2 Liquefied petroleum fire, methane fire, butane fire, smoke

Sensor2/MQ-3 Smoke, ethanol, alcohol

Sensor2/MQ-4 Methane, CNG fire

Sensor5/MQ-5 Liquefied petroleum fire, natural fire

Sensor6/MQ-6 Liquefied petroleum fire, butane fire

Sensor7/MQ-7 Carbon monoxide fire

Sensor8/MQ-8 Hydrogen fire

Sensor9/MQ-9 Carbon monoxide fire, flammable fire

Sensor10/MQ-135 Air quality (CO, ammonia, benzene, alcohol, smoke)

Sensor11/MQ-138 Benzene, toluene, alcohol, acetone, propane, formaldehyde, hydrogen

Sensor12/MQ-139 Infra-red flame

The specific attributes of each sensor, such as sensitivity to liquefied petroleum fire,
methane fire, smoke, and various other fire-indicating elements, contribute to the dataset’s
richness. This diverse sensor array, combined with the thermal camera, ensures that the
multimodal dataset encompasses a broad spectrum of fire-related information. The dataset,
thus curated, becomes a powerful resource for training models to recognize and respond to
the complex array of cues associated with fire occurrences in different environments.

The dataset gathering setup’s sensors are sensitive to fire-indicating factors, enhancing
the fire detection system. Liquefied petroleum, methane, butane, and smoke are detected by
Sensor1/MQ-2. Sensor2/MQ-3 detects smoke, alcohol, and ethanol, whereas Sensor5/MQ-
5 detects natural and liquefied petroleum fire. MQ-7, MQ-8, and MQ-9 sensors detect the
presence of carbon monoxide, the gas hydrogen, and ignited fire. Sensor10/MQ-135 also
samples air for gases such as carbon monoxide, alcohol, ammonia, benzene, and smoke.
The sensors themselves, including MQ-138 for toluene, benzene, and alcohol and MQ-139
with infrared flame, enrich the dataset and allow the model to gather a wide range of
related data.

3.2.2. Thermal Camera

In the dataset collection setup, a thermal camera stands as a pivotal component,
contributing essential data for the multimodal fire detection dataset. The thermal camera
utilized in this study employs advanced infrared technology to measure temperature
fluctuations. Unlike conventional cameras, every pixel on the image sensor of a thermal
camera serves as an infrared temperature sensor, allowing simultaneous temperature
measurement for each point within the camera’s field of view. The thermal camera operates
based on the principles of infrared light detection, capturing temperature variations in the
environment. Each pixel functions as a discrete temperature sensor, generating images in
a temperature-based format rather than traditional RGB. This approach provides a direct
representation of temperature differences across the captured scene.

Thermal cameras can operate effectively in diverse environments, unaffected by factors
such as shape or texture. Unlike conventional image cameras, thermal cameras are not
limited by darkness, making them suitable for applications in low-light conditions. The
thermal camera employed in this study features a 36-degree field of view, allowing for a
wide coverage area during data collection. It has a measurement range spanning from 40 ◦C
to 330 ◦C, enabling the detection of temperature variations associated with fire events. The
camera operates at a framerate of 9 Hz, providing real-time data acquisition capabilities.
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With a total of 32,136 thermal pixels and 206,156 thermal sensors, the camera ensures
detailed and accurate thermal imaging for the creation of the multimodal dataset. Data for
training and testing the fusion model are collected simultaneously using both the thermal
camera and the deployed fire sensors.

The thermal camera captures thermal signatures, contributing valuable temperature-
related information to the dataset. The thermal camera operates in tandem with the fire
sensors, providing a complementary source of information for the multimodal dataset.
The combined data from thermal imaging and fire sensors enhances the dataset’s richness,
allowing the model to learn from both visual and chemical cues associated with fires. The
thermal camera, along with fire sensors, plays a crucial role in the gathering of data for
model training and testing. Detailed data gathering and preprocessing methodologies are
elaborated upon in subsequent sections of the paper, ensuring transparency and repro-
ducibility in the research process. The incorporation of a thermal camera in the dataset
collection setup adds a crucial dimension to the multimodal dataset, enabling the model to
learn from temperature changes associated with fire events. This combination of thermal
imaging and fire sensor data enhances the dataset’s comprehensiveness, contributing to
the development of a robust and accurate fire detection model.

3.3. Preprocessing of Multimodal Data

The preprocessing of multimodal data is a crucial step in preparing the dataset for
effective model training. In this study, the preprocessing pipeline involves transforming the
numerical fire readings from the seven metal-oxide (MOX) sensors into heatmap images,
followed by scaling these images along with the infrared (IR) thermal images to fit the input
layer sizes of various convolutional neural network (CNN) variations. The fire readings
from the seven MOX sensors are initially transformed into heatmap images. At regular
intervals of 2 s, each numerical fire measurement is converted into an RGB image, where
the numerical values are mapped to color intensity values on the RGB scale. This mapping
process creates a colormap pattern (heatmap) for each sensor, resulting in RGB images,
which are then saved with the .jpg extension. Both the generated MOX sensor heatmap
images and IR thermal images are scaled to fit the input layer sizes of six different CNN
variations. Scaling is a crucial step to ensure uniformity in input dimensions across different
CNN architectures, facilitating consistent model training and evaluation.

