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Abstract: Forest is an important resource for human survival, and forest fires are a serious threat to
forest protection. Therefore, the early detection of fire and smoke is particularly important. Based on
the manually set feature extraction method, the detection accuracy of the machine learning forest fire
detection method is limited, and it is unable to deal with complex scenes. Meanwhile, most deep
learning methods are difficult to deploy due to high computational costs. To address these issues,
this paper proposes a lightweight forest fire detection model based on YOLOv8 (FFYOLO). Firstly,
in order to better extract the features of fire and smoke, a channel prior dilatation attention module
(CPDA) is proposed. Secondly, the mixed-classification detection head (MCDH), a new detection
head, is designed. Furthermore, MPDIoU is introduced to enhance the regression and classification
accuracy of the model. Then, in the Neck section, a lightweight GSConv module is applied to reduce
parameters while maintaining model accuracy. Finally, the knowledge distillation strategy is used
during training stage to enhance the generalization ability of the model and reduce the false detection.
Experimental outcomes demonstrate that, in comparison to the original model, FFYOLO realizes an
mAP0.5 of 88.8% on a custom forest fire dataset, which is 3.4% better than the original model, with
25.3% lower parameters and 9.3% higher frames per second (FPS).

Keywords: forest fire detection; YOLOv8; CPDA; MCDH; MPD-IoU; GSconv

1. Introduction

A forest fire is a highly hazardous natural disaster that significantly impacts the
ecosystem [1]. It not only devastates vast forest ecosystems, but also leads to an irreversible
loss of biodiversity and to soil damage [2], disrupting the ecological balance. Additionally,
forest fires can cause destruction to surrounding buildings, crops, and infrastructure,
severely impacting economic development [3,4].

Current forest fire detection methods face several challenges. Primarily, these fires
have a penchant for erupting in remote locales and are geographically widespread, where
human resources are scant, making manual detection inefficient [5]. Secondly, forest fires
spread at a rapid pace, and if not detected promptly, the blaze can quickly escalate and cause
further devastation. Moreover, forest fires typically occur in complex and diverse natural
environments such as mountainous regions, jungles, and wilderness, where detection is
hindered by factors like terrain, vegetation, and weather [6], increasing the difficulty of
detection. Early detection plays a crucial role in identifying and reducing response time
before forest fires become uncontrollable or unmanageable [7]. Therefore, an effective
detection method is of paramount importance.

Traditional forest fire detection methodologies predominantly employ digital image
processing and pattern recognition techniques for image analysis. Chen et al. [8] delineated
a fire early warning technique predicated on video processing, facilitating the extraction of
fire and smoke pixels via chromaticity and disorder prediction based on the RGB model.
This technique has achieved commendable fire accident detection while maintaining a
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low false alarm rate. Celik et al. [9] proffered an enhanced fire detection technique uti-
lizing the YCbCr color space, which proficiently segregates chromaticity and luminance
in comparison to the RGB color space. While traditional detection techniques suffice in
adhering to real-time detection speed requisites, they exhibit subpar feature extraction
capabilities in complex scenes, are prone to environmental interference, and have limited
model generalization capacity.

With the development of deep learning technology, researchers have realized the
strong feature extraction capabilities and minimal susceptibility to environmental inter-
ference of neural networks. Consequently, they have begun to investigate the use of
convolutional neural networks for feature extraction in the context of fire and smoke de-
tection. Applying deep learning technology to forest fire detection tasks can effectively
address the limitations of traditional detection methods.

Object detection models in deep learning are generally divided into two categories:
one-stage and two-stage. One-stage detection algorithms perform both candidate box
generation and target classification simultaneously, resulting in fast detection but lower
accuracy. Two-stage algorithms first determine the Region of Interest (ROI) to locate the
target roughly, and then perform feature extraction within the region for classification
and precise location. Although the two-stage model has higher accuracy, the inference
speed is slower than the one-stage model. Emblematic one-stage detection algorithms
encompass YOLO [10], SSD [11], and RetinaNet [12], whilst representative two-stage
algorithms include Faster R-CNN [13], R-FCN [14] and Mask R-CNN [15].