The preprocessed data is divided into training and testing portions using a 70–30%
split. This division ensures that a significant portion of the data is allocated for training the
model, while a separate portion is reserved for evaluating its performance. Augmentation is
employed as a critical step to enhance the training performance of the CNNs. By increasing
the number of images in the training dataset through augmentation, the models become
more robust, less prone to overfitting, and better equipped to generalize to a variety of
fire scenarios. The dataset, comprising both MOX sensor heatmap images and IR thermal
images, is now prepared for feeding into CNN variations for training and testing.

The combination of these multimodal data sources enriches the learning process,
enabling the model to capture both visual and chemical cues associated with fires. The
scaled images are adapted to the specific input layer sizes of the chosen CNN variations.
This adaptation ensures that the multimodal data is effectively processed by each CNN
architecture, optimizing their ability to learn and extract meaningful features for fire
detection. The preprocessing steps involve the transformation of MOX sensor readings into
heatmap images, scaling of these images and IR thermal images, data splitting for training
and testing, and the augmentation of training data. These steps collectively enhance the
dataset’s suitability for training robust CNN models capable of effectively detecting fires
based on both visual and chemical information [35].

3.4. Data Classification for Multimodal System for DL Models

In the data classification phase of the multimodal system, the objective is to integrate
information from both the thermal camera and the fire sensors to create a comprehensive
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dataset for deep learning models. The process involves gathering data on the presence of a
fire, extracting relevant information from numerical data obtained from fire sensors, and vi-
sual images from the thermal camera. The subsequent steps include feature extraction, data
normalization, and data cleaning to prepare the data for multimodal input representation
in deep learning models. The thermal camera and fire sensors are combined to collect data
on the presence of a fire. Information from each data source, including numerical data from
fire sensors and visual images from the thermal camera, is extracted to form a multimodal
dataset. The next step involves feature extraction, where pertinent information is identified
and extracted from both types of data. Data normalization and cleaning procedures are
applied to ensure consistency and eliminate noise from the dataset.

A multimodal input representation for deep learning models is created by combining
the extracted features from numerical data and visual images. This representation is
designed to capture both chemical and thermal aspects of fire occurrences.

Different deep learning techniques are employed for training on numerical data from
fire sensors and image data from thermal sensors. LSTM, BiLSTM, and CNN are utilized
for training on numerical data, while CNN, DenseNet, and VGG16 are employed for train-
ing on thermal image data. The utilization of Long Short-Term Memory is successful in
processing numerical data, providing a method for accurately storing and understand-
ing sequential relationships in fire sensor readings. This is crucial for the identification
of emerging patterns. The Bidirectional LSTM improves temporal modeling by incorpo-
rating information from both preceding and succeeding sequences, hence facilitating a
more holistic comprehension of sequential data obtained from fire detectors in the fire
detection mechanism.

Convolutional neural networks are highly effective in analyzing visual data, which
makes them ideal for extracting hierarchical characteristics from thermal pictures. This
model is crucial for identifying unique patterns related to flames in various urban situations.
The DenseNet architecture is used due to its dense connectivity structure, which enables
the effective reuse of features and optimal utilization of parameters. This enhances the
model’s ability to learn when trained on thermal imaging information for fire detection.
The VGG16 model, a convolutional neural network with a straightforward and consistent
design, excels in capturing complex characteristics from thermal pictures. The system’s
efficacy stems from its capacity to identify intricate visual patterns, enhancing the resilience
of the system for detecting fires. The data classification scheme is illustrated in Figure 2,
outlining the flow of data processing and classification within the multimodal system.
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The scheme incorporates the sequential steps of data integration, feature extraction,
and multimodal input representation. Model performance is evaluated on a test dataset
using metrics such as accuracy, precision, recall, and loss. These metrics provide insights
into how well the trained model can detect fire leaks in the given dataset. To evaluate
the performance of multimodal data, both slow and fast learning rates are employed. In
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the slow learning rate approach, each modality generates a set of feature representations
capturing information specific to that modality. These features are processed individually
using specialized neural network designs. In contrast, the rapid learning rate neural
network architecture fuses or combines features from different modalities at an early layer,
allowing for faster integration of information.