On the one hand, Liu et al. [16] utilized the YOLOv5n model for forest fire detection,
which can be easily deployed on low-power devices but fails to meet the accuracy require-
ments. On the other hand, Qian et al. [17] introduced the OBDS model, which combines
CNN and Transformer to extract global feature information from forest fire smoke images.
Li et al. [18] replaced the SPPF module with RFB in YOLOv5 to enable better focus on the
global information of various forest fire and smoke. These strategies significantly enhance
the ability of the model to capture contextual information, enable the model to acquire
better feature information, and improve the detection accuracy of small-scale forest fires.
However, they bring about an increase in both parameters and computational complexity.

In response to the aforementioned issue, this paper proposes an improved forest fire
detection model based on YOLOv8, aiming to seek a balance between detection accuracy
and speed. The main improvements are as follows:

• Through data analysis, an attention module with asymmetric dilated convolutions
is designed, which allows the convolutional kernels to closely adhere to the target
for feature extraction. And, detection head is improved to achieve a balance between
accuracy and speed.

• The MPDIoU loss function, which utilizing the geometric properties of bounding box
regression, is introduced to enhance the model’s convergence speed and detection accuracy.

• The lightweight GSConv is used to replace standard convolution, alleviating the pa-
rameters increase caused by the attention module and make model more lightweight.

• Knowledge distillation strategy is adopted in the training stage, so that FFYOLO can
learn more intrinsic connections between features, thereby improving the model’s
generalization ability and detection accuracy.

The rest of the paper is organized as follows. In Section 2, we provided a detailed
explanation of the methods we improved and utilized. Section 3 presented the experimental
environment and results. In Section 4, we summarized our approach and discussed future
research directions.

2. Methods
2.1. YOLOv8

The YOLOv8 model manifests significant enhancements over its predecessors. A sig-
nificant advancement is the shift from the anchor-based strategy to the anchor-free strategy
for bounding box regression. Anchor-free strategy abandons the use of anchor boxes and
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instead employs a method of probability regression based on the center point for bounding
box regression. The anchor-based strategy performs well in fixed datasets or scenes with
consistent object distributions. However, its performance may falter in complex forest fire
detection environments. In contrast, the anchor-free strategy is more suitable for forest
fire detection. Furthermore, the anchor-free strategy significantly reduces the number of
predicted boxes per grid compared to the anchor-based approach. This reduction expedites
the Non-Maximum Suppression (NMS) process, thereby enhancing the inference speed.
The model structure of the YOLOv8 is shown in Figure 1. The C2f structure in YOLOv8
significantly enhances the gradient flow within the model, while concurrently reducing
the redundant connections inherent in the original C3 structure. Furthermore, YOLOv8
adopts the TaskAlignedAssigner [19] positive sample allocation strategy and utilizes the
Distribution Focal Loss [20] combined with CIoU Loss for better bounding box regression.

Figure 1. Model Structure of YOLOv8.
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2.2. Channel Prior Dilatation Attention

The attention mechanism in computer vision endeavors to attenuate the influence of
irrelevant features on the final output by simulating the manner in which humans perceive
objects. This mechanism augments the model’s ability to accurately identify key features in
complex scenes, thus enhancing the model’s robustness.

The attention mechanism is bifurcated into channel attention, spatial attention, and the
combination of the two. A quintessential example of channel attention, denoted as Squeeze-
and-Excitation (SE) attention [21], assesses the significance of each feature channel by
compressing each 2D feature map and applying corresponding weights. Nonetheless,
the SE module only concentrates on the importance of the channel, ignoring the spatial
information contained in the feature map. In the subsequent study [22], a convolutional
methodology was employed to engender spatial attention feature maps after channel
attention, thereby markedly ameliorating the model’s detection accuracy.

Given the intricacy of the forest fire scene, the global information encapsulated in the
image substantially affects the final output, and the embedding of spatial information can
mitigate misjudgment rates. Upon analyzing the priori fire and smoke features shown in
Figure 2, Figure 2a shows the aspect ratio distribution of the ground truth boxes. By utilizing
the K-means clustering algorithm shown in Figure 2b, this paper selected four aspect ratios
and summarized them as 4:3 and 1:1 for spatial attention design.

(a) (b)
Figure 2. Analysis of ground truth boxes: (a) ground truth boxes aspect ratio distribution; (b) K-means
clustering result.

To augment the model’s ability to focus on target features, this paper advocates for the
incorporation of a spatial attention module, which is composed of multi-scale asymmetric
dilated convolutions.

As shown in Figure 3, which is a comparison between standard convolution Figure 3a
and dilated convolution Figure 3b, the dilated convolution method increases the receptive
field of the convolutional kernel and reduces redundant information, without chang-
ing parameters.

The multi-scale asymmetric dilated convolution spatial attention module designed
in this paper is shown in Figure 4. The bar convolutional kernels with a dilation rate of 2,
which is marked in blue, allows for the implicit spatial encoding of feature maps in both
width and height directions. In Figure 2b, this paper summarizes two common aspect ratios
for the target bounding boxes, 1:1 and 4:3. For targets with a 1:1 aspect ratio, the standard
rectangular convolutional kernel is sufficient to handle, so we do not make any special
design. For targets with a 4:3 aspect ratio, using 3 × 4 and 4 × 3 convolutional kernels will
change the size of the output feature map, which is not conducive to model construction.
Therefore, for these targets, we designed a set of 3 × 5 and 5 × 3 convolutional kernels with
no dilation rate, marked in green.
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(a) (b)
Figure 3. Comparison of standard and dilated convolution: (a) Standard Conv; (b) Dilated Conv.

Figure 4. Multi-scale asymmetric dilated convolution spatial attention module.

By combining the channel attention module and multi-scale asymmetric convolu-
tion spatial attention, we designed a channel prior dilatation attention module (CPDA),
as shown in Figure 5. The input feature maps go through a channel attention module. This
channel attention module generates channel attention maps by combining the results of
max-pooling and average-pooling, and evaluates the importance of each feature channel
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by multiplying it with the original feature map. After that, the feature maps enter the
multi-scale asymmetric dilated convolution spatial attention module to obtain the final
output feature maps.

Figure 5. Structure of CPDA.

2.3. Mixed-Classification Detection Head

In the design of YOLOv8, the Decoupled Detection Head architecture employed
two distinct convolutional modules to independently execute regression and classification
tasks for bounding box and class(Cls) prediction. YOLOv7 [23] proposed a method of
using an auxiliary detection head to guide the primary detection head to refine prediction
outcomes (auxiliary head is not engaged during inference). Motivated by the detection head
structure in YOLOv8 and the auxiliary detection head concept, the mixed-classification
detection head (MCDH) is designed in this paper.

In the MCDH, both convolutional modules undertake the task of class prediction
by appropriately weighting the outputs of these two convolutional layers, and the final
class prediction outcome is derived. This architecture harnesses bounding box regression
information to guide class prediction. In addition, we also redesign the convolutional
kernel and channel to optimize the parameters. The final class prediction is derived from
the following formula:

Clspred = (1 − α)Cls1 + αCls2 (1)

where Cls1 represents the additional class prediction value in the original regression branch,
and Cls2 represents the class prediction value in the original classification branch. The value
of α is determined to be 0.75 based on comparative experiments in Section 3.4.2.

The classification branch of the original detection head is composed of two 3 × 3 con-
volutional kernels and one 1 × 1 convolutional kernel, the same as the bounding box
regression branch. Considering that our detection task involves only two classes, this has
a lot of parameter redundancy. Therefore, through comparative experiments, this paper
redesignes the classification branch to consist of three 1 × 1 convolutional kernels, ensuring
both the accuracy and lightweightness of the detection head. The comparison between the
original detection head and the FFYOLO detection head is shown in Figure 6.
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Figure 6. Comparative design of YOLOv8 detection head and FFYOLO detection head.

2.4. Lightweight GSConv

Xiao et al. [24] proposed the C3Ghost and GhostMP modules based on GhostNetv2 [25]
to make the backbone of YOLOv7 lighter, thus reducing the computational cost and
parameters of the model. In this paper, the standard convolution(SConv) of the Neck
section is replaced by the lightweight GSConv [26].

To enable deep learning models to run on low-power devices, Megvii Technology
used the Depthwise Separable Convolution (DSConv) to design ShuffleNet [27]. This
approach significantly reduces the parameters while maintaining a certain level of accuracy.
However, DSConv severs a large number of connections between neurons, inevitably
leading to information loss during the backpropagation process. But, GSConv diligently
retains these connections, thus delivering outputs more akin to SConv relative to DSConv.