The classification scheme involves the fusion of information from multiple modalities,
emphasizing the integration of both chemical and thermal cues. This holistic approach
ensures that the deep learning models can effectively recognize and classify fire occurrences
with a comprehensive understanding of multimodal data. The data classification process,
as outlined in Figure 2 and described in Figure 3, represents a systematic approach to lever-
aging both numerical and visual information for robust fire detection. The incorporation
of multimodal learning rates and model fusion techniques enhances the versatility and
accuracy of the deep learning models in detecting fire leaks across various scenarios.
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3.5. Multimodal Data Classification in Federated Eco-System

In the realm of multimodal data classification, federated learning (FL) emerges as a
cutting-edge distributed machine learning paradigm, gaining prominence in both academic
and business settings. FL addresses challenges related to data ownership, localization, and
privacy by training a high-quality centralized model using data dispersed across various
locations and devices. This section explores the mathematical principles and procedures at
the core of the FL paradigm and its potential application in the context of fire detection.
Using data that is dispersed across a variety of places and devices, a high-quality centralized
model is trained when the FL paradigm is used [36–38]. Google introduced a technique
in 2016 that would take data from each site to independently compute an update to the
current ML model, which is how the phrase was initially used [36].

This update is then sent back to a central service, which compiles it into a new global
model and distributes it to the various locations [36]. The code is therefore brought to the
data in this paradigm rather than the data being brought to the code. As a result, the FL
paradigm solves issues with data ownership, localization, and privacy [37]. What follows
presents and discusses the mathematical principles and procedures at the heart of the
FL paradigm as well as its potential for addressing the water leak detection issue. The
general architecture is first given before the FL paradigm is explained. A centralized FL
server that can communicate with a collection of devices that are prepared to carry out the
necessary FL task makes up the FL architecture in most cases. Six major steps make up the
workflow [36,37]:
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a. The group of devices transmits a message of availability indicating that they are
prepared to finish a FL task.

b. At time ti, the FL server selects a portion of these available devices and distributes
the deep learning (DL) model to them.

c. Following that, each device runs a training procedure using the local data to create a
new local ML model.

d. Based on the aforementioned training procedure, each device communicates the
updated parameters of its machine learning model.

e. The updated global DL model for time ti is then calculated by the FL server by
combining the local models.

f. All devices receive the updated global DL model from the FL server.
g. Every round, this process is repeated, with the FL server deciding how frequently to

update it.

In terms of mathematics, the FL paradigm tries to learn the W matrix-representable
parameters of the global ML model. To do this, a portion of the total number of Dtot
devices is sent the model Wti−1 by the FL server. Every device Dti goes through a training

procedure to establish an updated local model W j
ti

. Each device then transmits its update

to the FL server using the formula H j
ti

= W j
ti
− Wti−1 . The FL server then combines these

local modifications to create the following global model [36,37]:

Wti = Wti+1 + αti+1 Hti (1)

where αti is the learning rate chosen by the FL server and Hti is the average aggregated
device-shared update given by

Hti =
1

|Dtot| ∑
jϵDti

H j
ti

(2)

For particular implementations, the fact that the term Hti can be computed as the
weighted sum of the device-shared updates as opposed to the average is of no conse-
quence [37]. This paradigm is applicable to facilities that are dispersed across multiple
regions. This is suitable for organizations that possess a multitude of manufacturing
facilities dispersed across diverse geographical areas.

The FL paradigm facilitates the transfer of insights gained from a fire leak incident
at one facility to other production sites, capitalizing once more on the rarity of multiple
concurrent breaches occurring at distinct locations. In this scenario, each facility would
operate as a FL device through the deployment of a collection of servers that are employed
to conduct the local training. All of the facilities would be connected by a centralized cloud
server (such as the Amazon cloud service) that acts as the FL server and compiles local
models prior to returning the utilized global ML models. As mentioned earlier, machine
learning detection models such as support vector machines (SVM) and artificial neural
networks can be trained at the facility level.

The centralized FL server then provides the aggregated global ML model, which
has been demonstrated to be an effective method for detecting leaks. It is important
to acknowledge that the implementation of this architecture is anticipated to result in
heterogeneous or non-iid distribution of the data (non-iid) hardware equipment capacities
or capabilities of the facilities. There exist multiple approaches that can be implemented to
tackle this issue. One approach is to organize comparable facilities into clusters and appoint
one of them to provide updates on behalf of the group. By adopting this approach, it would
be possible to mitigate the computational capacity at each site as well as the diversity of
the data.

The “esgrssecond approach” entails the global sharing of a subset of the data obtained
from each facility. Local models being trained at each location could thus be able to view
and analyze data from other internet domains. For example, Zhao et al. [39] demonstrated



Fire 2024, 7, 104 16 of 29

that sharing only 5% of the local data globally could significantly improve the accuracy
of the global model. To ensure that the centralized FL server delivers a global model of
superior quality, a comparable approach may be implemented for the multi-facility design.
A variety of architectures are depicted in Figure 4, with the FL design on the left depicting
it within a single facility and the FL design across multiple facilities on the right.
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4. Experimental Results, Analysis, and Discussion

For each model that has been attempted, values for precision, recall, F1 score, accuracy,
and loss function are shown. To validate the performance of classification, precision and
recall were used, and accuracy was used to analyze as a single numerical study of a system’s
completion. Categorical accuracy is another name for training accuracy. It indicates how
accurately models classify the practice data. One of the most important elements of a
deep neural network is the model loss function. It shows how much the models are off
from the final outcome. It is possible to gauge how better CNN models are performing
when predicting from a dataset using the values of the model loss. The purpose of the test
accuracy is to assess how well the models perform. Following training, the top-performing
CNN architectures [40,41] were chosen based on the outcome metrics as given below:

• Accuracy indicates how well the model can identify the correct label for each sample,
and it is calculated using Equation (3) [4,5,9,13,14].