Time complexity comparison (assuming that the convolution kernel size as K1 = K2 = K,
W and H represent the size of the output feature map, while the number of input and
output channel are represented by C1 and C2):

TimeSConv ∼ O(W × H × K2 × C1 × C2) (2)

TimeDSConv ∼ O[W × H × C1(K2 + C2)] (3)

TimeGSConv ∼ O[W × H × K2 × C2

2
(C1 + 1)] (4)

The module structure of GSConv is shown in Figure 7. GSConv allows information
from SConv to be mixed into DSConv. This methodology melds the low FLOPs advantage
of DSConv with the smooth information exchange of SConv. Analytically, as shown
in Figure 8, GSConv’s time complexity is merely 50% of that of SConv (as the channel
dimension increases, it gets closer to the theoretical value), yet the model retains a learning
capability comparable to SConv.
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Figure 7. Structure of GSConv.

Figure 8. Time complexity of different convoluation.

2.5. Soft Label Strategy Based on Knowledge Distillation

In detection tasks, the common practice is to employ the Binary Cross-Entropy (BCE)
Loss function for computing the class loss. The BCE Loss measures the performance of a
classification model. The formula of the BCE Loss is as follows:

y = Sigmoid(ypred) =
1

1 + eypred (5)

Lclass = −[y∗log(y) + (1 − y∗)log(1 − y)] (6)

where ypred denotes the predicted class value mapped to probability value y between 0
and 1 through the Sigmoid function, and y∗ denotes the true label that encoded using
one-hot encoding.

However, it is difficult for one-hot encoding to express the correlation between differ-
ent classes. Employing one-hot encoding could engender overconfidence in the model’s
predictions, thereby inducing significant deviations from the true class label and potentially
impairing the model’s generalization performance [28].

In this paper, the method of knowledge distillation [29] is used to enhance the model’s
generalization ability. Knowledge distillation is a technique that compresses the model
size and improves speed and efficiency by transferring the knowledge of complex models
to simplified models. Complex teacher model has a strong feature extraction capability.
The labels provided by the teacher model contain the inter-class relationships it has learned,
which can guide the simplified student model for classification and regression, so that the
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student model can obtain a feature extraction capability equivalent to that of the teacher
model. The knowledge distillation flowchart is shown in Figure 9.

Figure 9. Knowledge distillation flowchart.

The final class loss function is defined as follows:

MSE(ycls, ytcls) = (ycls − ytcls)2 (7)

Scale = Sigmoid(ytcls) =
1

1 + eytcls (8)

BCEWithLogitsLoss(ycls, y∗) = −[y∗log[Sigmoid(ycls)] + (1 − y∗)log[1 − Sigmoid(ycls)]] (9)

Lclass = (1 − α)BCEWithLogitsLoss(ycls, y∗) + αMSE(ycls, ytcls)× Scale (10)

where y∗ represents the one-hot encoded label, and ycls and ytcls are the class values
predicted by the student model and teacher model, respectively. Scale measures the
confidence of the teacher model’s predictions for a certain detection target. It is used to
reduce the impact of low-confidence objects on the model training. α determines which
part of the loss is more inclined during the model training.

2.6. MPD-IoU Loss

The original YOLOv8 adopted CIoU loss and distributed focus loss for bounding
box regression.

CIoU loss is defined as follows:

IoU =
Inter area

Union area
(11)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (12)

α =
v

(1 − IoU) + v
(13)

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (14)

where ρ2(b, bgt) measures the Euclidean distance between the center point of the predicted
box and the ground truth box, and v measures the similarity between the predicted box and
the ground truth box in aspect ratio, while c denotes the diagonal length of the minimum
bounding rectangle between the predicted box and the ground truth box. IoU represents
the ratio of the intersection and union of the predicted box and ground truth box.
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Although CIoU takes into account the aspect ratio, intersection-over-union, and center
point loss between predicted and ground-truth bounding boxes, the geometric properties
of bounding box regression are not fully utilized in the existing loss functions. Therefore,
this paper replaces CIoU with MPDIoU [30], which minimizes the distance between the
top-left and bottom-right points of the predicted and ground-truth boxes for bounding box
regression. MPDIoU regression method is shown in Figure 10.

The MPDIoU loss function is defined as follows:

d2
1 = (xpred

1 − xgt
1 )2 + (ypred

1 − ygt
1 )2, d2

2 = (xpred
2 − xgt

2 )2 + (ypred
2 − ygt

2 )2 (15)

LMPDIoU = 1 − IoU +
d2

1
w2 + h2 +

d2
2

w2 + h2 (16)

where (xpred
1 , ypred

1 ), (xpred
2 , ypred

2 ) denote the top-left and bottom-right point coordinates of
predicted box, (xgt

1 , ygt
1 ), (xgt

2 , ygt
2 ) denote the top-left and bottom-right point coordinates of

ground truth box.
After knowledge distillation from the previous section, the bounding box regression

loss function is defined as follows:

Scale = Sigmoid(ytcls) =
1

1 + eytcls (17)

LBox = (1 − α)LMPDIoU + αMSE(ybox, ytbox)× Scale (18)

where ytbox = [xtpred
1 , ytpred

1 , xtpred
2 , ytpred

2 ], ybox = [xpred
1 , ypred

1 , xpred
2 , ypred

2 ].

Figure 10. MPD-IoU regression method.

Through MPDIoU, all factors considered in the existing bounding box loss function
can be determined by the coordinates of four points, and the conversion formulas are
as follows:

|C| = (max(xgt
2 , xpred

2 )− min(xgt
1 , xpred

1 ))× (max(ygt
2 , ypred

2 )− min(ygt
1 , ypred

1 )) (19)

xgt
c =

xgt
1 + xgt

2
2

, ygt
c =

ygt
1 + ygt

2
2

, xpred
c =

xpred
1 + xpred

2
2

, ypred
c =

ypred
1 + ypred

2
2

(20)

wgt = xgt
2 − xgt

1 , hgt = ygt
2 − ygt

1 , wpred = xpred
2 − xpred

1 , hpred = ypred
2 − ypred

1 (21)
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Here, |C| represents the minimum bounding box area covering the predicted box and
the ground truth box, (xpred

c , ypred
c ) and (xgt

c , ygt
c ) are the center coordinates, and wpred, hpred

and wgt, hgt are the width and height of the two boxes, respectively.

2.7. FFYOLO

This paper presents a forest fire detection method based on YOLOv8 shown in
Figure 11, named FFYOLO, which incorporates CPDA attention module in the model’s
Backbone section and replaces the detection head with MCDH, so as to enhance the model’s
feature extraction capability and classification accuracy. Compared to the original detection
head, MCDH reduces 60% of the parameters.

Figure 11. Model structure of FFYOLO.

We also redesigned the structure of the backbone. Compared to the original model,
we reduced the repetition times of the second C2f module from 6 to 3 and replaced the
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SConv in the Neck section with lightweight GSConv. Additionally, the C2f module in the
Neck section is replaced by the VOVGSCSPC module, which combines VOVnet [31], and
GS convolution to reduce the model’s complexity. This modification engendered a 25.4%
reduction in parameters and a 30.6% decrement in FLOPs, while preserving the model’s
learning capability with the original design.

In the initial stages of feature extraction within the Backbone section, all connections
must be preserved to ensure the integrity of information flow to the Neck section. The use
of GSConv at initial stage can impede the flow of information and lead to excessive compu-
tational complexity. In the Neck section, the majority of information is transferred to the
channel dimension, eliminating the need for further information compression. Therefore,
it is more appropriate to use GSConv at this stage. The comparison of parameters for the
FFYOLO and YOLOv8 modules in Neck section is presented in Table 1.

Table 1. Comparative Analysis of Neck Architectures in FFYOLO and Original YOLOv8.

Neck with GSconv (FFYOLO) Original Neck (YOLOv8)

Layer Name In/Out
Channel Params Layer Name In/Out

Channel Params

VoVGSCSPC(L15) 768/256 307,296 C2f(L12) 768/256 591,360
VoVGSCSPC(L18) 384/128 77,872 C2f(L15) 384/128 148,224

GSConv(L19) 128/128 75,584 Conv(L16) 128/128 147,712
VoVGSCSPC(L21) 384/256 208,992 C2f(L18) 384/256 493,056

GSConv(L22) 256/256 298,624 Conv(L19) 256/256 590,336
VoVGSCSPC(L24) 768/512 827,584 C2f(L21) 768/512 1,969,152

3. Experiments and Analysis
3.1. Dataset

The dataset used in the experiment consists of the D-Fires [32] dataset and data
collected from various sources on the Internet. The D-Fires dataset is specifically designed
for machine learning and object detection algorithms related to fire and smoke. To ensure
the quality of the dataset, a large portion of images with resolutions lower than 384 × 384
were excluded, resulting in a final set of 10,099 images. These images are then annotated
using the labeling annotation tool.