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

where, True Positive (TP) is the count of samples that are correctly classified as positive.
True Negative (TN) is the count of samples that are correctly classified as negative.
False Positive (FP) is the count of samples that are wrongly classified as positive. False
Negative (FN) is the count of samples that are wrongly classified as negative.

• Precision is a performance metric that calculates the proportion of correctly identified
positive samples to the total number of positive samples predicted by the model. It
measures how accurate the model is in identifying the relevant samples. The formula
for precision is shown in Equation (4) [4,5,9,13,14].

Precision = TP/(TP + FP) (4)
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• Recall, also known as sensitivity or true positive rate, is a metric that measures the
proportion of actual positive samples that are correctly identified by the model. It is
calculated by dividing the number of true positive predictions by the total number of
actual positive samples in the dataset, as shown in Equation (5) [4,5,9,13,14].

Recall = TP/(TP + FN) (5)

• The F1 score is a metric that considers both precision and recall by taking their har-
monic mean. This score is useful for evaluating the performance of a model when the
dataset is imbalanced. The formula for the F1 score is given by Equation (6) [4,5,9,13,14].

F1-Score = 2 × (Precision × Recall)/(Precision + Recall) (6)

Our main goal was to improve test accuracy while reducing model loss function.
Adam served as the optimizer for all models, which were run for 10 iterations with a
learning rate of 0.0001. Multiple data from the same instance are available at once in the
multimodal system. In addition, the data is of various types, including photos and sensor
data obtained from fire sensors and thermal imaging, respectively. To train models for both
types of data concurrently, multimodal data is fed to multimodal deep learning models,
which then produce findings in the form of common classification.

4.1. Analysis on Unimodal Data

Collecting and analyzing individual sensor data is fundamental for effective fire
leakage detection systems. This individual data is crucial for the accurate and timely
identification of potential hazards. Here, image data from thermal cameras and sensors
data from fire sensors for fire leakage detection have been collected.

4.1.1. Image Data Analysis

CNN model and six pre-trained CNN models for fire detection from image data—
DenseNet201, InceptionResNet, MobileNetV2, VGG16, VGG19, and Xception—have been
chosen. Table 5 shows the accuracy, precision, recall, and loss of our six stated CNN models.
Excellent outcomes were provided by all models. After checking the precision value, all
six models outperformed CNN because they all received precision values of greater than
0.99. This indicates that the models were able to forecast the greatest number of predictions
for no fire leakage that truly fall into the no fire leaking class. In comparison to other
techniques, the DenseNet201, VGG19, and Xception models have better loss values.

Table 5. Comparative analysis of various methods used for image data.

Accuracy Val
Accuracy Loss Val

Loss Precision Val
Precision Recall Val

Recall

Convolutional
Neural Network 94.95 90.6 0.396 0.3878 94.95 90.6 94.95 90.6

DenseNet201 99.66 100 0.0843 0.0641 99.66 100 99.66 100

MobileNetV2 100 99.33 0.1018 0.1113 100 99.33 100 99.33

XceptionNet 99.92 97.99 0.09 0.1148 99.92 97.99 99.92 97.99

Figure 5 illustrates the comparison of training accuracy, test accuracy, model loss
function, validation loss, precision, validation precision, recall, and validation recall to
demonstrate why seven models perform better. The comparison of training accuracy for
each of the seven designs is displayed in the training accuracy graph. The upward move-
ment of the lines of the DensNet201 and Xception models in this example demonstrated
that the models were picking up new information from the training data relatively quickly.
CNN is indicated on the blue line as having the lowest training accuracy (83.00%).
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Every model, however, began at a low value and ended up at a greater one. Lower
loss functions were achieved as training time on the models increased. The comparison of
seven architectures for test accuracy is shown in the second figure. Every model’s graph
is moving upward in each epoch, which shows that our proposed model did a great job
of identifying fire leaks. These numbers show that our models were correctly trained on
the fire dataset. The models accurately identified fire from the test dataset without being
either over-fit or under-fit. These are the explanations for why the models’ output in the
classification report and confusion matrix was so outstanding.