The dataset covers a wide range of forest fire scenarios. Additionally, it includes over
500 images of backgrounds that do not contain any fire or smoke, serving as negative
samples to enhance the model’s ability to distinguish non-forest fire scenes. The dataset is
divided into training, testing, and validation sets in a ratio of 7:2:1. A portion of images are
exhibited in Figure 12. Detailed information about the dataset is listed in Table 2.

Table 2. Details of Dataset.

Dataset Number of
Images

Number of
Targets

Number of
Smoke Number of Fires

Training 7069 17,082 11,941 5141
Validation 2019 4835 3354 1481

Testing 1011 2839 1964 875
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Figure 12. Examples of the experimental data.

3.2. Experimental Environment

This paper employed the PyTorch framework (version 1.13.1) and Python (version 3.8)
for model development. All models were trained on an RTX A6000 GPU under the Linux
Ubuntu 22.4 operating system. The experimental setting is listed in Table 3.

Table 3. Experimental Setting.

Input Image Size Epochs Optimizer Learning Rate Scheduling SGD Momentum Batch Size Weight Decay

640 × 640 300 SGD Linear decay (0.01:0.0001) 0.937 32 0.0005

The training regimen incorporated multi-scale input size adjustment, wherein the input image size varied
randomly (±50%, step = 32) for each epoch.

3.3. Model Evaluation

The model’s performance was gauged by prevalent metrics in object detection: mAP0.5,
AP, Parameters, and FLOPs. Herein, mAP0.5 signifies the mean average precision at an
IoU threshold of 0.5 on the test set, and AP signifies the average precision of a certain class
at an IoU threshold of 0.5 on the test set. The Parameters and FLOPs metrics evaluate
the model’s complexity in spatial and temporal dimensions, respectively. The frames per
second (FPS) metric delineates the processing speed of the model, indicating the number of
images processed per second at an input image size of 640 × 640.

The calculation equations are as follows:

P =
TP

TP + FP
(22)

R =
TP

TP + FN
(23)

AP =
∫ 1

0
P(R)dR (24)
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mAP =
1
N

N

∑
i=1

∫ 1

0
Pi(R)dR (25)

FPS =
1
T

(26)

where N represents the number of classes; P and R are precision and recall, respectively;
TP, FP, and FN correspond to True Positive, False Positive, and False Negative; and T
refers to the time required to detect a single image.

3.4. Detect Performance and Analysis
3.4.1. Effectiveness of CPDA

We introduced the SE, CBAM, and CA attention mechanisms into YOLOv8 to compare
their performance with CPDA. The comparison results are shown in Figure 13, which
shows the performance of incorporating attention modules into the model backbone. It
can be seen that the detection accuracy of the model with CPDA attention mechanism is
significantly improved.

Figure 13. Performance of different attention mechanism.

3.4.2. Effectiveness of MCDH

Relevant experiments that are shown in Figure 14 were conducted on the setting of
α in the Formula (1) of Section 2.3. When α is relatively small, the weight of the main
classification branch decreases, resulting in a decrease in mAP0.5 compared to the original
model. Conversely, when α approaches 1, mAP0.5 is close to the result of the original model.

3.4.3. Effectiveness of MPD-IoU

Comparison of the model performance with four different IoU loss functions is shown
in Figure 15. Compared to the original model with CIoU, YOLOv8 achieved a 1.0%
improvement in mAP0.5 when MPDIoU was adopted.

3.4.4. Ablation Experiments

The experimental outcomes are encapsulated in Table 4, illuminating the efficiency of
the proposed model in forest fire detection tasks.
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Figure 14. Results of different weight coefficients in MCDH.

Figure 15. mAP0.5 results of four IoU methods.

Table 4. Ablation experiment results.

Baseline IoU CPDA MCDH GSConv Params (M) FLOPs (G) FPS APsmoke APfire mAP0.5

YOLOv5 CIoU - - - 7,015,519 15.8 175 86.0% 84.4% 85.2%
YOLOv8 CIoU - - - 11,166,560 28.8 172 88.0% 82.8% 85.4%
YOLOv8 MPDIoU - - - 11,166,560 28.8 172 89.0% 83.7% 86.4%
YOLOv8 CIoU ✓ - - 12,235,750 31.2 166 88.8% 86.2% 87.5%
YOLOv8 CIoU - ✓ - 9,470,310 22.1 169 89.2% 83.5% 86.4%
YOLOv8 CIoU - - ✓ 8,992,470 24.6 178 88.5% 84.5% 86.5%