The evaluation metrics showcase promising trends in the performance of the models.
Regarding training accuracy, both the DensNet201 and Xception models exhibit consistent
upward trends, indicating their quick adaptation to new information from the training data,
suggesting effective learning capabilities. In terms of test accuracy, all models consistently
demonstrate upward trends, showcasing their ability to effectively identify fire leaks with-
out encountering issues of overfitting or underfitting. The observed lower loss functions
with increased training time across all models signify improved overall performance, as the
models minimize errors and enhance their predictive capabilities. Additionally, precision
and recall values for all models are notably high, highlighting the models’ accurate identifi-
cation of fire incidents and reflecting a robust performance in both precision (minimizing
false positives) and recall (minimizing false negatives).

These combined results indicate the effectiveness of the models in learning and ac-
curately identifying fire incidents, affirming their potential for practical deployment in
fire detection scenarios. The comparative analysis illustrates the superior performance of
pre-trained models, particularly DenseNet201, VGG19, and Xception, in comparison to
the baseline CNN model. These models exhibit high accuracy, precision, and recall values,
indicating their efficacy in accurately detecting fire incidents. The graphical representa-
tion in Figure 5 provides a visual understanding of the models’ training and validation
performance, further emphasizing their robustness in fire leakage detection.

4.1.2. Sensors Data Analysis

Three deep neural networks, namely BiLSTM-Dense, Dense, and LSTM-DenseDenseNet201,
for the task of identifying fire leakage from sensors data have been chosen. Table 6 shows the
accuracy, precision, recall, and loss of these three deep learning models. Excellent outcomes were
provided by all models. All six models outperform BiLSTM-Dense after checking the precision
value; they all received a precision value of over 93.39, indicating that the model could correctly
forecast the greatest number of no fire leakage predictions that really fall into the no fire leakage
class. The best of the three approaches, BiLSTM-Dense, has a loss value of 0.15. BiLSTM-Dense
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has the highest accuracy, making it the most effective method for finding fire leaks. Figure 6
illustrates the comparison of training accuracy, test accuracy, model loss function, validation loss,
precision, validation precision, recall, and validation recall to demonstrate why seven models
perform better.

Table 6. Comparative analysis of various methods used for sensors data.

Accuracy Val
Accuracy Loss Val

Loss Precision Val
Precision Recall Val

Recall

BiLSTM_Dense 94.71 95.58 0.13 0.22 94.71 95.58 94.71 95.58

Dense 95.15 94.46 0.14 0.22 95.15 94.46 95.15 94.46

LSTM_Dense 94.19 95.84 0.14 0.21 94.19 95.84 94.19 95.84

The comparison of training accuracy for each of the seven designs is displayed in
the training accuracy graph. The upward movement of the lines of the DensNet201 and
Xception models in this example demonstrated that the models were picking up new
information from the training data relatively quickly. CNN is indicated on the blue line
as having the lowest training accuracy (83.00%). Every model, however, began at a low
value and ended up at a greater one. Lower loss functions were achieved as training time
on the models increased. The comparison of seven architectures for test accuracy is shown
in the second figure. Every model’s graph is moving upward in each epoch, which shows
that our proposed model did a great job of identifying fire leaks. These numbers show that
the models were correctly trained on the fire dataset. The models accurately identified fire
from the test dataset without being either over-fit or under-fit. These are the explanations
for why the models’ results in the classification report and confusion matrix were so great.

The comprehensive evaluation of the models reveals positive trends across key metrics.
Notably, the training accuracy, exemplified by the upward trajectory of lines for BiLSTM-
Dense, indicates the models’ swift adaptation to new information from the training data,
suggesting efficient learning capabilities. Furthermore, the test accuracy demonstrates con-
sistent upward trends across all models, underscoring their effectiveness in identifying fire
leaks without succumbing to overfitting or underfitting issues. The observed decrease in
loss functions with prolonged training time signifies enhanced model performance, empha-
sizing their ability to minimize errors and improve predictive capabilities. Additionally, the
high precision and recall values across all models affirm their accuracy in identifying fire
incidents, highlighting a robust performance in both precision (minimizing false positives)
and recall (minimizing false negatives). These collective findings underscore the models’
effectiveness in learning, adapting, and accurately identifying fire incidents, emphasizing
their potential for practical deployment in fire detection scenarios.
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The comparative analysis reveals the effectiveness of the selected models for fire
leakage detection using numerical data. BiLSTM-Dense emerges as the most accurate and
precise method, with a low loss value, demonstrating its superiority in identifying potential
fire incidents. The graphical representation in Figure 6 visually highlights the models’
training and validation performance, emphasizing their robustness in fire leakage detection
based on numerical data.
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4.2. Multimodal (Image and Sensors Data Analysis)

In this stage of the work, the integration of features from fire sensor measurements
and thermal image extraction was undertaken to enable precise decision-making. It was
discovered that the use of data from multiple modalities significantly enhances the classi-
fier’s accuracy compared to relying solely on data from a single modality. The combined
multimodal classifiers, trained on labeled data from one modality, proved effective when
applied to data from another modality, achieving an acceptable accuracy score with the
support of multimodal representations. The multimodal model demonstrates exceptional
performance, achieving perfect accuracy on the training set (1.00) and a high accuracy of
0.92 on the validation set. The low loss value (0.06) on the training set and a slightly higher
value (0.20) on the validation set indicate robust learning without overfitting as shown in
Table 7.

Table 7. Comparative analysis of multimodal (image and sensors data) data.

Accuracy Val
Accuracy Loss Val

Loss Precision Val
Precision Recall Val

Recall

Multimodal 100 92 0.06 0.2 100 92 100 92

In Figure 7, the model performance comparison reveals compelling results across vari-
ous metrics. Notably, the multimodal model achieves perfect accuracy on the training set,
signifying its adept learning from the amalgamated features of fire sensor measurements
and thermal images. This proficiency extends to the validation set, where the model main-
tains high accuracy at 0.92, demonstrating its robust ability to generalize well to unseen
data. The low loss on the training set suggests effective convergence, while a slightly higher
loss on the validation set indicates good generalization without succumbing to overfitting.
Additionally, the model attains perfect precision and recall on both training and validation
sets, underscoring its capability to accurately identify fire incidents. These findings collec-
tively highlight the comprehensive and proficient performance of the multimodal model in
fire detection scenarios, showcasing its potential for practical application and deployment.
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The confusion matrix provides a visual representation of the model’s performance,
showcasing its ability to correctly classify instances of fire and non-fire incidents as shown
in Figure 8. The high values on the diagonal of the confusion matrix indicate accurate
predictions, while off-diagonal values highlight instances of misclassification.
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The multimodal model, combining information from fire sensors and thermal images,
emerges as a powerful approach for fire leakage detection. The model demonstrates
high accuracy, precision, and recall on both training and validation sets, indicating its
effectiveness in making accurate predictions based on the combined features from different
modalities. The confusion matrix further confirms the model’s ability to correctly classify
fire incidents, contributing to its robustness in real-world applications.

4.3. Analysis of Multimodal Data on Federated Learning Ecosystem

Federated learning, a machine learning technique, facilitates the training of a model
across decentralized devices (clients) while preserving data on those devices rather than
transferring it to a centralized server. This approach ensures data privacy by allowing
clients to locally train a model using their own data. The central server then combines the
model changes from each client, incorporating collective intelligence without exposing
individual data. Federated learning proves advantageous for fire leak detection, enhancing
model accuracy while maintaining the privacy of sensitive information.

In the federated learning framework, the server engages in a maximum of six com-
munication rounds with participating clients, strategically selecting 10% of them for local
training in each round. During local training, clients execute 100 epochs with a learn-
ing rate of either 0.01 or 0.001, contingent on their individual performance. Notably, the
client’s local data size aligns with the size of the server’s labeled dataset, with the local
data being randomly drawn from the overall training dataset. This approach ensures that
clients contribute meaningfully to the model’s training process while maintaining consis-
tency with the server’s labeled data, promoting effective collaboration in the federated
learning environment.

In Figure 9, the federated multimodal aggregated results for IID data are presented,
illustrating the loss and validation loss curves for both the client side and the server side.
Notably, the server’s validation results showcase an impressive aggregated accuracy of
99.7% and an exceptionally low validation loss, indicative of superior performance in
the context of Independent and Identically Distributed (IID) data. Moving to Figure 10,
which focuses on federated multimodal aggregated results for non-IID data, the graphs
display loss and validation loss curves for both the client side and the server side. The
server’s validation loss results emphasize the effectiveness and security of the proposed
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federated multimodal system, surpassing conventional frameworks while maintaining
cost-efficiency. These figures collectively underscore the robustness and efficiency of the
federated multimodal approach in handling both IID and non-IID data scenarios.
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In the realm of individual data analysis, specifically focusing on image and sensor data,
our study unveils noteworthy insights. For image data, a suite of CNN models, including
DenseNet201, InceptionResNet, MobileNetV2, VGG16, VGG19, and Xception, showcased
remarkable performance. Precision values consistently surpassed 0.99, affirming precise
predictions for scenarios devoid of fire leakage. Notably, the DenseNet201, VGG19, and
Xception models outshone their counterparts, exhibiting superior outcomes in terms of loss
values. The training accuracy comparison depicted accelerated learning in the DensNet201
and Xception models, while all models exhibited refinement over epochs, with CNN
initiating at the lowest training accuracy of 83.00%. Equally compelling results emerged
from sensor data analysis, where the BiLSTM-Dense, Dense, and LSTM-DenseDenseNet201
models excelled, outperforming BiLSTM-Dense with precision values exceeding 93.39.