YOLOv8 * CIoU - - - 11,166,560 28.8 171 88.6% 84.7% 86.6%
YOLOv8 CIoU ✓ ✓ - 10,569,718 24.6 158 88.6% 86.6% 87.6%
YOLOv8 CIoU - ✓ ✓ 7,326,422 18.0 178 89.1% 83.3% 86.2%
YOLOv8 CIoU ✓ - ✓ 10,091,878 27.1 164 88.9% 86.5% 87.7%
FFYOLO MPDIoU ✓ ✓ ✓ 8,343,638 19.5 188 89.1% 87.6% 88.3%

FFYOLO * MPDIoU ✓ ✓ ✓ 8,343,638 19.5 188 89.5% 88.1% 88.8%

The Baseline that marked with * means model is trained with knowledge distillation strategy.
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3.4.5. Model Comparison and Visualization

Figure 16 illustrates the distribution of various models concerning average precision
and inference time, with proximity to the top-left corner indicating superior performance.
The final model, as depicted, achieves a commendable balance of high precision and rapid
inference speed, showcasing its efficacy.

Table 5 illustrates the performance of different models in various scenarios. In (a),
YOLOv5, YOLOv8, and RetinaNet misclassified firefighters as fire, while FFYOLO can
distinguish them well. (b) demonstrates the detection performance at different distances
from the target. YOLOv5s, YOLOv8s, and RetinaNet existed with varying degrees of
missed detections, and FFYOLO can successfully detect the majority of targets. In (c), due
to the presence of fog near the ground, most models incorrectly identified it as smoke.
FFYOLO possessed excellent recognition ability in this scenario. Additionally, Faster-
RCNN utilized Resnet50 as the Backbone and also achieved a good performance, but at the
cost of a 97.7 MB weight file, while FFYOLO’s weight file size was only 17.0 MB.

Table 5. Visual display of detection results.

Model Detect Results

YOLOv5

YOLOv8

FasterRCNN

RetinaNet

FFYOLO

(a) (b) (c)
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Figure 16. Comparative analysis of inference time and mean average precision.

4. Conclusions

The complexity of a forest environment and the varying environmental factors bring
challenges to forest fire detection, which often lead to poor detection and false alarms.

In recent years, with the development of technology and hardware, deep learning
algorithms have gradually become the mainstream of forest fire detection. Compared
to traditional machine learning algorithms, the forest fire detection algorithm based on
deep learning technology has the advantages of high accuracy and good generalization.
However, most of them have difficulty in meeting the real-time detection requirements due
to their high complexity or excessive parameters.

This paper proposes the FFYOLO model for forest fire detection, aiming to address
these challenges. The CPDA attention mechanism is a specially designed CPDA attention
mechanism to enhance the feature extraction capabilities of fire and smoke. Additionally,
we replace the original detection head with MCDH and introduce GSConv to reduce pa-
rameters and complexity while maintaining accuracy. Finally, the MPDIoU and knowledge
distillation training strategy is introduced to reduce false and missed detection rates, mini-
mizing the risk of overfitting. In the experiments of this paper, 10,099 forest fire images
were partitioned into training, testing, and validation sets in a ratio of 7:2:1. FFYOLO
achieved an mAP0.5 of 88.8%, and FPS improved by 9.3%; thus, the effectiveness of our
improvements is validated.

Therefore, compared with the original YOLOv8 model, FFYOLO shows higher ac-
curacy and efficiency. On one hand, FFYOLO has less parameters and computational
complexity, which makes it easier to deploy on low-power devices. On the other hand,
FFYOLO is more robust and can detect the forest fire in most complex scenarios.

Forest fire detection is inherently a process of multi-source data fusion prediction.
The method proposed in this paper focuses on detecting forest fire using RGB images.
In real-world scenarios, the information provided by images is usually limited. Challenges
arise when the scene is too bright, the fire is concealed under trees, or the target is far
away, making the features of fire and smoke less discernible in the image and consequently
making it difficult for the model to detect fire and smoke. Sensors also play a crucial role
in forest fire detection, such as infrared sensors, multispectral sensors, and hyperspectral
sensors [33], which provide richer information that cannot be captured by images alone.
In the future, we will focus on how to combine image data with corresponding sensor data
in forest fire detection. This integration of image and sensor information can lead to the
development of a more robust forest fire detection model that utilizes multi-source data,
thereby improving the accuracy of forest fire detection.
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