Training and test accuracy comparisons highlighted efficient learning in the Den-
sNet201 and Xception models, showcasing their efficacy in fire leak detection. Furthermore,
multimodal data integration proved pivotal, enhancing classifier accuracy through the amal-
gamation of features from fire sensor measurements and thermal images. This multimodal
approach exhibited superior results without additional resource requirements. Finally, the
adoption of a federated learning approach underscored its significance, ensuring model
training across decentralized devices while safeguarding data privacy.
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The aggregated results showcased exceptional validation accuracy (99.7%) and mini-
mal validation loss for both IID and non-IID data, affirming the effectiveness and security of
the federated multimodal system. This research underscores the effectiveness of leveraging
multimodal data and federated learning for the detection of fire leakage. The integration of
convolutional neural networks (CNN) with sensor data yields promising results, and the in-
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corporation of multimodal information further enhances the overall accuracy of the system.
Crucially, the implementation of federated learning ensures collective intelligence among
devices without compromising data privacy, rendering the system robust and secure. In
comparison to traditional frameworks, the proposed approach outperforms, providing a
cost-efficient and privacy-preserving solution for real-world fire detection scenarios. These
findings collectively highlight the potential of multimodal data integration and federated
learning in advancing the capabilities of fire detection systems for enhanced accuracy,
privacy, and efficiency.

Additional empirical evidence is required to validate the effectiveness of the suggested
fire leakage detection system. This can be achieved through testing in various urban
contexts and potential pilot deployments. Testing the system in several metropolitan
settings with unique infrastructure and environmental features will provide a thorough
assessment of its adaptability and applicability. Studying various building structures, fire
event patterns, and environmental factors in real-world situations will offer useful insights
into how the system performs in different contexts.

Furthermore, evaluating a pilot implementation in a controlled yet operational setting
will enable a thorough analysis of the system’s feasibility, dependability, and capacity
for growth. This may need working with pertinent authorities, emergency services, or
industrial sites to establish the system and collect live data on its effectiveness. Consistent
monitoring and incremental enhancements guided by input from these deployments will
help enhance the system and guarantee its optimal performance in real-world, changing
environments. Conducting thorough testing in different urban settings and implementing
a pilot program would strengthen the reliability of the data, confirming the effectiveness of
the system and its viability for practical use.

5. Discussion

The research presented showcases the efficacy of different advanced machine learning
models in detecting fire leaks by utilizing multimodal data, which includes measurements
from fire sensors and thermal images. The thorough assessment of each of the models
for imaging and sensor data uncovers significant observations. When it comes to ana-
lyzing picture data, CNN models regularly demonstrate exceptional performance, with
precision values consistently exceeding 0.99. The DenseNet201, VGG19, and Xception
models demonstrate exceptional loss levels, highlighting their effectiveness in accurately
detecting fires.

Regarding sensor data, the Dense, BiLSTM-Dense, and LSTM-DenseDenseNet201
algorithms outperform the BiLSTM-Dense model in terms of precision values that are higher
than 93.39. The comparison of training and test accuracy demonstrates the efficient learning
capabilities of the DensNet201 and Xception models, confirming their efficiency in detecting
fire leaks. The integration of multimodal data is crucial since it improves the accuracy of
the classifier by combining information obtained from fire sensor readings and thermal
images. This multimodal strategy demonstrates improved outcomes without any additional
resource demands. The implementation of federated learning highlights its importance by
enabling model training on distributed devices while protecting data privacy.

The combined outcomes demonstrate outstanding validation accuracy (99.7%) and
negligible loss of validation for both IID and non-IID data, confirming the efficiency and
safety of the federated multimodal approach. This study highlights the efficacy of utilizing
many modes of information and federated learning for the identification of fire leakage.
To summarize, the combination of CNN with sensor data shows encouraging outcomes,
and the inclusion of multimodal information improves the overall precision of the system.
Federated learning implementation guarantees the sharing of intelligence among devices
while maintaining data privacy, resulting in a robust and secure system. The proposed
approach offers a cost-effective and privacy-enhancing alternative for real-world detection
of fire scenarios, in contrast to conventional frameworks. The combined results emphasize
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the possibility of integrating multimodal data and utilizing federated learning to improve
the precision, privacy, and efficiency of fire detection systems.

Within the domain of future work, multiple potential areas for study and development
might greatly improve the suggested fire detection system. Exploring the system’s ability
to withstand various environmental conditions, its capacity to operate effectively in large-
scale urban environments, and its incorporation of advanced computing technologies are
important areas to investigate. Enhancing accuracy and early detection can be achieved
by optimizing the fusion of several sensors, investigating human-in-the-loop methods,
and evaluating novel sensor technologies. Furthermore, the inclusion of cybersecurity
factors and comprehensive assessments will guarantee the system’s robustness and ability
to withstand challenges over an extended period. Future studies can aid in the ongoing
development and advancement of fire detection technologies by focusing on these factors.
This will help overcome current limits and stay ahead of emerging issues in this quickly
progressing sector.

6. Conclusions

This study stands as a testament to the remarkable progress in fire detection technol-
ogy, harnessing advancements in sensor technology, microelectronics, and information
technologies witnessed over the past decade. Our research specifically delved into the
evaluation of intelligent multimodal data for fire leakage detection and identification, culmi-
nating in a comprehensive performance and results discussion. By meticulously comparing
outcomes derived from disparate data modalities—fire sensor measurements and infrared
thermal imaging—we employed a spectrum of deep learning models, including LSTM,
BiLSTM, CNN, DenseNet, and VGG16. The performance discussion revealed a significant
boost in classifier accuracy through the fusion of these distinct datasets into multimodal
data. This underscores the efficacy of harnessing diverse data sources, signifying a pivotal
advancement in fire detection systems.

This study proposed a method for assessing the validity of intelligent multimodal
data for fire leakage detection and identification. We compared results using the separate
data modalities of fire sensor measurements and IR thermal imaging for fire detection
and identification. While temperature data is trained on the LSTM, BiLSTM, and CNN
methods for fire detection, fire sensor data is trained on CNN, DenseNet, and VG16. The
two datasets are then combined to produce multimodal data. According to the results,
using data from many modalities increased the classifier’s accuracy over just using data
from one modality. FL offers a workable option for extracting useful information from the
collected data while yet retaining its privacy and localization given the scattered nature
of fire monitoring systems with sensors gathering data at multiple geographic locations.
The findings reveal the way intelligent multimodal integration of information improves
fire detection systems. Federated learning can achieve high accuracy, data privacy, and
geographical spread in fire monitoring systems, according to our research. This research
sets the groundwork for enhanced, privacy-preserving fire detection technologies, making
the future safer and more advanced.
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5. Caldas, S.; Konečny, J.; McMahan, H.B.; Talwalkar, A. Expanding the reach of federated learning by reducing client resource

requirements. arXiv 2018, arXiv:1812.07210.
6. Fleming, J.M. Photoelectric and Ionization Detectors—A Review of The Literature Re–Visited. Retrieved Dec. 2004, 31, 2010.
7. Keller, A.; Rüegg, M.; Forster, M.; Loepfe, M.; Pleisch, R.; Nebiker, P.; Burtscher, H. Open photoacoustic sensor as smoke detector.

Sens. Actuators B Chem. 2005, 104, 1–7. [CrossRef]
8. Yar, H.; Ullah, W.; Khan, Z.A.; Baik, S.W. An Effective Attention-based CNN Model for Fire Detection in Adverse Weather

Conditions. ISPRS J. Photogramm. Remote Sens. 2023, 206, 335–346. [CrossRef]
9. Dilshad, N.; Khan, T.; Song, J. Efficient deep learning framework for fire detection in complex surveillance environment. Comput.

Syst. Sci. Eng. 2023, 46, 749–764. [CrossRef]
10. Yar, H.; Khan, Z.A.; Ullah FU, M.; Ullah, W.; Baik, S.W. A modified YOLOv5 architecture for efficient fire detection in smart cities.

Expert Syst. Appl. 2023, 231, 120465. [CrossRef]
11. Dilshad, N.; Khan, S.U.; Alghamdi, N.S.; Taleb, T.; Song, J. Towards Efficient Fire Detection in IoT Environment: A Modified

Attention Network and Large-Scale Dataset. IEEE Internet Things J. 2023. [CrossRef]
12. Yar, H.; Hussain, T.; Agarwal, M.; Khan, Z.A.; Gupta, S.K.; Baik, S.W. Optimized dual fire attention network and medium-scale

fire classification benchmark. IEEE Trans. Image Process. 2022, 31, 6331–6343. [CrossRef] [PubMed]
13. Nadeem, M.; Dilshad, N.; Alghamdi, N.S.; Dang, L.M.; Song, H.K.; Nam, J.; Moon, H. Visual Intelligence in Smart Cities: A

Lightweight Deep Learning Model for Fire Detection in an IoT Environment. Smart Cities 2023, 6, 2245–2259. [CrossRef]
14. Hu, Y.; Fu, X.; Zeng, W. Distributed Fire Detection and Localization Model Using Federated Learning. Mathematics 2023, 11, 1647.

[CrossRef]
15. Wang, M.; Jiang, L.; Yue, P.; Yu, D.; Tuo, T. FASDD: An Open-access 100,000-level Flame and Smoke Detection Dataset for Deep

Learning in Fire Detection. Earth Syst. Sci. Data Discuss. 2023, 1–26. [CrossRef]
16. Tamilselvi, M.; Ramkumar, G.; Prabu, R.T.; Anitha, G.; Mohanavel, V. A Real-time Fire recognition technique using a Improved

Convolutional Neural Network Method. In Proceedings of the 2023 Eighth International Conference on Science Technology
Engineering and Mathematics (ICONSTEM), Chennai, India, 6–7 April 2023; pp. 1–8.

17. Bhmra, J.K.; Anantha Ramaprasad, S.; Baldota, S.; Luna, S.; Zen, E.; Ramachandra, R.; Kim, H.; Baldota, C.; Arends, C.;
Zen, E.; et al. Multimodal Wildland Fire Smoke Detection. Remote Sens. 2023, 15, 2790. [CrossRef]
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